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Abstract. In this work we address the reduction of face degrees of freedom (DOFs) for discrete elasticity
complexes. Specifically, using serendipity techniques, we develop a reduced version of a recently introduced
two-dimensional complex arising from traces of the three-dimensional elasticity complex. The keystone of
the reduction process is a new estimate of symmetric tensor-valued polynomial fields in terms of boundary
values, completed with suitable projections of internal values for higher degrees. We prove an extensive
set of new results for the original complex and show that the reduced complex has the same homological
and analytical properties as the original one. This paper also contains an appendix with proofs of general
Poincaré-Korn-type inequalities for hybrid fields.

Résumé. Dans cet article, nous abordons la réduction des degrés de liberté de face pour le complexe de 1’élas-
ticité discrete. Plus précisément, en utilisant des techniques de sérendipité, nous développons une version
réduite d'un complexe bidimensionnel qui apparait dans la discretisation des traces du complexe de 1'élas-
ticité tridimensionnel. La clé de votte de la construction est une nouvelle estimation des fonctions polyno-
miales a valeurs tensorielles symétriques en termes de leur valeur au bord. Nous prouvons de nouveaux ré-
sultats pour le complexe original et montrons que le complexe réduit a les mémes propriétés homologiques
et analytiques que celui-ci. Cet article contient également une annexe avec des preuves d’inégalités de type
Poincaré—Korn pour les champs hybrides.
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1. Introduction

The development of computationally viable discrete elasticity complexes is a long-standing
problem in numerical analysis. Finite element versions of the elasticity complex typically require
a large number of degrees of freedom (DOFs) to deal with the symmetry constraint on tensor-
valued fields [1-6]; recently, advances on this topic have been made in [7] in the framework of
Finite Element Systems [8]. Particularly critical are DOFs attached to mesh faces, that cannot
be efficiently eliminated via static condensation. In this work, we study DOFs reduction through
serendipity. Serendipity techniques exploit the information on the boundary to fix the values of (a
subset of) internal DOFs while preserving polynomial consistency. When working with discrete
complexes, this reduction must be carefully designed in order to preserve key properties of the
original complex.

With face DOFs reduction in mind, we focus on the two-dimensional div-div complex [9] that
arises when considering traces for the three-dimensional elasticity complex on polyhedra (see [5,
Section 3.4]). Specifically, denoting by Q c R? a bounded connected polygonal set and by S the
set of symmetric 2 x 2 matrices, this complex reads:

1 1 5y Symeurl Lo divdiy 0
RT' Q) — H'(QR?) — H(divdiv,Q;S) — L*(Q) — 0, 0]

where “sym” denotes the symmetric part of a space or an operator, R7(Q) := P°(Q) + xP°(Q)
is the lowest-order Raviart-Thomas space [10], and a definition of the symcurl and divdiv
operators in Cartesian coordinates is given in (2) below. A discrete version of the complex (1) has
been recently obtained in [11] following the discrete de Rham (DDR) paradigm [12, 13]. A salient
feature of DDR constructions is the native support of general polygonal/polyhedral meshes,
which simplifies the discretisation of complicated domain geometries and/or the capture of fine-
scale features of the solution. Alternative approaches to the use of polygonal/polyhedral meshes
in the finite element framework include the fictitious domain method popularised by the work of
Glowinski and coauthors; see, e.g., [14,15]. Here, following the abstract framework of [16] (closely
inspired, through the bridges constructed in [17], by the ideas originally developed in [18-20]),
we derive a reduced version of the DDR complex of [11] that preserves both its homological
and analytical properties. The keystone of this reduced version is the estimate of tensor-valued
polynomials established in Lemma 11 below, which provides indications on which DOFs can
be discarded while preserving polynomial consistency. A comparison of the number of DOFs
between the full and serendipity div-div complexes for various element shapes is provided in
Table 1, showing gains between 13% and 27% depending on the polynomial degree and element
shape.

The rest of this work is organised as follows. In Section 2 we briefly recall the general setting.
The construction underlying the full DDR div-div complex is briefly recalled in Section 3, where
we also prove a complete set of analytical results (Poincaré inequalities, consistency, and adjoint
consistency) that complement the ones established in [11]. The serendipity version of the DDR
div-div complex is derived in Section 4. Through the sufficient conditions identified in [11], we
establish, in Theorems 20 and 24 below, that the serendipity and full complexes have analogous
homological and analytical properties. Finally, Appendix A focuses on Poincaré—Korn type in-
equalities for hybrid vector fields that are instrumental for the previous analysis.
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Table 1. Number of DOFs for the full ¢ serendipity discrete counterparts of the spaces
H'(T;R?) and H(divdiv, T;S) on a triangle, quadrangle, and pentagon element T for
polynomial degrees k ranging from 3 to 6. The relative DOFs reduction is in parenthesis.
The parameter 77 is defined in Assumption 10 below.

Discrete space ‘ k=3 k=4 k=5 k=6

Triangle, nT =3

H'(T;R?) | 2420(-17%) 3630 (-17%) 50942 (-16%) 6656 (-15%)
H(divdiv, T;S) | 2420 (-17%) 3933 (-15%) 5749 (-14%) 7868 (-13%)

Quadrangle, nt =4

H'(T;R?) | 3024 (-20%) 4434 (-23%) 6046 (-23%) 78 * 60 (-23%)
H(divdiv, T;S) | 3024 (-20%) 4737 (-21%) 67 *53 (-21%) 90 * 72 (-20%)

Pentagon, nr =5

H' (T; Rz) 36230 (-17%) 5240 (-23%) 7052 (-26%) 9066 (-27%)
H(divdiv, T;S) | 3630 (-17%) 5543 (-22%) 7759 (-23%) 10278 (-24%)

2. Setting
2.1. Two-dimensional vector calculus operators

Consider the real plane R? endowed with the Cartesian coordinate system (x1, x2), and denote
by 0; the weak partial derivative with respect to the i coordinate. We need the following two-
dimensional differential operators acting on smooth enough scalar-valued fields g, vector-valued

fields v = (}}), or matrix-valued fields T = (71! 712):

029 ) .
curlg = , divv:=0;v;+0207,
q (—0167 1V1 +0202
do— 01v1 0211 v 0201 —_01U12+62U2 @)
gradv:= 10z Dva)’ symcurl v := *0111127‘621/2 o |

. 01711 + 02T 0,711 — 01T
dlvr::( 1711 + 02 12), rot‘r:z( bT11 =01 12)‘
01721+ 02722 02721 —01T22

Defining the fourth-order tensor C such that

—T11+722

T — T11 7T

CTz _ 1+2 2 VT: 11 12 GRZXZ, (3)

TutTan g
5 21 T21 T22

we have symcurlv = Cgradv.

2.2. Mesh and notation for inequalities up to a constant

We denote by My, = T,u&, UV, a polygonal mesh of Q in the usual sense of [21], with T}, £, and
V), collecting, respectively, the elements, edges, and vertices and / denoting the meshsize. For all
Y € My, we let hy denote its diameter so that, in particular, h = maxyc7, hr. My, is assumed
to belong to a refined mesh sequence (M)~ with regularity parameter bounded away from
zero. We additionally assume that each element T € 7T}, is contractible and denote by x7 a point
inside T such that there exists a disk contained in T centered in x7 and of diameter comparable
to hr uniformly in k. The sets of edges and vertices of T are denoted by £ and Vr, respectively.
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By mesh regularity, the number of edges (and vertices) of mesh elements are bounded uniformly
in h: There exists Ny € N such that, for all £,

card(Er) = card(V1) < N VYTeT.

For each edge E € &, we denote by Vg, the set of vertices corresponding to its endpoints and fix
an orientation by prescribing a unit tangent vector ¢g. This orientation determines two numbers
(wWgv)vey, in {=1,+1} such that wgy = +1 whenever tg points towards V. The corresponding
unit normal vector ng is selected so that (£g, ng) forms a right-handed system of coordinates,
and, for each T € T}, such that E € £, we denote by wrg € {—1,+1} the orientation of E relative to
T, defined so that wrgng points out of 7.

From this point on, a < b means a < Cbh with C only depending on Q, the mesh regularity
parameter, and the polynomial degree k of the complex (see (8) below). We also write a = b as a
shorthand notation for “a < band b < a”.

2.3. Polynomial spaces

Given Y € M}, and an integer m = 0, we denote by P (Y) the space spanned by the restric-
tion to Y of two-variate polynomials of total degree < m, with the additional convention that
P~1(Y) = {0}. The symbols P (Y; R?) and P™(Y;S) denote, respectively, vector-valued and sym-
metric tensor-valued functions over Y whose components are in P™(Y). Finally, for each T € 7},
we denote by P"(£7) the space of broken polynomials of total degree < m on £r. Vector and
tensor versions of this space are denoted in boldface and the codomain is specified.

Denoting by sym : R>*? 5 T — ”;T € S the symmetrisation operator, the following decompo-

sitions hold:

P™T;S)=H™(T) o HO™(T)
with H™(T) := hessP"*2(T) and H™(T):=sym(x-x7) @ P™ ' (T;R?)),
where, for all v = (Z;) eR% vt = (,Ul%] ) denotes the vector obtained rotating v by an angle of —%

radians and
PHUT;S)=C™(T) e CO™(T)

with C"™(T) := symeurl P (T;R?) and Co™(T):= (x—x7)(x—x7) P"™%(T).

The following result will be needed in the analysis.

4)

Proposition 1 (Continuity of the inverses of local isomorphisms). Let m =1 and set, for ¢ = 2,
PUT) = span{(;70)% @ = (a1,a2) € N2, 2 < ay +ay < 0}, where y® := y["' y3% if y = (11, y2) € R2.

Then, rot : HO™(T) — P™~Y(T;R?), and, if m = 2, divdiv : C"(T) — P™ 2(T) and hess :
SB™(T) — H™2(T) are isomorphisms with continuous inverse, i.e.,

”v”LZ(T;[RZXZ) 5 hT ||l‘0tv||L2(TyR2) V‘UEHC,m(T), (5)
Vil 2 (7 m2x2y S W7 ldivdivoll 2 YveCo™(T), (6)
lall 2¢r) < 17 |ess g L2(T;R¥*2) vV qeP"(T). )

Proof. Inequality (7) is proved in [11, Lemma 9]. The proof of the other inequalities hinges on a
similar scaling argument, not repeated here for the sake of brevity. 0

Given a polynomial (sub)space X" (Y) on Y € My, the corresponding L?-orthogonal projec-
tor is denoted by ng”('y. Boldface fonts will be used when the elements of X™(Y) are tensor- or
vector-valued and, for T € 7T}, we additionally denote by n_ck,‘rynT, X € {H,C}, the Lz-orthogonal
projector on X% (T).
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3. Full DDR complex, Poincaré inequalities, and consistency

In this section we briefly recall the discrete div-div complex of [11], for which we prove a complete
panel of properties including Poincaré inequalities, consistency, and adjoint consistency results
that complement the ones established in the previous reference.

3.1. Spaces

Throughout the rest of the paper, the integer
k=3 (8)

will denote the polynomial degree of the discrete complex. The discrete counterparts of the
spaces H'(Q;R?) and H(divdiv,Q;S) are, respectively,

V= {Eh = (D re, WBEes, (v, Goy)yey,)
vr € P72 (T;R?) forall T e Ty,

(9a)
vp e P4 (E;R?) forall E€ &),
vy €R?and G,y e R* % forall V e Vh},
Zk L. {Th—((T’HTr 'HT)T T (TE,DTE)Eegh,(Tv)Vth)-
T3 7 € HF (D) andrHTe’HC'k 1(T) forall T € Ty, 9b)

15 € PF3(E) and D, p € P¥2(E) forall E€ &,
Ty eSforall Ve vh}.

The interpolators If, , : C'(Q;R?) — V} and If ! : H*(Q;$) — Z}~! are obtained collecting
2_orthogonal projections on the polynomial components: For all v € C'(Q;R?) and all 7 €
H*(Q;9),

k k-2 k—
Iy vi= ((”P'TvlT)TET ,(ﬂpévw)EEgT,(v(xv),grad v(xv))V€VT), o

I§h1 —((Jrl;_t‘lT‘qT, HTTlT)TGTh (”PE(T|EnE nE) JI,PE(sET) e T,(r(xv))V€VT ,

where xy denotes the coordinate vector of the vertex V € Vr while, for all E € £, 8, denotes the
derivative along the edge E in the direction of ¢£r and we have set, for the sake of conciseness,

OFT = atE (T|EnE . tE) + (diVT)|E ‘RE.

As customary for DDR methods, we denote the restrictions of spaces and operators to a mesh
elementoredge Y € T,U&}, by replacing the subscript “h” with “Y”. Such restrictions are obtained
collecting the polynomial components on Y and its boundary. Given T € 7Ty, for ZZ we will also
need its restriction KgT to the boundary of T, obtained collecting all the polynomial components
that lie thereon.

3.2. Reconstructions

Let a mesh element T € 7, be fixed. The DDR method hinges on the reconstructions of differen-
tial operators and of the corresponding potentials described below.
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3.2.1. Symmetric curl and vector potential

The key integration by parts formula to reconstruct discrete counterparts of the symmetric
curl and of the corresponding vector potential is the following: For any v : T — R? and any
7: T — S smooth enough,

fv-rot‘r:—fsymcurlv:‘r+ Z a)TEf v-(Ttg). (11
T T Ee&r E
The full symmetric curl CSym T — Pk1(T;S) is such that, for all V€ V
k-1 e ) ) k=1,
chsym,TET-TT— fTVT rotrr + Z wTEfEVgT (trtE) VTre P (T;S), (12)

Ee&r
where vge, € P*(Er;R?) n C°(0T;R?) is uniquely defined by the following conditions:
ﬂl,;;é(ng)\E =vg forall Eef&r,
0, (e )E(Xxy) =Gy vty forall E€fr and VeV, (13)
and wvg, (xy)=vy foral VeVr.

The discrete symmetric curl ny’nll’T :Z’} — ;’}’1, acting between the discrete spaces in the com-
plex, is obtained setting, forall v € Z’},

CfYIrllT (n’HT(Csym Yy ) ”;-f]"l (nyréT T)
(”PE(atEvt‘:z nE] atEvgl tE) e, (CG'}'V)VEVT)’ (14)

with C as in (3). The global symmetric curl Qf‘l 4 VE — 2% 1issuch that, forall v, € V¥,

k-1
(formn” )IT ckliv,  VTET,

Notice that this definition makes sense since the discrete curl components at vertices and edges
are single-valued. The vector potential P’{, Tt Z’} — P¥(T;R?) is such that, for all V€ K’},

fP"‘,'TgT'rot‘rTz—f ny_riTyT:rT+ > a)TEf ve, - (T7tg) Yrre HOMNT). (15)
T T Ee&r E

We recall the following polynomial consistency property from [11]:
Py I v=v  YveP*(T;R?). (16)

Remark 2 (Validity of (15)). Relation (15) remains valid for all T € HF1(T) @ HEX1(T), as

can be checked taking T7 = hessqr with gr € Pk+1(T) and noticing that both sides vanish
(use rothess = 0 for the left-hand side and the definition (12) of nym p with 77 = hessgr
along with rothess = 0 for the right-hand side). This implies, in particular, that (15) holds for
all Ty e P¥H(T;S) c HAL(T) @ HOFH(T).

3.2.2. Div-div and tensor potential

The starting point for reconstructions in ;’;—1 is the following integration by parts formula,
corresponding to [22, Eq. (2.4)] (see also [23, Eq. (2)]) and valid for all tensor-valued functions
7:T — S and all scalar-valued functions g : T — R smooth enough:

fdivdivrq:frzhessq— Y wre f(‘rnE-nE) 6,,Eq—f65'rq
T T E€5T E E (17)
- ) wre Y, wpy(Tng-tp) (xy) gxy).
EE(‘:T VEVE
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For all T € 271, the discrete div-div operator DD% 2 : £k-1 — Pk¥=2(T) is such that

fTDD’;‘ZIT qu‘/;"r»H,T:hesqu— Z wTE(LTEanEqT—LDT,EqT)

Ee&r
- Z WTE Z wgy (Tyng-tp) qr(xy) VqTEPk_Z(T), (18)
Ee&r VeVg

while the tensor potential Pg’Tl : ;’}’1 — Pk-1(T;s) satisfies, for all (gr,vr) € Pr+L(T) x
HC,k—l(T),

fP)k:,_;IT:(hesqu+vT):f DD’;—ZITqT+ Y wTE(f P’{];IEG,,EqT—fDT,EqT)
T T Fet; E E

+ ) wrg ), wpy(Tvng-tp) qr(xy) +f T pivr. (19)
EEgT VEVE T ’
Above, for all E € £7, denoting by T, := (15, Dy,5, (Tv)yey,) the restriction of 7, to E, P>]§_EIIE €
Pk-1(E) uniquely defined by the following conditions:
P’{EIIE(JCV) =tyng-ngforall Ve Vg and né“;é (P’{ElIE) =Tg.
We recall, for future, use, the following result proved in [11, Lemma 4]:

k-1 k-1 _ k-1
PZ,T Ogsym,T - Csym,T' (20)

expressing the commutativity of the following diagram:

k-1

Kk SmT ke
Vi — PYAUT;S)

The global div-div operator DD’;;2 : ;’;L‘l — P*=2(T},) acting between spaces in the discrete
complex is such that, forall 7, € g;‘l‘l,

(bDk2z,) =DDE?z,  vTeT;

IT

3.3. L?-products and norms

The discrete L?-products in V¥ and 25! are defined setting: Forall w,, v, € V¥ and allv,, 7, €
zk—l
=n

(ﬂhrﬂh)v,h = Tezn (ﬂT’ET)V,T' (Eh’lh)z,h = T;Th (ET’IT)Z,T’
where, for all T € Ty,
(ET’ET)V,T ::fTPIIC/,TﬂT'PI‘C/,TETJrSV,T(ﬂT’ET)’ @1
(ET’IT)z,T = fTP;C:,_TIET : P)k:,_TlIT +s5,7 (v Ty). 22)

Above, sy, :K’} x K’; —Rand sz 7: ;’}‘1 x ;’;‘1 — R are local stabilisation bilinear forms. We
refer to [11, Section 4.2] for the precise expression of sz 7 and we set

svr(wyp,vp)=hr ) f (P]!C/,TET - w5r) : (P]IC/,TET - ”Sr)' 23)
EEgT E



8 Michele Botti, Daniele A. Di Pietro and Marwa Salah

By (16), this stabilisation bilinear form satisfies the following polynomial consistency property:

sv.r (L pwwg) =0 ¥ (w,v,) e PH(T;R?) x VA,

so that
(!"C,yTw,gT)V’Tszw-P"C,,TyT vV (w,v,) e P (T;R?) x VE. (24)
We define the following L?-product norms: For e € T, U {h} and all (v,,7,) € V¥ x ZF-1)
Iy =@or)y., |z, =(T.2.)5. (25)

Given T € Ty, we also define the local component norms ||-lly,7 on Z’} and [|-llz,7 on g’;—l such
that, forall (v, ;) € VA x 241,

Ml 7= 10712 ey * T Vel + 2 (W3 1v P+ 1% |Guv ), (26)
€Ecr eVr
2
HlIT“l;,T = ||T7-L,T||i2(T;R2><2) + ”T’(;-L,T L2(T;R2:2) +EZZ (hT ”TE“iz(E) + h?Y’“ “ DTvE”iZ(E)) @7
€cr
+ Y Rilryl.
VeVr

The corresponding global component norms, respectively denoted by [I-lly,, and |I-lls 5, are
obtained summing the squares of the local norms on every T € 7; and taking the square root
of the result. The following equivalences hold uniformly in /: For all e € T, U {h} and all (v,,z,) €

VExzk,
| Ve H Ve’ | e “ S (28)
The second equivalence has been proved in [11, Lemma 9]. The first one follows from similar
arguments, not detailed here for the sake of conciseness.
For future use, we note the following boundedness properties of the local interpolators, that
can be proved using trace inequalities: For all (v,7) € H3(T;R?) x H*(T;S),

v

v, I. z,

k 2 3

%, o], S 000z iy + e 101 ey + B 0y + B gy (@990
k-1 2

H|12'TTH|Z,T S, ”T”LZ(T;[RZXZ) +hr |T|H1(T;[R2X2) + hT |T|H2(T;[R2X2) (29b)

The details of the proof of (29b) are given in [11, Proposition 12].

3.4. Poincaré inequalities

The goal of this section is to prove the following result.

Lemma 3 (Poincaré inequalities). The following properties hold:
(1) Forally;, € K’; such that
3 fp’{,yTgT-wzo VweRTHQ), (30)
TeT,?T
it holds, with hidden constant independent of v,

leally,, < |

(2) Denote by |-,-]s,n an inner product in ;z‘l with induced norm equivalent to |||z,
uniformly in h. Then, for all T, € 25~ such that

ckl oy

—syrn,h—h”‘z,h; (31)

- k-2
Ih’ﬂh]z,h_o VghekerDDh ,
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it holds, with hidden constant independent of T,

Iz llls,., < OO 2 (32)

L

2@’
Remark 4 (Poincaré inequality for the symmetric curl). The condition (30) can be reformulated
in terms of the discrete L?-product in th observing that the left-hand side of this expression is
in fact equal to (v, I "C/ R Wv,n by (24). Considering a more general product [, -]y, then amounts
to replacing the L2-product in (30) with a weighted version with positive and uniformly bounded
weight function.

3.4.1. Preliminary results

This section contains preliminary results required in the proof of Lemma 3.

For all E € &, recalling the estimate of the L%-norm of functions on the unit segment [0, 1]
corresponding to the first display equation in the proof of [11, Eq. (58), Proposition 10] and using
the isomorphism [0,1] 3 s — xy, + s(xy, — xy;) (with V; and V; respectively denoting the first and
second vertices of E in the direction of £g), it is inferred that: For all m € N and all ¢ € P™(E),

1/2
o TR VEZVE | (x1)]. 33)

Il 2 < Hﬂ%f(p

Let now v, € ZgT and let vg, be given by (13). For all E € £, we decompose it into
its tangential and normal components as vg, g = VnrRE + Vg, ptg and, for « € {n,t}, we let
VeoT € Pk (Er) be such that (Ve o7)|E = 0TEV. E fOr all E € E7. We additionally denote by d¢,,
the piecewise tangential derivative on 0T such that (0¢,,) g = wrg0s, forall E€ E7.

Proposition 5 (Estimate of the tangential derivative of the boundary reconstruction). Let
TeTh vy € Z]gT, and vg, given by (13) be such that [0, v¢ a7 = 0. Then,

Y |CGyy|, (34)
VeVr

”6tar Ver ||L2 (0T;R?) N ””;CD_ET (Ot57 no7) hr HaiaT Vt,or

+
L2(0T) L2(0T)

where n;g-gr denotes the L?-orthogonal projector on P*~3(Er).
Proof. Denote, for the sake of brevity, by Nyr(ve,) the quantity in the right-hand side of (34).
We start using a triangle inequality along with Holder inequalities and the fact that g and nf are

unit vectors to write

“atar ver “L2 (0T;R2) S ”6taT Vn,BT”LZ(aT) + HataT VtoT “LZ(aT) =31+ T (35)
By (33) applied to each E € E7 with (¢, m) = (8¢, Vn,E, k— 1), it is readily inferred that
T S| wh 2, Otor vmor) | 1 g, * 11 T Pyt SNor(ve). 69

where the conclusion follows noticing that, for all E € £ and all V € Vg, |0¢,vpp(xv)| =
|Gy vt -ngl=|CGyyng-ngl SI|CG, v| and using card(E1) < 1.

Let us now turn to T. Let ¢ € P¥(Er) be such that Jor ¢ =0.Forall V e Vr shared by the edges
E,, E; € £ numbered so that E» follows E; travelling along dT according to its orientation, define
the jump [@]y = @, — @5, - Then, it holds

loll 2or) S Br 10000l 201y + hr* X Nyl (37)

VeVr

Apply this inequality to ¢ = 0y,, Vs 57 and denote by T, ; and T » the terms in the right-hand side.
Clearly, ¥5; = |I0%BT Vot 20 < NaT(ng). For the second contribution, we start by noticing
that,forall E€ Erand all V € Vg, 0y, Vi o7 (%v) = —CG,,'VnE-tE+% tr G, v so that, in particular, for
all Ve Vr, [0¢,, Ve,o1lv = CGy v RE, - tg, —CGy v RE, - tg,. Using this fact along with card(£7) S 1,
we conclude that [T;2| < h%zszT ICGy v = NgT(VgT). Gathering the above estimates on T,
and ¥, finally gives T, < NaT(ng) which, combined with (36), yields (34). O
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Proposition 6 (Estimate of the discrete sym-curl norm of the vector potential). Forall T € T,
andallv, € Z’}, it holds

—1/2
+ h
x T
Tl * &

<SNEs L vz r.  (38)

k
H symcurl Py, rv 2(g;R2) ~ " =sym T2

k
Py rvr—ve,

Proof. Recalling Remark 2 to write (15) for T € ’Pk_l(T; S) and using the integration by parts
formula (11) for the left-hand side of the resulting expression, we have

fsymcurlPVTvT T= fCSymTvT T+ ) wrE E(P]‘C/,TET_UET)'(T tg).
Ee&r

Taking T = sym curlP"‘, 7V, using Cauchy-Schwarz and discrete trace inequalities in the right-
hand side, and simplifying, we infer that

k
Py rv—ve,

”symcurlP’f,yTyT

=1/2
+ h
LZ(T;[szz) Z T

sym TE
E€£T

L2(T;R2x2) ™ |

=T +%.

L?(E;R?) 39)

We proceed to estimate the terms in the right-hand side.
(i) Estimate of T,. Using, in this order, (20), the definitions (25) of ||-|l5,r and (22) of the discrete

L2-product in ;’}’1, and the norm equivalence (28), we can write: For all v, € Z’},

_ | pk-1 k-1 k-1
T = HPZ TCsym rlr L2(T;R2x2) |gsym T= T”Z,T S |”—sym TUT|||z T- (40)
(i) Estimate of T». Let w € RT ' (T) be such that
w= v andfa wa:fa Uty (41)
.[OT faT &r gy (0T BOT T [y Do THor

To check that it is possible to match these conditions, write w(x) = z+ (x — x57)g with z € R2,
q € R, and Xo7 := (377 [57 %, and notice that the first condition in (41) yields z = 37 f37 ve,, while
the second one is fulfilled taking q = ﬁ Jor0tor Vegy-

Using triangle inequalities, we have

Eengh " w- ”€T||L2(E R2)+ Z hy'

k .
PVT T W Z.Tz,l +52,2.

L?(E;R2)

Noticing that w — vg, € C°(T; R?) has zero average on 0T, applying a Poincaré-Wirtinger
inequality on 4T as in [16, Lemma 15], and concluding with Proposition 5 gives

Ton S 010y (ve, — W) 25, 02y SNCEn 1 (27 = IE pw) s = NCKL pwplls 7, (42)

where, in the second step, we have additionally used the consistency of the boundary reconstruc-
tion (13) applied to I v,7 W, while the conclusion follows recalling that ck- Iy, K v, 7w =0by thelo-
cal complex property for the DDR sequence.

Let us now consider T ,. By polynomial consistency (16) of PX
hence

_1
Tpo= Y hy”?
Ee&r

symT

k _
V. it holds PV TIV Tw=uw,

(43)

k k k
PV,T(ET Iy, T“’) 12 (E;R2) Shr HPVT( Ur !V,T'”) 12(T;R2)’
where the conclusion follows from discrete trace inequalities along with card(£7) < 1. Taking, in
the definition (15) of PV mTE H 51 (T) such that rotT = P"‘, @ —l’f, ;W) (this is possible
since rot : HO1(T) — ’Pk(T R?) is surjective by Proposition 1) and using Cauchy-Schwarz
and discrete trace inequalities in the right-hand side along with (5) to write |7 L2(T:R272) <

hr ||l‘0tT||L2(T;R2) = hTIIP"“/'T(gT —!l“,yTw) ||L2(T;Rz). we obtain, after simplification,
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ck

L2(T;R2) ™ ~hr (| +h [ve, = w2 or ey

<ines

k k
”PV,T (ET _!V,Tw) sym V7 12(T;R272)

sym, Tvaz T’

where the conclusion follows using, respectively, (40) and (42) to estimate the terms in paren-
theses. Plugging this estimate into (43), we finally get T2 < || gfy—ni Vs T, which, combined
with (42), gives

k-1
T s||cm real]., - )
(iii) Conclusion. Plug (40) and (44) into (39) to estimate the first term in the left-hand side of (38)
and notice that the estimate of the second term in the left-hand side of (38) is precisely (44). O

3.4.2. Proof of the discrete Poincaré inequalities

Proof of Lemma 3.

(i) Poincaré inequality (31) for nynll n

Letv, € Zk be such that fQ vh w =0 for all w € RT(Q), with the global reconstruction
operator P’f, defined such that (P WVIT = "C, vy forall T € Tj,. Owing to the uniform norm
equivalence (28), the definitions (25) of the |- IIV r-norm and (23) of the stabilisation bilinear
form, and the fact that hr <1 for all T € T}, we infer

2
LZ(Q RZ) Z SV'T(ET'ET)

el < Izl = 26 e
TeT,

) (45)

2 -1 pk
12(Q:R2) T;_IZE;(:ThT “PV,TET_UFJT
We notice that, for all neighboring elements T1,T» € 7; sharing the internal edge E, we
have (e iE = (Wgp)iE = Vg. Letting, for any boundary edge E < 0T N 0Q, Vg = (ve, )k
and applying the second inequality of Proposition 27 below to the hybrid vector field u;, =
(P}, 72 ) 1eT; (PE)Eeg,), we obtain

S L P ER)

2

k
P, v
H V.h=h|| 12(q;r?)

< 2 -1 pk 2
N ”SymcurlPVT Vr Lz(Q;szg)+ 2 hr ”PV’TET_D& I2(E;R2) |

Te T EEgT
Plugging the previous bound into (45) and using Proposition 6, (31) follows.
(ii) Poincaré inequality (32) for DDk_2
Lett, € (kerDDk 2)L where (ker DD]C )L« Zk 1 denotes the orthogonal of ker DD’C 2 with re-
spect to the inner product [+, 5 j. meg to the surjectivity of the operator divdiv : H2 ;S) —
L%(Q) (cf. [24, Theorem 3.25]), the commutation property stated in [11, Eq. (19)], and the bound-
edness of the global interpolator I g‘hl resulting from (29b), we infer the existence of a tensor field
T € H2(Q;S) such that

DD 2z, = divdivr = DDf 2 (I )

(46)

and (HIMTMM 17l 2 (0,m2-2) S | DDE 22 o

Therefore, we have that T, —lg’hlt € ker DD',;_Z, ie.,

1
[Ih—lg_hlr,yh]zvhzo Vv, € (kerDDﬁ_z) ,
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namely, 7, can be regarded as the [-,]5 ;-orthogonal projection of Ik l'r on (ker DDk 2) . Thus,

the norm induced by [, ]z, of T, is bounded by that of I k= hl‘r, and the assumed uniform

equivalence between the induced norm and |||, along w1th ‘the inequality in (46) yields the
result. 0

3.5. Consistency of the discrete L2 -products

Lemma 7 (Consistency of the discrete L>-products). The discrete L?-products satisfy the follow-
ing consistency properties:

(1) Forallwe H3(Q;R?), define the linear form €y j,(w;") :K’;l — R such that

k k
Cyn(wivy)= Y | w-P} v, - (IV’hw’Eh)V,h Yu,eV;.
TeT,?T
Then, under the additional regularity w € H**1(T;,;R?), it holds
Cynlw;v
sup M < hk+1 |U|Hk+1 (E;RZ) . 47)
v,evivol ||Eh ||V,h

(2) Forallve H*(Q;S), define the linear form €5 ,(v;-) : 25~ — R such that

. pk-1 k- k-1
Csn(vizy)= ) | viPy T, - (I hvrh) W YEIEZ

TeTy
Then, under the additional regularityv € H*(T},;S), it holds

Cxn(v;T))

sup  ———— = < pk IVl gk (75, w22y - (48)
7,€Z8 o) I, ||>:,h
Proof.

(i) Proof of (47). By the polynomial consistency (24) of the discrete L?-product in VX, we can write
Cyn(w;v,)= Y (D) +Ta(T)), (49)

TeTy

where, recalling that 71'  denotes the [*-orthogonal projector on P*(T;R?),

Tl(T):=fT(w_”’];>,TwlT)'PIIC/,T£T’ Ta(1):= (VT(w ”’PTw‘T) T)V,T'

For the first term, a Cauchy-Schwarz inequality followed by the approximation properties of
k T (see, e.g., [25, Lemma 3.4] or [21, Section 1.3.3]) and the definition (25) of the |-|ly, 7-norm
give

< hkrl Wl et (7,2 ””T”V T (50)

IT1(D)| < | w7k o Py 1y

L?(T;R?%) L?(T;R%) ™~
For the second term, a Cauchy-Schwarz inequality, the local norm equivalence expressed by (28)
with ¢ = T along with the boundedness (29a) of I ’{,,T, and again the approximation properties of
xk,  give
P, T
k k
1T2(T)l = “lv,T (w _”P,TWIT) ”Vj lzrlly r

3 .
5(Z()th|w_”]7c>,TwlT|Hi(T.Rz))HET”V,T 6D
= ;

k+1
Shrt Wl et (7, 2) |zl v,T"
Using (50) and (51) to bound the terms in the right-hand side of (49), we obtain (47) after applying
a discrete Cauchy-Schwarz inequality on the sum over T € 7j,.
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(i) Proof of (48). The proof coincides with the estimate the term ¥; in the proof of [16, Lemma 15]
with ¢ = k — 1, to which we refer for further details. O

3.6. Adjoint consistency of the discrete differential operators

Adjoint consistency is a notion relevant in the context of nonconforming methods, and measures
the failure to satisfy a global integration by parts formula. In the analysis of numerical schemes,
such integration by parts formulas are typically the ones used to derive the weak formulation. To
state the following theorem, in which adjoint consistency errors are estimated, we denote by n
the normal vector field on 0Q pointing out of Q2 and by ¢ the tangent vector field oriented so that
(t, n) forms a right-handed coordinate system.

Lemma 8 (Adjoint consistency). The discrete differential operators defined in Section 3.2 satisfy
the following adjoint consistency properties:

(1) Givenve H?(Q;S) such thatvt =0 ondQ, we define the sym curl adjoint consistency error
Coym curl, 1 :ZZ —R by: Forallv, € Z’;‘;,

o Ve (yk-1, k-1 k
Csymeurt,h (V3 V),) = (1z'hv,gsym,hyh)2h+ ZTfTrotuPV,TyT. (52)
! TeTy,

Then, further assumingv € Hk(’Th; S), it holds: For all v, € ZIZ’

k-1

(2) Given q € H*(Q) such that q = 8,,q = 0 on 0Q), we define the div-div adjoint consistency
error Cgivdiv,n : 251 — R by: Forallt, € 21,

|€symcurl,h (U;Eh” S n* |v|Hk(Th;[R€2X2)

Caivdiv.h (6T ),) 5=[ DD} %1, - ¥ /hessq:Pg,_TlIT' (54)
Q TE'Th T

Then, further assuming q € H**2(Q), it holds: For all T, € Z¥~1,
|Qfdivdiv,h (q;Ih)l S h* |67|Hk+2(7’h) “Ih ”z,h' (55)

Remark 9 (Interpretation of adjoint consistency errors). The adjoint consistency errors (52)
and (54) respectively measure the failure to satisfy at the discrete level the following global
integration by parts formulas (with L2-products replaced by discrete counterparts): For v €
H'(Q;S) such that v =0 on dQ and all v € C®°(Q;R?),

fv:symcurlv+f rotv-v=0

Q Q

and, for allqEHz(Q) such that g =9, =0 on 0Q and all T e C®(Q;S),
fqdivdivr—fhessq:rzo.
Q Q

Proof of Lemma 8.
(i) Proof of (53). By definition (22) of the local discrete L?-product in zlfl‘l and the commutation
property (20), it holds that

esym curl, i (v; Eh) =

k=17k-1. . k-1 k-1 k-1 bk
ZT fPz,T!z,TU\T-Csym,TﬂT"'SZ,T (!z,TUIT’stm,TET)"'fTrOtv Pv,TET
TeTy

. (56)
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Accounting for Remark 2, it holds, for all (T 1) re7;, € X7e7;, PFUT;S),

)3

k k-1 .
fPv,TET'YOtTT+fCsym,TET-TT- 2 wTEf ve, - (Trtp)
rer;, [T T E

Ee&r

Subtracting this expression from (56), we obtain

k-1 yk— k— k-1 k—
esymcurlh(v!vh) % [/ P): TIZ Tv|T TT) Csym V7 + 3, T(IZ,Tv|T’CsymT T)
Te

+ )

frot(v—rT)-P’f,,TyT+ > wTEf ve, (Tr—V) g
TeTy E

Ee&r

)

where we have additionally introduced v|gtg into the boundary term using the fact that this
quantity is single-valued if E is an internal edge while it vanishes if E < 6Q. Applying the
integration by parts formula (11) to the third term leads to

Qfsymcurl,h (v;ﬂh) = Z
TeTh

f(v T7)- symcurlPVT = 2 “’TE[E(VST_P]!C/T ) (Tr-v)-tg|.
EEg'['

k-1 k- k-1 k-1 k-1
_[(Pz 13 TIT = TT) Csym,TET+52,T(!Z,TUIT’stm,T£T)

TeTy

(67

Take now 77 = xk L7 for all T € Tj,. Using Cauchy—Schwarz inequalities in the right-hand

Pr
side of (57) followed by the approximation properties of P T ! and n’,;, L (see, respectively, [11,
Proposition 14] and [21, Theorem 1.45]) as well as the c0n51stency property of the stabilisation

term proved in [11, Proposition 14], we get

| Csymeurl, i (v; Eh) i

k k-1
5 h Ilek (TniR2%2) sym,TET

p(

2 k-1 k-1
L2(T;R2%2) tszr (gsym,TET’gsym,TyT)

1/2

% 2 2
+ “symcurlPV,TyT L2 (ER2)

-1 k
L2(T;R2%2) + hT E;‘T H Vep = PV,TET

Let us consider the factor in square brackets. Using, respectively, (20) along with (40) for the first
term, the definition (25) of the Lz-product norm on gﬁ_l for the second term, and (38) for the
third and fourth terms, this factor is < | gfy—r}l Wh %1, thus concluding the proof of (53).

(ii) Proof of (55). Combining the definitions (54) of the adjoint consistency error and (19) of the
tensor potential, it is inferred that, for all (g1) TeT, € XTeT, Pk (T,

Chivaivh (4,T,) = Y

f (- qr) DD5 27, - f hess(q-qr): P,

TeTh
+ Z WTE [fPZE_EanP(q CIT fDrE q- QT)
TeTy Ee&r
+ Y Y org ), wpy@vng-tp) (g-qr)(xy),
TeT,Ee&r VeVg

where the insertion of g and 8, g into the boundary integrals is possible since these quantities
are continuous at internal edges and vanish on boundary edges. Taking g1 = nk“ rqforal TeTy,
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k+1

and using Cauchy-Schwarz inequalities followed by the approximation properties of 7./, it is

inferred that

2

| €aivaiv,n (0.2),)| S n* |67|Hk+2(7'h) 2o + ”Pz,TIT
= L2(T)

4 k2. || k-1
h 4| ook 2e, Y

s

1
2 3
LZ(E)+h3T||DTvE“iZ(E)+ > h2T|Tv|2) } )

EEST VeVE

Using [11, Eq. (57)-(59)] for the first three terms and the definition (27) for the last two, we infer
that the quantity in braces is < |z llz,7, hence < || 24| 5 by the norm equivalence (28) written
for e = T, thus concluding the proof of (55). g

k-1
hr ”PZ,E g

4. Serendipity DDR complex

In this section, we design the serendipity version of the discrete div-div complex. The construc-
tion aims at obtaining a significant reduction in the number of DOFs while preserving the ho-
mological and analytical properties of the original complex described in the previous section.
Denote, as before, by k = 3 the polynomial degree of the discrete complex. Following [16], we
consider the construction illustrated in the following diagram:

Ik ck-1 DDk-2
1 vk koot k-1 h k-2 0
RT () >V, > X, —————> PYE(T) ——— 0
7‘ I
Ev,h l, >ﬁvyh Ez,h { )ﬁzh (58)
\ \
~k \ ~k-1 \ Ak_z
1 lV,h ~k gsym,h Ak 1 D k2
RTHQ) >V, — P (77,)—)0
where, according to [16, Egs. (2.2) and (2.4)], we have set
k= ok ~k-1 552 .- ppk-2
Iy, =Ry Iy,  Con,=Rs thymh vjp  DDp =DD} “Ejy . (59)

The purpose of the rest of this section is to:

* provide a precise definition of the extension and reduction operators Ey, ;, EV, w Es p
Ez‘ 1,» as well as the spaces and operators that appear in the bottom (serendipity) com-
plex;
» prove that the properties of the top complex are inherited by the bottom complex.
This latter point makes the object of Theorems 20 and 24 below, which are therefore the main
results of this section.

As most of the developments are local, in what follows we denote by T € 7}, a generic mesh
element without necessarily specifying this fact at each occurrence. As usual, a local version of
diagram (58) on T is obtained taking the restriction of the spaces and operators collecting the
components attached to T and, when present, to the edges and nodes that lie on its boundary.

4.1. Estimate of symmetric tensor-valued polynomials

Throughout the rest of this section, we work under the following assumption:

Assumption 10 (Boundaries selection for serendipity spaces). For each T € T}, element of the
mesh, we select a set Er of nr = 2 edges that are not pairwise aligned and such that, for all E € Er,
T lies entirely on one side of the line Hg containing E. For all E € ST, denoting by xg its middle
point and defining the scaled distance function to Hg by dg(x) = hy wTE(x XEg) - RE, we assume
the existence of a real number 0 > 0 such that dg(xg) =0 forall E, E € ST E#E'.
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From this point on, the hidden constant in a < b (see Section 2.2) will possibly depend also on
the boundaries selection regularity parameter 6.

Lemma 11 (Estimate of symmetric tensor-valued polynomials). Let m = 0 and let Assump-
tion 10 hold. Let T € Ty, be a mesh element. Then, for allt € P"™(T;S), it holds

1Tl 27 meey S || 20 g
12(T;R22) S || T T
12(T;R2¥2) H,T 12(T;R2¥2)
+ Z ( h? T[PE ('r|EnE nE) LZ(E)+h3¥2 ||6ET||L2(E))+hT Z [T(xy)]. (60)

Ee&r VeVr

Remark 12 (Reduction by serendipity). Lemma 11 clearly shows which polynomial components
;’FI can be reduced by serendipity, namely the ones in H*~1(T). As it will become clear in
what follows, in order to preserve the homological properties, a corresponding reduction of the
components of Z’} in Pk2(T) is required; see Remark 15 below.

Proof of Lemma 11. Let T € P™(T;S) and denote, for the sake of brevity, by AV'7(r) the right-
hand side of (60). We start by estimating ||divdiv ]| L2(1)- Using the integration by parts for-
mula (17) with g € P™~2(T), inserting JT;”_L ; in front of T in the first term in the right-hand side
(since hessq € H'™ 4Ty c H™3(T)) and 7[ 2 in front of Tng - nE in the second term (since

Onyq € P 3(E) c P™2(E)), and using Cauchy—Schwarz along with discrete trace and inverse
inequalities, we infer fT divdivt g < h7;, 2./\fT(‘r)IIqII 12(m- Taking g = divdivr, simplifying, and
multiplying both sides by % yields

hT ”diniVT”LZ(T) SNT(T) (61)
By (4), T can be decomposed as follows:
T =symcurlv +v, (62)

with v € P 1(T;R?) and v € CS™(T). Since v is defined up to a function in RTYT), we can
assume that

f v=0 and f Oty VeoT =0, (63)
oT oT

where we remind the reader that, as in Section 3.4.1, 0¢;, and v 47 are, respectively, the broken
tangential derivative and tangential component of v on 07.

We next proceed to estimate the L?-norms of the terms in the right-hand side of (62). To
estimate [|vll ;2 (7. g2x2), we start with (6), notice that divdivv = divdivt (since divdivsym curl = 0),
then invoke (61) to write

IVl 2 (7;mex2y S W7 Idivdivoll 2 gy = B Idivdivel 2 SNT(@). (64)

To estimate “ symcurlv|| 12(T:rex2) We start by using a discrete inverse inequality followed
by [16, Lemma 13] to write

m+1-
TITU

Hsymcurlv“Lz(T w22 S Shil Vil (rmey S hyt (”Jl' ) +hy? 1ol 2 or;m2) |- (65)

L?(T;
We next proceed to estimate the terms in parentheses, starting with || vl ;2 (57.z2)- Since v has zero
average on 07, by a Poincaré-Wirtinger inequality on 0T we infer

[ ”||L2(6T R2) ~ S hr ||6t6Tv“L2(6T R2) * (66)
Decomposing vs7 into its normal and tangential components, and using triangle and Hélder

inequalities along with the fact that ng and ¢ are unit vectors, we get

06, vl 2 (OT;R2) = |0ey vnor “LZ(aT) +[0t5r veor | 12 @T)" 67)
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Since, for all E € £t, 8¢, vp, g = (sSymceurlv)ng - ng = (v —v)ng - ng (cf, respectively, [23, Eq. (3)]
and (62)), we can use a triangle inequality to write

”atar Un,oT “iz(aT)

S 2 (“TIE"E ' "E”iZ(E) +|viene- "E”iZ(E))
Ee&r

+hg Z |T(xV)nE'nE|2+”lenE'nE”iZ(E) 68

2
S 2 (Hng,;EZ(TIE"E'"E) Py
€VE

Ee&r 2E)
Shi'Nr(@)?,
where the second line follows from (33) applied to ¢ = T|gnE - ng, while the conclusion follows
using the definition of N7 () for the first two terms and a discrete trace inequality followed by (64)
for the last term. To estimate [|0¢,, Vs, a7l [2(97), We proceed in a similar way as for the estimate of
%> in Proposition 5 (using the fact that d¢,, v 97 has zero average on T) to infer

+h? Y |symcurlv(xy)|
VeVr

||6t6T Vt)aT”LZ(@T) ’S hT ”6%61 Veor 12(8T)

1/2
ZhT(Z MEH—UW§@J +hi? Y |ry) —v(xy)|
Ee&r VeVr

1/2
S hT( )y ||6Er||§2(E)) +hyt Y T+ R vl 2 gy
Eeér VeVr
where, to pass to the second line, we have used [23, Eq. (4)] to write O%E Vi g = 6gsymcurlv =
6 g(t —v) for the first term and (62) for the second, while, to pass to the third line, we have used
triangle inequalities followed by discrete inverse and trace inequalities along with card(€7) =
card(Vr) <1 to treat the terms containing v. Combining the definition of A7 () with (64), we
conclude that

10651 vs0rll 27 S i “Nr(@). (69)
Plugging (68) and (69) into (67) and the resulting inequality into (66), we conclude that
1ol 2 a7m2) S hy N1 (D). (70)
m+1

It only remains to estimate || 7., T_"T Ul g2(r,g2) in (65). To this end, we start using the integra-
tion by parts formula (11) to write, for all ¢p € H 2717 (T),

fv-rot(p:—fsymcurlv:¢+ > wTEfv-((ptE)
T T E

EEgT
,m+2—
=—| 73/, "Tr:(p+fv:(p+ > a)TEf v-(ptp),
T T Ee&y E

where we have used (62) to pass to the second line and invoked its definition to insert gomranT

H,T
into the first term. We then apply Cauchy-Schwarz and discrete trace inequalites to get
S (” Tar T

U v-rot¢
T
S hrNT (@) [rotd| 12 .52

where the conclusion follows using the definition of N7 (r) along with (64) and (70) for the
first factor and (5) for the second. Taking the supremum over ¢ € HS™*2717(T) such that
[rote| 2 1.g, = 1 finally yields

c,m+2-nr

—1/2
LZ(T;[RZXZ) + ”v”LZ(T;RZxZ) + hT ”v||L2(6T;R2)) “(ﬁ”LZ(T;RzXz)

< hrNr(T).

m+1-n7
b/ 4 v
” L2(T;R2) ™

P.T
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Plugging this result and (70) into (65) gives ||symcurlv| 2 ;.p2+2, < N7 (%) which, combined
with (64), gives (60) after taking the L[%-norm of (62) and using a triangle inequality in the right-
hand side. O

4.2. Serendipity problem

Recalling Assumption 10, we let
Cr=max(k-n7,-1)<k-2; (71)

Remark 13 (Selective use of serendipity). Should the identification of the set Erin Assump-
tion 10 be difficult for some T € T}, (e.g., because of a particularly complicated element geome-
try), one can always take 7 = 2, which corresponds to the absence of serendipity on that element
(see Remark 15).

Given a linear form Ly : PELT;S) x HOTH(T) — R, we consider the following problem:
Find (0, A1) € P*~1(T;S) x HEET+L(T) such that
Ar (@A), @ w)=Lrr,w V(@ ePUT;S) x 1D, (72)
where the bilinear form A7 : [P¥1(T;S) x HO/T+1(T)]2 — R is such that

Ar(,v), (T, p) = h‘}deivdivv divdivr

+hr Y fnéc;g(vng-ng) n;g_’g(rnE-nE)+h3T > f65v651
EE(C;'[ E EES]‘ E (73)

+h2T Z v(xv):r(xv)+fv:p—f‘r:v.
VEVT T T

Lemma 14 (Inf-sup condition and well-posedness of the serendipity problem). The following
inf-sup condition holds: For all (v,v) € P*~1(T;S) x H!T1(T),
Ar (), (r,p)
lw,vlir < sup Ar(w.v), @ p) =:$, (74)
(T, 1) e PK-1(T;S) x HECTHL(T)\{(0,0)} || (T, ) ” T

where |(v, V)| = 1Vl g2 (r.mex2y + 1V g2 (7.gex2) - Hence, denoting by | L7 |l7 the norm of L7 dual to
[I-Il7, problem (72) admits a unique solution that satisfies

e, Ml SILrl7. (75)
Proof. The existence and uniqueness of a solution to (72) as well as the a priori estimate (75)

classically follow from (74). Let us establish the latter condition for a given (v,v) € P*~1(T;S) x
HECTH(T). Taking (T, p) = (v, V) in the expression (73) of A7, we obtain

+hr 16517, (E))

2
4y A qeen 12 k-3
hy lldivdivoll, 4 +E€ZST (hT “nPE (vng-ng) .

+h3 Y )= Ar(w,v), @,v) <$l@,vlir. (76)
VeVr
We next observe that, for any g € Pk-2(T), writing the integration by parts formula (17) and
inserting the appropriate L2-orthogonal projectors according to their definition, it holds

fngz%v:hessqudinivv q+ Z a)TE(f ﬂ%_;(vng.ma) 6nEq_f6Ev q)
T ’ T Ee&r E ‘ £

+ Y wre Y, wpy WEV)np-tp) g(xv).
Ee&r VeVg
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By Proposition 1, we can select g such that hess g = Jt’,j_L“Tv and ||q| 127y < 17 [|hess g 2 7. gox2)-

Applying Cauchy-Schwarz and discrete trace and inverse inequalities to estlmate the right hand
side of the resulting expression, simplifying, and raising to the square, we obtain

ot n3. 16 vl

k-4 4
””?—L Py S <h ||d1vd1vv||L2(T)+ ZT(hT””PE(v"E 2w
+h: Y |v(xv)|2§$||(v,v)||T, 77

VeVr
where the conclusion follows from (76).
Finally, writing the definition (73) of A7 with (T,A) = (0, 73, éT“v) we get
2

c,fr+1
“”H.T

g = AT (@, @25 ) <5 (0255 )| <siwwir, @B

where the conclusion follows from the uniform L?-boundedness of th,:f";l. Summing (76), (77),
and (78) and using (60) with m = k — 1, we infer '

lvl? Ss$lwwlir. (79)

LZ(T RZXZ)

To estimate the L2-norm of v, we take (r,) = (-v,0) in the expression (73) of Ar (this is
possible since v € HTH(T) < P¥1(T;S) owing to (71)) and, after using Cauchy-Schwarz,
discrete trace, and inverse inequalities, simplifying, and raising to the square, we obtain

v R272) S$+slwlir. (80)

L?(T;
Summing (79) and (80), using Young’s inequality for the rightmost term in (80), and taking the
square root of the resulting expression gives (74). O

4.3. Serendipity spaces

Recalling the definition (71) of ¢, the local serendipity spaces are:

=k ~ ~ ~ ~
VT - {vT (vT)(vE)Eegh)(vVvGﬁ,V)VEVh) :

vTE’P”(T;[RZ),
vpe P4 (E;R?) forall E€&r,
Py €R? and Gyy € R2*2 for all VevT},

M
~
I

£ =z = (Baer By (B Dep) pes, BV)ve,))
Ta,r € HHD) and 7, e HOTHH(D),
7€ P*3(E) and D; pe P¥2(E) forall E€&r,
Ty eS forall VEVT}.

Global spaces on M}, are obtained enforcing the single-valuedness of polynomial components
located at internal edges and nodes.

Remark 15 (Serendipity DOFs reduction). Comparing the above expressions with those of the
corresponding full spaces (i.e., the restrictions of (9a) and (9b) to T) shows that the serendipity
DOFs reduction acts on the components U7 and T T,H 1 whose polynomial degrees are reduced
from (k—2,k—1) to (/1,7 +1). Recalling (71), the choice n7 = 2 therefore corresponds to no
serendipity.
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In what follows, the component norms defined in Section 3.3 are applied to the elements of
the serendipity spaces EZ and 21;;1 after observing that the latter inject in the full spaces Z;‘l and
=}~ (notice that, by (71), P‘7(T; R?) « PX2(T; R?) and HO/T*1(T) « HOF1(T) for all T € Tp).

4.4. Serendipity operators

The serendipity operators Sk 1: V7 —PHUT;S) and SK. k ' _ Pk-1(T;8) are such that,

for all (¥,,T;) € V X Z S"‘, %AT and Sz TTT are the ﬁrst components of the solutions of
problem (72) with rlght hand side linear form £ respectively equal to

Lvr(PpT,0)=hr ), Lﬂ’p_’g(atgﬁgT'nE) ﬂp_,g(TnE‘nE)

Ee&r
+hy Y | (0%,0epe-te) SET ®1)
EEST E
+h3 Y CGa,V:‘r(xV)—fﬁT'rotu+ > a)TEf Ve, - (ptE)
VEVT T EEgT E

and

Ly 1 (057, 1) =hy fo)q.L,T:hessdivdivr

- Z wTE(fEi)E 6nE(diniVT)—j;5Dﬁ'E diniVT)
Ee&r

- Z WTE Z wgy Wyng-tg)divdivr(xy)
EEST VEVE

+hr ). vE Jr;“;;(rn5~n5)+h3} fD,,E OpT
EEET EEST

(82)

+hr‘} Z ﬁvif(xv)‘i'fﬁ%.tjiﬂ-
VeVr

We remark that the serendipity operators Sk v,p and Sk ! 1 Tespectively act as a discrete reconstruc-
tions of sym curl and a tensor potential, both regarded as elements of H (lele Q;S).

Remark 16 (Alternative expression for Lz (¥ ;-)). Using the injection ET — Z’}‘l to apply

the operator DD]}*2 defined by (18) to elements of z’;_l, we have the following equivalent
reformulation of L5 7(¥;-): Forall (z, ) € Pr-1(T:S) x HETH(T),

Ls.7(0pi7, 1) = fT DDA29,. divdivr

+hy Z fﬁE ﬂ%ﬁg(TﬂE-nE)-i-h‘;’w Z fDﬁ,EéET (83)
Ee&r E Ee&r

+h3 Y ﬁvz‘r(xv)+fﬁ§_tj:u.
VeVr T

4.5. Reduction and extension operators

- = =k = _ ok-1 .
The restriction operators Ry , : z’} — V7 and Ry 7 : ;’} L X, are defined taking
2_orthogonal projections on the reduced component spaces: For all (v mEr) € Z’; x ;’}‘1,

D 0

Ry vri= (JLPT,TVT, WEEeg, (VV»Gv,V)VEVT)v (84)
5 clr+1_c

Ry ;1= (T’H A4 TH (te, D1, E)Ee&ys (TV)VEVT)- (85)
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According to [16, Eq. (2.4)], the interpolators on the spaces Z’; and 2’;_1 are respectively given by
=~k = k-1, = k— 1

Iy =Ry Iy, and Iy, =Ry IS} (86)
The extension operators Ey, 2’; — VE and E; :zl; . =k~1 are such that, for all (9, %) €
ok k- 1 ' '
Vi xZr
Ey ¥, = (EI»;;ZTﬁT» VE)pee, Dv, Gﬁ,v)vEVT), 87)
- k-
Es 1Tp= (T?-L T’”E:H Tlsk %0 @Dy ppes, (TV)VGVT) (88)

where E;2 :21;_1 — P*2(T) is such that, forall ¥ € I_7T,

fEk Uy rot‘r——fTSIf,T%QT:‘r+ Zé wTEfE?;gT-(ttE) Vre’Hc,k—1(T)‘ (89)
Ee&r

The fact that Ek 29 7V 7 is uniquely defined by the above equation follows from the fact that

rot ; HOk- L - ’Pk 2(T;R?) is an isomorphism (see Proposition 1). Owing to the definition
of the serendipity operator S'{,‘T and the bound (75), it can be checked that, for all T € 7y,

l|Ev. 24, , < 2cllp,r- ©90)

4.6. Preliminary results

Lemma 17 (Polynomial consistency of the serendipity and extension operators). It holds:

Syl VTv—symcurlv vvePH(T;RY), 91
<k

Ey 1y Tv:IIIC/,TU v ve P (T;R?), (92)

SEATS v=v Vve P¥UT;S), (93)
~k—1 -

Ey Iy pv=15 v Vve PFUT;S). (94)

Proof.

(i) Proofof (91).Letv = TI‘C, rv. Itsuffices to show that (sym curl v, 0) solves the problem defining
Sk 11 ie., (72) with linear form L7 (-) = Ly, (@ ;-) given by (81). Recalling the definition (73) of
the bilinear form A7, we have, for all (z, ) € P*"1(T;S) x HE/T+1(T),

Ar ((symeurlv,0), (z,p)) = h‘;[ divdi arlv divdivt
T

+hr Z fngg(symcurlvnlg'n,g) thg(rng-ng)
Eeg E ! -~ ’
T
O VIERE

+h3 f6Esymcurlv 6Er+hT Z symcurlv(xy) : T(xy),
E N — e

Ee&r VeVr
02 EUlE tp

+f symcurlv: p.
T

where we have used [23, Lemma 2.2] for the second and third term. Using the integration by
parts formula (11), observing that rotpu € PIT(T;R?) to insert JI,P T into the first term and that
v|sT = Vg, by polynomial consistency of this trace reconstruction,

fsymcurlv:yz—fnz,TTv-rotu+ Z wTEfﬁgT-(utE).
T T — E€ér E

=Ur
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Using the above relation, again v|3r = ¥¢,, and further noticing that symcurlv(xy) = CGyy for
all V € Vr by definition of the interpolator, we have, recalling the definition (81) of Ly, 7(@ ; ),

Az (symeurlv,0), (T, w) =Ly, 1 (05 (T, w) ¥ (z,p) e P*1T;8) x HOTH(T).
Since problem (72) is well-posed, this shows that (symcurlv,0) is its unique solution and, as a
result, (91) holds.

(ii) Proof of (92). Setagain v := I v, 7 V- Starting from (89), using (91) to write SV U =symcurlv
along with the polynomial con51stency of the trace to write Ug, = vj37, and concludlng applying
the integration by parts formula (11) to the right-hand side of the resulting expression, we have

LE$%2T~rotT=fTv-rotr VTe O D).

Recalling that rot : H**"(T) — P*¥*(T;R?) is an isomorphism, this shows that E5;2 9, =

Jt’,;,z v. Noticing that the other components of the local interpolator are not affected by the

serendipity reduction process, (92) follows.

(iii) Proof of (93). It suffices to show that (v,0) solves the problem defining Sk 1I Iy Tv, i.e., (72)
with linear form Lr(-) = EZYT(Z;_Tlv; -) given by (82). To this end, we use the alternatlve expres-
sion (83) of ﬁ):,T@T; -) based on the restriction of the operator DD]}_2 to 2];_1 resulting from the
injection X fk_l — Zk‘l Since this operator only depends on the polynomial components of fk_l
left unchanged by the serendipity reduction, by [16, Eq. (19)] it holds DDA~ 212 v = divdivv.
Plugging this relation into (83) and recalling the definition (86) of ! Z,T’ we obtain: For all (t, ) €
PEUT;S) x HOTH (T,

Ls,r (nglv;T,u) = h‘;deivdivv divdivr

/}7{?6511651

+hr ). fnPE(vnE ng) nPE(TnE np)+h Y

EEgT E EEgT
+h2T Y v(xv):r(xv)+f%(rv:y
VeVr T ’

where the cancellation of the projectors is made possible by their definition. Comparing with the
definition (73) of A7, we have thus proved that

Ar (,0), (T, ) = L3, T( U (T, u)) YV (r,w) € PEHT;S) x HOTHH(T).

By uniqueness of the solution to (72), this proves the assertion.

(iv) Proof of (94). Immediate consequence of (93) along with the definition (88) of EZ’T. O
Lemma 18 (Projections of extension and serendipity operators). It holds, forall T € Ty,

n ES D, =vr Vo, evt, (95)

L lcfynllT VTVT:”Ck lslvc/%AT’ VETEEI;“’ (96)

”;-tlTTﬂnglAT—?CT viT€Z§_1~ 7

Proof.
(i) Proofof (95). For any p € H® " TH(T), taking tests functions of the form (0,u) with g €

HSCTH(T) in the problem defining S (1 e., (72) with L7(-) = L7(@;-) given by (81)), it is
inferred that

fS'f,TTlQT:I,L:—f?}T-rotp+ Z wTEfﬁgT-(ptE). (98)
T T Eeér E
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On the other hand, by definition (89) of E,’;; 2, and since p € HOTHH(T) « HOF1(T) (recall that
¢1+1<k-1by (71)), we have '

f Ek “D,rotp= f SyiPrip— Y wTEf Ve, - (utp). (99)
Ee&r E

Summing (98) and (99), (95) follows recalling that rot : HS/T+1(T) — P{T(T;R?) is an isomor-

phism.

(i) Proof of (96). Using the definition (12) of CSym T

tion (87) of Ey, ;,, we can write, for any T € H*1(T),

foyn}lT VTET:T:—fEk ?‘vT rott + Z wTEfET/gT-(TtE) fS’f,T V,:T,
Ee&r

for v = Ey, ;7 and recalling the defini-

where the conclusion follows from the definition (89) of E’,;; 2T Then, (96) follows by definition of
the L?-orthogonal projector on H K1 (T).

(iii) Proofof (97). It suffices to take test functions of the form (0, ) with g spanning H/7+1(T)

in the problem defining $X=}, that is (72) with linear form £7(-) = L3, 7(T ;) given by (82). g

ZT’

4.7. Commutation property for the serendipity operators

Lemma 19 (Commutatlon property for the serendipity operators). Recalling that, according

to (59), C Comr = Rz TCSym rEy 7. it holds

~ sk
51 Comrr=Si0, Vel (100)
so that the following diagram commutes:

k—

N
vl 2 2 — Pk- 1(T,§)

Proof. Let D, € 2]} and set v, := Ey, ;U . Recalling (87), we have vg = vg for all E € &7 and

(vv,Gy,v) = Vv, Gyp,y) for all V € Vr. We next analyse the expression (82) of Ez,T@T;-) when
~k—1 P
—=sym,T— Vp=

Ly7@p@w)=Lyr(@p@w)  VEwePUT;S) x 1O, (101)

The conclusion follows from this relation proceeding as in [16, Lemma 20].
We start by observing that, for all g € P*=2(T),

fTﬁq-L,TiheSSq— > wTE(LﬁEanEq—LDa,Eq Y wpy @vng-tg) q(xv))

E€£T VEVE

v,=C = Rz TC T v, with the aim of showing that

- k-4 k-1
—f 7Csym, V7 - hessq

— Zé wTE(fEn;C;’g(atEv(gT-nE) anEq—‘[E((?%Ev‘gT-tE) q) (102)
Eeér

- Y wre Y. wpy(CGyyng-tg) glxy)
E€8T V€VE

k—
fDD 2Chm vy 4=0,
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where the second equality follows from the definitions (14) of C¥~1  and (18) of DD%2, while

the conclusion is a consequence of the fact that (58) defines a corflplex. This implies that the
terms in the first three lines of (82) vanish since divdivt € Pk_3(T) c Pk_Z(T). Additionally,

from property (96) it follows that o5, ;. = 71';’_{,7;—1 ggy—nlﬂgv, = Jt;:f,TT“S’{,,‘TIQT. Hence, for all
ne %C,[TJrl(T)’
fTﬁ%,T?ﬂ=LSW2T:M= —fTﬁT-rotlH > wTEfEﬁE-(utE), (103)

Ee&r

where the conclusion follows from the definition of S]“,_Tl. Plugging (102)-(103) into (82) and
comparing with (81) proves (101). O

4.8. Homological properties of the serendipity DDR sequence

Theorem 20 (Homological properties of the serendipity DDR sequence). The following prop-
erties hold:

(1) Complex properties:

Ey Ry ,v,=1, Vv, €Ker (gfy_nllh) ' (104)
E; Ry )1, 1,€lm (gfyjnllh) VI, ezl (105)
(2) Cochain map properties for the reduction and extension maps:

Ey, Iy v=15 v Ve RT(Q), (106)
ny_nll,hBV,hzh = Ez,hgfy_xrll,hﬂh V,eVy, (107
Ez,hgi;rll,hzh = gfy_lrll,hEV,hzh vy, zi’ (108)

(3) Isomorphism properties for the cohomology groups:
Ry ,Ey 0, =1, Ve zﬁ (109)
Ry ,Es %, =T, VT, € 22_1- (110)

Hence, the cohomologies of the top and bottom complexes in (58) are isomorphic.

Remark 21 (Homological properties). The respective role of the above properties is the fol-
lowing: the complex properties ensure that the serendipity DDR sequence is a cochain com-
plex; thanks to the cochain map properties, the reduction and extension maps are cochain
maps; finally, the isomorphism properties guarantee that the cohomology groups of the DDR and
serendipity DDR complexes are isomorphic. We additionally notice, in passing, that:
e It would suffice for property (105) to hold for all 7, € Ker(DD’;l_z) to ensure that the
serendipity DDR sequence is a cochain complex;
¢ The cochain property for Bv,h (i.e., Bv,hl]f/,hw = ZI‘C,hw for all w € R7T(Q)), holds by
definition (59) of ZI‘C, »» and is therefore not listed in point 2.;

e Property (109) (resp., (110)) could be restricted to D, € Ker@f;l’h) (resp., T, €

Ker(B\DZ_z)) for the isomorphism in cohomology to hold.

Proof of Theorem 20. The isomorphism between the cohomologies of the top and bottom com-
plexes in (58) is a straightforward consequence of [13, Proposition 2] once we prove proper-
ties (104)-(110), which we do next.

(i) Proof of (104). We notice that ny‘nll »Yp, =0 implies gfy-nll vy =0forall T € Tj,. The exactness
of the local DDR complex proved in [11, Theorem 3] then implies, for any T € 7}, the existence
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of wr € RT(T) such that V= !"C,'TwT. We can then write EV,TEV,TET = EV,TEV,T!IIC/,TWT =
EV,TII‘C,'T wr=1 ]‘C,,T wr, where we have used the definition (59) of ZI‘C,T in the second step and the
polynomial consistency property (92) (after observing that wy € P*(T;R?)) to conclude.

(ii) Proof of (105). Letz;, € zlfl‘l and set T, := Bz,hlh- The components of 7, and Ey ;T on the
mesh vertices and edges, as well as on H*4(T), T € T, coincide by definition of the restriction
and extension operators (see (88) and (85)). Since DD’}_2 only depends on these components
(see (18)), this implies DD} 2Ey , %, = DD} 27, i.e.

Ezyhih—zh:((ﬂ R 7_,(O,O)Eegh,(O)Vevh)EKer(DD’;l_z). (111)

By exactness of the local DDR complex (see [11, Theorem 4]), for all T € 7}, there exists V€ Z’;,
defined up to an element of 1 "‘,,T’R’TI (T), such that Ey ;T — T, = gfy—nllj v, which additionally
satisfies, by (111),

n;‘;éa,E(ng -ng)=0 and O%E(ng -tg)=0 forall Ee&r
and CG,y=0 forall VeVr.

Under these conditions, [11, Point 1. of Theorem 3] yields the existence of wr € RT(T)
such that vg, = wrjar. Up to the substitution v, < v, — I v, 7 WT, We can therefore assume that
vg, = 0. Hence, the v, T € T}, can be patched together on 1nternal edges to form an element of
K’C This concludes the proof of (105).

(iii) Proof of (106). The cochain map property (106) for Ey, , immediately follows from (92)
applied to polynomials in R7T(T) c P¥(T;R?) for all T € Tj,.

(iv) Proofof(lO?) Let vh € K’;l and set, for the sake of brevity w;, = EV,hBV,hzh' By (59),

~k-1 =~ .
ComnRy ntp = Ry, hC ym » Wy, The components of w;, and v, on the mesh vertices and edges

coincide by definitions (87) of E Vih and (84) of EV’ »» hence so do the components of their discrete
symmetric curls on the edges and vertices, as well as those on H*4(T), T € 7T}, (notice that
the first term in the right-hand side of (12) vanishes for 7 € Hk_4(T) since rothess = 0). It only
remains to prove the equality of the components on HS/7+1(T), T € T}, which follows if we prove

that:

Akl iw, = Al Ckl v, forall Te T, (112)

c!T+lsk 1,\

Set D, := EV,TET' By virtue of (96), it suffices to prove that it Svrlr = = gS&lr+lck-1

H, T sym, T
This relation can be established taking test functions of the form (0, g) with g€ H® L1+l (T) in the

problem defining S vT (i.e., (72) with linear form L1 (-) = Ly,7(D ;) to write

fS]‘C/YI'ﬁT p=- f/;é/VT rotp + wTEf vT'(lltE)=fC§;H1LTyT:u,
T Ee&r E T

where we have used the fact that, by (84), v = Jl',PTyTvT and vg, = vg, in the first step (and

also cancelled the prOJector since rotp € P7(T;R?)), while the conclusion follows from the
definition (12) of CSym - This concludes the proof of (112) and, therefore, of (107).

(v) Proof of (108). By (59), (108) amounts to proving that E5 th thym nEv ¥y = gfy—nll wE
Since Ey ;, and Ez, , leave the components on mesh vertices, edges, as well as those on H*~4(T),
T € Ty, unaltered, the equality of this components in (108) is immediate. It only remains to prove
the equality of the components on HS*1(T), T € Tj,. To this purpose, it suffices to invoke (100)

and (96) to write: For all T € Ty,

Ey 0.

ck lsk lA

ckl k-1 k-1
T S5 TC v,TVr =TTy Csym rEy rVr.

syrnT Vp=
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(vi) Proofof (109) and (110). These relations are immediate consequences of, respectively, (95)
and (97) along with the definitions (84) and (85) of the restrictions. O

4.9. Analytical properties of the serendipity complex

Following [16, Eq. (2.3)], for e € Tj, U {h}, the discrete L2-pr0ducts and norms on zk and 2{6_1 are

~

. - .=k - k-1
defined setting, forall w,, v, €V, andv,, T ,€X, ,

(@.,9.)p,, = (Ey.@.Ey.2.),  and |2.]p.=|Ey.2.], . (113)
(0.%.)5.= Bz 0.E5.2.),  and |25, = B0, . (114
Lemma 22 (Equivalence of norms on 2’;) It holds |||l v li-llv,T on z’;

Proof. Forallv, € 21;, we have

12700,7 = |Ev.i2r|, , S || Evre]], , S MEclly, o

where the first inequality comes from the norm equivalence (28), while the conclusion is (90).
To prove the converse inequality, we use (95) to write:

~ 2 l ~ ~ ~ 2
2y, = ””’PTTE]’;’ZT Tl 2 (752 E;:ThT”vE”iZ(E;RZ)+VeZvT(h2T|vV|2+h§|Gﬁ'V| )
k-2 o |12 ~ 2 25 12 41~ 12
“E’PT Y1l 2 (r;m2) E;ETthlvElle(E;Rz)+V;jT(hT|vv| +hT|Gv,V|)

= lEv.2]l,
H’—VvT—T v,T’

where the inequality follows from the I2-boundedness of %" T, while the conclusion is an
immediate consequence of the definitions (26) of ||-lly,7 and (87) of EV T We then continue
with the equivalence of norms (28) and with (113) to write |”EV,T2T|”V TS ||EV TvTIIVT
12,11%

=T'y,1

Remark 23 (Equivalence of norms on 2’;_1). The uniform equivalence of | -|| ST defined in (114)
and ||I-llz, T can be established in a similar way. Since this result is not needed in what follows, the
details are left to the reader.

Theorem 24 (Analytical properties of the serendipity DDR complex). The following properties
hold:

(1) Continuity of the reductions:

HEV,hﬂh
[R5, S Tl VI,ezih (116)

(2) Polynomial consistency: Forall T € Ty,

f/,h’s lzsllv,n Vv, eV, (115)

Ey Ry 1% v=v VveP*(T;R?), (117)
E; Ry IS lTr=7 Ve PFUT;S). (118)

Hence, Lemmas 3, 7, and 8 hold with (Vk,Zk L replaced by (VT, ZT )
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Proof. The fact that Lemmas 3, 7, and 8 hold with (Zk , ;’}‘1) replaced by (zl;, 2’;1) is a conse-
quence of Theorem 20 along with the continuity of the interpolators (29) and [16, Propositions 4—
10] once properties (115)-(118) have been proved. We therefore turn to the latter.

(i) Proof of (115) and (116). Using the norm equivalence in Lemma 22 and the definitions (26) of
the component norm |[|-ly,7 and (84) of EV' ¥, we infer

By, 5 [Boaa
“ v,T¥r Zv.rZr|lly 7

- |5

2 Wl gy + X (P lvv P+ b} |(Guv))
E€£T VGVT

2 2 2 2 4 2
SIVTIZ oy + EEZgT Ve g o) + VEZVT (R 102+ (G )7

prYT L*(TR?2)

where the second line results from the L?-boundedness of Jt[T Noticing that the expression
in the last line is precisely || vTIII2 V.T and invoking the uniform norm equivalence (28) with e =
concludes the proof of (115). The proof of (116) is similar and we omit the details for the sake of
conciseness.

(i) Proof of (117) and (118). Recalling the definition (86) of the interpolators on the serendipity
spaces, properties (117) and (118) are nothing but (92) and (94), respectively. U

4.10. Use of the serendipity DDR complex

Theorems 20 and 24 show that the the serendipity complex at the bottom of (58) inherits all the
relevant homological and analytical properties of the full complex at the top. As a consequence,
given a scheme based on the full complex, a serendipity version is simply obtained replacing
Z’;l with I_A/Z and zlfl’l with 2’,2_1. This procedure can be applied, e.g., to the numerical scheme for
Kirchhoff-Love plates corresponding to [11, Eq. (48)]. The stability analysis of this scheme carried
out in [11, Section 4.5] hinges on the surjectivity of the discrete divdiv operator. This property
is inherited at the discrete level by the serendipity DDR complex as a result of Theorem 20.
The convergence analysis carried out in [11, Section 4.6] is based, on the other hand, on the
consistency of the tensor potential P T ! and on the adjoint consistency of the discrete divdiv
operator. Both properties are inherited by the corresponding operators for the serendipity DDR
complex in view of Theorem 24, and thus the serendipity version of the numerical scheme [11,
Eq. (48)] has the same convergence properties as the full version.

Appendix A. Poincaré-Korn type inequalities in hybrid spaces

The proof of the functional inequality for hybrid vector fields that is used to establish point (i)
of Lemma 3 (see Section 3.4.2) is presented below. First, we introduce some additional notations
concerning tensor calculus in three dimensions. For a bounded, Lipschitz domain D c R® and for
a sufficiently regular tensor field P : D — R>*3, we define

0 P13 —03P12 03P11 —01 P13 01 P12 —02P11
Curl P := | 02 P23 — 03 P23 03P21 —01P23 01 P2y — 02 P21
02P33 — 03 P33 03P31 —01 P33 01 P32 —02P31
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For later use, we also introduce the spaces of rigid-body motions R.M,; = {a(x>, -x)"+b:ac
R,b € R?} and RMs3 = {ax x+b : a,b € R%} respectively for d = 2 and d = 3, and the operator
Anti:R3 — R3*3 given by

0 —da3 ap
Antia:=| a3 0 -a| VaceRr’
—ay a3 O

Additionally, we remark that the planar rotation & — & L= (_‘22 ) defines an isomorphism between
the lowest-order Raviart-Thomas space and the space ’RMZ of two-dimensional rigid-body
motions.

The discrete functional inequalities below hinge on [26, Theorem 3.3], which the authors refer
to as incompatible Korn type inequality for LP -regular tensor fields. For the sake of clarity, we recall
the statement of this key result.

Lemma 25 (Incompatible Korn type inequality). Let D c R® be a bounded, Lipschitz domain
and let p € (1,00). Then, there exists Cix > 0 depending only on D and p such that, for all
P e LP(D;R¥3),

weiRnfM3 ”P — Anti wan(D;RlSXS) < CIK (” SymP“L‘n(D;Rg,xg) + “SymCurlP” w-Lp (D;RSXS)) . (119)

It has been observed in (26, 27] that the previous result can be seen as a generalisation of both
the Poincaré-Wirtinger and Korn’s second inequalities. In the following Proposition, we apply
Lemma 25 to some particular cases in which the tensor field P is skew-symmetric and assuming
p=2.

Proposition 26 (Poincaré-Korn inequalities for L?-regular vector fields). Let D c R", with
n € 12,3} be a bounded, Lipschitz domain. Then, the following inequalities hold:

ﬁe’PiOI(lLf);Rd) ”u_ﬁ“LZ(D;[Rd) < Cix ngadu”Hfl(D;de) Yue LZ(D; I]'\Pd) withl<d<n; (120)
ie'Ri’,I’;gl(D) v =7 2,2y S Cix [symeurl | o1y goey ¥ v € L (D5 R?) withn=2;  (121)

. — 2(1y. md : —
We’lllzlf\/ld lw =] 2, ey < Cix [|symgrad w| 1y, axay ¥ we L*(D;RY) withd = n. (122)
Proof. In order to establish (120) for 1 < d < n < 3, it suffices to consider the case n =3 and d = 1.
Hence, we let u: D — R and apply Lemma 25 with P such that P35 = —P» 3 = u and all the other
components set to zero. Therefore, we clearly have sym P = 0 and

weiRnfwg IP—Antiwll 2 (p;go-s) = inf 1P~ Anti(@,0,0) | ;2 -3y = 2 inf u=1| 2 py -

Moreover, it is observed that

1 0 —02 u —63 u
symCurl P = = | ~0ou 201u 0 = |[symCurl P ;1 pyassy < 2| grad u g1 s -
—63u 0 261 u
As aresult, we get the conclusion.

We now proceed with the proof of (121). Welet n =2, I := [—%, %], v € L2(D;R?), and define a
skew-symmetric tensor field P such that

( 0 0 Ul) symcurl v 0
P= 0 0 v|] = symCurlP-= ( .
o1 —vy 0 0 tr (symcurlv)
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Thus, it is readily inferred that ||[sym Curl P|| ;-1 ), 1.p3xs) < 2 |[symeurl v|| -1 g2, - Additionally,
since v does not depend on x3 and due to the position of the non-zero entries in P, it follows that

we,l]l?’lg\/t3 ||P — Anti wnLZ(DXI;RSx’j) = We%ﬁ\/b ||P_Antl(w;0) ||L2(D><I;R3X3)

= inf Hp—Anti(vi,o)
TeRTD)

= \/zie?ggl(m v _v”LZ(D;[RZ) :

LZ(D;R3><3)

Hence, the conclusion follows again by using (119) on the domain D x I < R3.
The proof of (121) is obtained with similar arguments by using Lemma 25 with

0 0 wo 0 —-w3 wo
P= 0 0 —wh and P = w3 0 -uw |,
—Wy W 0 —Wy W 0

for the case n=d =2 and n = d = 3, respectively. O

We are now ready to establish the main result of this Section. For the sake of simplicity, we
detail the result only for the two dimensional case, but we refer to Remark 28 for some possible
generalisations.

Proposition 27 (Poincaré-Korn inequalities for hybrid vector fields). Let
Uk i={u, = (@nrer, p)pes,) - ur e PH(T;R) ¥ T Ty, up e PH(BRY) Y E€ &) |

and, for all u, € Q];l, denote by uj, € P*(T;,;R?) the piecewise polynomial field on T;, such that
(up)|r = ur for all T € Ty. Then, there is a constant Cpx > 0, only depending on Q and the mesh
regularity parameter, such that

(1) Forallu, e Qﬁ satisfying [ up =0,

(ngraduTMiz(T;RzXzﬁ Y onp! ||uT—uE||i2(E.R2)); (123)
Ec& ’

€cr

lunl?, 0.0y < Cox Y
I2(Q;R?) =

€/n

(2) Forallu, e Q’]; satisfying fQ up-w=0forallwe RTHQ),

ln 12 (2 < Cex D (HsymcurluTHiz(T;RzXz)+ y
TeT; Ee&

€/n

h;"l ”uT_uE“iZ(E;RZ)); (124)

T

(3) Forallu, e Q’;l satisfying [ up - w =0 forallw e RMo,

2 -

||uh||iz(Q;R2) <Cpx Y, (HsymgraduT”Lz(T;szz) + Y hi'lur- uE”iz(E;Rg)). (125)
T€7—h EEST

Proof. We only detail the proof of (124), which is used in the proof of Lemma 3, since (123)

and (125) can be obtained by reasoning in a similar way. Let u; € Q’;l and observe that the

condition [, uy, - w =0 for all w e R (Q) implies

mgum lun =7l (0im) = Nutnliz sm2) -
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Therefore, applying (121), it follows that

el 202y S ||3Ym°“rl”h”H*1(Q;R2xz) = sup f uj, - (rotn)
neHé(9;§),IInllal(n;R2x2)=1 Q

_ sup 5 (—fTsymcurluT:n+ y wTEfEur-(ntE))

UEH(I)(Q;SL||11||H1(Q;R2x2):1T€771 Eeér

= sup > (—fTsymcurluT:n+ > wTE/E(uT—uE)'ntE),

nEH(l)(Q;S)y"n”Hl(Q;RZxZ):lT€771 Ee&r

where we have integrated by parts element by element and used the fact that 5 has continuous
tangential traces across interedges and vanishing tangential traces on the boundary in order to
insert ug into the boundary term. Applying a Cauchy-Schwarz inequality on the integrals and
invoking a discrete Cauchy-Schwarz inequality on the sum over T € 7, we infer that

2
lunlzoime) S sup (Z “symcurluTHiZ(T;szz)) ”"”LZ(Q;RM)
’IEH(I)(Q;§),||11||H1(Q;R2x2):1 TeTy

A 1
5 2
+( Z Z h}l ”uT—uE”iz(E;IR{Z)) ( Z Z hr “ntEHLZ(E;[RZ))
TeT, EcEr TeT,Ecér

1

2

<

~

)3

TeTy

||symcurluT||iZ(T;sz2) + > hitllug - uE”iZ(E.RZ))
Ee&r ’

1

x sup

. H'(Q;S)
ne Hy(Q;9), 7] (Q;szz):l

where, in the second inequality, we have used the continuous trace inequality [21, Lemma 1.31].
O

Remark 28 (Generalisations). The results of Proposition 27 admit several extensions that we
have decided not to include for the sake of brevity. First, (123) and (125) can also be established in
the three-dimensional case simply by replacing the interedges with interfaces. Second, since the
starting argument given by Lemma 25 holds for all Lebesgue indices p € (1,00), we can generalise
the discrete Poincaré-Korn inequalities to the Banach setting. The main modification required
in the proof consists in replacing Cauchy-Schwarz inequalities with suitable versions of Hélder
inequalities. Finally, we notice that in the proof of Proposition 27 we are not using any inverse
inequality requiring the hybrid vector fields to be polynomials. Thus, the previous Poincaré-Korn
inequalities can be extended to vector fields with piecewise Sobolev regularity.
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