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Abstract. The state-of-the-art of insect flight research using advanced computational fluid dynamics tech-
niques on supercomputers is reviewed, focusing mostly on the work of the present authors. We present a brief
historical overview, discuss numerical challenges and introduce the governing model equations. Two open
source codes, one based on Fourier, the other based on wavelet representation, are succinctly presented and
a mass-spring flexible wing model is described. Various illustrations of numerical simulations of flapping in-
sects at low, intermediate and high Reynolds numbers are presented. The role of flexible wings, data-driven
modeling and fluid–structure interaction issues are likewise discussed.
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1. Introduction

Insects were the first animals to learn how to fly and they remain the only invertebrates capable of
doing so. Giant dragonflies discovered flapping wing flight 350 million years ago and this remains
the most efficient way for quick maneuvering. Today insects flap their wings at a frequency which
varies from 5 to 1000 Hz depending on the species. Since the beginning of mankind humans quite
probably have wondered why birds and insects are able to fly, but not themselves. Some have
tried to fly, but often at the cost of their lives, as told in the Greek myth of Icarus. In the 16th
century Leonardo da Vinci, by studying birds, determined that flight requires three ingredients:
a light and powerful engine, wings capable of generating sufficient aerodynamic forces, and a
control system to keep the body in the air. The first recognized successes date from the end of the

∗Corresponding author.

ISSN (electronic) : 1873-7234 https://comptes-rendus.academie-sciences.fr/mecanique/

https://doi.org/10.5802/crmeca.129
https://orcid.org/0000-0002-9098-1054
https://orcid.org/0000-0003-3921-7250
https://orcid.org/0000-0002-4445-8625
https://orcid.org/0000-0003-0107-6894
https://orcid.org/0000-0003-1243-6621
mailto:thomas.engels@ens.fr
mailto:dh.truong@unistra.fr
mailto:marie.farge@ens.fr
mailto:d.kolomenskiy@skoltech.ru
mailto:kai.schneider@univ-amu.fr
https://comptes-rendus.academie-sciences.fr/mecanique/


2 Thomas Engels et al.

19th century, with Otto Lilienthal in 1891 for gliding, Clément Ader in 1897 for the powered flight
without trajectory control, and the Wright brothers in 1903 for controlled flight.

In the 1860s, Etienne-Jules Marey, a physician and biomechanist, analyzed the flapping flight
of insects and showed that, with each flap, their wings describe a double ellipse similar to a figure
eight [1]. To understand how insects carry their weight and move, he built an artificial insect,
whose body contains compressed air, which flaps its wings in the shape of the figure eight, and
can fly up and down, which he presented at the “Académie des Sciences de Paris” on 15 March
1869. In 1882, he invented chronophotography (the technical basis of cinema) to decompose
complex movements, which enabled him to prove that the flight of birds is very similar to that of
insects. In 1899, he created a machine that produced 20 smoke trails to visualise the flow of air
around a moving body. Through all his inventions, Etienne-Jules Marey played an important role
in the birth of aeronautics; in 1874, he was elected vice-president of the Société de Navigation
Aérienne, and later president in 1884.

In the 1960s the entomologist Weis-Fogh discovered a new mechanism for insect flight, thanks
to the advent of fast cameras, which he called “clap-fling-sweep” [2]. The novelty of this mech-
anism lies in the change of topology that occurs during downstroke, when their wings separate
at their hinge as “fling” gives way to “sweep”, thus producing opposite circulations around the
wings during upstroke, until their wings clap together before the next downstroke. He was able to
show that various tiny insects, such as the wasp Encarsia formosa that he studied, improve their
performance and are able to hover using this mechanism, which some larger insects and birds,
such as pigeons, also use when they need to escape. In the same year, the mathematician Sir
James Lighthill explained the generation of lift produced by this mechanism using only 2D invis-
cid fluid dynamics [3]. In the 1970s Maxworthy [4] showed experimentally that such a hovering
mechanism generates leading edge vortices that are much stronger than those of normal hover-
ing flight. In 2011, Kolomenskiy et al. [5] explained the instantaneous generation of lift at wing
separation by a viscous effect producing a singularity of the pressure gradient at that moment.

Further significant advances in the field of biofluidynamics were made about fifty years ago
with the publication of Sir James Lighthill’s seminal monograph on mathematical biofluidynam-
ics [6], and the groundbreaking immersed boundary method-based simulations of flow in a beat-
ing heart presented in 1972 by Charles Peskin in his PhD thesis [7, 8]. Since then, the field of
computational biofluidynamics has grown considerably, with applications extending to virtually
all areas of physiological fluid dynamics, as well as the fluid physics of biolocomotion [9–12].
This expansion has been further boosted by physical discoveries and significant improvements
in physics-based, as well as data-driven methodologies, including models that couple flow with
structural dynamics, acoustics, and other physical domains. In the field of robotics remarkable
progress has been reported, highlighting the developed flapping Nano Air Vehicle (NAV), so called
nano hummingbirds [13]. This review aims to highlight the authors’ recent advances in compu-
tational as well as data-enabled techniques in the field of biofluid dynamics, and to present the
state-of-the-art in the application of these methods to study the flows generated by the flapping
of insect wings and their biolocomotion.

In the following we give a succinct overview of the state-of-the-art, including some recent
advances, in the field of computational fluid dynamics of insect flight. The potential of such
numerical simulations lies in their inherent ability to provide the entire instantaneous flow
field around the flapping insect, which is difficult to realize experimentally. This difficulty stems
from the relatively high flapping frequency, which is ≈200 Hz for a fruit fly [14], ≈150 Hz
for a bumblebee [15] and still ≈26 Hz for a hawkmoth [16]. In addition, as the insects are
rather small, the flapping wings hinder the observation by the camera and the animal must be
motivated to fly in the test section. These difficulties do not appear in numerical simulations,
although the complexity of the problem is high. First of all, the geometry of insects is complicated
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and therefore appropriate methods must be used that allow to enforce the no-slip boundary
conditions on these complicated boundaries. Furthermore, as the flapping motion is dynamic,
the geometry is also time-dependent. Additional challenges for numerical simulations are the
inherent unsteady and 3D nature of the flow.

The first and most frequent approximation is to assume the wings to be perfectly rigid. Earlier
work focused on 2D configurations, see e.g., [11]. Liu and Kawachi [17] were among the first to
present 3D computations. Their approach is based on the finite volume method and moving,
body-fitted grids. The approach is still used [14,16], and its advantage is a typically lower memory
requirement, at least for small enough Reynolds number Re, compared to approaches relying
on non-body fitted grids. This advantage, however, comes at a cost of limited CPU parallelism
and large numerical dissipation of the small scale turbulent structures in the wake. Ramamurti
and Sandberg [18, 19] used the incompressible Navier–Stokes equations in Arbitrary Lagrangian
Eulerian (ALE) formulation to simulate hovering fruit flies and a numerical investigation of the
timing of stroke reversal described by Dickinson et al. [20]. These numerical methods involve
significant computational and implementation overhead, whose reduction has motivated the
development of methods that allow for a geometry-independent discretization, such as the
immersed boundary method (IBM) and related techniques, including the volume penalization
method (VPM). The former was established by Peskin [7, 8, 21], while the latter is based on the
work of Angot and co-workers [22]. Reviews on different immersed boundary techniques can be
found for instance in [21, 23, 24].

The IBM/VPM methods can achieve higher resolutions and performance, and are simpler to
implement. However, the boundary conditions are satisfied only approximately. For classical dis-
cretization methods, grid-based methods can be used including finite differences, finite volumes
or finite elements. Likewise discrete lattice-based methods, i.e., lattice-gas cellular automata
leading to lattice-Boltzmann methods are employed, e.g., for simulating butterfly-like flapping
wings [25]. Yokoyama et al. [26] used the immersed boundary method to simulate a rigid-winged
butterfly in free forward flight with a state-of-the-art resolution of 1 billion grid points. They
showed that the abdominal motion plays an important role in flight stabilization.

Deformable wings introduce additional complexity to this problem. Not only is the geometry
even more complicated, but computations also require suitable solid models and stable fluid–
structure interaction (FSI) coupling mechanisms. Here, IBM/VPM methods enjoy an even more
significant reduction in implementation and computation time than for rigid wings. Computa-
tional studies with flexible wings can be divided into “active” and “passive” flexibility, depend-
ing on whether the deformation is actively computed from fluid forces or measured externally
and then imposed in the simulation [27,28]. Active FSI were mostly done in simplified 2D frame-
works [29, 30], considering chord-wise flexibility. More recently, Nakata et al. presented 3D com-
putations with flexible wings [31, 32], and likewise our team in [33].

The remainder of the article is organized as follows: numerical challenges and different
approaches are discussed in Section 2. Fourier and wavelet-based fluid solvers are described
and the flexible wing model is introduced. Then we present in Section 3 some numerical results
for tiny and also larger insects. Some results for insects with flexible wings are given and high
resolution computations of insects flying in the wake of a cylinder and of a fractal tree are shown.
Finally some conclusions and future perspectives are presented in Section 4.

2. Numerical challenges and different approaches

2.1. Challenges

There are multiple numerical challenges for highly faithful simulations of insect flight. The
spatial scales of range of motion have a broad spectrum and range from the size of the domain
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(the numerical wind tunnel, or obstacles like plants generating turbulence), via the insect size,
its body and wing dimensions, down to the Kolmogorov scale in the case of turbulent flow.
Likewise the temporal scales call for a resolution of the flapping frequency, typically of the
order of 10–200 Hz, as well as the time scale of turbulent motion. Moreover, there are FSI
issues, the coupling of the air flow and the wing deformation, to be considered. Models for the
flexible wings and their motion, i.e., the wing kinematics, are required and material properties
must be provided. Since we study living animals, knowledge of biological behavioral issues,
including the control mechanisms of insects are necessary, which illustrate the complexity and
call for interdisciplinary expert knowledge and high demands on mathematical, computational,
biological and engineering scientists.

2.2. Models using volume penalization

Modelling flapping insect flight implies that complicated, time varying geometries with FSI
need to be considered when solving the aerodynamic equations. For solving the governing
partial differential equations (PDEs) in such geometries efficiently, typically immersed boundary
techniques, including direct forcing, fictitious domains or penalization approaches, are used.
Thus the PDEs or their discretized versions are modified in an adequate way and the boundary
conditions, typically no-slip for viscous fluids, are appended or imposed by an additional term.
The resulting equations can then be solved in a simple geometry using e.g., Cartesian grids
and applying the favorite numerical scheme. Thus all geometrical stiffness is removed, or better
hidden in the penalty terms, which have been added to the equations. Here we mostly focus
on the volume penalization, originally introduced for fixed geometries in [22, 34], extended
for moving obstacles in [35] and generalized for deforming objects in [36]. The main idea of
volume penalization (likewise called Brinkman or Darcy penalization) is to use spatially variable
permeability to model the solid obstacle (in our case the insect) or solid walls as a porous
medium. All geometrical information, which may change in time, is encoded in a mask (or
indicator) function χ, illustrated in Figure 1. The penalized versions of the non-dimensionalized
incompressible Navier–Stokes equations, which are solved in the larger domain Ω = Ω f

⋃
Ωs ,

whereΩs is the solid domain (see Figure 1, left), read

∂t u +u ·∇u +∇p −ν∇2u = − χ

Cη

(
u −us

)
(1)

∇·u = 0. (2)

Here χ is the indicator function, Cη ¿ 1 is the penalization parameter (permeability) and us
the solid body velocity field. The indicator function is χ = 1 inside Ωs and χ = 0 in Ω f , and
in the shown computations we use a thin smoothing layer with thickness proportional to the
grid spacing in the case of moving [35] or deforming obstacles [36]. The linear damping term in
the momentum equation is thus mostly present in the solid domain. In the limit of vanishing
permeability, the penalization parameter Cη tends to zero, and the porous region tends towards
a solid wall. Correspondingly the penalized Navier–Stokes equations converge to their non-
penalized counterpart imposing no-slip boundary conditions, as shown rigorously in [22, 37].
The observed convergence has a slow rate O(C 1/2

η ) and thus necessitates sufficiently small, but
not too small, permeability values [38]. This approach suffers from several further limitations.
A penalization boundary layer is generated at the interface of the solid–fluid region and the
penalized equations become stiff not only in space but also in time when Cη is small. This
requires an adequate choice of the parameters, coupling thus the numerical discretization and
the penalization parameters, see e.g., [39]. The error can be further reduced using smooth
mask functions [35, 38]. Finally, the resulting numerical scheme is low order and yields typically



Thomas Engels et al. 5

Figure 1. Wingbeat of a model bumblebee in forward flight. The wingbeat cycle is divided
into two parts, the down- and upstroke. The computational domainΩ consists of the fluid
domainΩ f and the solid domainΩs (the insect).

a first, at most a second-order spatial convergence only, at least close to the boundary. An
interesting direction for upgrading VPM using smoothing prescription for the damping has
been proposed in [40] using multiple-scales matched-asymptotics and applying Richardson
extrapolation. Therewith one gets second-order convergence in Cη and higher-order spatial
convergence can be obtained. An essential aspect of this technique is that the position of the
mask functions needs to be known a priori which is for example not the case in FSI. Wake removal
techniques for imposing in and outflow conditions based on VPM have been proposed using
sponges [38, 41].

Let us mention that there are some generalizations of VPM for imposing Neumann boundary
conditions, either homogeneous [42] or inhomogeneous [43] and Robin conditions by linear
combination. This is important for passive scalar or heat transport in complex geometries, an
example relevant for insects are odour sources (pheromones).

While the penalization method (similarly to the immersed boundary method) thus has some
disadvantages, its benefits outweigh them. Besides the relative ease of implementation, those
methods are particularly suited for obtaining quick results. While we have methods with higher
accuracy available, their computational cost and implementation overhead is larger, as well as the
time to set up a simulation. In the field of biofluidynamics, we are often interested in performing
many simulations with medium precision rather than a single, very precise one. This stems from
the biological variability: no insect looks like the other and their wingbeat is not a strict Fourier
series but rather variable. Therefore, VPM is an excellent choice for numerical simulations of
insects.

To give an example, Figure 1 illustrates the mask function χ of a bumblebee model. We show
the χ = 0.5 isosurface. In addition, we illustrate the wingbeat during the up- and downstroke.
This model insect is in forward flight, thus the stroke plane in which the wings flap is inclined
with respect to the horizontal plane. Note that like a helicopter, hovering insects move their wings
mainly in a plane parallel to the ground.

2.3. Fourier-based Fluid–Structure Interaction solver: FluSI

The developed FluSI (Fourier-based Fluid–Structure Interaction solver) open source software
package is a fully parallel Fourier pseudospectral method for high resolution computation of
3D flapping flight in viscous flow [41] on massively parallel computers with distributed mem-
ory architectures. The penalized incompressible Navier–Stokes equations (2) are discretized with
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Figure 2. Numerical simulation of a bumblebee model with the spectral code FluSI. This
code relies on an equidistant grid with constant, fine resolution everywhere which is shown
on the left. Only every 128th grid point is shown for visibility. Right part (from [41]) shows a
strong scaling test on an IBM BlueGene/Q supercomputer.

a classical Fourier pseudospectral method with adaptive time stepping [44,45]. Solving a Poisson
equation in Fourier space thus becomes trivial and the incompressibility constraint can be easily
satisfied, since the Riesz projector is diagonal in Fourier space. Artificial numerical diffusion and
dispersion are absent, but the no-slip (and outflow) boundary conditions are imposed with the
volume penalization method and modeling error arises. The computational complexity is almost
entirely determined by the FFT, for which excellent scaling can be obtained on supercomputers
using highly optimized libraries, e.g., P3DFFT. Nevertheless Cartesian equidistant grids limit the
number of grid points and the maximum domain size by the available computational resources.
The inherent periodicity can be alleviated using penalization-based sponge techniques for wake
removal. Moreover the numerics (and the physics) implies small time steps,∆t <Cη, even though
Runge–Kutta–Chebychev (RKC) schemes could be included, particularly helpful for low Reynolds
number simulations where the penalization method imposes prohibitively small time step
sizes.

Different modules are available in the FluSI software package. Flapping flight with rigid wings,
either tethered, but a free flight option is likewise available, however without active control
so far. Semi-implicitly coupled FSI is also implemented and for handling the solid part of the
deformable wings the mass spring-model described in Section 2.5 is used. The modular code
structure allows easily to take into account different complex geometries, and thus insects with
wings of different shape can be simulated easily. The wing kinematics and flight mechanisms are
defined in further modules.

Extensive details on the numerical method including thorough validation and benchmarking
can be found in [41]. The FluSI code has been used in particular for computing bumblebees in
turbulence [46], for free flight in turbulence [47], FSI of Calliphora wings [48]. In Figure 2 we show
a high resolution computation of a tethered bumblebee with FluSI and the corresponding strong
scaling test on an IBM Blue Gene with up to 16384 CPUs. Here, a rectangular domain is used, and
the reference run is using 1024 CPU cores. Good scaling is observed up to 8192 CPU cores. The
software is available on Github at the following address, https://github.com/pseudospectators/
FLUSI.

https://github.com/pseudospectators/FLUSI
https://github.com/pseudospectators/FLUSI
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2.4. Wavelet-Adaptive Block-Based solver: WABBIT

Motivated by the limitations of the FluSI package, the Fourier discretization requires equidistant
grids, which make large scale computations extremely expensive, we developed a second fully
parallel code called WABBIT, which stands for Wavelet-Adaptive Block-Based solver for Interac-
tions with Turbulence [49]. It has been designed for computing 3D multiscale flows in complex,
time-varying geometries using a similar modular structure as in FluSI. The key feature is adap-
tivity with cubic blocks and locally equidistant grids endowed with an efficient implementation
on last generation massively parallel architectures using tree-like data-structures. The major dif-
ference relative to FluSI is that we relax the incompressibility condition and we use instead artifi-
cial compressibility. Introducing a finite speed of sound avoids the solution of an elliptic problem
but yields another modeling error. The boundary conditions, no-slip and in/outflow are modeled
similarly to FluSI with the volume penalization. The governing equations read,

∂t u +u ·∇u +∇p −ν∇2u + χ

Cη

(
u −us

)+ χsp

Csp

(
u −u∞

) = 0 (3)

∂t p +C 2
0∇·u +Cγp + χsp

Csp

(
p −p∞

) = 0. (4)

In the limit when C0 tends to infinity, we recover the incompressible equations (2). The spatial
grid is block-structured, cubic-blocks of fixed size with equidistant Cartesian grid, but different
step size. For spatial discretization, centered finite differences are used and for time integration,
a Runge–Kutta scheme, both of fourth order. Each block of the computational domain is decom-
posed into biorthogonal wavelets of Cohen–Daubechies–Feauveau type [50]. The wavelet coeffi-
cients of the blocks are then used as refinement and prediction operators. Therewith a dynami-
cally evolving grid is generated and an adaption strategy allows to track the solution in space and
scale. Numerical analysis justifies the choice of the different modeling parameters (the artificial
speed of sound, the porosity for the penalization) and the numerical parameters (thresholding
parameter of the wavelet coefficients, space and time steps) to balance the different error contri-
butions and to obtain globally a fourth-order convergent method in space and time. The explicit
time marching approach together with the locality of the discretization in space allows to distrib-
ute the blocks among different MPI processes. Tree-like data structures and load-balancing with
space-filling Hilbert curves then distributes contiguous chuncks of blocks to the processes. For
further details on the numerical method, its numerical analysis including thorough validation
and benchmarking of the paralellization efficiency, see [49].

Figure 3 illustrates an adaptive 3D computation of a bumblebee together with the locally
refined grid. The corresponding strong scaling test on different machines of GENCI (Irene SKL
and Irene AMD and IDRIS Zay SKL) assesses the speed-up going up to a factor 4. The WABBIT
open access software package is available on Github at the following address, https://github.
com/adaptive-cfd/WABBIT.

2.5. Mass-spring model of flexible insect wings

Insect wings are sophisticated structures which enable insects to generate sufficient lift for flying.
Yet, in the past, most research usually simplified insect wings as rigid structures. The wing’s
dynamic shape change is essential for developing a comprehensive understanding of insect
flight because it determines the direction and magnitude of fluid dynamic forces during wing
flapping [51, 52]. However, the complex interaction between the surrounding unsteady flow and
the anisotropic wing structures renders the analysis of flapping flexible wings demanding. One
of the challenges is the computational cost which is already high for the fluid solver. Ideally, the
solid model should not increase this cost significantly. Consequently, we choose a mass-spring

https://github.com/adaptive-cfd/WABBIT
https://github.com/adaptive-cfd/WABBIT
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Figure 3. Numerical simulations of a bumblebee model with the adaptive code WABBIT.
Parts A and B shows the |ω| = 50 f isosurface of vorticity magnitude together with the
block-based adaptive grid at 0.3T . Data result from simulations allowing Jmax = 6 (A)
and eight (B) levels of refinement. The wavelet-based approach automatically refines the
grid where necessary, i.e., at the fluid–solid interface and at locations with important flow
features. (C) Strong scaling test for a bumblebee simulation with Jmax = 8 on three different
supercomputers (from [49]). Colored labels indicate numbers of CPUs.

model for modelling the wing structure due to its computational efficiency and its ability to deal
with large deformations.

The mass-spring model is based on the discretization of an object using mass points which are
connected by massless springs. At a given time t , the position xi and the velocity v i of the mass
point i can be obtained by solving the dynamic equations of the system, i.e., Newton’s second
law, given by:

F i = mi ai

F i = F int
i +F ext

i for i = 1. . .n

v i (t = 0) = v0,i

xi (t = 0) = x0,i ,

(5)
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Figure 4. Types of springs used in mass-spring models for flexible insect wings.

Figure 5. Left: Calliphora wing. Right: Illustration of the mass-spring model which is
meshed based on measured data of the real blowfly wing shown on the left. The black
and white markers represent mass centers. Color codes (red, green and blue) are used for
identifying veins and the membrane is represented by the black triangular mesh. The center
of wing mass is shown by the black and white marker. The length is normalized by the fly
wing length. The dimensionless vein diameters are displayed by real ratios in the figure.
Adapted from [48].

where n is the number of mass points, F i is the total force (internal force F int
i and external force

F ext
i ) acting on the i th mass point, mi , ai are mass and acceleration of the i th mass point,

respectively. All terms in (5) are straightforward to derive, except for the forces. The external
forces come from the fluid and gravity, internal forces represent the restoring forces caused by the
springs. In order to model flexible insect wings, we combine linear extension springs and bending
springs (Figure 4). The former is designed to operate with axial forces resisting extension and
compression, while the latter is used for torques resisting bending. The complicated properties
of the restoring forces render the system of (5) nonlinear. Because the equations are numerically
stiff, in particular because of the torsion springs, we resort to an implicit time marching scheme.
The resulting non-linear system is solved using the Newton–Raphson method. More details about
the solver can be found in [33].

The mass-spring system is then used for modeling insect wings which are complex structures
composed of a network of veins, partly connected with joints, and a membrane spanned in be-
tween. Studies have shown that the vein arrangement in insect wings has strong impact on their
mechanical properties [51, 53]. Thus, it will be inaccurate to consider a wing as a homogeneous
structure; the vein pattern as well as the difference in terms of mechanical behaviors between
vein and membrane need to be taken into account. Mechanically, veins can be considered as
rods that resist torsion and bending. On the other hand, a membrane is fabric-like and resists
stretching. By employing different kinds of springs, these anisotropic and inhomogeneous prop-
erties of insect wings can be included [54]. The vein structure, as well as the wing contour, are
adapted from experimental measurement and encoded into the mass-spring network, as shown
in Figure 5 for a blowfly (a large housefly, Calliphora) wing.
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The wing morphology allows us to estimate the mass distribution by assuming that veins are
solid rods made of cuticle with density ρc = 1300 kg·m−3 as explained in [54]. However, wing
stiffness remains unknown since their structural properties are still poorly understood. In [48],
we propose a numerical method to evaluate wing stiffness by using a genetic algorithm with
covariance matrix adaptation. The model is trained to reproduce static elasticity measurements
of cantilevered Calliphora wings under point forces.

2.6. Fluid–structure coupling

To perform FSI simulation of insects with flexible wings, the solid model, in our case the devel-
oped mass-spring model, is coupled with the fluid solver, either FluSI or WABBIT in our case, see
e.g., [33]. Physically the coupling conditions consist in imposing the no-slip conditions of the ve-
locity and the continuity of the mechanical stress tensor at the fluid–solid surface. The fluid solver
requires the wing position, which is given by the mask function χ and the velocity us . The solid
solver requires the pressure distribution at the wing surface and interpolation becomes neces-
sary since the wing position does not coincide with the fluid grid. In the semi-implicit staggered
scheme we use, the fluid is displaced first, while keeping the wing fixed. Subsequently we obtain
the new forces on the wing using the fluid field at the new time step. These are then transferred
as input into the mass-spring model to move the wing to the next time level and to construct the
updated mask function. This staggered approach implies that the dynamic coupling condition is
fulfilled but not the kinematic one, i.e., the continuity of the mechanical stress tensor. This re-
sults in a limited stability of the scheme which depends on the mass ratio and very light wing
structures cannot be considered. For such configurations a strongly coupled scheme needs to be
used, see e.g., [55], or iterative coupling, the latter is implemented in FluSI using fixed point iter-
ation with Aitken relaxation. We recall that an implicit time scheme is applied for the solid model
and an explicit scheme for the fluid equations, however the difference in the time discretization
schemes causes some difficulty in coupling. For details on the FSI coupling we refer to [33, 36].

3. Numerical results

Various high resolution numerical simulations using either the FluSI or the WABBIT code devel-
oped by the authors are presented. First results for tiny insects are presented corresponding to
flows at low Reynolds numbers; thereafter results for larger insects are shown. Either rigid or flex-
ible wings are considered and for the aerodynamics we study laminar and turbulent inlet flow. Fi-
nally an adaptive simulation of a bumblebee behind a fractal tree illustrates the capabilities of the
a wavelet-based solver for computing multiscale problems and the simulation of a bumblebee in
the cylinder wake yields insights into the free flight dynamics.

3.1. Tiny insects

We may perceive all insects as small creatures, but their variability in size is tremendous. The
smallest ones are smaller than unicellular organisms like amoeba, yet they possess sophisticated
locomotory organs and a neural system. In a recent study [56], a minute beetle Paratuposa
placentis was considered as a model organism. Its body is less than half a millimeter long.
Like other beetles, its forewings evolved in rigid elytra that serve to protect the more fragile
hindwings, which are used for flying. The hindwings of P. placentis have narrow membranous
central blades and thin long bristles that radiate from it. This wing condition is typical of the
smallest representatives of different orders of insects, but the advantages of possessing such
bristled wings remained uncertain.
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Figure 6. Flight of a tiny beetle Paratuposa placentis. Left: overall view of the morphological
model. Right: flow visualization using vorticity magnitude iso-surfaces |ω| = 10 f and 30 f ,
where f is the wing flapping frequency.

The study [56] combined thorough 3D morphological and kinematic reconstructions with
fluid and solid body dynamics calculations. Geometrical models of the insect body, elytra and
wings (Figure 6, left) were constructed based on scanning electron microscope data. Special
attention was paid to ensure that the positions, orientations and effective diameter of the bristles
in the wing model are representative of the real wings. This was important because a prior 2D
analysis [57] suggested that the ratio of the inter-bristle spacing over the bristle diameter is an
important aerodynamic parameter. To respect this geometric similarity condition in the CFD
simulation was challenging, because the bristle diameter was three hundred times smaller than
the wing length. At the same time, the external flow domain should be much larger than the wing
length at this relatively low Reynolds number. Hence, the dynamic grid adaptation implemented
in WABBIT [49] became crucial for the feasibility of these numerical simulations.

The peculiar features of P. placentis, such as the bristled wings, figure-of-eight wing tip trajec-
tories, dorsal and ventral clapping, body pitch oscillation and elytra opening and closing are pre-
conditioned by the small size of this insect and all combine to achieve flight performance com-
petitive with larger species. Bristled wings are lightweight, therefore, inertial torques are neg-
ligible even when the wings flap with the maximum possible amplitude and clap at reversals.
The necessary vertical force is produced as the wings displace almost flat-on downwards. Edge
vortices (Figure 6, right) indicate that the flow through the wing is slowed down by the viscous
stresses. Wing rotation and clapping produce the kinematic asymmetry needed for propulsion at
low Reynolds number. A side effect of the large-amplitude flapping is a large periodic pitching
torque that is counteracted by the elytra. Numerical simulation allowed to explore the parameter
space beyond the insects’ capabilities. Thus, the effects of varying the Reynolds number and the
number of bristles were explored [58, 59].

3.2. Larger insects

Kolmogorov scale in the lower atmosphere may range from 0.1 to 10 mm, therefore, large insects
experience turbulence as a multiscale phenomenon. Turbulence becomes a limiting factor for
the direct numerical simulation of the flight of large insects. In the following discussion we focus
our attention on bumblebees that are large enough to produce a wide range of vortical motions
in the wake but are still amenable to Navier–Stokes simulation without statistical modelling of
turbulence.

Bumblebees are relentless foragers that can fly under strong gusty wind conditions [60]. The
effect of inflow turbulence on the aerodynamic performance of the flapping bumblebee wings
was studied in [46]. A bumblebee model with a fixed body and flapping wings was placed
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Figure 7. FluSI computation of a tethered bumblebee in a virtual wind tunnel and turbu-
lent inflow with intensity Tu = 0.99. Shown are vorticity magnitude |ω| and the mask func-
tion. For details see [46].

in a virtual wing tunnel. The inflow boundary condition was generated using pre-computed
homogeneous isotropic turbulence data samples (Figure 7). It was found that the time-averaged
aerodynamic lift, drag, torques and power were remarkably insensitive to the inflow turbulence
intensity (Figure 8). However, the variance of all of those parameters increased with increasing
inflow turbulence intensity. This means that, when the body is free to rotate, flying through
turbulence may require additional control effort. Uncontrolled free flight simulations [47] show
that the roll angle perturbations grow in time, followed by pitch and yaw reorientation. The
growth rate correlates positively with the inflow turbulence intensity and length scale.

In the field, foraging bumblebees encounter turbulence generated by the vegetation canopy.
A typical situation of a bumblebee approaching a flower was modelled in [61] by introducing
a vertically oriented cylindrical obstacle in an otherwise unperturbed inflow. By confronting
the results of numerical simulations and animal flight experiments in a wind tunnel, it was
shown that bumblebees can ride through the small-scale high-frequency turbulence without any
assistance from the neural system. Active control is used to compensate for the slowly growing
reorientation of the body, and it acts on the same time scale as for maneuvering.

3.3. Flexible wings

The most basic and common approach to model the flapping wing motion consists in prescrib-
ing the Euler angles of rigid wings as functions of time. To obtain these data, synchronized high-
speed video recordings using multiple cameras are necessary. Wing-tip trajectories are easily
amenable to automated tracking, but measuring the wing rotation about its longitudinal axis is
particularly demanding because it requires 3D reconstruction of the spatial orientation of the
wing plane. On the other hand, this feathering rotation occurs largely due to the mechanical
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Figure 8. Bumblebee simulations with different levels of inflow turbulence intensity Tu
from 0 to 1. Statistical moments of aerodynamic measures are shown as mean values with
the 95% confidence intervals ± standard deviation. Forces are normalized by the body
weight m · g , torques by m · g ·R, where g is gravity, m body mass and R the wing length.
Aerodynamic power is in Watt per kilogram body mass.

compliance of the wing hinge and the supporting skeletomuscular elements. This has lead to
passive feathering rotation approximation using lump flexibility models previously developed for
robotic flappers [62] being combined with the computational fluid dynamics solver FluSI. The re-
sults of numerical simulations of bumblebee hovering show that this reduced-order model of FSI
can produce realistic feathering motion and accurate time-average estimates of the aerodynamic
performance [63].

The flexible wing models provide important insights into the influence of flexibility on the
aerodynamic performance of insects. The study [64] compared the aerodynamic forces and
the power requirements between tethered bumblebees with highly flexible, flexible and rigid
wings. The visualization in Figure 9 shows a FluSI computation of a tethered bumblebee with
flapping flexible wings. The wing deformation is clearly visible for the left wing, and the complex
vortical structures can be observed on the right wing and in the wake. It showed that flexibility
allows reducing the energetic cost of flapping flight characterized by a higher lift-to-power ratio.
However, the highly flexible wing appears to be less efficient than the flexible wing. This can be
interpreted as the existence of an optimized zone of wing flexibility, which is ideal for flying.
Furthermore, the wing inertia contributes to the damping of fluctuations in the aerodynamic
forces and hence stabilizes the insect during flight.

Experimental data on insect wing stiffness is essential for modelling correctly wing flexibility.
To this purpose, an experimental setup for measuring the wing elasticity of female (Calliphora
vomitoria) was designed by Wehmann et al. [65]. The measured data were used for training a
data-driven model of insect wings as proposed in [48]. The new approach ensured that the model
had the same behavior as the real wing. We obtained overall nine sets of stiffness parameters
corresponding to the nine measured individuals. In the same computational setup at the same
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Figure 9. Visualization of flow generated by a tethered flapping bumblebee with flexible
wings in laminar flow at Re = 2685 showing normalized absolute vorticity isosurfaces
|ω| = 100 (light blue). The flow field is plotted at time t/T = 0.45. The vortices are only
shown in the right half of the computational domain for the purpose of visualizing the
deformation of the left wing. Adapted from [64].

Figure 10. Wing deformation during one flapping cycle viewed from the side in the wing
system. The flexible wing (white) is plotted together with the rigid wing (blue) to indicate
the deformation caused by inertial and aerodynamic forces. The arrows show the flapping
direction during the downstroke (top) and the upstroke (bottom). Adapted from [48].

Reynolds number, the influence of intra-species variability of wing stiffness on their aerodynamic
performance was insignificant. Furthermore, by looking at the wing deformation (cf. Figure 10),
we observed that the maximum deflection of the wing leading edge occurred at the wing tip
during the mid-downstroke and corresponds to 10% of the wing length. On the other hand,
during the reversals, the wing was deformed only in chord-wise direction due to strong inertial
force caused by the wing rotation.

3.4. Fractal tree

To illustrate the flexibility of WABBIT to compute flows with multiple scales, we simulate the flow
of the bumblebee model, described previously, in the wake of a model flower, corresponding to a
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Figure 11. Bumblebee behind a fractal tree. Top part shows the setup consisting of a
bumblebee and a tree-inspired fractal turbulence generator composed of rigid cylinders.
Bottom part illustrates the flow field with an isosurface of the Q-criterion. Time in figure is
t/T = 8.0, results obtained with CDF 4/0 wavelets. Adapted from [49].

bio-inspired turbulence generator. The latter is composed of an array of rigid cylinders arranged
in a fractal manner, largely motivated by plants. For a detailed description of the geometry
we refer the reader to [66]. Both bumblebee and fractal tree are simulated using the volume
penalization method in a large cubic domain of size L = 64R, where R is the wing length of the
insect. Figure 11 (top, left) illustrates the setup. The thinnest cylinders in the fractal tree have a
diameter dmin = 0.114R and thus we have a Reynolds number Re = u∞dmin/ν = 250. The other
numerical parameters are chosen as in the coarse simulations of the bumblebee alone, for details
we refer to [49]. The simulation is performed using CDF 4/0 wavelets where Cε = 4×10−2. The flow
field is visualized in Figure 11 with an isosurface of the Q-criterion. It shows the turbulent wake
produced by the tree model and the wake of the bumblebee after eight wingbeats. The maximum
number of refinement levels is Jmax = 9 and the grid is composed, on average, of Nb = 1.8×105

blocks with a total number of 2.2×109 grid points. The dynamically adapted grid allows us to use
a large domain size, which would result in 117763 points on the corresponding, uniform grid with
the same ∆x. We hence use on average only 0.15% of the uniform grid.

3.5. Free flight

In [61] we studied the bumblebee’s motion while flying in the von Karman vortex street generated
in the wake of a circular cylinder, at Re = 4200 (Figure 12). The high resolution numerical simu-
lations with more than 2.2 billion grid points run on 8192 cores allowed to study the free flight
dynamics of flapping bumblebees considering two degrees of freedom, lateral displacement and
roll rotation about the longitudinal axis of the body. We compared the results with experimental
data and assessed the presence of active versus passive flight control.

Free flight simulations of bumblebees taking into account all six degrees of freedom in a
numerical wind tunnel have been performed to study the influence of isotropic turbulent inflow
with variable intensity [47], a configuration similar to that in Figure 7. Active control was excluded
and only the passive response of real animals was quantified. We showed that changes in body
orientation and angular velocity are highly sensitive to variations in the turbulence spectrum.
Moreover, we found the translation of the insect to be small compared to its rotational motion.
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Figure 12. Bumblebee (colored in orange) behind a circular cylinder at Re = 4300 (top
view). Shown are isosurfaces of vorticity magnitude, light blue |ω| = 5 f , red |ω| = 40 f . The
velocity field in the horizontal plan of the insect is represented by arrows. From [61].

4. Conclusions and perspectives

This review outlines the authors’ work over the last ten years on the numerical simulation of
insect flight, mainly related to the French–German AIFIT project (Aerodynamics of Insect Flight
in Turbulent Flow), jointly funded by ANR and DFG. After a brief motivation for biolocomotion, in
particular for flight, we gave an overview of the history of computational aerodynamics of insect
flight, and then mostly focused on our own work. We reviewed the fully parallel codes we have
developed for solving the 3D FSI problems related to flapping insect flight: FluSI using a Fourier
pseudospectral discretization, and WABBIT using wavelet-based adaptive methods. The various
high-resolution computations of tiny and larger size insects illustrated the state-of-the-art and
scientific capabilities of supercomputing to study the aerodynamics of flapping flight. The first
adaptive computations with WABBIT using the geometry of real insects obtained from micro
computed tomography data are promising and will be published soon.

Current limitations of the computations of FSI are imposed by the computational complexity
in terms of memory and CPU time, even when using adaptive locally refined grids with the
WABBIT code. The available computational resources limit the Reynolds number to values
below 5000. This implies that the size of the insects that can be simulated remains limited,
e.g., the hawk moth (Manduca sexta) with a typical wingspan of 100 mm and flying at 5 m/s
has a Reynolds number of about 5000 [67]. Today, it is not possible to simulate bird flight
without using a turbulence model to reduce the resolution requirements, e.g., by using large eddy
simulations (LES), because not all active scales can yet be solved by direct numerical simulation
(DNS). An interesting perspective currently being explored is the coherent vorticity simulation
(CVS) using wavelet-based adaptive grids, where the incoherent background flow produced as a
thermal noise during the turbulent flow evolution is eliminated, since it corresponds to turbulent
dissipation [68, 69].
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The solid model needed to describe the wing deformation requires input parameters, which
are based on measurements and optimization. Our current approach uses mass-spring models,
which are distinguished by their simplicity, and directly takes into account the wing structure
consisting of veins and membranes. Data-driven methods can then be used to identify the pa-
rameters, as done in [48]. A straight forward extension is to upgrade the mass-spring model by
including torsion springs. This would allow to take into account the effect of dynamic torsion
which many species exhibit, however its impact on insect flight is still unclear [70]. In the fu-
ture, even more sophisticated approaches may be considered, such as finite element models,
but again, close interaction with biologists is needed to determine the material properties re-
quired in the governing equations and the benefits in terms of computational cost need to be
assessed.

Control issues for free flight simulations are unavoidable and certainly advanced machine
learning tools, in particular deep reinforcement learning approaches, shall be exploited, includ-
ing for insect swarms [71].

Possible challenging next steps for future investigations are the study of aeroacoustics of
insects and also computational aerodynamics of flapping flight on Mars for designing flapping-
wing nano air vehicles.
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