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Abstract. The main objective of this paper is to propose an efficient computational strategy for critical plane
type approaches dedicated to the fatigue life analysis of metals. The formulation developed consists in
determining the critical planes in the space of the strain or stress tensors describing the mechanical history.
To the authors’ knowledge, such an approach has never been reported before in the literature. Thus, the new
numerical method developed avoids scanning all the possible planes as standard approaches. As shown in
the examples proposed, this particularity allows decreasing the CPU time: from 20 days by scanning planes
to 10 min for the FEM analysis of a welded structure with the criterion of Fatemi and Socie.
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1. Introduction

For the multiaxial fatigue life analysis of solid metals, the critical plane type approaches are
widely used. One can cite the Fatemi–Socie criterion for low-cycle fatigue [1]. It is based on
seeking the greatest value of the shear strain amplitude by scanning all the possible planes at
a given material point. In practice, 1802 planes need to be tested by considering a 1° angle
increment. The ones giving the maximum value of the shear amplitude are retained. In the
case of high-cycle fatigue, Bernasconi and Papadopoulos [2] proposed to compute the shear
amplitude by means of the radius of the minimal enclosing circle containing all the shear history
on each plane. Weber et al. [3] proposed to optimize the angle increment for reducing the
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calculation duration. Unfortunately, experience shows that such an approach cannot be used
for analyzing all the integration points of a FEM model because it is too much time consuming.

An alternative approach consists in seeking for an equivalent shear amplitude in the space
of the stress or strain tensors as proposed by Dang Van et al. [4]. It consists in computing the
shear amplitude by means of the radius of the minimal enclosing hypersphere containing all
the tensors describing the cycle loading. Fauvin et al. [5] recently implemented an efficient
computational technique for this purpose and proved that this equivalent shear amplitude
estimates the one obtained by scanning all the possible planes. Even if this approach avoids
scanning all the planes, it is unable to give the critical planes needed for the criterion of Fatemi–
Socie applied in this paper.

Rather than seeking for the minimal enclosing hypersphere, Lemaitre and Chaboche [6]
proposed to define the shear amplitude by means of the von Mises norm between the two most
distant tensors. In the case of the strain history, we propose here to estimate the shear amplitude
by means of the longest distance between the tensors in the sense of Tresca. The interest lies in
the fact that the critical planes can be deduced from the Mohr’s circles without scanning all the
possible planes. To the authors’ knowledge, such an approach has never been reported before in
the literature. For computational efficiency, an algorithm in optimal time O(n k) with k ¿ n is
also proposed in this paper for searching at the two most distant tensors.

The paper is organized as follows. Section 2 is devoted to the general formulation based on
the Tresca norm in the case of strains. The associated numerical algorithm is also presented. The
examples detailed in Section 3 show the potential and the efficiency of the method proposed in
terms of results and computation times. Even if the mathematical formalism is different from
the one of Bernasconi and Papadopoulos [2], comparisons show that similar results are obtained
with a highly reduced computation time in the case of multiaxial loadings.

2. An efficient computation of critical planes

2.1. Theory

The critical planes are the planes on which the shear strain amplitude denoted ∆γ/2 is maximal.
In order to seek them, a first approach consists in considering a plane defined with the normal
vector n as shown in Figure 1. The shear strain at the instant i of the loading cycle is denoted γ(i )

n .
It can be calculated from the deviatoric part of the strain tensor ε(i ) as follows:

γ(i )
n = ε(i)

D ·n− (
(ε(i)

D ·n) ·n
)
n. (1)

The shear strain amplitude is then evaluated by means of the diameter ∆γn of the set of points
belonging to the plane. In this paper, it is based on the euclidian distance between the two most
farthest tips of the vectors γ(·)

n :

∆γn = max
(i , j )

‖γ(i )
n −γ( j )

n ‖2. (2)

The critical planes are maximizing this diameter, and more precisely they satisfy the following
double maximization:

∆γ= max
n
∆γn = max

n

(
max
(i , j )

‖∆γ(i j )
n ‖2

)
, (3)

where∆γ(i j )
n =γ(i )

n −γ( j )
n .

In order to determine them, one must exhaustively scan all planes around each point of inter-
est. By choosing an increment of 1°, 1802 planes must be considered. This double maximization
is therefore very expensive in terms of storage area and computational time. We propose in this
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Figure 1. Diameter ∆γn on the plane with normal n.

work to use a permutation of this double maximization in order to solve the problem of find-
ing the critical planes in the space of the deviatoric tensors ε(·)

D . Thus, we propose to write (3) as
follows:

∆γ= max
(i , j )

(
max

n
‖∆γ(i j )

n ‖2

)
. (4)

The shear strain difference vector between the shear states (i ) and ( j ) can be determined using
the deviatoric part of the deformation tensor according to the formula:

∆γ
(i j )
n =∆ε(ij)

D ·n− (
(∆ε(ij)

D ·n) ·n
)
n,

where ∆ε(ij)
D = ε(i)

D −ε(j)
D .

(5)

As shown in Figure 2, the Mohr’s circles associated with the tensor∆ε(ij)
D shows that maxn ‖∆γ(i j )

n ‖
is equal to the radius of the largest Mohr’s circle. Thus, we can write:

max
n

‖∆γ(i j )
n ‖2 = 1

2 |∆ε
(i j )
I −∆ε(i j )

III | = 1
2 ‖∆ε(i j )‖Tresca, (6)

where ∆ε(i j )
I , ∆ε(i j )

II and ∆ε
(i j )
III are the three eigenvalues of the tensor ∆ε(i j ) such as ∆ε(i j )

I >
∆ε

(i j )
II >∆ε(i j )

III .
The maximum shear strain amplitude ∆γ/2 can then be expressed by means of the Tresca

norm as follows:
∆γ

2
= 1

4
max
(i , j )

‖∆ε(i j )‖Tresca. (7)

In contrast to the standard scanning approaches, one can note that the maximum shear strain
amplitude is estimated in the deviatoric space by means of the Tresca norm without paying
special attention to the orientation of planes. Because of the angle of π/4 on the Mohr’s circles in
Figure 2, the two critical planes associated with ∆γ/2 are obtained very quickly. Indeed, they are
oriented by the two bisectors of the eigenvectors I and III associated with ∆ε(i j )

I and ∆ε(i j )
III of the

solution of (7). If two eigenvalues are equal, it is necessary to consider four bisectors whereas the
shear strain amplitude is zero in the case of three identical eigenvalues.

From the simulation point of view, the use of the Tresca norm has the advantage of avoiding
to scan all the possible planes. The main difficulty lies in solving the double maximization given
by (7).
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Figure 2. Mohr’s circles of the strain amplitude tensor∆ε in 3D.

2.2. Computational algorithm

By considering the strain tensors as points in dimension five in the deviatoric space, the double
maximization given by (7) comes down to determining the diameter of a set of points by means
of the Tresca norm. The trivial and “greedy” algorithm which compares the distances between all
the pairs of the n points of the set has a quadratic time complexity O(n2) in the worst case. In
low dimensions (2 or 3), the calculation of the diameter of a set of points is based on optimal
algorithmic methods (see e.g. [7–9]). Some of these algorithms could be extended to higher
dimensions, but the generalization is quite difficult. However, Preparata and Shamos [10] showed
that it is possible to determine the diameter of a set of n points in dimension m in optimal time
O(n logn). In this paper, we propose to apply a computational method working for points in any
finite dimension m. The algorithmic complexity is O(n k) with k ¿ n. Thus, the method is very
fast in practice.

2.2.1. Geometrical and mathematical properties

Let us consider a set E composed of n points in a normed vector space P . The distance d is
then its induced metric d(P,Q) = ‖Q −P‖.

One can define, in the metric space P :

Definition 1. The diameter of P is the maximum distance between any two points of P :

diam(P ) = max
P,Q∈P

d(P,Q). �

Property 1. The endpoints of a diameter belong to the convex hull 1 of set P .
Moreover, if [P,Q] is a diameter of P , then P ∈ {points S ∈ P such that d(S,Q) is maximum}

and Q ∈ {points S ∈P such that d(S,P) is maximum}. �

If B[P,Q] is the ball with diameter [P,Q] we deduce from Property 1 the following result:

Property 2. If two points (P,Q) ∈ P are such that P − {S ∈ B[P,Q]} =;, then [P,Q] is a diameter
of P . �

These results suggest the main idea of the algorithm: compute the diameter of a set of points
by considering and finding the points belonging to the convex hull, i.e., finding pairs of points

1The convex hull of a set of points P is the smallest convex set that contains all the points of P .
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which are the farthest from each other. Note that in our case, the norm will be chosen as the
Tresca norm in the deviatoric space [5].

2.2.2. Computing the diameter of a set of points—algorithm

In the sequel, ε(i ) denotes the i th tensor considered as a point of set E ; dT ε
(i j ) is defined as

the distance (based on the Tresca norm) between two points (tensors) ε(i ) and ε( j ): dT ε
(i j ) =

d(ε(i ),ε( j )) = ‖∆ε(i j )‖Tresca; B ◦
[diameter] =B ◦

[ε(i ),ε( j )] is the open ball with diameter [ε(i ),ε( j )]. The
computational method for the diameter computation is described by Algorithm 1.

Algorithm 1 – Diameter computation
Data: Set of points (tensors) E

Result: Diameter = (list of) [ε(ı),ε( )]:
// (list of) two endpoints: diameter(s) of set E .

Initialization: ε(i ) ←− (random) point of E ;

dT ε
(i j ) ←− 0 ; diameter ←−; ; stop ←− false

repeat
Find (ε(k) ∈ Ecurrent) such as (dT ε

(i k) is maximum)

if dT ε
(i k) > dT ε

(i j ) then
diameter ←− [ε(i ),ε(k)] // two endpoints
dT ε

(i j ) ←− dT ε
(i k)

Ecurrent ←− Ecurrent − {ε ∈B °
[diameter]} // remove from Ecurrent

// all points ε in the open ball with diameter [ε(i ),ε(k)]

if Ecurrent − {ε(i ),ε(k)} 6= ; then
ε(m)←− 1

2 (ε(i ) +ε(k))

Find (ε(i ) ∈ Ecurrent) such as (dT ε
(i m) is maximum)

// another iteration with a new point ε(i ) on the convex hull
end

else
stop ←− true

end

until (Ecurrent − {ε(i ),ε(k)} =;) or (stop = true)

Eout ←− E − {ε ∈B °
[diameter]}

if Eout − [diameter] =; then
Diameter ←− diameter // unique diameter found

else
foreach point ε(k) ∈ Eout do

foreach point ε(`) ∈ E do
if dT ε

(k`) > dT ε
(i j ) then

dT ε
(i j ) ←− dT ε

(k`)

list_of_diameters ←− [ε(k),ε(`)]
else

if dT ε
(k`) = dT ε

(i j ) then
list_of_diameters ←− list_of_diameters ⊕ [ε(k),ε(`)]

end

end

end

end
Diameter ←− list_of_diameters

end
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Figure 3. Evolution of the principal directions during one loading cycle.

Table 1. Components of the normal vectors defining the critical planes

n1 n2 n3

Bernasconi and P1 −0.6645 −0.2418 −0.7071
Papadopoulos [2] P2 −0.6645 −0.2418 0.7071

New approach P1 −0.6662 −0.2371 −0.7071
P2 −0.6662 −0.2371 0.7071

3. Applications

3.1. Analysis of a nonproportional multiaxial strain state

We propose here to apply the algorithm detailed above in the case of cyclic loading with vary-
ing principal strain directions. The first objective is to compare the critical planes and the cor-
responding maximal shear strain amplitude ∆γ/2 given by (7) and by scanning all the possible
planes as proposed by Bernasconi and Papadopoulos [2]. The second objective is to compare the
computational time to show the interest in the technique developed.

Let us consider a material point subjected to cyclic loading inducing the following strain
tensor:

ε(t ) =

ε11(t ) ε12(t ) 0

ε12(t ) ε22(t ) 0
0 0 ε33(t )

 , (8)

where ε11(t ) = 0.005 cos(3π t ), ε22(t ) = −0.001 cos(2π t ), ε33(t ) = 0.0075 cos(4π t ) and ε12(t ) =
−0.002 cos(5π t ). During the loading cycle, the principal directions vary strongly in the plane
perpendicular to the direction numbered 3 as shown in Figure 3. Therefore, the multiaxial strain
state is highly nonproportional.

Table 1 summarizes the critical planes. It is to be noted that the approach of Bernasconi
and Papadopoulos [2] gives two perpendicular critical planes as predicted by the formulation
developed. Moreover, the two planes obtained by means of each of these methods are very close
because the maximum difference is lower than 0.3° in terms of directions.

Table 2 gives the shear strain amplitudes. The value computed by seeking for the critical planes
as proposed by Bernasconi and Papadopoulos [2] is equal to the one obtained by means of the
new approach proposed.
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Figure 4. Comparison of the computational time.

Table 2. Shear strain amplitude

∆γ

2
(%)

Bernasconi and Papadopoulos [2] 1.246
New approach 1.246

Figure 4 shows the comparison of the computational times with a constant angle increment
of 1° for the approach of Bernasconi and Papadopoulos [2]. All the numerical experiments are
based on a regular distribution of the temporal points along the whole loading cycle. One can
note that the computational times corresponding to the new approach do not evolve significantly
and remain notably below those of the classical approach of Bernasconi and Papadopoulos [2].

3.2. Analysis of strain gauge measurements

We propose here to apply the computational method developed for the analysis of an industrial
structure subjected to a loading cycle and equipped with a rosette composed of three gauges with
an angle of 45°. The acquisition frequency is equal to 100 Hz for a cycle duration of 725 s.

Because of the plane stress configuration on the surface of the structure perpendicular to the
direction 3, the strain tensor is of the following form:

ε(t ) =

ε11(t ) ε12(t ) 0

ε12(t ) ε22(t ) 0
0 0 ε33(t )

 . (9)

As for the previous example, the principal directions vary significantly as shown in Figure 5.
This means that the multiaxial strain state is highly nonproportional.

The computed critical planes are summarized in Table 3. Once again, the approach of
Bernasconi and Papadopoulos [2] gives two critical planes which are perpendicular (see Figure 6).
The planes obtained by means of the methods are again very close because the maximum differ-
ence is here lower than 0.05° in terms of directions.

Table 4 gives the shear strain amplitudes. One can see that the value computed by seeking
the critical planes [2] is once again equal to the one obtained by means of the new approach
proposed.
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Figure 5. Evolution of the principal directions.

Figure 6. Critical planes.

Table 3. Components of the normal vectors defining the critical planes

n1 n2 n3

Bernasconi and P1 0.5997 −0.3747 0.7071
Papadopoulos [2] P2 0.5997 −0.3747 −0.7071

New approach P1 0.6 −0.3742 0.7071
P2 0.6 −0.3742 −0.7071
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Figure 7. Geometry (left) and failure at the edge of the weld bead (right).

Table 4. Shear strain amplitude

∆γ

2
(%)

Bernasconi and Papadopoulos [2] 0.1134
New approach 0.1134

The computational time is less than 10 s for the new approach whereas it is greater than 4 h
for the technique of Bernasconi and Papadopoulos [2] with the software Matlab® [11].

3.3. FEM analysis of a welded assembly

This section focuses on the analysis of the welded assembly shown in Figure 7. A cyclic overload-
ing has been applied on the whole structure to test the fatigue resistance in the case of a mechan-
ical loading greater than the maximum authorized one to investigate low-cycle fatigue. Experi-
mental tests showed that failure always appears at the edge of the weld bead as shown in Figure 7
in the heat affected zone just after about 30,000 loading cycles.

Following the computational strategy developed by Giraud [12] and improved by Agard [13],
the simulation applied in this paper is composed of three stages:

(1) calculation of the metallurgical and mechanical state after welding;
(2) computation of the stabilized cyclic state;
(3) estimation of the lifetime by means of the Fatemie–Socie model.

The finite element computation of the stabilized elastoplastic cyclic state of a welded assembly
requires considering the residual effects of welding in the case of a S355 steel: the metallurgical
composition field through the heat affected zone and the associated residual stresses. For this
purpose, the thermo-metallurgical and mechanical simulation of welding has been carried out
by means of the software Sysweld® [14]. The mesh is made of 194,312 quadratic tetrahedral finite
elements containing four integration points. The welding parameters and the associated heat
source are detailed in [15]. Figure 8 shows the evolution of the temperature computed during
welding and the final distribution of the von Mises residual stress.

It is to be noted that the von Mises residual stress achieves more than 400 MPa in the corner
near the edge of the weld bead. As far as metallurgical transformations are concerned, Figure 9
shows that the bainite and martensite phases are both produced in the heat affected zone, in
particular near the failure area.
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Figure 8. Distribution of the temperature (°C) during welding (left) and the von Mises
residual stress (MPa) after welding (right).

Figure 9. Proportion of phases after welding: martensite (left) and bainite (right).

Figure 10. Distribution of the von Mises residual stress (MPa) at the end of a stabilized
loading cycle (left) and the corresponding estimation of the lifetime N f (right).

Once the thermo-metallurgical state after welding is obtained, the computation is restarted
by applying the cyclic loading with Giraud’s cyclic multi-phase elastoplastic model [16] until a
stabilized cyclic state is achieved. As plotted in Figure 10, the residual stresses are highly reduced
near the edge of the weld bead because of the plastic shakedown.
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As far as the estimation of the lifetime, denoted N f , is concerned, it can be obtained by means
of the Fatemi–Socie critical plane model [1] for low carbon steels:

∆γ

2

(
1+k

σmax
n

σy
ref

)
= (1+ν)

σ′
f

E
(2 N f )b + k

2
(1+ν)

σ′
f

2

E σy
ref

(2 N f )2b

+ (1+νp )ε′f (2 N f )c + k

2
(1+νp )

ε′f σ
′
f

σy
ref

(2 N f )b+c , (10)

where k = 0.6, σ′
f = 1027 MPa, ε′f = 0.322, νp = 0.5, ν = 0.3, E = 210,000 MPa, b = −1027 and

c = −0.487. σy
ref is taken equal to the yield stress of the theoretical initial homogeneous S355

steel: 355 MPa. The formula (10) combines the maximum normal stressσmax
n on the critical plane

associated with the maximum shear strain amplitude ∆γ/2.
For the numerical treatment of the multiaxial critical plane criterion of Fatemi and Socie, the

technique developed in Section 2 is applied for the treatment of the mechanical history of each
integration point with Matlab® [11]. It consists of finding the critical plane having the maximum
normal stress σmax

n for obtaining N f by solving (10) by means of the Newton–Raphson method.
The number of cycles N f related to each finite element in Figure 10 corresponds to the lowest

lifetime of the four integration points. The computational time is about 10 min with the strategy
developed in Section 2 whereas it is more than 20 days for the approach of Bernasconi and
Papadopoulos [2]. It is to be noted that the results are identical.

4. Conclusions

The aim of this paper was to propose an efficient computational strategy for searching at critical
planes and determining the associated shear amplitude.

For this purpose, a numerical method has been proposed in Section 2:

• A formulation based on the Tresca norm was developed for the determination of the
critical planes without scanning all the possible planes.

• An algorithm in optimal time O(n k) with k ¿ n was detailed for numerical efficiency.

In Section 3, the applications show the capability of the developed approach in analyzing
strain gauge measurements or FEM results. For example, the new numerical method allows
decreasing the CPU time significantly: from 20 days by scanning planes to 10 min for the FEM
analysis of a welded structure with the criterion of Fatemi and Socie.
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