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Abstract. A semi-analytical finite element method algorithm was established to plot the dispersion curves
of isotropic aluminum and orthotropic plates. The curves obtained are compared with those plotted by the
DISPERSE software and with previous experimental work. The results showed that the accuracy of the method
depends on the number of elements for meshing. To ensure good precision and speed of the method, the
number of elements per plate thickness must be optimized.
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1. Introduction

Non-destructive testing (NDT) permits us to control the integrity of mechanical components in
many domains such as nuclear, medical, and aeronautic industries.

One of the most widely used ultrasonic methods is the control by Lamb waves. This kind of
wave is dispersive, and it is also sensitive to small defects. However, the presence of multiple
modes in a structure causes, in general, difficulties in terms of signal interpretation. For this
reason, it is important to choose an adequate frequency of Lamb mode excitation.

To choose an adequate frequency requires knowing precisely the dispersion curves of a tested
structure. These curves enable us to estimate the wavenumber, phase, and group velocities of
propagating modes.
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Figure 1. Dispersion curves plotted by the bisection method [1].

In previous research, the authors have discussed dispersion curves and their multiple applica-
tions in NDT. They proposed several techniques to plot the dispersion curves. These methods in-
clude the bisection method [1], the Newton–Raphson method [2], the transfer matrix method [3],
the spectral method [4], and so on.

Moreover, the dispersion curves plotted by the iterative methods, even if they are very close
to analytical curves, present inaccuracy in determining the cutoff frequencies (Figure 1). For this
reason, we propose an alternative method, which allows a better estimation of the dispersion
curves.

The most robust methods of plotting dispersion curves for the case of isotropic and composite
materials are based on finite elements. However, they require significant storage capacities since
they involve the meshing of the whole structure.

In this article, we use the semi-analytical finite element (SAFE) method. It is a method com-
bining the semi-analytical and finite elements. The guided modes and their movements in the
section are calculated by the finite element method (FEM) and then supplemented by analytical
displacement in the propagation direction.

This method is optimal for predicting the propagating modes in a plate. This technique
requires discretization only according to the thickness of the plate. Therefore, the calculation
times are very short.

Moreover, this method adapts particularly well to the structures of complex geometries dis-
cretized by finite elements. In addition, it allows us to characterize the properties of a wave prop-
agating in an invariant section guide.

The SAFE method was first applied by Waas [5] for calculating the surface parameters of mul-
tilayer soil. Afterward, it was used by many researchers for the study of Lamb wave propaga-
tion in isotropic and composite structures. Ahmad et al. [6] applied the method for plotting
the dispersion curves of an aluminum plate and a composite-type structure [0◦/45◦/90◦/−45◦].
Bartoli et al. [7] used the SAFE method to model the wave propagation of Lamb waves
in waveguides of an arbitrary section. The authors extended the use of the SAFE method
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Figure 2. Waveguide with a rectangular cross section.

to viscoelastic materials by considering damping. Takahiro et al. [8] simulated the propa-
gation of Lamb waves in cylinders using the SAFE method. Takahiro et al. [9] calculated
dispersion curves by the SAFE method. The curves obtained were compared with the ex-
perimental curves calculated by two-dimensional (2D) fast Fourier transform. Mukdadi et
al. [10] also studied the propagation of Lamb waves in multilayer composites. Predoi [11] pro-
posed an extension of the SAFE method for periodic structures of infinite width. Recently,
Wenbo et al. [12] have presented a formulation using the SAFE method and the perfect
match layer technique for calculating pipeline dispersion curves immersed in a fluid. Xing
et al. [13] proposed a defect localization method for rails and plotted rail dispersion curves by
the SAFE method. All the authors have studied the method, but no one has conducted a quanti-
tative evaluation of dispersion curves plotted by the SAFE method.

The aims of this article are as follows:

• Establish an algorithm of the SAFE numerical method.
• Calculate the dispersion curves of an isotropic plate and validate the results with the

DISPERSE software [14].
• Calculate longitudinal and transverse displacements.
• Calculate the dispersion curves of an orthotropic plate.

For this purpose, we start with a definition of the problem. Then we establish the equation of
motion based on Hamilton’s principle. The relation obtained is discretized using interpolation
functions. Subsequently, the relation is reformulated for the case of a plate in the form of an
eigenvalue problem. Solving the equation makes it possible to find the propagating modes
in isotropic and orthotropic plates. Finally, we evaluate the curves obtained by the DISPERSE
software and by previous experimental work. We observe that the accuracy of the method
depends on the parameters that must be optimized.

2. Problem definition and equation of motion

2.1. Problem definition

We consider a waveguide with a rectangular cross section as presented in Figure 2.
The wave propagates along the x-axis. Discretization is needed only in the cross section (2D

discretization). The wave propagates along the x-axis with a wavenumber k and an angular
frequency ω. The harmonic expression of the displacement is written in the form

u(x, y, z, t ) =U (y, z)exp−i(kx−ωt ). (1)
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2.2. Equation of motion

The equation for the eigenvalue problem is deduced from Hamilton’s relation [6]:

[K1 + ikK2 +k2K3 −ω2M ]U = 0. (2)

Here,

K1 =
nel⋃
e=1

k(e)
1 ; K2 =

nel⋃
e=1

k(e)
2 ; K3 =

nel⋃
e=1

k(e)
3 ; M =

nel⋃
e=1

m(e)

with

k(e)
1 =

∫
Ωe

[B T
1 Ce B1]dΩe , (3)

k(e)
2 = k(e)

21 −k(e)
12 =

∫
Ωe

[B T
2 Ce B1]dΩe −
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Ωe

[B T
1 Ce B2]dΩe = (k(e)

21 )
T −k(e)

12 , (4)

k(e)
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∫
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[B T
2 Ce B2]dΩe , (5)

m(e) =
∫
Ωe

[N Tρe N ]dΩe , (6)

where Ce is the elementary elastic matrix, ρe is the elementary mass density, nel is the number of
elements, and

B1 = Ly N,y +Lz N,z , (7)

B2 = Lx N . (8)

Here, N,y and N,z are the interpolation function derivatives with respect to variables y and z,
respectively, and
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N(y,z) is the matrix of interpolation functions expressed as

N (y, z) =
 N1 0

0 N1

0 0

0 N2

0 0
N1 0

0 0
N2 0
0 N2

· · ·
Nn 0 0
0 Nn 0
0 0 Nn

 .

3. SAFE formulation and solution of equation of motion for a plate

3.1. SAFE formulation

We consider the case of an infinite plate along the y-axis (Figure 3a). The displacement is then
independent of y. Therefore, the plate can be modeled by one-dimensional (1D) elements. The
plane strain condition is considered here. Hence N,y = 0. Thus, Equations (7) and (8) become
B1 = Lz N,z and B2 = Lx N , respectively.

The integrals given in (3)–(6) are computed numerically using the Gaussian quadrature
method with three points. The integration limits need to be changed to −1 to 1. For this reason,
the elements are discretized by isoparametric elements (Figure 3b).

The interpolation functions Ni with three nodes for the element are given by

N1(ξ) = ξ2 −ξ2

2
; N2(ξ) = 1−ξ2; N3(ξ) = ξ2 +ξ2

2
.
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Figure 3. (a) Infinite (2D) plate with three nodes per element; (b) 1D three-node isopara-
metric element.

To calculate N,z , we need to use the Jacobian function:

dN (ξ)

dz
= dN (ξ)

dξ

dξ

dz

= N,ξ
1

J
, (9)

where

J = dz

dξ
= [

ξ−1/2 −2ξ ξ+1/2
] z1

z2

z3

 .

3.2. Solving the equation of motion

Equation (2) contains two variables, the wavenumber k and the angular frequency ω. Therefore,
the equation can be solved by two approaches:

• Approach 1 : Fix k and solve for the angular frequency ω.
• Approach 2: Fix ω and solve for the wavenumber k.

In the first approach, we fix positive values of wavenumber k and then we consider only the
propagating modes. Equation (2) is reformulated as follows [6]:

[K (k)−ω2M ]U = 0. (10)

4. Algorithm for plotting dispersion curves by SAFE

Figure 4 shows the algorithm for plotting dispersion curves. The first step is to set parameters for
the studied model. We define the material parameters: ρ, E , and C . The geometry of the plate is
defined by the thickness e.

The second step is the meshing of the cross section. For this purpose, we need to determine
the number of elements and the order of interpolation functions. The third step is the calculation
of elementary matrix k(e)

i using the Gaussian quadrature method of approximation. Elementary
matrices are then assembled into a global matrix. The final step is to compute the eigenvalue
problem to find the eigenvalues and their corresponding eigenvectors for each value of the
wavenumber k.

5. Plotting dispersion curves (wavenumber) for isotropic plate by SAFE method

A Matlab program is established to compute dispersion curves. The wavenumber and the phase
velocity are assumed to be functions of the frequency–thickness product (fe).

The dispersion curves are calculated for an aluminum plate with thickness 1 mm, Young’s
modulus 69 GPa, Poisson’s ratio 0.33, and mass density 2700 kg/m3.

C. R. Mécanique — 2020, 348, no 5, 335-350
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Figure 4. Algorithm for plotting dispersion curves ω (k) by SAFE using approach 1.

To verify the accuracy of the method, we compare the plotted dispersion curves by the SAFE
method with those plotted by the DISPERSE program [14]. The software, developed by Imperial
College NDT Laboratory, permits us to create dispersion curves. It is based on the global matrix
method; the displacements and stresses are described by a material layer matrix. By satisfying the
boundary conditions at each interface, the individual layer matrices are assembled.

We have chosen to validate our algorithm with DISPERSE as it is based on analytical equations
and yields solutions considered very close to analytical solutions as has been obtained by many
authors [15–19].

In Figure 5, we observe that the accuracy of the method depends on the frequency–thickness
product. The first two modes A0 and S0 are sufficiently accurate in comparison with the other
modes. Therefore, we conclude that the error increases for a high value of the frequency–
thickness product.

5.1. Quantitative evaluation of SAFE method

Similarly to the FEM, the precision of the SAFE method depends on the number of elements and
the order of interpolation functions. The more we discretize the section, the greater the precision

C. R. Mécanique — 2020, 348, no 5, 335-350
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Figure 5. Dispersion curves plotted by SAFE (continuous line) compared with dispersion
curves plotted by DISPERSE (dashed line).

Table 1. Relative errors for the calculation of mode A2 by SAFE as a function of n

Number of elements (n) Relative error
4 1.46%
5 0.8%
6 0.46%

we obtain. In this case, as presented in Figure 5, we have meshed the section using two elements
in one dimension. We have used the quadratic interpolation function as we are interested in a
low value of the frequency–thickness product.

5.1.1. Effect of the number of elements on accuracy of SAFE method

Figure 6 shows that the accuracy of the method depends on the number of elements. Plots
for meshing by three elements are shown in Figure 6a. The method permits us to calculate the
first three modes A0, S0, and A1 with good precision. The modes S1 and S2 are calculated with an
error. To compute the A2 mode, we need to mesh the plate thickness by a number of elements
greater than 4 (Table 1).

Table 1 shows that the error for the calculation of A2 by SAFE decreases for a number of
elements greater than 4.

Considering an isotropic plate with a thickness of 1 mm, if we are interested in frequencies up
to 5000 kHz, then meshing by six elements is sufficient to compute the first six modes. However,
if we are interested in frequencies greater than 5000 kHz, then we need to increase the number of
elements. This is proved by the author in [11]:

λT

l
>β. (11)

Here, l is the length of the element, λT = 2πVT /ω is the wavelength of transverse waves propa-
gating at velocity VT , and β= 4 in the case of quadratic interpolation functions [20].
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Figure 6. Dispersion curves plotted by SAFE and compared with DISPERSE according to
the number of elements: (a) n = 3; (b) n = 4; (c) n = 5; (d) n = 6.

We insert the expression of λT in (11), and we obtain

2πVT

ωl
>β. (12)

We substitute ω by 2π f and l by e/n, and we get

VT n

fe
>β. (13)

Therefore, for a given product “fe”, we can determine the minimal number of elements to ensure
good accuracy of the method:

nmin = βfe

VT
. (14)

In this case, we replace VT by 3040 m/s, β by 4, and “fe” by 5000 kHz·mm. We obtain nmin = 6.5.
Subsequently, we plot the dispersion curves of an aluminum plate for n = 7 (Figure 7).

5.1.2. Convergence of the proposed algorithm

To measure the convergence of the method, we have plotted the variation in the relative
error against the studied frequencies. The relative error was calculated for the first two modes
(A0 and S0) as they are the most used in NDT. Figure 8 shows the errors of dispersion curves
compared to those of DISPERSE solutions within the studied frequency range. A higher number
of elements per plate thickness yields lesser error. Furthermore, we find that the errors increase
as the frequency increases.
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Figure 7. Dispersion curves plotted by SAFE for an aluminum plate (n = 7).

Figure 8. Evolution of relative error between DISPERSE and SAFE using different numbers
of quadratic elements per thickness for (a) S0 mode and (b) A0 mode.

5.1.3. Effect of the number of elements on running time

If we consider a number of elements greater than 7, we will certainly obtain good precision.
However, this increases the running time.

To see how the running time changes with respect to the number of elements, we have
presented Table 2. The computer used has a processor of 2.6 GHz and a memory (RAM) of 4 Go.
The stepwise increment in k is set as 0.5.

Table 2 and Figure 9 show that the running time changes linearly when the number of elements
is less than 4. When the number of elements is greater than 4, the process slows down. This is
shown by the increase in size of the elementary matrix to be assembled.

The DISPERSE software is based on analytical equations, and it gives accurate dispersion
curves in many cases (multilayer and composite structures). We also know that the SAFE method
is based on 1D FEM, which means that it depends on the number of elements per thickness.

However, DISPERSE had difficulties in retrieving higher orders of propagating modes. In con-
trast, our SAFE algorithm is capable of retrieving all the wave modes including shear horizontal
modes, which are not considered in this study.

C. R. Mécanique — 2020, 348, no 5, 335-350
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Figure 9. Variation in running time with respect to the number of elements (n).

Table 2. Running time using SAFE as a function of the number of elements (n)

Number of elements Running time (s)
1 20.28
2 43.04
3 64.77
4 89.057
5 130.86
6 162.25
7 238.86

Figure 10 shows all the higher modes of dispersion curves plotted by SAFE and DISPERSE. It
illustrates that the SAFE method (even for n = 6 elements) permits us to compute more Lamb
modes than does DISPERSE. Moreover, if we mesh the thickness of the studied plate with more
elements, the number of plotted modes increases. In addition, the DISPERSE software suffers
from another limitation on materials and geometries with viscoelasticity, which is not the case
for the SAFE program [21].

5.2. Dispersion curves: phase velocity of an isotropic plate

The solution based on the SAFE method for the eigenvalue problem (10) helps in identifying the
angular frequency ω for each increment in the wavenumber. Using the relation Vp =ω/k, we can
calculate the phase velocity for each value of the product “fe” (Figure 11).

5.3. Transverse and longitudinal displacements

The eigenvectors of (10) correspond to the longitudinal (ux ) and transverse (uz ) displacements.
Figure 12 shows the displacement profiles through the plate thickness (1 mm) of an aluminum

plate at a frequency of 1000 kHz.
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Figure 10. Dispersion curves obtained by SAFE (continuous line) and by DISPERSE
(dashed line) for an isotropic aluminum plate (n = 6).

Figure 11. Dispersion curves for an aluminum plate: phase velocity as a function of the
product “fe” plotted by SAFE for n = 7.

6. Dispersion curves: phase velocity and wavenumber of an orthotropic plate

6.1. Wavenumber as a function of “fe”

We consider an orthotropic plate having the properties listed in Table 3. The dispersion
curves plotted by the iterative method of Newton–Raphson [2] were validated by experiments
(Figure 13). We have chosen these curves as reference to validate the dispersion curves obtained
by SAFE.
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Figure 12. Displacement profiles through the plate thickness (1 mm) of an aluminum plate
at a frequency of 1000 kHz: (a) ux , (b) uz and (c) ux , (d) uz , respectively, for S0 and A0.

Table 3. Properties of the orthotropic plate

ρ 1500 (kg/m3)
e 1.6 mm
C11 57 GPa
C22 =C33 15 GPa
C13 =C12 =C23 10 GPa
C55 =C66 4 GPa
C44 2.5 GPa

The same procedure was used as indicated in Figure 4 to plot the dispersion curves with
respect to the wavenumber as a function of “fe”.

6.2. Minimal number of elements

Equation (14) permits us to find the minimal number of elements to mesh the cross section. The
relation providing the calculation of VT is given in [22]: VT = √

G12/ρ, where G12 is the shear
modulus. The relation for G12 is given by [23]: G12 =C11 −C12/2.
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Figure 13. Experimental dispersion curves plotted over numerical curves obtained by the
Newton–Raphson method [2].

Figure 14. Comparison between dispersion curves plotted by SAFE (continuous line) and
dispersion curves plotted by the Newton–Raphson method (dashed line) for n = 6: (a)
zoomed-in view.

If we are interested in the range of frequencies between 0 and 4000 kHz, then we need to take
nmin = 6.84.

Figure 14 compares the dispersion curves plotted by the SAFE method and the dispersion
curves plotted by the Newton–Raphson method for an orthotropic plate for six elements.

Figure 15 compares the two methods for n = 7. The dispersion curves plotted by the SAFE
method and those plotted by Newton–Raphson method overlap perfectly (n = 7).
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Figure 15. Comparison between dispersion curves plotted by SAFE (dashed line) and
dispersion curves plotted by the Newton–Raphson method (continuous line) for n = 7.

Figure 16. Dispersion curves of orthotropic plate of thickness 1.6 mm with phase velocity
as a function of frequency by SAFE (n = 7).

6.3. Phase velocity of orthotropic plate

Figure 16 presents the dispersion curves of an orthotropic plate with the phase velocity as a
function of frequency by the SAFE method for n = 7.
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Figure 17. Displacement profiles through the plate thickness (1.6 mm) of an orthotropic
plate at a frequency of 100 kHz: (a) ux , (b) uz and (c) ux , (d) uz , respectively, for S0 and A0.

6.4. Transverse and longitudinal displacements

Figure 17 shows the displacement profiles through the plate thickness (1.6 mm) of an orthotropic
plate at a frequency of 100 kHz for S0 and A0 modes.

7. Conclusion

In this article, we have established an algorithm based on the SAFE method to plot the dispersion
curves of isotropic and orthotropic plates.

The dispersion curves obtained are compared with those by the DISPERSE software and the
Newton–Raphson method. The results have shown that when the frequency increases, the error
increases.

To ensure good precision of the method, the number of elements to mesh the cross section
must be optimized.

The SAFE method permits us to calculate propagating modes with good precision and does
not require the meshing of the whole structure. However, the method is difficult in terms of
coding.

C. R. Mécanique — 2020, 348, no 5, 335-350
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