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Abstract. This work is one of the analytical approaches to evaluate the evaporation frequency response
of injected droplets, using the Heidmann analogy of a single droplet that is continuously fed with the
same liquid fuel. Based on a linear analysis using the Rayleigh criterion, a dimensionless response factor
is determined. The effects due to the variation of the heat transfer coefficient of the feeding process, as well
as those due to the characteristic evaporation times and phase delay are analyzed. An abrupt increase of the
response factor occurs, when a thermodynamic coefficient of the injected fuel takes certain specific values.

Résumé. Ce travail est l’une des approches analytiques pour évaluer la réponse en fréquence d’évaporation
des gouttelettes injectées, en utilisant l’analogie de Heidmann i.e. d’une seule gouttelette alimentée en
continu avec le même carburant liquide. Sur la base d’une analyse linéaire utilisant le critère de Rayleigh,
un facteur de réponse sans dimension est déterminé. Les effets dus à la variation du coefficient de transfert
de chaleur du processus d’alimentation, ainsi que ceux dus aux temps caractéristiques d’évaporation et
au retard de phase sont analysés. Une augmentation brutale du facteur de réponse se produit, lorsqu’un
coefficient thermodynamique du carburant injecté prend certaines valeurs spécifiques.
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1. Introduction

Combustion instabilities are still nowadays a challenging area in combustion research, though
their modeling and control have been investigated in many published works by various research
teams during the past decades. These instabilities result from the coupling between acoustic
waves and combustion. In confined devices, the coupling between acoustic field and heat or
mass release at certain frequency levels may lead to engine failure or other catastrophic con-
sequences [1, 2]. On the contrary, new blends of fuels can be engineered to undergo preferential
instabilities leading to homogeneous combustion with higher efficiency [3]. Combustion insta-
bilities can occur in both premixed and diffusion flames. The present study is concerned with
subcritical diffusion flame models. In these latter, many causes were identified as being respon-
sible for exciting or damping the mass release frequency response [4, 5]: period of ambient pres-
sure oscillations that is closely related to the combustion chamber geometry, liquid fuel injec-
tion and atomization mechanisms with diverse boundary conditions, vaporization characteristic
times that are obviously dependent on thermal convection and conduction processes, etc.

In comparison with other processes that take place inside the combustion chamber, the va-
porization process has been pointed as the slowest [6], and hence may be the rate-controlling
process. The evaporating mass frequency response of droplets to ambient pressure oscillations
are generally computed by using classical droplet evaporation theories [3], on the basis of the
Rayleigh criterion [7], by assuming simplifying assumptions. Many of the theoretical studies in
the area are based on a single vaporizing droplet model as in [6, 8, 9]. Then, by means of numeri-
cal simulations, it is observed that the frequency response of spray droplets to ambient pressure
oscillations can be considered as a statistical consequence of the vaporization characteristics of
each individual droplet in the array. Among previous numerical works on vaporization frequency
response of sprays, Tong and Sirignano [10] examined the effects of oscillating gas pressure and
velocity on vaporization rates of continuously injected droplets during combustion instability.
They concluded that self-sustained acoustical oscillations can occur in the combustor when va-
porization is a controlling phenomenon. More recently, de la Cruz Garc’ıa et al. [11] investigated
on the self-excited oscillations in a kerosene spray flame and concluded that the combustor sta-
bility strongly depends on the fuel distribution, degree of evaporation, and mixing before the
main reaction zone. A progress has also been made in analytical modeling of vaporization fre-
quency response of spray droplets. Haddad and Majdalani [12] provided a closed-form analyt-
ical solution for the transverse vorticoacoustic wave in a circular cylinder with headwall injec-
tion. Likewise, researchers have recently reported improved analytical models for spray combus-
tion instability in diverse configurations as for example Greenberg and Katoshevski (see [13] and
references therein).

One of the theoretical approaches for analyzing the evaporating mass frequency response to
pressure oscillations of a spray of repetitively injected drops into a combustion chamber, can
be considered from the Heidmann analogy of a spherical vaporizing droplet [14]. According to
the Heidmann analogy, a single stationary spherical droplet represents this vaporizing spray
of droplets. This mean droplet is a vaporizing droplet, continuously fed with the same liquid fuel,
so that its volume is assumed to remain almost constant during the vaporization process. This
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configuration consists of representing the spray of repetitively injected drops in the combustion
chamber by a motionless mean droplet. The influence of spatial gas pressure and velocity
variations, which are inherent to acoustic modes, are not taken into account with this approach,
e.g. in the case of transverse acoustic modes to which the spray can be submitted, because
this approach is focused on the behavior of droplets located at pressure anti-nodes. The single
vaporizing droplet is continuously supplied at a stationary flow rate with the same liquid fuel.
This classical model can permit to include most of the above-mentioned mechanisms that
intervene in combustion instability phenomena, in a single theoretical analysis. Heidmann and
Wieber first based their model on the hypothesis that, the mean spherical droplet summarizes
the oscillatory rate of vaporization of an array of repetitively injected droplets in the combustion
chamber [14]. However, they assumed an infinite thermal diffusivity of the liquid phase, therefore
the mean droplet has a uniform temperature whatever the feeding process adopted.

This classical model was refined by Prud’homme et al. [15], especially at ONERA (the French
Aerospace Laboratory) and within the framework of the research group GDR-MFA (Micropesan-
teur Fondamentale et Appliquée). This group leads a program on micro gravity in the field of en-
gineering sciences with the assistance of the main research structures of the French State, namely
the CNRS and the CNES. The present study is part of the celebration of the 30 years since the cre-
ation of this research group. During their first work, Prud’homme et al. [15] took into account
a finite thermal diffusivity of the liquid, but the feeding process at the mean droplet center was
assumed adiabatic, and the radial thermal convection term that appears in the energy equation
of the liquid phase was neglected (pure conduction model). In [16], Anani and Prud’homme ex-
tended the study of this pure conduction model by taking into account the isothermal feeding
process at the mean droplet center. More recently, an approximate analytical model has been re-
alized by Anani et al. [17], where has been abandoned the simplifying assumption of negligible ra-
dial thermal convection effect inside the liquid phase. Nevertheless, only the two extreme cases
of center injection that are the adiabatic and the isothermal feeding regimes were considered.
Apart from this latter work, no analytical solution has been found nor any asymptotic study has
been performed for intermediate injection cases, where the feeding regime at the mean droplet
center is an intermediate case between the two extreme thermal forcing types.

Taking into account the mixed or generalized injection regime at the center of the mean
droplet, this paper aims to contribute to the linear analysis of subcritical combustion instabil-
ities by analytical approaches based on the mean spherical droplet configuration as in [17]. In
Section 2, a brief description is given of the unperturbed state corresponding to the vaporization
of the continuously fed spherical droplet in a stable environment. In Section 3, the linear analy-
sis for harmonic perturbations in pressure is performed and a double confluent Heun equation
(see [18]) is derived from the energy equation of the liquid phase. Then, an approximate analyt-
ical expression of the temperature field inside the mean droplet is obtained for the generalized
or mixed injection regime and the mass response factor is defined. Results are discussed in Sec-
tion 4. Throughout the discussion, comparisons are made with the results of other combustion
instability models found in the literature that account for the vaporization of individual droplets
injected into the spray. Finally, key results are recalled in the conclusions.

2. Description of the stabilized state

2.1. Model assumptions

Individual fuel droplets are repetitively injected into a subcritical combustion chamber such that
the interaction between the droplets or between the droplets and the wall are negligible. Velocity-
stabilized hypotheses are assumed as in [14], and an idealized physical configuration of a mean
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Figure 1. (a) The mean vaporizing droplet, continuously fed by a point source placed at its
center. (b) Boundary conditions for the supplied droplet.

spherical droplet at rest in the combustion chamber, here represents the vaporizing spray of
droplets. In the present model, the feeding is realized at some liquid-liquid heat transfer coef-
ficient by using a source point placed at the spherical droplet center, in such a way that only ra-
dial thermal convection and conduction effects are taken into account inside the mean droplet
during the process. This feeding process is now considered as a proper boundary condition, that
is a mixed or a generalized feeding regime controlling the actual process of liquid fuel injection
into the combustion chamber. Thus, the frequency response of individual drops in the spray is
supposed to be summarized by the mean droplet, which is placed at a specific location in the
combustion chamber (pressure anti-node and velocity node). As the instantaneous evaporating
mass m of the mean droplet is continuously restored with the average mass flow rate m of the
same fluid, an almost constant radius r̄S is assumed for the vaporizing mean droplet during the
process time. The choice of the Arithmetic Mean Diameter configuration for the mean droplet
leads to conservation equations with fixed boundary conditions and is motivated by the ana-
lytical approach of the problem. From now on, all barred quantities denote mean values corre-
sponding to the stabilized state, whereas all primed quantities will indicate relative perturbation
quantities, i.e. x ′ = (x − x̄)/x̄.

The feeding process is realized by using a point source placed at the droplet center in such a
way that the local feeding rate is distributed throughout the droplet (see Figure 1(a)). Except for
the radial thermal convection effect from the droplet center to its evaporation surface, any other
convective transport or liquid recirculation phenomenon within the droplet will be assumed
negligible. The thermal conductivity kL , the density ρL and the specific heat cL of the droplet will
be treated as constant. The spherical shape of the mean droplet is maintained at every moment
during the process, and the thermal dilatation of the liquid is negligible. At the mean droplet
center, a mixed injection regime is considered, that is, the liquid fuel is injected into the droplet
with a positive heat transfer coefficient h. The two extreme cases of this generalized boundary
condition are the adiabatic feeding regime (h = 0), where a zero temperature gradient is assumed
at the droplet center, and the isothermal feeding regime (h = +∞), where the droplet center is
kept at the constant temperature T S . This latter represents the mean value of TS , the spatially
uniform but time-varying temperature of the saturated vapor at the surface of the stabilized
droplet.
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Around the droplet surface, the gas phase evolves in a quasi-steady state. There is no gas
diffusion into the droplet and equilibrium conditions are assumed at the droplet/gas interface
for the stabilized state. Far from the mean droplet, the ambient environment of the chamber
is at a constant subcritical temperature TC and pressure pC . These boundary conditions are
shown on Figure 1(b), where subscripts L and l indicate the liquid phase while the round letter
ℓ will be used throughout the document to denote the latent heat of vaporization per unit mass
of liquid. The subscripts S and C refer respectively to the droplet surface and to the ambient
conditions in the combustion chamber far from the droplet. The quantity QL designates the heat
flux transferred to the liquid and D denotes the binary diffusion coefficient of the fuel vapor in
air. The thermal conductivity and the density of the gas mixture around the droplet surface are
respectively denoted by k and ρ. The gaseous mixture at the immediate vicinity of the droplet is
made up of fuel species j = F and of combustion products diluted species j = A proceeding from
the flame front at infinity. The mass fraction of species j is denoted by Y j . For reason of simplicity,
a mono-component droplet with only fuel species will be considered, that is YF L = 1 and YAL = 0.

Theoretical studies of the evaporating mass response of spray droplets to acoustic and/or ve-
locity perturbations in combustors are mostly based on numerical simulations. But, even when
assuming certain simplifying assumptions, analytical models that include more complex aspects
of the problem are needed for providing deep insights in the vaporization frequency response.
Nevertheless, both numerical and analytical models need to be confronted with appropriate ex-
perimental measurements and more detailed databases for validating the predictions. As stated
in [19], specifications of an experimental design may include several regulations and measure-
ment devices. Since the present theoretical study is based on the mean droplet configuration,
experimental facility and methods similar to those described in [20] can provide tracks for some
experiments. However, the problem is here considered only under its analytical aspect. As men-
tioned in the introduction, the mean droplet model can permit to include in a single theoretical
analysis most of the mechanisms that intervene in spray combustion instability. The results ob-
tained may then serve as references for full experimental and numerical simulations of sprays
combustion instabilities, which will not necessarily need to rely on the simplifying assumptions
adopted here.

The present model of a representative drop, continuously fed by a mass and thermal point
source placed in its center, allows to include among other advantages, the possibility to formulate
the boundary conditions with a heat transfer coefficient. But, unlike the classical adiabatic
condition, the generalized boundary conditions do not ensure the regularity of the heat fluxes
at the center. Even in the adiabatic feeding regime, the radial velocity of the liquid diverges at
the center of the mean droplet, where its infinite value is counterbalanced by zero heat flux at
the center. In all cases, in the adiabatic or mixed feeding regimes, the evaluation of the mass
response factor depends only on the regularity of the temperature flux at the surface of the mean
droplet, and this condition will be well verified here in all the different feeding regimes. Thus,
using simplifying assumptions, the present study aims to provide regular approximate solutions,
in order to investigate the effects of the heat transfer coefficient of the fuel injection process, on
the frequency response of the vaporization.

2.2. Evaporation characteristic times

The residence time and the transfer time by thermal diffusion are the two characteristic times
controlling heat transfer processes inside the stabilized mean droplet. The residence time of the
continuously fed droplet replaces the notion of a free droplet lifetime in the present situation of
almost constant volume and can be identified to the ratio τ̄v = M/m. Here, m is the stationary
feeding rate, while M represents the mean value of the actual mass M of the supplied droplet.
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The transfer time by thermal diffusion process is identified to τ̄T = r̄ 2
S /κL , where r̄S is the

average radius of the mean droplet and κL = kL/(ρLcL) is the thermal diffusivity of the liquid.
The timescale ratio θ = 9τ̄v /τ̄T = τ̄v /τ̃T , where τ̃T = τ̄T /9, will be called the thermal exchange
ratio or more briefly the exchange ratio from now on. It is of the same order of magnitude as
1/PL , where PL is the Péclet number of the liquid phase. The coefficient 9, which appears in this
ratio will lead hereafter to a more simple expression of the transfer function. It will be also kept
for results comparison purposes with previous mean droplet models as in [16, 17]. During the
vaporization process, instabilities related to intrinsic or external pressure oscillations can cause
departure from the stabilized-state conditions and a linear analysis can be performed in the case
of harmonic perturbations in pressure. A major characteristic time of the perturbed state of the
mean droplet is the oscillation or wave period of the ambient pressure. The angular frequency
of the harmonic oscillations in pressure will be denoted by ω. In [14], the mass response factor
was studied over a wide range of flow conditions and the data was found to be correlated with
some dimensionless parameter, that is the droplet lifetime or half lifetime normalized by the wave
period. Likewise, in the present study, a reduced frequency u depending on the residence time
τ̄v is defined as u = 3ωτ̄v .

2.3. Equations for the stabilized state

The mass balance of the mean evaporating droplet is written:

d M

d t
= m −m, (1)

where m and m denote respectively the stationary flow of injection and the instantaneous flow of
evaporation. In the unperturbed or stabilized state, equation (1) becomes: d M/d t = 0, implying
m = m and M = M . The instantaneous amount of heat QL penetrating into the droplet can be
evaluated as:

QL =Q −mℓ= 4πr̄ 2
S kL

∂Tl

∂r
(r = r̄S , t ) , (2)

where Tl (r, t ) is the droplet temperature at radial coordinate r and at time t , Q is the external gas
heat flow and ℓ is the latent heat of vaporization per unit mass of the liquid. Equation (2) cou-
ples the gas and the liquid phase solutions at the droplet surface. Since both radial thermal con-
vection and conduction data need to be appropriately included in the formulation of the energy
conservation equation, the internal temperature Tl ≡ Tl (r, t ) verifies the following equation:

ρLcL
∂Tl

∂t
+ρLcL vr

∂Tl

∂r
− kL

r

∂2 (r Tl )

∂r 2 = 0, (3)

where vr is the central injection velocity expressed as vr = m/4πρLr 2 for 0 < r < r̄S . Equation (3)
is subject to a mixed boundary condition at the droplet center and to the Dirichlet boundary
condition at the surface: 

∂Tl

∂r
(r = 0, t ) = h

r̄S

(
Tl (0, t )− T̄S

)
,

Tl (r̄S , t ) = TS (t ).

(4)

The parameter h > 0 in conditions (4) indicates the heat transfer coefficient. We recall that, h = 0
for the adiabatic injection regime and the boundary condition at the droplet center is reduced
to ∂Tl /∂r = 0 on r = 0, whereas h =+∞ for the isothermal injection regime and the related con-
dition at the droplet center becomes Tl (0, t ) = T S . The mixed boundary condition at the droplet
center can then be viewed as an idealized modeling of a preheated spray injection process. In
liquid fuel injection processes, internal flow evaluations depend on inlet boundary conditions
(see [21] and references therein). Some studies have shown that the reduction in kinematic vis-
cosity resulting from fuel preheating improves the combustion and emissions performance of the
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engine [22,23]. Now, in subcritical combustion systems, the two extreme cases bounding the pos-
sible range of real inlet liquid temperature fluxes are precisely the adiabatic and the isothermal
feeding regimes. The adiabatic feeding regime at the mean droplet center can be related to an un-
heated spray feeding process, where the mean temperature T A of the injected fuel is connected
to standard conditions for temperature and pressure. On the contrary, the isothermal feeding
regime can be brought closer to the process of injection of fuel at temperature T S . The latter is
related to the liquid wet bulb temperature T W B or to its boiling temperature T B , when T W B esti-
mate is unavailable (see [24]). Therefore, in an actual mixed injection process, the inlet fuel tem-
perature may be stated between the extreme values that are T A and T S . In brief, during the spray
vaporization process, the corresponding rate of heat brought by the injected fuel to the array of
droplets is here investigated by means of the heat transfer coefficient h.

Assuming the classical quasi-steady hypothesis of a local evaporation equilibrium at the
surface of the mean droplet, the instantaneous mass vaporization rate can be evaluated as:

m = 2πρD rS Sh∗ ln (1+BM ) = 4π
k

cp
rS Nu∗ ln (1+BT ) , (5)

where BM = (YF S −YFC )/(1−YF S ) and BT = cp (TC −TS )/(ℓ+QL/m) represent respectively the
mass and heat transfer numbers of Spalding, and cp denotes the specific heat capacity of fuel
vapor at constant pressure. The parameters ρ, k and D are here recalled as the density, the
thermal conductivity and the binary diffusion coefficient of the mixture of vapor and ambient gas.
The Nusselt and Sherwood numbers Nu∗ and Sh∗ were provided in the extended film model by
Abramzon and Sirignano [25]. The saturated vapor pressure at the droplet surface is expressed as
psat (TS ) = exp(a −b/(TS − c)), where a, b and c are coefficients related to the fuel thermophysical
properties. The mole fraction XF S of fuel species is connected to the saturated vapor pressure psat

by the relation p XF S = psat (TS ), where p = pC is the ambient pressure. The mass fraction YF S of
the vapor at the droplet surface can be expressed as a function of the mole fraction XF S by:

YF S = MF

MF XF S +MA X AS
XF S , (6)

with M j denoting the molecular weight of species j = A for combustion products diluted
species, or j = F for fuel species. Temperature and concentration values continually evolve in
the gas phase and their averaged values can be respectively taken at some reference temperature
T = TS + Ar (TC −TS ) and concentration Y j = Y j S + Ar (Y jC −Y j S ) with Ar = 1/3. Here, the Lewis
number Le = k/ρDcp is assumed equal to 1 and both Sh∗ and Nu∗ are equal to 2.

3. Linear analysis for harmonic perturbations

3.1. Linear analysis of the liquid-phase

In order to perform a linear analysis, each flow variable f is divided into steady and unsteady
parts by writing ∆ f = f − f̄ , where f̄ is the mean value, ∆ f is the absolute perturbation of the
flow, and f ′ =∆ f / f̄ is the corresponding relative perturbation. Thus, the relative perturbation of
the droplet temperature field is T ′

l (r, t ) = [Tl (r, t )−T l (r, t )]/T l (r, t ), and the linearized form of
the heat flow penetrating into the droplet (see equation (2)) will read:

4π r̄ 2
S kLT S

∂T ′
l

∂r
(r = r̄S , t ) =QL −QL =QL =∆QL (7)

since QL = 0. The energy conservation equation (equation (3)) becomes in its perturbed form:

∂
(
r T ′

l

)
∂t

+κL

(
3r̄S

θr

∂T ′
l

∂r
− ∂2

(
r T ′

l

)
∂r 2

)
= 0, (8)
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where θ = τ̄v /τ̃T is the thermal exchange ratio as defined in Subsection 2.2. From equations (4),
the boundary conditions at the perturbed state are deduced as:

∂T ′
l

∂r
(r = 0, t ) = h

r̄S
T ′

l (0, t ),

T ′
l (r̄S , t ) = T ′

S .

(9)

In the case of harmonic perturbations in pressure of frequency ω, the relative perturbation of
the flow variable f takes the form of f ′ = ∆ f / f̄ = f̂ (r )eiωt . The parameters as ambient pressure,
temperature and heat transferred into the droplet are respectively perturbed as p ′

C = p̂C eiωt ,
T ′

l = T̂ l (r )eiωt and ∆QL = ∆Q̂L(r )eiωt . The perturbed form of the energy conservation equation
(equation (8)) can now be written as follows:

ir 2ωT̂ l +
3κL r̄S

θ

dT̂ l

dr
−κLr

d 2
(
r T̂ l

)
dr 2 = 0. (10)

Or by equivalence as:

iωτ̄T ξT̂ l +
1

3θξ

dT̂ l

dξ
− d 2

(
ξT̂ l

)
dξ2 = 0, (11)

where T̂ l is rather written as a function of the reduced radius variable ξ= r /r̄S , with 0 < ξ< 1. In
connection with ξ, equations (9) expressing the boundary conditions in the mixed or generalized
feeding regime will read: 

dT̂ l

dξ
(ξ= 0) = h

r̄S
T̂ 0

T̂ l (1) = T̂ S ,

(12)

where T̂ 0 is the temperature of the preheated liquid fuel injected at the droplet center.
We now consider the conjugate complex numbers

s0 = (1+ i)(ω/2κL)1/2 and s̄0 = (1− i)(ω/2κL)1/2,

obtained from equation (11) by using the two roots s0 and −s0 of the characteristic equation
iω−κL s2 = 0, when neglecting the convective term (3κL r̄S /θ)dT̂ l /dr . A solution of equation (11)
subject to equations (12), can be sought in the form of ξT̂ l (ξ) = J(ξ){1−cos[s̄0r̄Sξexp(iarctanh)]},
with exp(iarctanh) = (ih+1)/(h2+1)1/2, where h is the heat transfer coefficient, J refers to a func-
tion to be determined and exp(iarctanh) = (ih + 1)/(h2 + 1)1/2. Writing S0 = s̄0r̄S exp(iarctanh)
and substituting the functions sin(S0ξ) and cos(S0ξ) in equation (11) by their truncated expan-
sions of second order, that are sin(S0ξ) ≈ S0ξ and cos(S0ξ) ≈ 1−(S0ξ)2/2, the expression ξJ should
approximately verify the following double confluent Heun equation:

ξ2d 2(ξJ)

dξ2 +
(
2ξ− 3

θ

)
d(ξJ)

dξ
−2s̄2

0 r̄ 2
S

h(i−h)

h2 +1
ξ2(ξJ) = 0. (13)

Now, using the notations of the Maple software, the solution of equation (13) can be expressed
as J(ξ) = C0 exp[−3(θξ)−1]HeunD(x1, x2, x3, x4, x)/ξ5/2, where C0 is a constant to be determined
and HeunD(x1, x2, x3, x4, x) is the double confluent Heun function. In this latter function, the
variable x is expressed as function of ξ by x = (ξ2 − 1)/(ξ2 + 1) and the four related parameters
x1, x2, x3 and x4 are respectively given as:

x1 = 0,

x2 =−[
θ2 (

h2 +1
)−9−9h2 −24uh(ih +1)θ

]/
4θ2 (

h2 +1
)

,

x3 =−[
9+ (9−24iuθ)h2 −24huθ

]/
2θ2 (

h2 +1
)

and x4 =−[−θ2 (
h2 +1

)−9−9h2 −24uh(ih +1)θ
]/

4θ2 (
h2 +1

)
.
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Here, the parameter u = 3ωτ̄v is the reduced frequency of the ambient pressure as defined in
the Subsection 2.2. The constant C0 is determined by using the boundary condition at the mean
droplet surface, T̂ l (1) = T̂ S . This leads to the expression of an approximate analytical solution of
equation (11) as:

T̂ l (ξ) =
T̂ S

{
1−cos

[
s̄0r̄Sξexp(iarctanh)

]}{
1−cos

[
s̄0r̄S exp(iarctanh)

]}
ξ5/2

exp

[
3

2θ

(
1− 1

ξ

)]
×HeunD

(
x1, x2, x3, x4,

ξ2 −1

ξ2 +1

)
. (14)

Except for the case where the temperature gradient is null at the droplet center (h = 0), the
solution (14) presents an essential discontinuity at ξ = 0 once h > 0. Nevertheless, only the
regularity condition at the droplet surface (ξ = 1) is needed for the calculation of the mass
response factor and this condition is well verified by the equation (14).

The flow condition at the droplet surface (equation (7)) can be expressed as function of the
reduced radius ξ= r /r̄S , and then be applied to the solution (14). This will lead to:

∆Q̂L =−4πr̄S kLT S T̂ S E (u,θ,h) , (15)

where the function E is expressed with the parameters u, θ and h as:

E (u,θ,h) = s̄0r̄S exp(iarctanh)sin
[
s̄0r̄S exp(iarctanh)

]
cos

[
s̄0r̄S exp(iarctanh)

]−1
− 3

2θ
+ 5

2
. (16)

With u = 3ωτ̄v and θ = τ̄v /τ̃T , the calculations give s̄0r̄S = (1− i)(3u/2θ)1/2.

3.2. The linearized equations of the gas phase

The linearized equations for the liquid/gas interface were first presented in [15] and were used
in [16,17]. Introducing the harmonic perturbations in the flow variables, the perturbed mass flow
rate and ambient pressure respectively become m′ = m̂eiωt and p ′

C = p̂C eiωt . In consequence,
the linearized equations were obtained from the stabilized state equations of the gas phase (see
Subsection 2.3) as follow:

m̂ =α iu

1+ iu

(
b̄T̂ S − p̂C

)
, (17)

and

∆Q̂L = mℓ̄
(
āp̂C −µT̂ S

)
. (18)

The different coefficients involved in these equations were expressed as:

ā = T C

T C −T S

γ−1

γ
+ϕ, b̄ = T S

(T S − c)2
b, µ= T S

T C −T S
− 2c

T S − c
+ b̄ϕ

and

α= B M

(1+B M ) ln(1+B M )
ϕ, where ϕ= Y AC Y F S

Y AS (Y F S −Y FC )

MF

MF X F S +MA X AS
.

The parameter γ denotes the constant isentropic coefficient, while the latent heat of vaporization
per unit mass of the liquid is given by ℓ = bRT 2

S /MF (TS − c)2, with R standing for the universal
gas constant.
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3.3. Mass response factor

The mean spherical droplet is assumed to be at rest in the combustion chamber and its velocity
response can be neglected. Only the evaporating mass response due to the ambient acoustic
forcing will here be considered. According to the Rayleigh criterion, the oscillations in pressure
p ′ = (p − p̄)/p̄ induces a perturbation in the evaporating mass flow rate q ′ = (q − q̄)/q̄ . The
resulting mass response factor N can then be expressed as the ratio of the magnitude of the mass
perturbation to that of the pressure perturbation:

N =

∫
V ,t

q ′(V , t )p ′(V , t )dtdV∫
V ,t

(p ′(V , t ))2dtdV
, (19)

where the double integral is taken over the wave period of time t in the finite volume V .
Considering now sinusoidal or harmonic oscillations that are uniform over a finite volume, the
response factor N is reduced to N = (

∣∣q̂∣∣/
∣∣p̂∣∣)cosφ, where

∣∣q̂∣∣ and
∣∣p̂∣∣ stand for the modules of

mass release q ′ and pressure p ′, and φ denotes the phase lag or i.e. the angle difference between
q ′ and p ′. Thus, in this case, a reduced mass response factor can be obtained as the real part of the
mass transfer function Z = m̂/(αp̂C ). By using equations (15)-(18), the expression of the transfer
function Z ≡ Z (u,θ,h) is obtained as:

Z (u,θ,h) = iu

1+ iu

A+θE(u,θ,h)

B −θE(u,θ,h)
, (20)

where the involved thermodynamic coefficients A = 3(āb̄−µ)/λ and B = 3µ/λ depend on the fuel
physical properties and are related to the ratio λ = (cLT S )/ℓ̄. Then, the reduced mass response
factor is the real part of the transfer function Z and will read:

N

α
=ℜ(Z ). (21)

The reduced response N /αwill be briefly called “response factor” or “mass response factor” in the
rest of the paper. It includes phase lag relations since it becomes positive when the vaporization
rate and the chamber pressure are either above or below their mean values, and negative when
the vaporization rate and the chamber pressure are on the opposite sides of their means [7].
Moreover, the phase lag or angle difference φ between the vaporization rate and the chamber
pressure, defined as the argument of the transfer function φ= arg(Z ), is proven to be insensitive
to the chamber mean pressure magnitude [4]. Thus, the phase angle φ appears to be one of the
key parameters for analyzing the mass frequency response due to ambient pressure oscillations.

4. Results and discussion

4.1. General remarks

The values A = 10 and B = 100 will be used for the thermodynamic coefficients A and B in all
calculations and curves, since they correspond respectively to orders of magnitude of values
encountered in the classical fuels [15]. The effects of the heat transfer coefficient h on the mass
response factor were pointed out in a recent publication by the same authors (see [26]). Those
results will be briefly recalled and if necessary improved in the following subsection. Then, the
response factor will be analyzed in relation to the process characteristic times as highlighted in
Subsection 2.2, and to the phase angle φ as defined in Subsection 3.3, and again to the influence
of the value of the thermodynamic coefficient B .

In each diagram on Figures 2, 3, and 4, response factor curves are shown as function of the
reduced frequency u = 3ωτ̄v for a set of values of the exchange ratio θ. For a given value of the heat
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transfer coefficient h, a quite large number of values of the exchange ratio θ are selected in order
to illustrate a fairly wide range of curve profiles, among which the one related to a certain critical
value of θ to be later deduced in this analysis. The diagrams are ranged in columns corresponding
respectively to six different values of the heat transfer coefficient: h = 0 and h = 0.1 for Figure 2;
h = 1 and h = 1.05 for Figure 3; h = 10 and h =+∞ for Figure 4. As already mentioned, the extreme
values (h = 0 and h = +∞) are connected to the adiabatic and isothermal feeding regimes and
the related curves are here illustrated for comparison purposes with previous results obtained
in [17]. Among the other selected values of the heat transfer coefficient (h = 0.1; 1; 1.05; 10), the
value h = 1 is a critical value and can be roughly considered with the three other intermediate
values as representative of the main types of curve profiles obtained for h varying from 0 to +∞.

4.2. Effects of the heat transfer coefficient

In [26], the evaporating mass response factor in a mixed injection regime has been analyzed in
connection with the heat transfer coefficient h that controls this generalized feeding regime. The
study has pointed out the following three main results.

First, it is noticeable that for h = 0 (Figures 2(a1), 2(a2) and 2(a3)), and for h = +∞ (Fig-
ures 4(f1), 4(f2) and 4(f3)), the response factor curves seem very similar to those obtained re-
spectively in the adiabatic and in the isothermal injection regimes, as discussed in [17]. In fact,
calculations show that these curves are identical for a given value of the exchange ratio θ, since,
when h → 0,

E(u,θ,h) → s̄0r̄Sθ sin(s̄0r̄S )+2θcos(s̄0r̄S )−3cos(s̄0r̄S )−2θ+3

θ (1−cos(s̄0r̄S ))
= E(u,θ,0). (22)

While, as h →+∞,

E(u,θ,h) →−1

2

2θs0r̄S sin(s0r̄S )+5θcos(s0r̄S )−3cos(s0r̄S )−5θ+3

θ (1−cos(s0r̄S ))
= E(u,θ,+∞). (23)

Thus, the expression of the function E(u,θ,h) in equation (16), coincides with those obtained
in [17], for the calculation of the complex transfer function Z (u,θ,h) in the adiabatic and in
the isothermal feeding regimes (respectively h = 0 and h = +∞). Consequently, the results
concerning the response factor curves in these two extreme regimes can be deduced as limiting
cases from those of the present generalized injection regime. This kind of generalization has also
been highlighted in a recent published paper (see [27]), where the mixed feeding regime was
applied to a pastille-shaped droplet. Secondly, when the value of the heat transfer coefficient is
fixed at one (h = 1), the corresponding response factor curves show intriguing fluctuations in
their profiles, as it can be observed on Figures 3(c1), 3(c2) and 3(c3). If in addition, the value
of the exchange ratio is chosen less than one (θ < 1), that is for relatively small droplets, the
fluctuations become straight chaotic as shown on Figure 3(c1). Nevertheless, these oscillations
appear relatively reduced in amplitude compared to those obtained when the exchange ratio is
much greater or equal to one (θ ≥ 1). In the latter case, the response factor curves show hyperbolic
patterns with more higher peak values along the frequency axis. But, once the heat transfer
coefficient differs slightly from one, almost all the corresponding curves tend to show more lower
fluctuations in their profiles, even if h remains very close to one as for example h = 1.05 (see
Figures 3(d1), 3(d2) and 3(d3)). The same behavior can be observed in the case where h = 0.95,
case which is not illustrated with diagrams in the present paper. As comparison, a unity value
of a heat transfer coefficient may characterize a heating from the flame towards the injection
system through the chamber walls. According to [28], the radiative power is highly nonlinear and
varies at the first order as the fourth power of the local instantaneous temperature. Likewise, in
fuel injection processes, it may also be admitted that the evaporating mass frequency response
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Figure 2. Mean droplet model with the thermodynamic coefficients A = 10 and B = 100:
Variation of the reduced response factor N /α versus the dimensionless wave frequency
u at various values of the non-dimensional exchange ratio θ and for the heat transfer
coefficients h = 0 and h = 0.1.
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Figure 3. Mean droplet model with the thermodynamic coefficients A = 10 and B = 100:
Variation of the reduced response factor N /α versus the dimensionless wave frequency
u at various values of the non-dimensional exchange ratio θ and for the heat transfer
coefficients h = 1 and h = 1.05.
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Figure 4. Mean droplet model with the thermodynamic coefficients A = 10 and B = 100:
Variation of the reduced response factor N /α versus the dimensionless wave frequency
u at various values of the non-dimensional exchange ratio θ and for the heat transfer
coefficients h = 10 and h =+∞.
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of droplets and sprays can be strongly influenced near this specific value of the liquid-liquid heat
transfer coefficient (h = 1). Thirdly, the mass response factor curves for relatively large values of
the heat transfer coefficient (h ≥ 10), seem to be very similar to those obtained in the isothermal
injection regime (h = +∞). Indeed, the convergence of the function E(u,θ,h) to E(u,θ,+∞)
together with that of the corresponding response factor N /α=ℜ(Z ) are proven to be asymptotic
as h tends to +∞. Thus, this convergence is approximately reached once the value of h is near 10,
and the curves profiles on Figures 4(e1), 4(e2) and 4(e3) for h = 10 seem to be identical to those
on Figures 4(f1), 4(f2) and 4(f3) for h =+∞.

In brief, once the heat transfer coefficient becomes not null h > 0 in the injection process,
high and nonlinear instabilities may appear in the vaporization frequency response of droplets
and sprays. As highlighted in [29, 30] among others, the process of continuous supply of fuel
to the chamber has been theoretically and experimentally identified as an important factor for
producing or driving combustion instabilities.

4.3. Effects of characteristic times and of the phase lag

The vaporization response of a LOX droplet to oscillatory ambient conditions has been computed
over a wide range of frequencies and the results were applied to prototypical cases pertinent
to liquid rocket combustion instabilities [6]. It has been shown that the peak frequency for the
computed response factor is correlated to the droplet lifetime. Indeed, as reported in [16, 17], the
peak value of a response factor curve, whenever it exists, occurs at the same reduced frequency
up that can be roughly evaluated about three. In mixed feeding regimes (h > 0) as well as in both
extreme cases of adiabatic and isothermal injection regimes, the peak frequency value can be
estimated at up = 3ωτ̄v ≈ 3 (see among others, Figures 2(b1), 2(b2) for h = 0.1 and Figures 4(e1),
4(e2) for h = 10). This relation implies τ̄v ≈ 1/ω, meaning that the injected liquid residence time
τ̄v is at the same order of magnitude as the pressure oscillation period 1/ω. Now, the mean
residence time τ̄v of a continuously fed droplet can be equated to the mean lifetime of free
droplets in a spray. Therefore, whenever positive responses appear in the system, regardless of
the value of the heat transfer coefficient h ≥ 0, the vaporization rate can fully respond to the
acoustic oscillations, only when the mean droplet lifetime is equal to the period of the ambient
pressure oscillations.

It has also been anticipated that the well-known phase-lag model represents a key to a fun-
damental understanding of the evaporating mass frequency response to ambient pressure oscil-
lations. Figure 5 shows phase angle curves (φ = arg(Z )), as functions of the reduced frequency
u = 3ωτ̄v , for selected values of the exchange ratio θ. The curves are represented in a range of
diagrams corresponding respectively to the same list of selected values of the heat transfer coef-
ficient, namely h = 0; 0.1; 1; 1.05; 10 and +∞, as retained for the illustration of the response factor
curves. For h = 0, that is in the adiabatic feeding regime (see Figure 5(a)), phase angle curves col-
lapse in a single line once θ ≥ 1, in accordance with the response factor curve profiles obtained on
Figures 2(a1), 2(a2) and 2(a3). It is also remarkable that the cut-off frequency of this single curve,
at which the phase angle cancels, is approximately equal to the peak frequency up = 3ωτ̄v ≈ 3,
where the vaporization rate oscillates in phase with the acoustic pressure (φ= 0). In the adiabatic
regime, a typical phase-angle curve starts from π/2 at the frequency u = 0, where the mass re-
sponse is null, decreases rapidly to zero at the cut-off frequency up , where the response is max-
imal, and then decreases asymptotically to a negative value about −π/3, expressing thus a pro-
gressive damp of instability in the system. Likewise, the phase-angle curves for h = 0.1; 1 and
1.05 as shown on Figures 5(b), 5(c) and 5(d) are in agreement with the expectations. Indeed,
when h = 0.1 (see Figure 5(b)), each corresponding response factor curve on Figures 2(b1), 2(b2)
and 2(b3) shows for the selected value of the exchange ratio θ, a unique peak frequency up which
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Figure 5. Mean spherical droplet model with the thermodynamic coefficients A = 10 and
B = 100: variation of the phase lag φ versus the dimensionless wave frequency u at various
values of the non-dimensional exchange ratio θ and for different value of the heat transfer
coefficient h.



Kwassi Anani, Roger Prud’homme and Mahouton N. Hounkonnou 93

is relatively small. This leads to a reduced instability domain. A phase-angle curve on Figure 5(b)
varies almost monotonously from the single peak frequency and remains inside a relatively lim-
ited range of values. On the contrary, except for θ = 250, phase-angle curves for h = 1 and 1.05 as
represented on Figures 5(c) and 5(d), exhibit many fluctuations even from the lower bound −π
to the upper bound π (see Figure 5(d) for θ = 200). Those profiles are in accordance with their
respective response factor curves, as shown on Figure 3.

The phase-angle curve profiles obtained on Figure 5(e) for h = 10 seem to be identical to
those obtained in the isothermal feeding regime, i.e. on Figure 5(f) corresponding to h = +∞.
As mentioned in the subsection 4.2, this similitude is due to the asymptotic convergence of the
response function, when h tends to +∞. On the other hand, for θ = 250, the phase-lag curve
shows about the peak frequency up , an instantaneous change from the lower bound −π to the
upper bound π as it can be observed on Figures 5(e) and 5(f).

4.4. Influence of a thermodynamic coefficient

As they occur about a fixed value of the thermal exchange ratio (θ ≈ 200), the sharp changes
noted in the response factor curve profiles on Figures 2(b3), 4(e3) and 4(f3) are not related to
some particular values of the heat transfer coefficient, but rather to these specific values of θ. As
in [17], those rapid changes in curve profiles around the reduced frequency up ≈ 3, can be proven
as depending on a specific value of θ, which is connected to the value of the fuel thermodynamic
coefficient B = 3µ/λ. In order to determine the threshold value θd of the thermal exchange ratio
at which abrupt changes intervene in the curve profiles, the ratio x = u/θ = ωτ̄T /3, may be
particularly useful. Indeed, the thermal diffusion time τ̄T and the frequency of the oscillating
wave ω do intervene in this ratio, but not the residence time τ̄v . This ratio can then be assumed
negligible at up = 3ωp τ̄v p ≈ 3, provided that the thermal transfer time by diffusion τ̄T is negligible
compared either to the oscillation period 1/ωp or to the residence time τ̄v p , since 1/ωp ≈ τ̄v p at
the peak frequency up . Therefore, taking h > 0 and assuming u closer to up , the second-order
truncated expansion of the transfer function Z (u,θ,h) in the neighborhood of x = 0 leads to the
approximation:

Z (u,θ,h) ≈
iu

(
A+ θ

2 − 3
2

)
(1+ iu)

(
B − θ

2 + 3
2

) . (24)

This expression does not depend anymore on the heat transfer coefficient h. In consequence,
when the feeding process is controlled by a not null heat transfer coefficient (h > 0), the value of θ
around which response factor curves exhibit the sharp peak at the frequency up , can be deduced
from the approximation (24) by equating the denominator of Z to zero. Thus, θd = 2B+3 = 203 for
B = 100. Moreover, once the value of θ exceeds θd , one has ℜ(Z ) ≤ 0 whenever h > 0, as it can be
equally deduced from the same approximation (24). Therefore, the corresponding curves show
only negative response for all frequencies as respectively shown on Figures 2(b3), 4(e3) and 4(f3)
for h = 0.1; 10 and +∞. As in [4,31], many publications have highlighted that the rapid variations
of fluid thermophysical properties near critical and supercritical processes, are the major factor
contributing to abrupt changes in the vaporization frequency response. Now, when h = 0, i.e.
in the adiabatic regime, the computations lead to the following approximation: Z (u,θ,0) ≈
iu(A−3)/[(1+ iu)(B +3)]. In this case, as B = 3µ/λ> 0, the denominator of the transfer function
and hence that of the response factor cannot be canceled, even when θ ≈ 200. This explains the
absence of abrupt changes in the profiles of the response factor curves, regardless of the values
of the thermal exchange ratio θ and of the heat transfer coefficient h (see Figure 2(a3)).
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5. Conclusions

By introducing a heat transfer coefficient in the liquid fuel injection process, this study has per-
mitted to extend to a generalized feeding regime, the results of the pressure-coupled vaporiza-
tion frequency response of spray droplets. The evaporating mass frequency response of a spray
of repetitively injected droplets in the combustion chamber has been analyzed through the Hei-
dmann analogy of a mean spherical droplet.

Using basic parameters in their dimensionless form, the effects of the liquid heat transfer
coefficient and of the evaporation characteristic times, as well as those of the phase lag and of
the thermal exchange ratio are found effective for driven or damped instabilities. It has been
shown that, whenever positive responses appear in the system, the peak value is reached at
a particular frequency, where the residence time of the mean droplet matches the period of
the ambient pressure oscillations. Except for the cases where the heat transfer coefficient is
closed to one, response factor curves exhibit a single maximal response at the peak frequency.
This maximal response grows abruptly at the peak frequency if the thermal exchange ratio
approaches a certain threshold value. The latter is shown to be equal to a simple affine function of
a thermodynamic coefficient related to the injected fuel physical properties. Once this threshold
value of the thermal exchange ratio is passed over, a factor curve shows only negative response for
all frequencies, even in the case where the heat transfer coefficient is equal to one. The results are
also found similar to those previously obtained in the adiabatic and isothermal feeding regimes.
Indeed, mass response factors in such extreme cases of fuel injection are recovered as simple
limit points.

On the theoretical level, the above-mentioned results may be beneficial for instability control
in combustion processes and may also contribute to the modeling of liquid fuel propulsion
systems as that of launcher engines for example. The dimensionless parameters provided by the
linear analysis can be used to characterize the dynamic behavior of the vaporization process for
a wide range of liquid fuels, especially when relatively large droplets are involved. Moreover, the
present analytical approach may serve to improve the development of numerical codes, as for
instance the Computational Fluid Dynamic (CFD) codes. However, this approximate analytical
model based on the Heidmann analogy is still extendable to more complex configuration details.
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