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Abstract. Local Continuum Damage Mechanics models cannot represent the entire degradation process in
materials exhibiting strain-softening behaviors. It is well known that the rate equilibrium problem becomes
ill-posed when softening occurs, and an infinity of solutions exists. From a numerical point of view, finite
element analyses suffer from mesh-dependent results. Non-local models are generally used to regularize
the structural response and recover objectivity. However, some physical inconsistencies can be observed in
numerical results, e.g., damage diffusion over large damaged bands and damage attraction on the boundary
of the computational domain. Non-local formulations with evolving interactions may better describe the
damaging process and overcome these issues. This paper uses the so-called spalling test to underline
the main drawbacks and advantages of several regularized models with constant and evolving non-local
interactions. Concerning non-local formulations with constant interactions, attention is focused on the
integral non-local formulation on the internal variable of the constitutive model and an implicit gradient
damage formulation. Regarding formulations with evolving non-local interactions, attention is focused on a
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“stress-based integral non-local” approach and the so-called “eikonal non-local” approach. In this latter case,
both its integral-type and gradient-type variants are considered.

Résumé. Les modèles d’endommagement classiques ne sont pas capables de représenter l’ensemble du pro-
cessus de dégradation ayant lieu pendant l’adoucissement en déformation. Dans le cadre de la méthode des
éléments finis, des résultats dépendants du maillage sont obtenus. Des modèles non-locaux sont générale-
ment utilisés pour régulariser la réponse structurelle et retrouver l’objectivité vis-à-vis du maillage. Cepen-
dant, certaines incohérences physiques peuvent être observées, telles que la diffusion progressive de l’en-
dommagement et son attraction par la frontière du domaine. Les approches non-locales avec interactions
évolutives peuvent mieux décrire le processus de fissuration et surmonter ces problèmes. Dans cet article,
le test d’écaillage est utilisé pour souligner certains inconvénients et avantages typiques de différentes mé-
thodes de régularisation. En particulier, l’attention est portée sur la formulation intégrale non-locale sur la
variable interne du modèle de comportement, sur une formulation à gradient implicite, sur une approche
intégrale non-locale basée sur les contraintes et sur l’approche non-locale dite eikonale. Dans ce dernier cas,
ses formulations intégrales et de type gradient sont considérées.

Keywords. Damage, Non-local regularization, Spalling test, Boundary effects, Damage diffusion.

Mots-clés. Endommagement, Régularisation non-locale, Écaillage, Bords, Diffusion de l’endommagement.
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1. Introduction

Strain-softening behaviors are observed in quasi-brittle materials such as concrete or some rocks.
The stress–strain material response shows a progressive loss of stiffness right after the elastic
limit. At the structural scale, the damage field tends to localize in a zone of vanishing volume.
In a numerical context, this induces sensitivity to the spatial discretization of the considered
structure, as Finite Element (FE) solvers do not converge upon mesh refinement. Moreover,
this behavior can lead to spurious energy dissipation at the structural level, which is physically
unacceptable [1].

This is not an inconvenience related to numerical approximations. From a mathematical
viewpoint, the rate equilibrium problem becomes ill-posed [2], infinite linearly independent
solutions can be obtained at the bifurcation point, and the size of the localization zone cannot
be uniquely defined. In dynamics, the differential wave propagation equation is hyperbolic and
becomes elliptic when localization occurs [3]. This implies that the structure is divided into two
zones: one where elastic waves can propagate and another where the wave speed becomes imag-
inary. In [4], a mathematical analysis of localization is presented, which gives the specific condi-
tions under which the strain localizes in narrow zones differently from the rest of the body. From
a Continuum Damage Mechanics (CDM) viewpoint, the strain field becomes close to a Dirac
distribution upon localization, which means that high strain gradients take place in small (but
finite) zones. Consequently, the equivalent homogenized volume is not representative of what
happens at lower scales. The assumption of distributed micro-cracks within the Representative
Elementary Volume (REV) is no longer valid as the damage field is no more smooth [5].

One may employ some regularization techniques to guarantee a mesh-independent solution
when dealing with strain softening numerically. One option is to apply a simple energetic regu-
larization approach [6], defining material parameters on each element as a function of the dissi-
pated fracture energy needed to create a crack surface for such a material. Nevertheless, several
authors [7, 8] have shown that this regularization method implies different crack paths for differ-
ent mesh orientations. Consequently, despite the regularization in terms of overall structural re-
sponse, energy-based methods are not recommended for dealing with more sophisticated anal-
yses, which are expected to give information about crack paths and failure modes.

A more physical way to regularize the structural response is to introduce a characteris-
tic/internal length lc (intrinsically related to a characteristic time in dynamics) to describe the
spatial interactions at a lower scale and define a range of validity of the theory considered for
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the analysis. In continuum mechanics, a lc related to the size of the REV and the Fracture Pro-
cess Zone (FPZ) [9,10] may be introduced into the constitutive relations. In quasi-static analyses,
this is usually done by using the so-called non-local damage theory [1], averaging a specific vari-
able through a convolution product with a given weight function. Since then, various non-local
approaches have been developed, and the subject is a large field of research.

The introduction of some micro-structural information into the macroscopic models can also
be represented by many other approaches. Gradient approaches, for instance, were firstly intro-
duced in plasticity [11–14], where higher-order gradients of the equivalent plastic strain are used
in the constitutive relations. Influenced by these ideas, gradient-enhanced formulations were
also introduced in damage mechanics [15, 16] taking into account the influence of the spatial
interaction between points on damage growth. Other methods have also been used for regulariz-
ing damage problems such as the delay damage models (e.g., [17–19]), the Thick Level Set (TLS)
approach [20], the phase field approach [21, 22], and more recently the Lip-field approach [23].

The present work analyzes and compares numerically several non-local damage formulations,
particularly regarding the obtained damage evolution close to the domain’s boundaries and/or in
highly damaged zones. Following previous works in literature, numerical studies are performed
by simulating the so-called spalling phenomenon, i.e., the tensile failure under an impact com-
pression load. Experimentally, this loading condition is obtained thanks to Hopkinson-bar spall
experiments [24–26]. It is well known that local damage models cannot reproduce the experi-
mental spalling, as strain localization will inevitably lead to an ill-posed boundary value problem
and, therefore, mesh-dependent results. Classical non-local models (i.e., with a constant charac-
teristic length) should naturally recover objectivity but fail to determine the spalling thickness.
For instance, damage attraction on the boundary has been reported [27], leading to non-physical
spalling failures. Simone et al. [28] showed that classical integral or implicit gradient theories fail
to describe damage initiation, especially near strong strain field variations, which were not re-
lated to boundary effects. In addition, the damage profile is spread on a finite zone instead of a
localized one, as expected.

Bažant [29] studied the interaction between micro-cracks and showed that if damage is not
sufficiently small, the weight function should depend on the stress state in the vicinity of a given
point. In other words, the non-local interactions need to evolve while damage grows, instead of
remaining isotropic and constant throughout the fracture process. Geers et al. [30] showed that
the classical implicit gradient damage model fails when treating highly damaged zones. Thus,
they proposed a strain-based transient-gradient damage model, considering that the gradient
parameter c (proportional to lc ) evolves in function of the local strain state. Giry et al. [31] pro-
posed a stress-based non-local damage model, which lets the internal (or characteristic) length
evolve as a function of the stress state. The evolution of non-local interactions was also pro-
posed in many other damage models based on the stress, strain, damage or the microstructure
(e.g., [32–40]).

This paper focuses on five non-local approaches for regularizing the damage problem. Lo-
calization is studied considering a one-dimensional (1D) dynamic problem. The latter is not in-
tended to reproduce the dynamic material behavior but is used here as a localization tool. An ex-
plicit dynamic 1D FE analysis code is therefore developed to illustrate the advantages and draw-
backs of each approach.

2. Non-local damage formulations

In the present work, CDM [41] is used to describe material degradation. In the following, all the
formulations are written for the 1D case for conciseness. Similar formulations can be introduced
for modeling multi-dimensional problems.
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2.1. Local model

In the isotropic case, one may consider a scalar damage variable D evolving from zero (virgin
material) to one (fully damaged material). Following a thermodynamic framework, the Helmholtz
free energy potential and the intrinsic dissipation read ρψ = ρψ(ϵ,D) = 1/2(1 − D)Eϵ2 and
D = Y Ḋ , respectively. Here, E is the Young modulus, ϵ is the small strain, and Y = −ρ∂ψ/∂D
is the energy release rate. The Cauchy stress is thus written as:

σ= ρ ∂ψ
∂ϵ

= (1−D)Eϵ. (1)

Damage is considered to evolve according to the exponential law [42]:

D = g (κ) = 1− κ0

κ
exp(−B(κ−κ0)), (2)

where:
κ= max

t
(κ0,e) (3)

is a damage-driving history variable taking into account the maximum value reached by an
equivalent strain measure (e) throughout the loading history (κ0 denotes the damage activation
threshold), and B is the damage brittleness. In this study, the equivalent strain is defined as the
positive part of the strain (i.e., if ϵ> 0, e = ϵ; else e = 0).

2.2. Regularization methods

FE analyses of softening media suffer from mesh-dependent results. Local damage models
inevitably induce spurious energy dissipation, given that damage localizes in a zone of vanishing
volume upon mesh refinement. To counteract this problem, regularization methods have been
proposed in the literature, taking into account additional quantities to describe the localization
process.

In non-local models, the constitutive relation is a function of what occurs in the entire body.
Neighborhood (non-local) interactions are therefore used to enrich the continuum description
by adding higher-order gradients or spatial averaging. Two main families of non-local models are
considered in this work:

(i) Integral formulations. Pijaudier-Cabot and Bažant [1] proposed a non-local integral
damage theory, where the local field related to the damage evolution is replaced by
its weighted average over the whole volume of a body Ω. A common choice in FE
calculations is to average the variable that drives damage evolution (the strain in this
example).1 In this case, one has:

ē(x) = 1

Vr (x)

∫
Ω
φ(lx y , lc )e(y)dy Vr (x) =

∫
Ω
φ(lx y , lc )dy, (4)

where lx y = |x− y | is the Euclidean distance between points x and y inΩ, and φ(lx y , lc ) is
a weight function generally taken as a Gaussian distribution,2 i.e.:

φ(lx y , lc ) = exp

(
−4

(
lx y

lc

)2
)

. (5)

1Jirásek [43] tested different ways of introducing non-locality in damage formulations. Notably, he showed that
averaging D would lead to stress locking behaviors, which could not describe the crack initiation. In a 1D context, he
showed that formulations that average either Y or ϵ are more capable of describing the degradation process. Moreover,
damage formulations which average the strain are more suitable for FE calculations considering nonlinear behaviors
depending on the strain state.

2Another possibility is to use a bell-shaped function, which has a bounded support, instead of an unbounded one as
in the case of the Gaussian function.
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The normalizing factor Vr (x) figuring in (4) guarantees that a uniform field is not modi-
fied by the convolution product, which, however, induces spurious behavior close to the
boundary, as we will see later on.

(ii) Gradient formulations. Peerlings et al. [16] proposed a gradient-enhanced damage for-
mulation which is obtained from the conventional integral non-local theory, substitut-
ing the local equivalent strain in (4) by its Taylor expansion. A more numerical-friendly
approach is obtained by differentiating two times the resulting explicit equation and ne-
glecting higher-order terms [5]. The non-local equivalent strain is now the solution of the
following Helmholtz-like differential equation:3

ē(x)− c
d2ē(x)

dx2 = e(x) inΩ with
dē(x)

dx
= 0 on ∂Ω, (6)

with c being a model parameter (homogeneous to the square of a length) and ∂Ω de-
noting the boundary of Ω. This formulation is referred to as the “implicit gradient dam-
age approach” and represents a strong form of non-locality, as long-range interaction be-
tween points is allowed. To provide the variational formulation corresponding to (6), let
us introduce the non-local virtual strains admissibility set:

E = {η | η(x) ∈ H 1(Ω)}. (7)

The problem to be solved for computing the non-local equivalent strain field thus reads:∫ L

0
c

dē

dx

dη

dx
dx +

∫ L

0
ēηdx =

∫ L

0
eηdx ∀η ∈ E , (8)

where the natural boundary condition has been used [12,14,16]. In the previous equation
the dependency of (e, ē,η) on the space variable x was omitted for the sake of conciseness.

A comparison of integral non-local and explicit/implicit gradient models can be found in [44],
where it is shown that the explicit gradient formulation allows only interaction between points
at infinitesimal distances. Therefore, this formulation and other higher-order gradient ones are
classified as weakly non-local models [10] and can be seen even as local from a mathematical
viewpoint [44]. In the following, the classical integral non-local formulation and the correspond-
ing implicit gradient-enhanced formulation will be named INL and GNL, respectively.

2.3. Non-local models with evolving internal length

Several authors proposed to take into account the influence of the damaging process on non-
local interactions. In general, one aims to completely simulate the strain localization process
from diffused damage (i.e., micro-cracking phase) to damage localization (i.e., fully localized
macro-crack phase). To achieve this goal, several drawbacks of standard INL and GNL formu-
lations should be overcome:

(i) Damage initiation near a crack tip. This is the shift of the maximum non-local equivalent
strain far from the crack tip, leading to damage initiation problems [28]. This drawback
will not be treated in this paper and is left for future works.

(ii) Damage attraction to the boundaries. This is the gradual shift of the maximum damage
value to the boundary of the domain. This is related to the truncated interaction domain
for INL models or the symmetry imposed by the zero flux condition on the boundary for
GNL models. However, one expects that the response should become local in this case
(vanishing non-local interactions) [27, 35].

3The physical meaning of the homogeneous Neumann boundary condition is still an open question, and further
discussions may take place [44–46].
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(iii) Damage diffusion. Upon strain localization, the coalescence of micro-cracks into a
macro-crack should induce a discontinuity in the displacement field. Classic models do
not enable describing such a transition, as damage is diffused in a large zone. Thus, the
internal length should account for this effect and be modified throughout the damage
process [30]. In the numerical context of this work, damage diffusion will be considered
to occur when D ≈ 1 in more than one FE. Conversely, a perfectly localized damage pro-
file is considered when D ≈ 1 in just one FE.

Several non-local models with evolving non-local interaction distances depending on the me-
chanical field (stress, damage . . . ) were proposed in the literature to overcome these limitations.
This work considers three different non-local models with evolving internal length. In particular,
attention is focused on a Stress-Based integral Non-Local (NLSB) formulation [31], and on the
Eikonal Non-Local (ENL) formulation [37, 38] (in both integral and gradient forms).

2.3.1. Stress-based non-local damage model

The NLSB model [31] takes into account the influence of the stress field at point y in the
computation of the weight function at point x. Denoting by ft the material tensile strength, this
is done by replacing the characteristic length in (5) by:4

lc,x y = ρfac(y)lc ρfac(y) = |σ(y)|
ft

. (9)

According to (9), the influence factor ρfac(y) is equal to zero when y belongs to a free boundary,
which corresponds to the zero normal stress condition. Consequently, the weight computed
between a given point inside the domain and another one on the free edge is null (i.e., no
interactions are modeled). Moreover, if ρfac(y) = 1 the classical INL formulation is recovered.

2.3.2. Eikonal non-local damage model

The ENL damage model [37] is a geometric extension of the non-local internal time model
introduced by [34]. In this approach, non-local interactions are supposed to behave as waves
propagating from one point to the others of the damaged domain: the higher the time needed
for wave propagation, the lower the interaction between the considered points. Consequently,
the time needed to propagate information (interaction) between points increases when damage
occurs and eventually tends to infinity when damage tends to the unity. Pijaudier-Cabot et
al. [35] proposed a similar non-local model, where an attenuation function is used to describe
the influence of damage on the non-local interactions.

Integral-type formulation (ENLI). In a multi-dimensional context, the ENL model leads to con-
sider that damage deforms the space in which interaction distances are computed [37, 38]. It is
supposed that non-local interactions between a point x and any other point y belonging to Ω
depend on an effective distances field l̃x y (y) which is the solution of an eikonal equation with a
damage-dependent Riemannian metric field. In a 1D context, the eikonal equation to be solved
∀x ∈Ω can be written as: √

1−D(y)

∣∣∣∣∣dl̃x y (y)

dy

∣∣∣∣∣= 1 with l̃x y (y = x) = 0. (10)

4In the general multi-dimensional case, ρfac is the radial coordinate of an ellipsoid associated with the stress state of
a nearby point y . Thus, this model naturally solves boundary effects issues, given that at the presence of a free boundary,
the stress state is considered to modify non-local interactions.



Breno Ribeiro Nogueira et al. 513

Equation (10) can be integrated analytically,5 and the effective distance between points x and
y reads [37, 47]:

l̃x y =
∫ max(x,y)

min(x,y)

dy√
1−D(y)

> lx y . (11)

According to such an approach, the main modification with respect to the INL formulation is
the use of the l̃x y instead of lx y in (5). Recent works have shown that the ENLI approach is suitable
for modeling strain localization processes [37, 38, 40, 47].

Gradient-type formulation (ENLG). An equivalent gradient-enhanced ENL damage model
(ENLG) was also formulated in [37]. In 1D tension, the modified version of the Helmotz’s equa-
tion (6) to be solved to compute the non-local strain field is:

ē(x)− c
√

1−D(x)
d

dx

(√
1−D(x)

dē(x)

dx

)
= e(x) inΩ with

dē(x)

dx
= 0 on ∂Ω. (12)

Similarly to (8), the variational formulation of the ENLG problem reads:∫ L

0
c
p

1−D
dē

dx

dη

dx
dx +

∫ L

0

ēηp
1−D

dx =
∫ L

0

eηp
1−D

dx ∀η ∈ E . (13)

The latter is basically the same equation obtained for the classical GNL model, with the
additional term

p
1−D . In the ENLI formulation, this term appears in (10) and is related to

the determinant of the Riemannian metric. Indeed, damage tends to increase the effective
distances. When it tends to the unity, the effective distance between two points separated by the
highly damaged zone tends to infinity [37, 38, 47], so that the non-local interaction between the
considered points vanishes. To the authors’ knowledge, no numerical implementation of such an
approach exists in the literature.

3. One-dimensional dynamic problem

The spalling test (Figure 1) will be used to underline some typical drawbacks and advantages
of different regularization models. As already done in [27, 31], this test is simulated to study
boundary effects and localization properties of modified non-local formulations. A precise review
of this problem was also presented in [48], where the advantages of considering a modified
interaction-based non-local approach [49] were presented.

Description of the spalling test. Experimentally, spalling can be obtained with a modified Hop-
kinson test (Figure 1). The experimental setup consists of an input striker, an incident bar, and
the specimen. After being transmitted to the specimen, the compression wave starts to reflect
as a tensile wave at the free boundary. For a strain-softening material, when the sum of the com-
pression and tensile contributions to the elastic wave is greater than the material tensile strength,
a fully localized cracking occurs. Thus, the spalling test is an excellent tool for simulating strain
localization and evaluating the properties of damage models.

3.1. Weak form of the dynamic equilibrium problem

Let us consider a 1D domainΩ= [0,L], with an imposed Neumann condition (external impulsive
force) on ∂ΩF = {x = L}. The other boundary is stress-free.

5This is not the case in a more general multi-dimensional setting, in this case, numerical integration methods (e.g.,
the Fast-Marching approach) are needed. The first FE implementation of the ENL model in two dimensions was proposed
by Rastiello et al. [38].
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Figure 1. Illustrative scheme of the spalling test with a Hopkinson bar [26].

3.1.1. Variational problem

Let us introduce the following admissibility spaces:

U = {u | u(x, t ) ∈ H 1(Ω),u(x, t ) ∈ H 2(I ),u(x, t = 0) = 0 ∀x ∈Ω} (14)

V = {v | v(x) ∈ H 1(Ω), v(x, t ) = 0 on ∂uΩ}, (15)

where H n(·) denotes the n-order Sobolev space over a domain and I = [0,T ] is the time interval.
Neglecting body forces, the variational dynamic equilibrium problem to be solved consists in

finding u = u(x, t ) ∈U such that:∫ L

0
σ(u)ϵ(v)dx +

∫ L

0
ρüv dx = Td (t )v(L) ∀v ∈ V , (16)

where ü = ∂2u/∂t 2 is the acceleration field, ρ is the mass density, and Td (t ) is the applied traction
(force per unit area) on ∂FΩ.

3.1.2. Time discretization

The equation (16) is solved for each time instant t ∈ I after time discretization (e.g., using the
Newmark scheme). In this paper, the explicit central difference scheme is employed. Accordingly,
the time interval is discretized as t → tn ∈ [0,T = nt∆t ] with n ∈ [[1,nt ]] and ∆t the time step. At
time tn+1, one thus solves for ün+1 the time discretized variational equation:∫ L

0
ρün+1v dx = Td ,n+1v(L)−

∫ L

0
σ(un+1)ϵ(v)dx ∀v ∈ V , (17)

where: 
un+1 = un +∆t u̇n + 1

2
∆t 2ün

u̇n+1 = u̇n + ∆t

2
(ün+1 + ün) .

(18)

In (16) and (18), subscripts n and n +1 are used to denote quantities computed at time instants
tn and tn+1. The same nomenclature will be adopted in the remainder of the text.

Such a method is suitable for non-local computations in a dynamic context. Moreover, there
is no need to apply nonlinear iterative procedures such as Newton–Raphson.
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3.1.3. Space discretized problem

To solve the variational equation (16), the computational domain Ω is discretized into a FE
mesh Ωh containing nel linear bar elements of constant length h. Accordingly, the displacement
field is approximated as a function of the nodal displacements through the elementary shape
functions. Stress and strains are computed at the quadrature points of the FEs. A single integra-
tion point located at the center of the FE is considered for linear elements. We denote by G the
set of the ng p = nel integration points ofΩh .

3.1.4. Constitutive model

The stress is evaluated according to the constitutive relation (1). For the numerical simulations
of this paper, the history function driving the damage evolution is defined as the historical
maximum of the non-local strain. For the integration point xi , it is computed as κi = κ(xi ) =
maxt (κ0, ēi ) with ēi = ē(xi ). Damage grows according to (2).

3.2. Non-local fields computation

The non-local field (ē) is computed following one of the methods introduced earlier: INL, GNL,
ENLI, ENLG or NLSB. In a FE context, one computes the non-local strain field to evaluate damage,
and thus the stress, for each Gauss integration point ofΩh .

3.2.1. Integral non-local methods

For a given Gauss point xi ∈G , the non-local equivalent strain ēi = ē(xi ) is obtained as:

ēi =
∑ng p

j=1 e jφ(l∗i j , l∗c,i j )∑ng p

j=1φ(l∗i j , l∗c,i j )
, (19)

where e j = e(x j ) and we exploited the fact that all FEs have the same size.
The main difference between the different integral-type non-local formulations discussed

earlier is in the way how l∗i j and l∗c,i j are computed.

INL. In the standard INL formulation, l∗i j = li j = |xi −x j | and l∗c,i j = lc .

NLSB. In the NLSB damage model [31], the weighting function depends on the stress field. In the
explicit 1D implementation of this work, the modified internal length l∗c,i j is directly computed
from the stress (σ j ,n =σn(x j )) at the previous time step, whereas l∗i j = li j = |xi −x j |.

The following steps are needed to perform the computation. The coefficient ρfac, j = ρfac(σ j ,n)
is first computed for x j ∈G as:

ρfac, j =
{
|σ j ,n |/ ft if |σ j ,n |/ ft ≤ 1

1 otherwise.
(20)

The modified characteristic length is then computed as:

l∗c,i j =
{
ρfac, j lc if ρfac, j lc ≥ h

h otherwise.
(21)

Finally, the non-local weight φ(li j , l∗c,i j ) is computed and used in (19).

ENLI. For the ENLI formulation, the damage-dependent interaction distances need to be com-
puted. In (19), l∗c,i j is taken equal to lc whereas l∗i j is the effective distance l̃i , j between the two
integration points xi and x j [40,47]. Numerically, the integral (11) is replaced by a finite sum over
all the points in the interval [xi , x j ].
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Jirásek and Desmorat [40] proposed two schemes to perform the integral calculations: a
simple trapezoidal rule such that

p
1−D is element-wise constant and a modified approach

assuming that damage is linear between two adjacent integration points. As shown in [47], the
first approach has better localization properties, especially when combined with appropriate
path-following algorithms [50].

According to the latter approximation, l∗i j = l̃i , j is computed as:

l̃i , j = l̃i , j−1 + h

2

(
1√

1−D j−1,n
+ 1√

1−D j ,n

)
, x j > xi , (22)

where D j−1,n = Dn(x j−1) and D j ,n = Dn(x j ).

3.2.2. Gradient-enhanced non-local methods

GNL. Equations (8) and (16) need to be solved as a coupled problem [51].6 Accordingly, the non-
local strain field and the corresponding trial field (η) are discretized by appropriated shape func-
tions. Many authors argued that it was necessary (or at least advisable) to employ displacement
shape functions one order higher than those used for the non-local field [16, 53]. Indeed, using
the same interpolation functions for the displacement and the non-local strain may lead to stress
oscillations. However, Simone [51] showed that the gradient-enhanced damage problem should
not be considered as a mixed problem (i.e., the Babuska–Brezzi condition does not apply) but
rather a coupled one. Consequently, the interpolation functions chosen for the two unknown
fields are not related and can be taken simply as linear-linear.

ENLG. Similarly to the standard GNL formulation, the governing equations (13) and (16) are
solved as a coupled problem. To preserve the explicit feature of the present FE implementation,
the Helmholtz equation (13) is computed with Dn = D(κn). This is consistent with the choice
made for the ENLI formulation.

3.2.3. More numerical details

Computation of evolving non-local interactions. For all the non-local models with evolving dis-
tance models, damage and stress are always one step delayed with respect to the displacement,
given the choice to explicitly compute the non-local evolving interactions. This is in agreement
with the quasi-static implementations developed by Rastiello et al. [38] for the ENLI model, and
by Giry et al. [31] for the NLSB model.

Equivalent strain interpolation for the GNL and ENLG models. For both gradient models, once
the nodal non-local equivalent strain field is obtained at time tn+1, the shape interpolation
functions are applied to obtain the corresponding values at the Gauss points.

Dealing with the case of D tending to the unity. Generally, FE solvers for CDM problems limit
damage growth to a certain fixed quantity D⋆ at the Gauss quadrature point while integrating
the material behavior law (updating internal variables, computing the stress, and evaluating the
elemental stiffness matrix). In nonlinear quasi-static analyses, where the stiffness matrix need to
be inverted to compute the solution displacement field, D⋆ is chosen in a way that the stiffness
matrix does not become singular.

In the case of the explicit time integration scheme of this work, there is no need to inverse
the stiffness matrix for the computations. Thus, D⋆ is taken as close as possible to unity, to avoid

6This is similar to implementing thermo-elasticity equations with an equivalence between nodal temperatures and
nodal non-local strains [48]. This simple analogy allows to easily incorporate non-local gradient formulations (or even
phase-field models) in commercial FE analysis software (see, e.g., [52]).
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Figure 2. 1D bar model of the spalling problem. A compression signal comes from the right
and is reflected in tension when it reaches the free left boundary.

problems when computing the effective distances field for ENLI. This is automatically handled by
the library numpy in Python. Machine precision is taken into account by setting 1/

p
1−D⋆ equal

to numpy.inf, which is equivalent to the largest number that can exist with the available memory
in the machine. Then, when evaluating the Gauss weighting function with l̃i , j = numpy.inf, the
Python code will return 0. This is in agreement with the fact that non-local interactions should
vanish upon damage localization as stated by the ENLI model. As a consequence, in this case, D⋆

can be taken as high as the machine supports.

4. Results and discussion

The spalling experiment will be treated hereafter. To limit numerical noise at the introduction of
the loading, a linear ascending and descending compression stress is applied during a finite time
tste (Figure 2). The total loading time is tloa and the final stress applied is −σ0. A signal length
l0 can be related to the loading time by l0 = tloacp , where cp = √

E/ρ denotes the longitudinal
wave velocity. Choosing σ0 ≥ ft leads to strain localization and therefore damage develops. The
main advantage of comparing non-local models studying this problem is the facility to control
where localization occurs; the fracture will be located exactly at a distance lspal = l0/2 from the
free edge.7

The material parameters used for the simulations are the same as those in [27, 31], i.e.,
E = 1 MPa, κ0 = 1, B = 2, L = 25 cm, ft = 1 MPa, σ0 = α ft , lc = 3 cm and ρ = 1 kg/m3. Here,
α≥ 1 is a constant parameter chosen arbitrarily to induce damage. The simulation time is set to
T = 1.5L/cp = 0.3750 ms. Time step is chosen as∆t =∆t crit/2, where∆t crit is the critical time step
related to the explicit scheme and depends on the mesh size. A study of the influence of ∆t on
the obtained responses for the considered non-local formulations is presented in Appendix A.

4.1. Boundary effects and damage diffusion with fixed interactions models

Let us first consider the standard INL model. Different mesh discretizations (with nel ranging
from 100 to 400) are used in computations to study mesh sensitivity of the obtained responses.
A sufficiently large loading time is considered. In particular, tloa = L/cp and tste = 0.05tloa. This
means that l0 = L; therefore, one should expect a damaged band centered in the middle of the
bar.

7Bažant and Belytschko [54] studied the same problem with the difference that two tensile waves would propagate
from each free end. This implies that the sum of these localizes strain in the middle of the bar in the case of strain-
softening materials. An exact analytic unique solution exists for given boundary and loading conditions, which means
that treating strain-softening materials in a continuum framework is indeed possible.
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Figure 3. INL damage model—convergence of the damage profile upon mesh refinement
(left) and influence of the loading parameterα on damage diffusion upon damage localiza-
tion (right).

4.1.1. Damage regularization and diffusion

Figure 3 (left) shows the damage distribution along the bar obtained for α= 1.1. As expected,
damage reaches its maximum close to the middle of the bar (x = L/2) but it diffuses on a bigger
zone than one FE. Moreover, the INL model regularizes the response as the damage profiles
converge upon mesh refinement.

The choice ofαmay modify the obtained response. Figure 3 (right) shows the damage profiles
computed for different values of α. For a fixed loading duration, changing α changes the strain
rate, which would affect the non-local averaging. This is also the case for the other non-local
models studied in this work. However, the presented results can provide information on the
main features of the responses provided by the different formulations studied in this work (when
compared for a given α).

The time evolution of the damage field on the bar is shown in Figure 4 for α= 2. Damage first
takes its maximum value in only one FE, then starts to diffuse in the surrounding FEs. At the end
of the simulation, damage equals unity in a quite large zone. As already pointed out in [30], the
non-local field still evolves outside the localization zone due to strain intensification. Non-local
interactions are even allowed to take place between points separated by highly damaged zones,
as the material state is not taken into account in the averaging process.

4.1.2. Boundary effects

Damage attraction to the free boundary is observed when lspal < lc . To highlight this problem,
a few values of l0 are used with a FE mesh of 100 elements. Here, α is set equal to 2 to observe a
damaging process up to failure (i.e., D ≈ 1 in at least one FE).

INL formulation. For values of lspal < lc , damage is gradually attracted by the boundary and takes
its maximum at the free edge (Figure 5). This effect is related to the fact that the interactions
introduced through the non-local weight function φ only depend on the euclidean distance
between points. Near a free boundary, the interaction domain is truncated; therefore the non-
local weights computed for these points are bigger. In this case, this results in an infinitely small
spalling thickness: the distance from the free edge to the point of maximum damage is nil (D ≈ 1
shifts to the free boundary). As shown in Figure 5 (right) damage diffusion is also present in the
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Figure 4. INL damage model—damage evolution through time for l0 = 25 cm.

Figure 5. INL damage model—influence of l0 on damage attraction (left) and its evolution
through time (right).

last steps of the computation. As expected, this indicates that the transition from diffuse damage
to fully localized damage cannot be conveniently described with this model.

INL vs. GNL formulations. This result may also be extended to the classical GNL model, as a zero
flux condition is applied to solve the non-local strain diffusion equation. Figure 6 illustrates the
equivalence between GNL and INL formulations. The two models provide very similar results.
The small differences between them are certainly related to the fact that they are equivalent
stricto sensu only when an infinite domain is considered for a Green’s weight function [44]. Mesh
refinement may slightly reduce the differences between the observed responses (see Figure 6).

4.2. Boundary effects and damage diffusion with evolving interactions models

In this section, a comparison of the non-local models with evolving interactions is performed.
Two different loading cases are considered:

(i) Loading case A—Damage localization far from the free boundary (lspal = 6.250 cm > lc ):
tloa = 0.5L/cp .
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Figure 6. INL and GNL damage models—equivalence between the two formulations for
200 and 500 FEs.

(ii) Loading case B—Damage localization near the free boundary (lspal = 2.500 cm < lc ):
tloa = 0.2L/cp .

In all the cases studied, tste is assumed equal to 0.1tloa. The effect of the strain rate on the local-
ization process is studied by modifying the loading parameter α. Since changing tste has almost
the same effect, such parameter is taken constant for the sake of simplicity and conciseness of
presentation.

4.2.1. Damage diffusion (loading case A)

Integral formulations. The loading case A is simulated for two meshes containing 100 and 500
linear FEs and α = 1.5. Figure 7 (left) compares the damage profiles computed using the INL,
NLSB, ENLI, ENLG, and GNL damage models at time t = T . Damage diffusion is observed for
the INL model, but is much smaller for the NLSB and ENLI formulations. As expected, the
ENLI model allows for a better description of the damage localization process, since damage
concentrates on only one FE as non-local interactions vanish when damage localizes. Conversely,
damage is spread over three FEs for the NLSB model. Figure 7 (right) gives the same results for
a mesh with 500 FEs. Here, the ENLI formulation spreads damage over three FEs, whereas the
NLSB model spreads it over nine FEs.

Integral vs. gradient formulations. The damage profile computed with the GNL model is thin-
ner than the one obtained using the INL formulation. The ENLG model provides almost the same
damage profile as the ENLI formulation, except for highly damaged zones (Figure 7 (right)). In-
deed, the damage is spread over a large region (its width is still smaller than the one computed by
the classical non-local models). This is an unexpected behavior, given that the ENLG formulation
is an approximation of the ENLI model and therefore should give similar results. However, the
damage diffusion is clearly reduced upon mesh refinement for the ENLG formulation (Figure 7).

From Figure 7, one can also see that the widths of the damaged zones for the models with
evolving interactions are smaller than those given by the classic formulations. Moreover, the
models with fixed distances propagate the damage front with passage of time even after dam-
age attains unity, as we will see later on. Thus, widths of the damaged area (i.e., total of elements
where D > 0) are not constant for these models and tend to increase (see Table 1). Differently,
models with evolving distances do not show an evolution of the damage zone when comparing
profiles for Dmax = 0.99 and Dmax → 1. In this situation, the ENLG and ENLI formulations give
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Figure 7. INL, GNL, NLSB, ENLI, and ENLG damage models—comparison between all the
models studied for two meshes with 100 and 500 FEs.

Table 1. INL, GNL, NLSB, ENLI, and ENLG damage models—width of the damaged zones
for each non-local model for a mesh with 500 FEs

Non-local model INL GNL ENLI ENLG NLSB
Width (% lc ) of the damaged area when Dmax = 0.99 157 120 90 87 73

Width (% lc ) of the damaged area when Dmax → 1 170 133 90 87 73

very similar widths, and the NLSB model shows the smaller one. Smaller damaged zones are in-
deed expected for the evolving interaction approaches. In the case of the ENLI and ENLG models,
the interactions begin to evolve since damage appears, and vanish upon damage localization. For
the NLSB model, the stress field is reduced when damage occurs, leading to an evolution of the
internal length. Furthermore, one may expect these widths to not evolve after damage localiza-
tion on one FE, as interactions between points through highly damaged zones should not occur.

Influence of the strain rate. Parameterα influences the damage diffusion process for all the con-
sidered models. In any case, evolving interaction models give more representative results of the
degradation process. The damage profiles obtained by these approaches are almost insensitive
to mesh refinement. The main difference between the formulations is their capability to describe
damage localization, which ENLI better simulates. Figure 8 allows quantifying better the influ-
ence of α on the damage diffusion mentioned above for a mesh with 500 FEs. The number (Nα)
of FEs where diffusion occurs is dependent on the value of α for all the models, but the influence
of such a parameter is more pronounced for the INL and GNL models.

4.2.2. Boundary effects (loading case B)

Another usual situation for which one may compare non-local models is when the damaged
band is located near a free boundary.

Integral vs. gradient formulations. Figure 9 shows the results for the INL, ENLG, ENLI and NLSB
models for α = 2. No damage attraction from the boundary is observed for the ENLG and NLSB
formulations. In those cases, the boundary effect does not occur, so it is possible to determine
the spall location numerically. Contrarily, the ENLI formulation shows a minor boundary effect
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Figure 8. INL, GNL, NLSB, ENLI, and ENLG damage models—influence of α on the size of
the localization zone for a mesh with 500 FEs.

Figure 9. INL, GNL, NLSB, ENLI, and ENLG damage models—comparison of damage
profiles near the boundary for α= 2.

compared to the INL model, but some influence on its response is still observed. Despite such a
damage attraction, it is still possible to define the spall location for the ENLI formulation, as the
fully damaged area does not reach the free edge.

Influence of the strain rate. Figure 10 shows the same results, but for α = 1.5. Decreasing α

reduces the damage diffusion for all the models. The boundary effect is also reduced for the INL
and GNL models (for the given problem). However, the damage value at the free edge increases
when reducing α from 2 to 1.5 for the ENLI formulation. In this situation, a minor parasite effect
can also be observed for the ENLG model. The NLSB model does not show any boundary effect.
Still, it exhibits a small region of minor damage (also forα= 2) in the vicinity of the main damaged
zone (see Appendix A for a better explanation of this effect). Figure 11 shows the comparison
between all the non-local models regarding the influence ofα on the boundary effect considering
only the cases where damage reaches the unity. Finally, although the ENLG formulation shows
damage diffusion, the model gives more reliable results regarding the maximum damage location
when the bar is submitted to higher strain rates than the ENLI model.

The spall location can be numerically estimated without any problem despite minor damage
diffusion or attraction for the models with evolving interactions. One should consider, for exam-
ple, the middle of the region where damage attains its maximum and compute its distance to
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Figure 10. INL, GNL, NLSB, ENLI, and ENLG damage models—comparison of damage
profiles near the boundary for α= 1.5.

Figure 11. INL, GNL, NLSB, ENLI, and ENLG damage models—comparison regarding the
effect of α on the damage value on the boundary for a mesh with 500 elements.

the free edge. This is not possible with the classic non-local formulations, as maximum damage
inevitably shifts to the free edge during the simulation, which is shown in detail in the following.

4.3. Further analyses: differences observed between models with evolving interactions

Given the results presented in the previous section, a more specific analysis may be performed
to highlight better and justify the differences between the different formulations with evolving
interaction distances. In particular, it is essential to understand the differences observed between
the ENLG and ENLI models regarding damage diffusion, as they should give similar results.
Moreover, an overall comparison between the ENLG, ENLI, and NLSB formulations is also
necessary. For this purpose, one may compare the dissipated energies and the evolution of
the free-surface/face velocity (i.e., the velocity registered on the free edge of the ejected part
of the specimen, which corresponds to the spalling phenomenon). The standard INL and GNL
formulations are also analyzed for completeness.

A semi-analytical study is also developed in Appendix B to illustrate the differences between
the integral models in the computation of the non-local strain field. The observed behaviors
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Figure 12. Linear elastic (left) and local damage (right) models—Free-surface velocity
profiles.

are in agreement with the numerical results given in the following and may highlight how these
models deal with existing or newly created boundaries.

4.3.1. Free-surface velocity

As already explained, when damage attains unity in the bar, the left part of the bar is ejected.
The free-face velocity (at x = 0 cm), i.e., the so-called ejection velocity, is a good indicator of
regularization and can be used to highlight the differences observed between the models studied.
To this end, let us consider once again the loading case A of Section 4.2.1. The same material
parameters as in the previous examples are used, and α = 1.5 for all the models. It should be
noticed that, for the numerical examples of this work, the input signal comes from the right to
the left, so the free-surface velocity has a negative sign. For better comprehension, the absolute
value of this velocity will be taken for the analyses presented hereafter. Comments are given using
only the term “velocity”, but one may consider that this refers to its absolute value.

Elastic and local damage response. The free-surface velocity obtained for a linear elastic mate-
rial model is shown in Figure 12 (left). As expected, convergence is obtained upon mesh refine-
ment. Moreover, one may only see the input signal which is reflected on the free edge, given that
no damage occurs. If a local damage model is considered (see, e.g., Section 2.1), damage will take
place at a certain distance from the free boundary (i.e., the spalling distance). Figure 12 (right)
shows the free-surface velocity profile obtained for a local damage model. In this case, mesh de-
pendency is clearly observed after the maximum velocity value is reached.

Models with fixed interaction distances. In the case of the INL and GNL models, the free-surface
velocities computed for different meshes are shown in Figure 13. As expected, both models give
similar results, but some differences exist after the first reflection occurs on the damaged zone.
In both cases, one may see the subsequent periodic signals arriving at the free edge. However, the
signal periods reduce after each round trip between the free surface and the damaged zone. This
indicates that the damage profile is still evolving after damage reached unity in the middle of the
damaged band. Due to damage diffusion, the velocity also attains a limit point when time passes,
but this condition arrives sooner for the GNL model than for the INL one.

The evolution of the GNL and INL damage profiles is given in Figure 14. One can see that for
the GNL model (Figure 14 (left)), damage is progressively spread and attracted by the boundary
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Figure 13. GNL (left) and INL (right) damage models—mesh convergence of the free-
surface velocity response.

Figure 14. GNL (left) and INL (right) damage models—evolution of the damage profile
through the simulation.

and reaches a considerable value (still smaller than 1) at the end of the simulation. This attraction
is less pronounced for the INL model (Figure 14 (right)), which explains why the reflections
between the free surface and the damage zone are more pronounced for such a model. Indeed,
the spalling distance is reduced by the damage attraction to the boundary, which leads to the
limit point in the free-surface velocity.

Models with evolving interaction distances. The limit point of the velocity is not observed for
the models with evolving interactions (Figure 15). For the three considered formulations (ENLI,
ENLG, and NLSB), the reflections due to spalling can be seen in the velocity profile. Here, the
signal periods are not reduced, which indicates that there is no propagation of the damage
front after damage localization. The convergence is only attained for more than 500 FEs, and
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Figure 15. NLSB (top), ENLI (left), and ENLG (right) damage models—mesh convergence
of the free-surface velocity response.

the velocities given by the three considered models are similar to the ones found in [55–57].
Significantly, the ENLG model shows the same type of velocity when compared to the simulations
obtained for cohesive elements in [58].

Figure 16 shows the free-face velocity obtained for the ENLG model and damage evolution in
the highly damaged FE. At the time instant corresponding to half of the input signal duration,
already half of it is reflected as a tension loading. Thus, damage starts to evolve exponentially
at this moment (Figure 16 (left)). After reaching unity, the rest of the signal coming from the
boundary is reflected on the damaged zone, which induces some time after an increase in the
free-surface velocity (pullback velocity). On Figure 16 (right), one can see the evolution of damage
through time without propagation of the damage front.

A comparison of free-surface velocities given by all the models studied is given in Figure 17 for
a mesh containing 1000 FEs. It is shown that the INL and GNL models give very similar results
until 0.45 ms. Also, the NLSB and ENLI models show similar results in terms of spall signal but
much different in terms of pullback velocity. These differences show that the models lead to
different damage evolution rates.

4.3.2. Dissipated energy

To study how energy is dissipated for all the non-local models discussed in this work, loading
case A is again considered assuming α = 1.5. This choice ensures that damage attains unity for
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Figure 16. ENLG damage model—left: free-surface velocity (black) and damage evolution
through time in the highly damaged FE (blue); right: evolution of damage through time.

Figure 17. INL, GNL, NLSB, ENLI, and ENLG damage models—comparison of the free-face
velocities.

all models. However, as shown in Sections 4.2.1 and 4.2.2, models with evolving internal length
tend to spread damage over more FEs. In this work, the simple local expression of the intrinsic
energy dissipation (Y Ḋ) is employed.8 This latter quantity is computed for all time instants
using a conventional numerical integration scheme and is accumulated over time. The profiles
of dissipated energy along the bar are depicted in Figure 18 (left) for time t = T .

8Peerlings et al. [45] presented a thermodynamic formulation of the classic GNL approach, showing that the ther-
modynamic force Y remains unchanged compared to the local description. Same comments on this subject are given
by Desmorat et al. [19], following also the framework proposed by Forest [59], regarding the micromorphic approach for
damage. However, to our knowledge, there is no similar development for models considering evolving non-local inter-
actions. It is still unclear if these formulations imply different expressions of Y . This subject will be studied better in the
future.
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Figure 18. INL, GNL, NLSB, ENLI, and ENLG damage models—dissipated energy for t = T
(left) and when the maximum damage value reaches 0.99 (right).

Models with fixed distances. As expected, the widths of the zones where dissipation occurs are
higher for the classical formulations than for the models with evolving interactions. The GNL
model dissipates energy on a thinner region compared to the INL formulation.

Models with evolving distances. Despite the similarity observed in Figure 7 in terms of damage
profiles obtained with all the formulations with evolving distances, one observes a huge differ-
ence in the dissipated energy between the NLSB model and the other formulations. The stress-
based model continues to dissipate energy in the vicinity of the damage localization zone. Simi-
larly, the ENLG formulation spreads the energy over a considerable zone compared to the ENLI
model, thus reflecting the damage diffusion observed for this model.

Slightly different considerations can be done if one observes what happens at the time instant
such that the first FE reaches a damage value of about 0.99 (Figure 18 (right)). In that case, models
with evolving interactions give energy profiles that are similar between them but are different
from those obtained through the classical approaches. Figure 19 shows the corresponding total
dissipated energies (i.e., previous results integrated over the bar). The total dissipated energy is
very similar between the approaches with evolving interactions and is almost the same for the
ENLG and ENLI models when D = 0.99. For t = T (end of the analysis), the ENLG and NLSB
models show an increased dissipation, whereas the dissipation no more evolves for the ENLI
model. The models with evolving non-local interactions dissipate much less energy than the
formulations with fixed distances, which is expected as the widths of the damaged zones are
smaller for the evolving distances approaches.

These considerations can also be extended to the damage profiles (Figure 20). All the evolving
non-local models give almost the same damage profiles, except for some slight differences near
the highly damaged zone. Damage diffusion is observed neither for the NLSB nor the ENLG
formulations, as damage localizes in only one FE as for the ENLI model.

These considerations signal that some unexpected behavior occurs when damage tends to
unity, especially for the ENLG formulation, which should not diffuse damage upon localization.

4.3.3. Damage evolution

The observed behavior can be better understood by examining the evolution of the damage
field along the bar (Figure 21). In that case, the loading case A (see Section 4.2) is considered.
Here, α = 1.1 is assumed to ensure that a “correct” damage localization is modeled through the
non-local models with evolving distances, even though, given this choice, damage does not attain
unity for the classical non-local models.
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Figure 19. INL, GNL, NLSB, ENLI, and ENLG damage models—total dissipated energy for
t = T (left) and when damage value reaches 0.99 (right).

Figure 20. INL, GNL, NLSB, ENLI, and ENLG damage models—damage profiles when the
first element reaches D = 0.99 for the different non-local model studied.

One observes that for low damage levels (e.g., close to the onset of damage, at t = t1), all the
models give essentially the same results except the NLSB formulation. At t = t2, damage starts
to grow faster than the other ones for the ENLG formulation, but still with a lower level when
compared to the NLSB model. As expected, the ENLI model provides damage values similar to
the GNL model but higher than those obtained through the INL formulation. Here, the main
observation is that the damage levels for the gradient approaches are always higher than their
respective integral ones. Moreover, at t = t4, the NLSB and ENLG models provide the same
damage profile. For t ≥ t5, the ENLG model overcomes the NLSB model and becomes the non-
local model with the highest damage level until localization, which probably explains that it
diffuses damage more than the NLSB and ENLI formulations. Furthermore, one should notice
that different models will normally evolve differently during damage growth. However, what
remains important is the final representation of the localization phenomenon, as no viscous
effect is considered for these approaches. At t = T , one may notice that neither the GNL nor
the INL formulations reach damage localization for α = 1.1. The ENLG model spreads damage
over a larger zone compared to the NLSB and ENLI formulations, but still with a damage profile
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Figure 21. INL, GNL, NLSB, ENLI, and ENLG damage models—damage profiles through
time.
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Figure 22. ENLI (top left), NLSB (top right) and ENLG (bottom middle) damage models—
damage evolution.

characteristic of evolving non-local models.9 Damage evolves faster with the ENLG formulation
compared to the other models with evolving distances, but damage diffusion takes place right
after localization (see also Figures 18 and 19).

Influence of damage thresholding in the constitutive model numerical integration. Given
these results, one may want to limit damage evolution to some smaller critical value for the
ENLG model. When applying this procedure only at the behavior law level (i.e., if D ≥ D⋆ then
D = D⋆), the damage profiles computed with the ENLG model show the same behavior as the
classic models: damage diffusion and propagation of the damage front when time passes (Fig-
ure 22). The ENLG model continues to compute a significant non-local strain field and damage
evolves around the localization zone. This does not correspond to the expected theoretical model
behavior when non-local interactions through highly damaged zones vanish.

For the ENLI model, the damage profile remains approximately the same (Figure 22 (top left)),
with damage starting to localize in three FEs and growing up to four FEs at time T = 3L/cp . In the

9These observations make clear that the different non-local models lead to different damage growth rates. Thus, it
is expected that the loading parameter α may change the responses. For instance, increasing α implies that damage will
attain faster the unity, as seen for the classic models which, for the same plotting time, reach D = 1 for α = 1.5 but not
for α = 1.1. On the one hand, such a rapid damage evolution implies that non-locality is more constrained to interact
in smaller regions, which can also reduce boundary effects, for example (e.g., Figures 9 and 10 for the ENLG and ENLI
models). On the other hand, damage is spread over more elements upon localization.
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case of the NLSB model (Figure 22 (top right)), the localization zone increases from seven to eight
FEs. In contrast, for the ENLG model (Figure 22 (bottom)), this effect becomes more important
as damage is equal to unity in twenty-one FEs for T = 1.5L/cp up to fifty-two for T = 3L/cp .

It should be noticed that, from a theoretical viewpoint, eikonal formulations (ENLI or ENLG)
should not continue to compute a damage evolution after localization [37, 38, 47]. For the ENLI
model, the computed effective interaction distances tend to infinity when damage tends to one.
Consequently, non-local interactions vanish. The equivalent conclusion for the ENLG model
is that the contributions of a highly damaged element in (13) also tend to infinity. Thus, one
should expect that after damage localization, the non-local strain field computed by the ENLG
model should not evolve in the vicinity of the localized element.10 In other words, the non-
local averaging and the equilibrium equations become uncoupled upon localization, which is the
theoretical case for the ENLG model (from a physical viewpoint, micro-cracks should not interact
through the new boundary created by a highly damaged zone). However, damage diffusion is
much more present in the ENLG formulation, as interactions are directly computed from the FE
solving of the Helmhotz-like problem. A similar behavior was described in [30] for a strain-based
GNL model without the introduction of artificial modifications to decouple the equilibrium and
Helmthotz equations. For ENLI, the computed distances are introduced into the weight function;
therefore, the use of an integral approach is more suitable to reduce the interactions numerically.

4.3.4. Numerically modified ENLG

To obtain a numerical approximation of the ENLG model corresponding to its theoretical
assumptions, the gradient problem is restated in a modified way. Following the same arguments
of Geers et al. [30], one can decouple the non-local averaging Helmholtz-type equation from
the equilibrium equation when damage tends to unity on a FE. In other words, the non-local
equivalent strain is frozen in the localized FE, and interactions between FEs crossed by the
damaged band vanish.

From a numerical viewpoint, when damage reaches the limit value Dc = D⋆ at a given
integration point, the second term of the left-hand-side and the right-hand-side in (13) are
multiplied by a very large value,11 and the first term of the left-hand-side is multiplied by a null
one. This corresponds to the case where damage tends to unity. Such a modification is done at
the FE matrix contribution of the localized element and not in the entire domain.

Figure 23 (left) shows the damage profiles obtained with the numerically modified ENLG
model for different values of Dc . Plotting time is taken here as t = T = 1.5L/cp . Damage localizes
in three FEs for Dc = 0.99 (as for the ENLI model, in this case), seven FEs for Dc = 0.999 and
seventeen for Dc = 0.9999. In any case, damage diffusion is drastically reduced compared to
the standard ENLG model implementation. Moreover, once the critical condition is attained the
damage profile no more evolves (Figure 23 (right)).

Comparison with other formulations: damage diffusion. The comparison between the results
given by the ENLI and NLSB models, and the modified ENLG implementation for the loading case
A (see Section 4.2) with α = 1.1, 500 FEs, and Dc = D⋆ = 0.99 is shown in Figure 24. The damage
diffusion issue mentioned previously is solved by applying the modified numerical procedure.

10Geers et al. [30] encountered the same problem when implementing a similar evolving interactions gradient model
based on the strain state. The strain-based gradient damage model converged to a discontinuity for high levels of
damage (D = 0.999). Still, they argued that any further increase in damage at this moment was completely local and
of numerical sources. They proposed to stop any evolution of the non-local equivalent strain inside the localized zone
when a critical value of the equivalent strain was attained. Moreover, without this modification, they saw oscillations of ē
in the surroundings of the highly damaged regions, which was responsible for damage evolution in these zones.

11numpy.inf in the Python code used in the present work.
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Figure 23. Numerically modified ENLG damage model—damage profiles for different val-
ues of Dc (left). Damage profiles evolution for Dc = 0.99 (right).

Figure 24. NLSB, ENLI, and numerically modified ENLG damage models. Comparison of
damage profiles obrained with Dc = 0.99.

The modified ENLG model shows a very similar behavior compared to the NLSB and ENLI
formulations, except that it provides a larger damage profile than the other ones for high damage
levels.

The corresponding response in terms of the ejection velocity is shown in Figure 25. Once again,
Dc = D⋆ = 0.99 for the modified ENLG implementation. Until around 0.4 ms, the ENLG and
ENLI models give similar free-face velocity profiles but differ after this point. The NLSB and ENLI
formulations give very similar results until the first reflection of the spall signal on the free edge.
Despite good localization properties for the modified ENLG with Dc = 0.99, the second reflection
observed on the free edge is smaller in amplitude than the first one (this does not occur for the
standard ENLG, see Figure 25). So, even though the modification works well regarding vanishing
non-local interactions, the critical value Dc = 0.99 is not large enough to induce almost zero
stress upon damage localization. Therefore, the new boundary created by the highly damaged
zone is not “perfect” since the stress in damaged zone is still non-zero. Consequently, the free
velocity shows a sort of “damping” effect, decreasing the free-edge velocity amplitude after each
reflection.
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Figure 25. NLSB, ENLI, ENLG, and numerically modified ENLG damage models. Free-
surface velocity for a mesh with 500 FEs (loading case A with α= 1.1).

Figure 26. Numerically modified ENLG damage model—free-surface velocities for differ-
ent values of Dc (loading case A with α= 1.5).

This can be further highlighted by analyzing the free-face velocity evolution (the same condi-
tions as in Section 4.3.1 are considered). Figure 26 shows the free-face velocities obtained for the
modified ENLG formulation with different values of Dc . One observes the same reducing effects
in the velocity amplitude for Dc = 0.99, as the state of almost zero stress is not reached. More
physical reflections are obtained for higher critical damage values. From Dc = 0.999, one may re-
trieve the behavior of an equivalent of a crack plane working as a newly formed boundary, reflect-
ing the incoming waves. This is in agreement with the damage value found by Geers et al. [30] for
the completion of localization.

Comparison with other formulations: boundary effect. The modified ENLG approach was also
applied to loading case B (see Section 4.2) to analyze its behavior near the free boundary. Damage
profiles are given for t = T = 1.5L/cp for the ENLG model and its modified implementation.
As shown in Figure 27 damage attraction to the boundary is not modified by the proposed
modification. At the same time, damage diffusion in the middle of the damaged band is strongly
reduced: the modified ENLG model localizes damage in only one FE for α= 1.2, on three FEs for
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Figure 27. ENLG and numerically modified ENLG damage models—damage profile near
the free boundary (loading case B considering different values of α).

Figure 28. Numerically modified ENLG damage model—damage evolution through time
computed with Dc = 0.99 near the boundary.

α = 1.4, and on four FEs for α = 1.5 and α = 2. Damage diffusion is significantly bigger with the
standard ENLG implementation.

It should be noticed that, once again, a strain rate effect (due to the choice of α) is observed.
Choosing α = 2 such that there is no damage attraction at all, Figure 28 shows the damage
evolution for the modified ENLG model near the boundary. These damage profiles can be directly
compared with those obtained with the INL model (see Figure 5 (right)). In that case, damage
attraction from the boundary and damage diffusion were observed.

5. Conclusion

A brief review of non-local damage models has been presented. Despite their prominent role
in regularizing the structural response when using softening material models, classical non-
local approaches with fixed non-local interactions are prone to drawbacks such as damage
diffusion across damage bands and damage attraction from the free boundaries. This motivated
several authors to propose non-local formulations where non-local interactions evolve with the
mechanical fields (damage, stress).

Several non-local damage models were implemented in a FE context, either in integral or
gradient form, to highlight the advantages and drawbacks of each approach. Details of each
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formulation have been provided. Moreover, a 1D variational formulation has been developed
for the ENLG model, entirely based on the one proposed for the classical GNL approach. The
so-called spalling problem has been simulated numerically using an ad-hoc developed explicit
dynamics 1D FE analysis code.

The models have been tested in both damage diffusion and boundary effects situations.
The formulations with evolving interactions proved to be more efficient in dealing with the
usual problems of classical non-local models. Concerning damage diffusion far from physical
boundaries, the eikonal approach has been shown to be more efficient in simulating the bridge
between CDM and Fracture Mechanics since the damage field naturally tends to localize in
only one FE. Concerning damage evolution close to the boundaries (i.e., the so-called boundary
effect), the NLSB model has shown a good response when boundary effects occur, especially
when the damaged band is located close to the free edge. The eikonal formulations are more
sensitive to boundary effects. The ENLG model is less affected by the free boundary problem
when compared to the ENLI formulation. The ENLG model shows, however, an unexpected
damage diffusion upon localization. This latter spurious response was treated by a numerical
procedure limiting damage to a critical value (modified ENLG), similar to the one proposed in
[30]. The modified ENLG model has shown good localization properties and satisfactory behavior
near the boundary. However, loading parameters may have an important influence on damage
diffusion and boundary effects. Consequently, the strain rate should not be neglected if one
aims to model the real behavior of a given material. In any case, non-local models with evolving
interactions have proved more efficient than the classical ones in estimating the spall location.

A proper non-local formulation should not only behave well in the case of existing boundaries
but also in the case where macro-cracks (highly damaged zones in a CDM context) are formed,
and new boundaries are created. In these situations, non-local interactions should evolve so that
the response becomes local.

Concerning the behavior close to existing boundaries, the NLSB model provided satisfactory
results as the stress state is considered in the averaging procedure. The eikonal models are more
adapted to treat a newly created boundary, as the interaction distance between a highly damaged
element and its neighbors naturally tends to infinity, and non-local interactions are stopped. This
is confirmed by the free-surface velocity profiles, where the spall signal shows wave reflections on
this newly created boundary.

A mathematical analysis of the localizing properties of evolving interactions’ non-local models
should be carried out to confirm the results summarized earlier. This may also be extended
to more complex cases, such as anisotropic damage. A non-local damage model considering
evolving interactions should be capable of dealing with existing boundaries and newly-formed
ones by highly damaged zones. One proper way to model this would be to consider a modified
Riemannian metric inside the derivation of the eikonal approach, taking into account both the
damage and stress field, for instance.

Finally, it should be noticed that close to failure, the strong localization of the mechanical fields
cannot be reproduced in a relevant way in a standard FE formulation supposing the continuity
of the displacement field. Right after localization, the transition from a regularized continuum
model to an explicit crack description should be applied [60–64]. In the case of spalling, for in-
stance, a complete simulation of failure would couple damage to a strong discontinuity, ejecting
some part of the specimen and physically dividing it in two separate domains.
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Figure 29. ENLG (left) and numerically modified ENLG (right) damage models—
convergence upon time step refinement in damage profiles considering Dc = 0.99.
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Appendix A. Influence of the time step on the damaging process

As it is well known, the explicit time-integration scheme employed in this work allows limiting
calculation timings (there is no need to invert the stiffness matrix) but is conditionally stable. For
all the results provided in this work, the time step was set to ∆t = ∆t crit/2 to guarantee stable
results. A few additional results are illustrated in the following to demonstrate that the damage
diffusion and boundary effects observed converge upon time refinement.

As shown in Figures 29–31, concerning the ENLI and ENLG (standard and numerically modi-
fied versions) models, further reductions of the time step (i.e., ∆t <∆t crit/2) do not lead to differ-
ent results. Same considerations can be made for the NLSB formulation.

As illustrated in Figures 9 and 11, secondary damaged areas may appear when considering
damage close to the boundary. In that case, further time step reductions do not strongly affect the
damage profiles (Figure 32). For instance, two secondary damaged zones are obtained for α = 2
and only one forα= 1.5. Forα= 1.4, no secondary damaged zones are observed. The appearance
of such minor damaged regions is not a consequence of the various reflected waves after the
main damage band localization, as they appear almost at the same moment as the main damaged
region. Instead, their appearance is directly related to some oscillations (Figure 33 (right)) in the
stress field that is directly considered for computing non-local interactions. Moreover, the higher
the α higher the amplitude of these oscillations. To alleviate this effect, a low-pass filter may be
applied to the stress field (the results presented in this work are obtained without filtering the

http://www.institut-seism.fr
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Figure 30. Numerically modified ENLG damage model—convergence upon time step re-
finement in damage profiles considering Dc = 0.99. Loading case B with α = 1.2 (left) and
α= 2 (right).

Figure 31. ENLI damage model—convergence upon time step refinement in damage pro-
files. Loading case A (left) and loading case B (right).

Figure 32. NLSB damage model—convergence upon time step refinement in the damage
profile considering the loading case B.
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Figure 33. NLSB damage model—damage profile computed for the loading case B with
α= 1.4 (left). Stress field along the bar for α= 1.4 and α= 2 (right).

stress). Oscillations in the non-local equivalent strain field in the gradient version of NLSB were
already reported in [39].

In conclusion, these results prove that convergence regarding time step refinement is ob-
tained. As a consequence, the results given for ∆t = 0.5∆t crit are already sufficient to provide
representative results of the models’ behavior.

Appendix B. Semi-analytical comparative study for the integral models

To further compare the INL, ENLI and NLSB models in the computation of the non-local equiv-
alent strain field, a semi-analytical study is developed.12 Figure 34 illustrates the problem con-
sidered. It is assumed that a monotonic response leads to a given mechanical state in the bar.
At time tn , the mechanical state of the bar is described by ε(x, t ) = ε1[H (x −ℓ)−H (x −ℓ−h)],
D(x, t ) = D1[H (x−ℓ)−H (x−ℓ−h)], andσ(x, t ) = E(1−D1)ε1[H (x−ℓ)−H (x−ℓ−h)]. Here, ℓ is
the distance between the damaged FE and the left boundary. Moreover ε1, D1 and σ1 are respec-
tively the strain, the damage and the stress amplitude in the damaged FE at time tn ; H (x) = 1
if x ≥ 0,H (x) = 0 otherwise, is the Heaviside function. To compare the different formulations, a
strain increment is applied to the bar at time tn+1:

∆ε(x, t ) =∆ε∗[H (x −ℓ)−H (x −ℓ−h)] (23)

and the resulting non-local equivalent strain and damage fields are computed.

B.1. Non-local strain fields

Let us consider the same FE discretization of the bar as in Section 3.1. The analytical expressions
of the non-local equivalent strain field given by each model (at integration point xi ) are approxi-
mated by numerical integration as (in the following, x∗ = ℓ+h/2):

• INL.

eINL(xi , t +∆t ) = (ε1 +∆ε∗)
exp

(
−4 (xi−x∗)2

ℓ2
c

)
∑

j exp
(
−4

(xi−x j )2

ℓ2
c

) (24)

12A similar comparison involving the implicit gradient formulations (GNL and ENLG) is left for future work.
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Figure 34. Semi-analytical study—schematic representation of the strain, damage and
stress fields along the bar.

• NLSB.

eNLSB(xi , t +∆t ) = (ε1 +∆ε∗)

exp

(
−4 (xi−x∗)2(

σ1
ft
ℓc

)2

)

1+exp

(
−4 (xi−x∗)2(

σ1
ft
ℓc

)2

) ∀xi ̸= x∗ (25)

eNLSB(xi , t +∆t ) = (ε1 +∆ε∗) xi = x∗ (26)

• ENLI.

eENLI(xi , t +∆t ) = (ε1 +∆ε∗)

exp

−4

(
|xi−x∗|+ h

2

(
1p

1−D1
−1

))2

ℓ2
c


Vr (x)

∀xi ̸= x∗ (27)

eENLI(xi , t +∆t ) = (ε1 +∆ε∗)
1

1+∑
j exp

−4

(
|x∗−x j |+ h

2

(
1p

1−D1
−1

))2

ℓ2
c


xi = x∗ (28)

with:

V 1
r (xi ) = ∑

j
H [(x j −x∗)(xi −x∗)]exp

(
−4

(xi −x j )2

ℓ2
c

)
(29)

V 2
r (xi ) = ∑

k
H [−(xk −x∗)(xi −x∗)]exp

−4

(
|xi −xk |+h

(
1p

1−D1
−1

))2

ℓ2
c

 (30)

V 3
r (xi ) = exp

−4

(
|xi −x∗|+ h

2

(
1p

1−D1
−1

))2

ℓ2
c

 (31)

Vr (xi ) = V 1
r (xi )+V 2

r (xi )+V 3
r (xi ) (32)

B.2. Results

A FE mesh with 100 elements is considered. Material parameters are the same as that used in the
rest of the work. Once again, two situations are studied: damaging far from the boundary and
damaging close to the boundary.
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Figure 35. Semi-analytical study—non-local equivalent strain field for the three integral
models studied at a low damage level D1.

B.3. Damage far from the boundary

Let us first consider a damaged element located in the middle of the bar. In this example, ε1 = 1.01
indicates that the material is already damaged (i.e., ε1 > κ0) with D1 computed by its evolution
law. As developed before, the non-local equivalent strain will always be equal to the local one for
the NLSB model, in the FE where the strain is considered to evolve (Figure 35). Four cases can be
distinguished:

(i) Very low damage level. The ENLI and INL models give almost identical non-local equiva-
lent strain profiles (Figure 35 (right)).

(ii) Moderate damage level. The NLSB model presents a thinner non-local equivalent strain
profile, which is a consequence of the modified interactions due to the reductions in the
stress field (Figure 36). The ENLI and INL models give similar results but slightly differ at
the central FE where ē is bigger for the ENLI model.

(iii) High damage level. The non-local equivalent strain field is almost fully concentrated
in the central FE for the NLSB model, where one has always ē = e (Figure 37). As a
consequence of strain localization, the values of ē in the neighboring elements are very
low, which means that non-local interactions are vanishing. The differences between the
profiles of ē for the ENLI and INL models can be clearly observed in Figure 37 (right). The
ENLI model shows a thinner non-local strain profile, and the non-local equivalent strain
is concentrated in the central FE but not yet equal to the local one.

(iv) Damage close to one. Let us finally consider the case of D1 = 1. In this situation, the ENLI
model shows a profile where ē = e in the central FE, and there is no other non-local
equivalent strain in the bar (Figure 38 (left)). Strain localizes, and interactions naturally
vanish. For the central FE, the NLSB and ENLI models give similar results when damage
attains unity. However, there is still some ē computed in the vicinity of the localized
element for the NLSB model (Figure 38 (right)).

In conclusion, the fact that ē is always equal to e in the central FE makes damage evolve faster
for the NLSB model than the other models. Moreover, as expected, the state of the material at a
given time does not influence the form of the non-local equivalent profile for the INL model. Until
a moderate damage level, the ENLI and INL models should thus give similar damage growths.
Finally, the ENLI model naturally recovers locality when the damage is large enough (i.e., a new
boundary is formed and interactions vanish entirely).
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Figure 36. Semi-analytical study—non-local equivalent strain field for the three integral
models studied at a moderate damage level D1.

Figure 37. Semi-analytical study—non-local equivalent strain field for the three integral
models studied at an high damage level D1.

Figure 38. Semi-analytical study—non-local equivalent strain field for the three integral
models studied at D1 = 1.
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Figure 39. Semi-analytical study—non-local equivalent strain field for the three integral
models studied at an high damage level D1 (left) and D1 = 0.999 (right) when near the
boundary.

B.4. Damage near the boundary

Figure 39 compares the three integral models when computing a non-local field given a mechan-
ical state in a FE near the boundary. The non-local equivalent strain calculated by the INL model
is attracted by the boundary, which corresponds to the results presented in [27]. The damage pro-
file for this model will then gradually evolve and shift to the free edge during spalling formation.

For a high damage level, the non-local equivalent strain computed by the ENLI model still
presents some minor attraction to the boundary compared to the INL model. The maximum of
ē takes place in the FE where strain is increasing and is more significant than in the neighboring
elements. This kind of behavior, in terms of damage profile, was also illustrated in Figures 9
and 10 based on numerical results. During damage evolution, some attraction will take place for
the ENLI model. Still, upon damage localization, this effect vanishes in the localized zone. As a
consequence, the maximum damage does not shift to the free edge (i.e., the ENLI model retrieves
a local behavior with no attraction at all). Minor boundary effects will inevitably happen for this
model, but damage-dependent vanishing interactions will prevent the shift of maximum damage
to the free edge.13

The NLSB model naturally considers geometrical boundaries in its formulation, as interac-
tions depend on the stress state. Figure 39 shows the non-local equivalent strain field computed
for this model. Differently from the INL and ENLI models, the field ē shows no attraction to the
free edge. Moreover, the maximum of ē is attained where damage occurs since ē = e in the FE
where strain is increased.
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