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Abstract. New mathematical and numerical results are given for the coupling of the temperature equation of
a fluid with radiative transfer: existence and uniqueness and a convergent monotone numerical scheme. The
technique is shown to be feasible for studying the temperature of the Lake Leman heated by the sun and for
studying the effects of greenhouse gases on earth’s atmosphere.

Résumé. Un nouveau résultat d’existence et d’unicité est donné pour le système formé par les équations du
transfert radiatif couplées à l’équation de la température d’un fluide. Une méthode numérique convergente
et monotone en découle. La technique est appliquée au calcul de la température du lac Leman ainsi qu’à la
température de l’atmosphère terrestre pour étudier l’influence des gaz à effet de serre.

Keywords. Radiative transfer, Navier–Stokes equations, Integral equations, Numerical method, Convergence,
Climate.
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1. Introduction

Fifty years ago, the second author was admitted to the prestigious Department of Applied
Mathematics and Theoretical Physics at Cambridge, UK, headed then by Sir James Lighthill.
Two IBM card punchers connected to the computing center—also one of the best in the world
in those days—had been relegated to the basement; to use them was frowned upon as a threat to
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the speciality of the lab: clever analytic approximations and other multiple scale expansions of
special cases of the Navier–Stokes equations.

It took a decade to prove that computer simulations for fluids were not only possible, but also
useful to the industry. A colleague from the wind tunnels in Modane told us then that an airplane
could never be designed and validated by a numerical simulation. True to this wrong prediction
however, many ad-hoc turbulence models had to be devised, and it was only by a combined
theoretical, experimental and computational (TEC) effort that the world’s first complete airplane
could be simulated at Dassault Aviation in 1979, and airplanes have ever since been flown safely
without the difficult certification stamps of wind tunnels.

It was also a success of the top-down approach to CFD. The “JLL” (Lions) School of Applied
Mathematics had the luck of being taken seriously by a few French high-tech industry labs. This
was not the case in the USA where the head of a national research funding agency had ruled out
variational methods (leading to finite volumes and finite elements for fluids) as “incomprehensi-
ble by aeronautical engineers”, thereafter forcing all numerical schemes to be in the class of body
fitted structured meshes, an impossible task for airplanes.

The top-down approach to a problem could be defined by saying that the mathematical model
is defined first, then shown to be well posed and then approximated numerically by convergent
algorithms. The bottom-up approach is when the problem is made of several modules, studied
independently, and patched together at the algorithmic level.

The downside of the top-down approach—from functional analysis to numerical methods—
is that it may discard important faster algorithms for which convergence is not known. This was
the case for compressible flows in the nineties for which the bottom-up approach pragmatically
patched different turbulence and/or numerical models in different zones with the drawback that
it was difficult to assert that the computed solution was one of the original problem.

In the numerical simulations which fill the supercomputing centers today, CFD is often only
one part of a multi-physics model. Others are the combustion and climate computations. Both
need, at least, radiative transfer and chemistry modules.

While the top-down approach is successful in computational chemistry [1], mathematical
analysis of climate models is still in progress. The 3D Primitive Equations with hydrostatic and
geostrophic approximations have been shown to be well posed (see [2–4] and the bibliography
therein) and so are the multi-layered Shallow Water equations for the oceans [5]; but even if the
coupled ocean–atmosphere system is mathematically well posed, it is very far from the complete
model used in climatology. No doubt when a new numerical climate project is proposed, such
as [6], a top-down approach is made [7], but soon overwhelmed by the complexity of the task
when more modules are added.

Radiative transfer—one such module that needs to be added—is essential in astrophysics [8]
to derive the composition of stars, in nuclear engineering to predict plasma [9], in combustion
for engines [10], and many other fields like solar panels [11] and even T-shirts [11]!

In the eighties, at the Centre de l’Energie Atomique, Dautray [9] headed a team of applied
mathematicians who used the top-down approach in nuclear engineering. The first author was
in close contact with them. But turning his expertise on radiative transfer to climate modeling is
not straightforward.

Books on radiative transfer for the atmosphere are numerous, such as [12, 13] and [14]; but to
speed up codes, the documentation manual of climate models reveal that many approximations
are made. For instance LMDZ refers to a model proposed by Fouquart [15, 16] which suggests
that empirical formulas are used in addition to simplified numerical schemes to speed up the
computations. The formulas for the absorption, scattering and albedo coefficients are complex
and adapted to reproduce the experimental data. In other words the gap is wide between practice
and fundamentals as seen in Fowler [17] and Chandrasekhar [8], for instance.
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Coupling radiative transfer to the Navier–Stokes system using the top-down approach is
the topic of this article. The problem is shown to be well posed in the context of a stratified
atmosphere and a numerical method—derived from the mathematical proof of well posedness—
is proposed. It is accurate in the sense that there are no singular functions or integrals to
approximate. It is fast compared to the fluid solver to which it is coupled, but of course not as
fast as the empirical formulas.

2. Radiative transfer and the temperature equation

Let us begin with a simple problem: the effect of sunlight on a lake Ω. Let Iν(x,ω, t ) be the light
intensity of frequency ν at x ∈ Ω, in the direction ω ∈ S2, the unit sphere, at time t ∈ (0,T ).
Let T,ρ,u be the temperature, density and velocity in the lake. Energy, momentum and mass
conservations (see [17, 18]) yield (1), (2), (3):

2.1. The fundamental equations

Given Iν,T at time zero, find Iν,T for all {x,ω, t ,ν} ∈Ω×S2 × (0,T )×R+ such that
1

c
∂t Iν+ω ·∇Iν+ρκ̄νaν

[
Iν− 1

4π

∫
S2

p(ω,ω′)Iν(ω′)dω′
]
= ρκ̄ν(1−aν)[Bν(T )− Iν], (1)

∂t T +u ·∇T −κT∆T =−∇·
∫ ∞

0

∫
S2

Iν(ω′)ωdωdν. (2)

∂t u+u ·∇u− µF

ρ
∆u+ 1

ρ
∇p = g, ∇·u = 0, ∂tρ+∇· (ρu) = 0, (3)

where ∇,∆ are with respect to x, Bν(T ) = 2ħν3/c2[eħν/kT −1], is the Planck function, ħ is the
Planck constant, c is the speed of light in the medium and k is the Boltzmann constant. The
absorption coefficient κν := ρκ̄ν is the percentage of light absorbed per unit length, aν ∈ (0,1) is
the scattering albedo, 1/4πp(ω,ω′) is the probability that a ray in the directionω′ scatters in the
directionω. The constants κT and µF are the thermal and molecular diffusions; g is the gravity.

Existence of solution for (3) has been established by Lions [19].
As c ≫ 1, in a regime where (1/c)∂t Iν ≪ 1, integrating (1) inω leads to an alternative form for

(2):

∂t T +u ·∇T −κT∆T =−
∫ ∞

0
ρκ̄ν(1−aν)

(
4πBν(T )−

∫
S2

Iν(ω)dω

)
dν. (4)

As usual, boundary conditions must be given. Dirichlet or Neumann conditions may be pre-
scribed for u and T on ∂Ω. For the light intensity equation, Iν should be given at all times on
{(x,ω) ∈ ∂Ω×S2 : n(x) ·ω< 0}, where n is the outer unit normal of ∂Ω. Finally ρ should be speci-
fied on ∂Ωwhen u ·n < 0.

2.2. Grey medium

When κν and aν are independent of ν—a so-called grey medium (cf. [17], p. 70)—the problem can
be written in terms of I = ∫ ∞

0 Iνdν:

ω ·∇I +κa

[
I − 1

4π

∫
S2

p(ω,ω′)I (ω′)dω′
]
= κ(1−a)(B0T 4 − I ), (5)

∂t T +u ·∇T −κT∆T =−κ(1−a)4π

(
B0T 4 − 1

4π

∫
S2

I (ω)dω

)
, (6)

where B0 comes from the Boltzmann–Stefan law:∫ ∞

0

2ħν3

c2[e
ħν
kT −1]

dν=
( ħ

kT

)−4 2ħ
c2

∫ ∞

0

( ħν
kT

)3

e
ħν
kT −1

d
ħν
kT

= B0T 4 with B0 := 2k4

ħ3c2

π4

15
.
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2.3. Vertically stratified cases: spatial invariance

Let (x, y, z) be a Cartesian frame with z the altitude/depth. The sun being very far, the light source
on the lake is independent of x and y . Then, assuming that T ′ varies slowly with x and y , in the
sense that

(H) ∂z Iν≫ ∂x Iν, ∂z Iν≫ ∂y Iν, (7)

then (1),(2) become [14]

µ∂z Iν+κνIν = κν(1−aν)Bν(T )+ κνaν
2

∫ 1

−1
p(µ,µ′)Iν(z,µ′)dµ′ (8)

Iν(zM ,µ)|µ<0 =Q−(µ)Bν(T̄S ), I (zm ,µ)|µ>0 = 0, (9)

∂t T +u ·∇T −κT∆T =−4π
∫ ∞

0
κν(1−aν)

(
Bν(T )− 1

2

∫ 1

−1
Iνdµ

)
dν, ∂nT |∂Ω = 0, (10)

where zM (x, y) and zm(x, y) are max and min of z such that (x, y, z) ∈ Ω, µ is the cosine of the
angle ω to the vertical axis, Q−(µ) = −µQ ′ cosθ is the sunlight intensity when θ is the latitude,
and T̄S is the temperature of the sun; we have assumed that the sun is a black body and that no
light comes back from the bottom of the lake. Here u is given, solenoidal and regular enough for
(10) to make sense.

Remarks 1.

• Hypothesis (H) will hold if T varies slowly with x, y . It will be so if u is almost horizontal
and the vertical cross-sections of Ω depend slowly on x, y . Turbulent flows do not satisfy
this criteria.

• According to our definition of top-down analysis, the problem investigated is (8),(9),(10),
not (1),(2),(3), justifying the restriction “stratified” in the title.

• All terms of (10) must be kept, except maybe, κT ∂xx T and κT ∂y y T , but neglecting them
renders the boundary conditions mathematically difficult.

• We shall ignore the mathematical difficulty induced by the boundary condition ∂nT |∂Ω =
0 when the intersection of the side of the lake with the water surface is not at right angle.

2.4. The vertically stratified grey problem

For a grey medium (8),(10) become

(P 1)


µ∂z I +κI = κ(1−a)B0T 4 + κa

2

∫ 1

−1
pI dµ′, I |zM ,µ<0 =−µQB0T̄ 4

S , I |zm ,µ>0 = 0,

∂t T +u ·∇T −κT∆T =−4πκ(1−a)

(
B0T 4 − 1

2

∫ 1

−1
I dµ

)
, ∂nT |∂Ω = 0.

(11)

2.5. Elimination of I when the scattering is isotropic

Denote the exponential integral and the mean light intensity respectively by

Em(x) :=
∫ 1

0
µm−2e−

x
µ dµ, J (z) := 1

2

∫ 1

−1
I (z,µ)dµ.

Then the method of characteristics applied to (11) gives

(P 2)


J (z) = 1

2
QB0T̄ 4

S E3(κ(zM − z))+ 1

2

∫ zM

zm

κE1(κ|s − z|)((1−a)B0T 4
s +a J (s)

)
ds,

∂t T +u ·∇T −κT∆T =−4πκ(1−a)
(
B0T 4(z)− J (z)

)
.

(12)

Note that to improve readability, we write indifferently T (z) or Tz .
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2.6. No scattering

Let Te (z) = ((1/2)QE3(κ|zM − z|))
1
4 T̄S and assume that a = 0, then

(P 3)

{
(4πκB0)−1(∂t T +u ·∇T −κT∆T )+T 4 = T 4

e + 1

2

∫ zM

zm

κE1(κ|s − z|)T 4
s ds, ∂nT |∂Ω = 0.

(13)

2.7. Algorithm for (P 3) in the stationary static case

Assume T stationary and u = 0. Let κ̄T = (4πκB0)−1κT .
Generate {T n}n≥0 from T 0 = 0 by,∣∣∣∣∣∣∣∣

(
T n+ 1

2

)4
:= T 4

e + 1

2

∫ zM

zm

κE1(κ|s − z|)T n
s

4 ds, T n+ 1
2 ≥ 0

−κ̄T∆T n+1 + (T n+1
+ )4 =

(
T n+ 1

2

)4
, ∂nT n+1|∂Ω = 0,

(14)

where T+ = max(T,0). Note that T 7→ −κ̄T∆T +T 4+ is a monotone operator for which Newton
or fixed point iterations can be applied to solve the PDE. To prove monotone convergence, the
following result is needed.

Lemma 1. C1(κ) := (1/2)maxz
∫ Z

0 κE1(κ|s − z|)ds < 1.

Proof. ∫ X

0
E1(x)dx =

∫ ∞

1

∫ X

0

e−xt

t
dx dt =

∫ ∞

1

1−e−X t

t 2 dt <
∫ ∞

1

1

t 2 dt = 1.

⇒ κ

∫ Z

0
E1(κ|τ− t |)dt =

∫ κZ

0
E1(|s −κτ|)ds =

∫ κτ

0
E1(κτ− s)ds +

∫ κZ

κτ
E1(s −κτ)ds

=
∫ κτ

0
E1(θ)dθ+

∫ κ(Z−τ)

0
E1(θ)dθ < 2. (15)

□

Theorem 1. {T n}n≥0 generated by Algorithm (14) converges to a solution of (13) and the conver-
gence is monotone: T n+1(x) > T n(x) for all x and all n.

Proof. From (14)

(T n+ 1
2 )4 ≤ |T 4

e |∞+C1(κ)|T n |4∞.

By the maximum principle for the PDE in (14), T n+1 ≥ 0 and |T n+1|∞ ≤ |T n+ 1
2 |∞, therefore

|T n+1|4 ≤ |Te |4∞+C1(κ)|T n |4∞.

Hence |T n+1|∞ is bounded. Assume that T n ≥ T n−1. The convergence is monotone because

(T n+ 1
2 )4 − (T n− 1

2 )4 = 1

2

∫ zM

zm

κE1(κ|s − z|)[(T n
s )4 − (T n−1

s )4]≥ 0,

and as

−κ̄T∆(T n+1 −T n)+b(T n+1 −T n) = (T n+ 1
2 )4 − (T n− 1

2 )4 (16)

with b = ((T n+1)2+(T n)2)(T n+1+T n) ≥ 0, the maximum principle implies that T n+1−T n ≥ 0. □
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Remark 1. Generalization of the above result to (P 3) is straightforward because the maximum
principle holds also for the temperature equation with convection. Consequently it seems doable
to extend the above to the system (2), (3). When the density variations with the temperature are
small the Boussineq approximation can be used in conjunction with (13):

(P 4)

(4πκB0)−1(∂t T +u ·∇T −κT∆T )+T 4 = T 4
e + 1

2

∫ zM

zm

κE1(κ|s − z|)T 4
s ds,

∂t u+u ·∇u−νF∆u+∇p =−b(T −T0)g, ∇·u = 0,
(17)

with u,T given at t = 0 and u or ∂n u or pn+νT ∂nu and ∂nT = 0 or T given on ∂Ω. The kinematic
viscosity νF = µF /ρ is taken constant; b is a measure of ∂Tρ and T0 is the average temperature.
See [20], for instance, for the mathematical analysis of the Boussinesq–Stefan problem (similar to
(P 4) without the T 4 terms).

3. Numerical tests

The physical constants are given in Table 1. Earth sees the sun as a black body at temperature
T̄S = 5800 K radiating with an intensity Q ′ = 1370 W/m2 of which 70% reach the ground, giving at
noon in Milano Q = 1370×0.7cos(π/4) = 678.

For water ρ = 1000 kg/m3; light absorption is κ = 0.1 for one meter and thermal diffusivity of
water is κT = 1.5×10−7 m2/s giving κ̄T = 0.66×1011.

To avoid those large numbers we scale T by 10−3. Then T̄S = 5.8, (Q/2)1/4T̄S = 24.9, κ̃T =
10−9κ̄T = 66.

3.1. A 1D test

IfΩ= (0,10), we need to solve with Algorithm (14) the integro-differential equation in z:

−66T ′′+T 4 = 12.5E3(0.1|10−z|)+0.05
∫ 10

0
E1(0.1|s−z|)T 4(s)ds, T (0) = (12.5E3(0))

1
4 , T ′(10) = 0.

(18)
To solve −66T ′′+T 4 = f , three iterations of a fixed point loop are used: −830T ′′m+1 +T m 3T m+1

= f .
The results are shown in Figure 1. The convergence is monotone as expected, even though

Theorem 1 has not been proved when a Dirichlet condition is applied to T on part of ∂Ω. Notice
that in the absence of sunlight the temperature would be T (0) everywhere.

3.2. A 2D test for a lake

Now Ω is half of the vertical cross-section of a symmetric lake. The lower right quarter side of
the unit circle is stretched by x, z 7→ 30x,10z. The bottom boundary has an equation named
z = zm(x). The same problem is solved in 2D:

−66∆T +T 4 = 12.5E3(0.1|zm(x)− z|)+0.05
∫ 10

zm (x)
E1(0.1|s − z|)T 4(s)ds,

T (x, zm(x)) = (12.5E3(0.1zm(x)))
1
4 , ∂z T (10) = 0. (19)

The same 3×10 double iteration loop is used; the results are shown in Figure 2.
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Figure 1. Convergence of T n solution of (18).

Figure 2. Color map of T (x, z) at iteration 10. The triangulation is also shown, adapted from
T computed at iteration 5.

Table 1. The physical constants

c ħ k B0

2.998×108 6.6261×10−34 1.381×10−23 1.806657×10−19

3.3. A 3D case with convection in Lake Leman

Lake Leman is discretized into 33,810 tetrahedra. The surface has 1287 triangles. The Finite
Element method of degree 1 is used. This is too coarse for a Navier–Stokes simulation but
appropriate for a potential flow. Pressure is imposed on the left and right tips to simulate the
depth of the Rhône. The pressure p solves −∆p = 0 with ∂n p = 0 on the remaining boundaries;
the velocity is u =∇p. The top plot in Figure 3 shows p and u.

The full temperature equation of Problem (P 4) is solved with the same physical constant as
above. The temperature is set at Te initially and on the bottom and side boundaries of the lake.
The time step is t = 0.1; the method is fully implicit for the temperature. At each time step three
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Figure 3. Top left: velocity vectors and pressure isolines at the surface of the lake. Top right:
isolines of the surface temperature. Bottom left: perspective view of a 3D color map of the
temperature on the side of the lake past a middle vertical plane. Bottom right: perspective
view showing some temperature level surfaces inside the lake.

iterations are needed to handle the T 4 term. Figure 3 shows the temperature after 15 time steps; it
appears to have reached a steady state. The top right view of Figure 3 shows a region in red where
the water at the surface is the hottest.

This computation is merely a feasibility study to prove that the implementation of the RT
module in a standard CFD code is easy and fast. Computing time on an Intel core i9 takes less
than a minute.

4. The general case, κν, aν non constant

Photons interact with the atomic structure of the medium which implies thatκν depends strongly
on ν but also on the temperature and pressure. For the earth’s atmosphere, pressure and temper-
ature are approximately decaying exponentially with altitude.

Assume that variations with altitude are known: ρκ̄ν =ϕ(z)κν with z = zm = 0 on the ground.
Let τ = ∫ z

0 ϕ(s)ds; for instance τ = 1− e−z when ϕ(z) = e−z . Now (8),(10) hold with 0 < τ < Z :=
1−e−zM instead of zm < z < zM .

Consider two types of scattering kernels: a Rayleigh scattering kernel pr (µ,µ′) = (3/8)[3−µ2 +
3(µ2 −1)µ′2] and an isotropic scattering kernel p = 1. Let ar

ν and ai
ν := aν− ar

ν be the scattering
coefficients for both. The problem is

µ∂τIν+κνIν = κν(1−aν)Bν(T )+ 1

2
κν

∫ 1

−1
(ar
νpr +ai

ν)Iνdµ′

I (0,µ)|µ>0 =αI (0,−µ)+Q+
ν (µ), I (Z ,µ)|µ<0 =Q−

ν (µ). (20)

The boundary condition at τ= 0 is a simplified Lambert condition which says that a portion α of
the incoming light is reflected back (Earth albedo) and adds to the prescribed upgoing light Q+

ν .
Sun light is prescribed at high altitude, Z , to be Q−(µ).

Let

Jν(τ) = 1

2

∫ 1

−1
Iν(τ,µ)dµ, Kν(τ) = 1

2

∫ 1

−1
µ2Iν(τ,µ)dµ.

An integral formulation can be derived from (20) as in [8], Section 11.2:
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(µ∂τ+κν)Iν = κνHν(τ,µ) := κν
(
(1−aν)Bν(Tτ)+ [ai

ν+ 3
8 ar

ν(3−µ2)]Jν(τ)+ 9
8 ar

ν(µ2 −1)Kν(τ)
)

(21)

⇒ Iν(τ,µ) = 1µ>0

[
R+
ν (µ)e−κν

τ
µ +

∫ τ

0

eκν
t−τ
µ

µ
κνHν(t ,µ)dt

]

+ 1µ<0

[
Q−
ν (µ)eκν

Z−τ
µ −

∫ Z

τ

eκν
t−τ
µ

µ
κνHν(t ,µ)dt

]
, (22)

where R+(µ) =Q+
ν (µ)+αI (0,−µ), i.e.,

R+
ν (µ)|µ>0 =Q+

ν (µ)+α
[

Q−
ν (−µ)e−κν

Z
µ +

∫ Z

0

e−κν
t
µ

µ
κνHν(t ,−µ)dt

]
. (23)

From (22), since Hν = H 0
ν +µ2H 2

ν , with H 0
ν , H 2

ν independent of µ, linear functions of Jν and Kν:

H 0
ν(τ) = κν(1−aν)Bν(T )+κν

((
ai
ν+

9ar
ν

8

)
Jν−

9ar
ν

8
Kν

)
, H 2

ν(τ) =−κν
3ar

ν

8
[Jν−3Kν]. (24)

Jν(τ) = 1

2

∫ 1

0

(
e−κν

τ
µQ+

ν (µ)+
[

e−κν
(Z−τ)
µ +αe−κν

(Z+τ)
µ

]
Q−
ν (−µ)

)
dµ

+ 1

2

∫ Z

0

(
[E1(κν|τ− t |)+αE1(κν(τ+ t ))]H 0

ν(τ)+ [E3(κν|τ− t |)+αE3(κν(τ+ t ))]H 2
ν(τ)

)
dt

(25)

Kν(τ) = 1

2

∫ 1

0
µ2

(
e−κν

τ
µQ+

ν (µ)+
[

e−κν
(Z−τ)
µ +αe−κν

(Z+τ)
µ

]
Q−
ν (−µ)

)
dµ

+ 1

2

∫ Z

0

(
[E3(κν|τ− t |)+αE3(κν(τ+ t ))]H 0

ν(τ)+ [E5(κν|τ− t |)+αE5(κν(τ+ t ))]H 2
ν(τ)

)
dt .

(26)

The system is coupled to

∂t T +u ·∇T −κT∆x,y,z T +4π
∫ ∞

0
κν(1−aν)Bν(Tτ)dν= 4π

∫ ∞

0
κν(1−aν) Jν(τ)dν. (27)

4.1. Iterative method for the general case

In the spirit of (14), consider

4.2. Algorithm 2

(1) Starting from T 0 = 0, J 0
ν = 0, K 0

ν = 0.
(2) Compute J n+1

ν (τ),K n+1
ν (τ) by (25), (26) with T n , J n , K n in place of T, J ,K .

(3) Compute T n+1 by solving (27) with J n+1
ν (τ) in the r.h.s.

Note that for isotropic scattering Kν is not needed. Then the following convergence results hold
when thermal diffusion is neglected.

Theorem 2. Assume α = 0, u = 0, κT = 0, ∂t T = 0. Assume κν is strictly positive and uniformly
bounded, and 0 ≤ aν < 1 for all ν> 0. Let Q±

ν ≥ 0 satisfy, for some TM and some Q

0 ≤Q±
ν (µ) ≤QBν(TM ) ∀µ,ν ∈ (−1,1)×R+. (28)

Then Algorithm 4.2 defines a sequence of radiative intensities I n
ν and temperatures T n converging

pointwise to Iν and T respectively, which is a solution of (20),(27) and the convergence is uniformly
increasing.
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Remarks 2.

(1) Starting with T 0 = 0 is a sure way to initialise the recurrence and have T 1 > T 0.
(2) Most likely, monotone convergence holds also in the general case α > 0, u, κT and ∂t T

non-zero because, just like T 7→ T 4, the function T 7→ ∫ ∞
0 κν(1−aν)Bν(T )dν is monotone

increasing (its derivative is strictly positive).
(3) In the special case ar

ν = 0, and Q±
ν (µ) = |µ|Q±

ν the problem is

(µ∂τ+κν)Iν(τ,µ) = κνaν Jν(τ)+κν(1−aν)Bν(Tτ), Jν(τ) = 1

2

∫ 1

−1
Iν(τ,µ)dµ,

Iν(0,µ) =Q+
νµ , Iν(Z ,−µ) =Q−

νµ , 0 <µ< 1,∫ ∞

0
κν(1−aν)Bν(Tτ)dν=

∫ ∞

0
κν(1−aν)Jν(τ)dν.

(29)

The iterative process is then to start with T 0 = 0, and compute T n+1 from T n by

J n+1
ν (τ) = 1

2Q+
ν E3(κντ)+ 1

2Q−
ν E3(κν(Z −τ))

+ κν

∫ Z

0
E1(κν|τ− t |)(aν J n

ν (t )+ (1−aν)Bν(T n
t )

)
dt , (30)∫ ∞

0
κν(1−aν)Bν(T n+1

τ )dν=
∫ ∞

0
κν(1−aν)J n+1

ν (τ)dν. (31)

(4) Note that T 7→ ∫ ∞
0 κν(1−aν)Bν(T )dν is continuous, strictly increasing, hence invertible.

Thus (31) defines T n+1
τ uniquely.

(5) One may recover the light intensity by

I n+1
ν (τ,µ) = e−κν

τ
µQ+

ν (µ)1µ>0 +e−κν
(Z−τ)
|µ| Q−

ν (µ)1µ<0

+1µ>0

∫ τ

0
e−κν

(τ−t )
µ
κν

µ
(aν J n

ν (t )+ (1−aν)Bν(T n
t ))dt

+1µ<0

∫ Z

τ
e−κν

(t−τ)
µ
κν

µ
(aν J n

ν (t )+ (1−aν)Bν(T n
t ))dt , (32)

but numerically these are singular integrals while (30),(31) are not. Indeed e−x/µ/µ tends
to infinity when x and µ tend to 0.

(6) Theorem 2 extends a result given in [21] which had unnecessary restrictions on κν.

Proof. The complete proof will appear in [22]. Here, for simplicity, we consider the case aν = 0.
Let

S(τ) :=
∫ ∞

0

κν

2

∫ 1

0

(
e−κν

τ
µQ+

ν (µ)+e−κν
Z−τ
µ Q−

ν (−µ)
)

dµdν.

By (30)∫ ∞

0
κνBν(T n+1

τ )dν =
∫ ∞

0
κν J n+1

ν (τ)dν= S(τ)+ 1

2

∫ ∞

0

∫ Z

0
κ2
νE1(κν|τ− t |)Bν(T n

t )dt dν

≤ S(τ)+ 1

2
max
κ

∫ Z

0
κE1(κ|τ− t |)dt sup

t∈(0,Z )

∫ ∞

0
κνBν(T n

t )dν

≤ C2 +C1(κM ) sup
t∈(0,Z )

∫ ∞

0
κνBν(T n

t )dν,

with C2 = supt∈(0,Z ) S(t ) and κM = supνκν, because κ 7→ C1(κ) is monotone increasing. As
C1(κM ) < 1 it implies that B n

ν (τ) := Bν(T n(τ)) is bounded for all τ.
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Now assume that T n
τ > T n−1

τ for all τ > 0. Then T 7→ Bν(T ) being increasing, Bν(T n
τ ) >

Bν(T n−1
τ ), ∀τ,ν, and so for all τ:∫ ∞

0
κν

(
Bν(T n+1

τ )−Bν(T n
τ )

)
dν =

∫ ∞

0
κν

(
J n+1
ν (τ)− J n

ν (τ)
)

dν

=
∫ ∞

0

κ2
ν

2

∫ Z

0
E1(κν|τ− t |)(Bν(T n

t )−Bν(T n−1
t )

)
dt dν> 0. (33)

As T 7→ Bν(T ) is continuous, it implies that T n+1
τ > T n

τ , ∀τ. Hence for some T ∗(τ), possibly +∞,
T n → T ∗. By continuity Bν(T n

t ) → Bν(T ∗
t ), but it has been show above that Bν(T n

t ) = B n
ν → B∗

ν , so
Bν(T ∗

t ) is finite and so is T ∗
t . Recall that a bounded increasing sequence converges, so Bν(T n

t ) →
Bν(T ∗

t ) for all t and ν and the convergence of E1(κν|τ− t |)Bν(T n
t ) → E1(κν|τ− t |)Bν(T ∗

t ) being
monotone, the integral converges to the integral of the limit (Beppo Levi’s lemma). This shows
that T ∗

τ is the solution of the problem. □

Remark 2. Note that (33) also shows that if T n < T n−1 then T n+1 < T n . Although it is harder to
find T 0

τ with T 1
τ < T 0

τ , such a start gives T n
τ > T ∗

τ .

5. Uniqueness, maximum principle

This section follows computations in [23] (in the case Z =+∞ and with aν = 0) and in [24].

Theorem 3. Assume 0 < κν ≤ κM , 0 ≤ aν < 1 for all ν> 0. Let Q±,R± ∈ L1((0,1)×R+) satisfy

0 ≤Q±
ν (µ) ≤ R±

ν (µ) for a.e. (µ,ν) ∈ (0,1)× (0,∞) .

Then, the solutions (Iν,T ) and (I ′ν,T ′) of (29) with Q±
ν (µ) and R±

ν (µ) respectively, satisfy

Iν(τ,µ) ≤ I ′ν(τ,µ) and Tτ ≤ T ′
τ for a.e. (τ,µ) ∈ (−1,1)× (0,∞) .

In particular, Q±
ν (µ) = R±

ν (µ) for a.e. (µ,ν) ∈ (0,1)× (0,∞) implies

Iν(τ,µ) = I ′ν(τ,µ) and Tτ = T ′
τ for a.e. (τ,µ) ∈ (−1,1)× (0,∞).

One has also the following form of a Maximum Principle.

Corollary 1. Let the hypotheses of Theorem 2 hold. Let Q±
ν (µ) ≤ Bν(TM ) (resp. Q±

ν (µ) ≥ Bν(Tm)) for
a.e. (µ,ν) ∈ (0,1)×R+. Then a.e. (τ,µ) ∈ (−1,1)× (0,∞),

Iν(τ,µ) ≤ Bν(TM ) and Tτ ≤ TM resp. Iν(τ,µ) ≥ Bν(Tm) and Tτ ≥ Tm .

The proof relies partially on a difficult argument due to [24]. It will be published in [25].

6. An application to the temperature in the earth’s atmosphere

A numerical test is reported on Figures 4 and 5. It is an attempt at the simulation of the effect of
an increase of CO2 in the atmosphere. Our purpose is only to assess that the numerical method
can detect such a small change of κν.

Equation (31) is solved by a few steps of dichotomy followed by a few new steps. When κν is
larger than 4 some instabilities occur, probably in the exponential integrals. This point will be
investigated in the future.

The physical and numerical parameters are

• Atmosphere thickness: 12 km
• Scaled sunlight power hitting the top of the atmosphere: 3.042×10−5

• Percentage of sunlight reaching the ground unaffected: 0.99
• Percentage reemitted (Earth albedo): 10%.
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Figure 4. Transmittance te versus wave-length digitized from https://commons.
wikimedia.org/wiki/File:Atmosfaerisk_spredning-ru.svg. The window around 3 is blocked
by CO2. The absorption is related to the transmittance te by κν =− log te .

Figure 5. Scaled temperatures (left): 3 curves z → T (z) are plotted. One computed with
κ0 = 1.225 which corresponds to a grey atmosphere. One with κν shown on the right in pink
which corresponds to Figure 4. The third one is with κν shown in green on the right where
the transparent window around frequency 1 has been blocked. On the right the mean light
intensity at altitude Z is shown (mostly outgoing waves). Filling the transparent window
results in an elevation of temperature.

• Percentage of sunlight being a source at high altitude (Q−): 0.1%
• Cloud (isotropic) scattering: 20%. Cloud position: between 6 and 9 km
• Rayleigh scattering: 20% above 9 km
• Average absorption coefficient κ0 = 1.225
• Density drop versus altitude : ρ0 exp(−z)
• Discretization: 60 altitude stations, 300 frequencies (unevenly distributed)
• Number of iterations: 22. Computing time: 30′′ per cases.

https://commons.wikimedia.org/wiki/File:Atmosfaerisk_spredning-ru.svg
https://commons.wikimedia.org/wiki/File:Atmosfaerisk_spredning-ru.svg
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The results are very sensitive to the value of Q− and the Earth albedo. The values for κν are taken
from Russian measurements posted on wikipedia https://commons.wikimedia.org/wiki/File:
Atmosfaerisk_spredning-ru.svg.

7. Computer implementation details

The 1D case, uncoupled from the 2D or 3D temperature equation has been implemented in C++.
Some care must be applied to the computation of the exponential integrals, as follows:

double expint_E1(const double t){
const int K=8; // precision in the exponential integral function E1
const double epst=1e-5, gamma =0.577215664901533;
if(t==0) return -1e12;
double abst=fabs(t);
if(abst<epst) return -abst*(gamma + log(abst)-1);
double ak=abst, somme=-gamma - log(abst)+ak;
for(int k=2;k<K;k++){

ak *= -abst*(k-1)/sqr(k); somme += ak; }
return somme;

}
The rest is straigthforward.

In fifty years of CFD studies the research problems have become increasingly com-
plex and without the joint development of computers and programming tools it would
not be possible for a single individual to contribute or even test his or her ideas. The
second author is part of the team which developed the PDE solver FreeFem++ [26] (see
fr.wikipedia.org/wiki/FreeFem%2B%2B). It is a high level language which accepts instruc-
tions like

solve a(u,uh)=int2d(Th)(grad(u)’*grad(uh) + grad(u)*q + grad(uh)*p -eps*p*q)
+ on(1,u=0,v=1) + on(2,3,4,u=0,v=0);

where Th is the mesh of a square with borders labelled 1,2,3,4. This solves the driven cavity
problem for the Stokes equations.

The algorithms discussed here have been implemented with this tool in a very short time. The
discretization of Lake Leman is part of the examples in [26], written by F. Hecht.

Integrals on a line are computed by interpolating the integrand as a P 2 function on a 1D mesh
which is the intersection of the 2D or 3D mesh ofΩ with the line. It is an imbedded functionality
in FreeFem++. The complexity of the algorithm is N

p
N plus the complexity of a Navier–Stokes

solver. All computing times are less than a few minutes in all cases.
The precision is O(h) in H 1-norm for the temperature.
The method will be analyzed further in a forthcoming paper which will appear in the SIAM

Journal Numerical Analysis (SINUM).

8. Conclusion

Results obtained here are in continuation of [23, 24, 27], recently reviewed for possible applica-
tions to climatology in [22] and [21]. Existence and uniqueness for the radiative transfer equa-
tions had remained open in the context of nuclear engineering. For incompressible fluids it is not
unrealistic to assume that the dependence of the absorption coefficient κν upon the temperature
can be replaced by an explicit dependence on altitude. This is the key simplification by which ex-
istence, uniqueness and monotone fast and accurate numerical schemes could be found. Hence,

https://commons.wikimedia.org/wiki/File:Atmosfaerisk_spredning-ru.svg
https://commons.wikimedia.org/wiki/File:Atmosfaerisk_spredning-ru.svg
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adding RT to a Navier–Stokes solver is easy and fast when radiations come from one direction
only.

As a final remark note that it seems doable to extend the method to the general case where
κν depends on τ and T . Indeed if the dependency τ 7→ κν(τ) is guessed only approximately,
then knowing κM

ν > κν(τ) independent of τ is enough to apply the method with κM on the left
of the equation for Iν with a correction on the right equal to (κM

ν −κν(τ))Iν; this correction seems
compatible with the monotone convergence of the temperature. Then the method could also be
extended to the case κ function of T by an additional algorithmic m-loop using κ(T m) instead of
κ(T ) and then updating T m to the T just computed.

In this article the numerical computations are only given for showing the potential of the
method. Real life applications, coupling RT to the full Navier–Stokes equations requires super-
computing power and will be done later.
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