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Abstract. Computing the distance function to some surface or line is a problem that occurs very frequently.
There are several ways of computing a relevant approximation of this function, using for example technique
originating from the approximation of Hamilton Jacobi problems, or the fast sweeping method. Here we make
a link with some elliptic problem and propose a very fast way to approximate the distance function.
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1. Introduction

In many cases, one has to evaluate the distance function to a surface ΓD which is part of the
boundary of an open setΩ ∈ Rd . An example in fluid mechanics is that of turbulence modelling:
in some models, one of the parameters in the evaluation of the turbulent viscosity is the distance
to the airfoil. Other examples can be found in medical image processing, surface reconstruction,
etc. To evaluate the distance function, there are many ways. One technique is to numerically
evaluate the viscosity solution of the Eikonal equation,

∥∇u∥−1 = 0x ∈Ω
u(x) = 0 if and only if x ∈ ΓD

u(x) ≥ 0.

(1)

In this formulation, only one boundary condition is prescribed, the Dirichlet one on ΓD , nothing
is said for the other parts of ∂Ω. Numerical techniques for this can be found in [1, 2]. This can
be improved by using a fast marching technique in the spirit of [3], or technique coming from
computer sciences. From time to time, one can see in the literature methods that compute an
approximation of the distance function as the solution of some Laplace equation, an example
can be found in [4] and the reference therein. Other references, where elliptic problems are
considered, can be found in [5, 6]. They solve (1) by minimizing (∥∇u∥− 1)2 using a variational
formulation with continuous or discontinuous finite element that needs to be penalized to
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enforce the Dirichlet boundary conditions. It is interesting to notice that their formulation is
relatively close to ours, using completely different paths.

There is no obvious links between (1), which is of hyperbolic nature, and an elliptic problem.
The purpose of this small note is to provide a link, via the Hopf–Cole transform, and to provide a
very fast algorithm (compared to explicit algorithms for computing the viscosity solution of (1) to
evaluate the solution of (1)), at least if one accept a small viscosity term (which will nevertheless
be present in any numerical method of PDE origin), and discretisation errors.

The format of this note is the following. First, we recall the Hopf–Cole transform and show
how it can be applied to the steady Eikonal equation. This leads to an elliptic problem on a
function constructed from the distance. We discuss the boundary conditions for this problem,
and in particular for the part of ∂Ω which is not ΓD . Then we provide a numerical method, and
show its behaviour on unstructured triangular meshes.

2. The problem

We want to solve the following problem: Let Ω ⊂ Rn be open, and we set ∂Ω = ΓD ∪ΓS , ΓD ∩ΓS

of empty interior. We want to compute the distance function to ΓD . We consider the problem of
finding the viscosity solution of

∥∇u∥−1 = 0 x ∈Ω
u = 0 x ∈ ΓD

u =+∞ x ∈ ΓS

(2)

Of course ΓS can be empty, but ΓD is never empty by assumption. On ΓS we have set Soner type
boundary condition, see [7] for example. For the sake of completeness, we recall the notion of
viscosity solution for (2): Let ϕ ∈C 1(Ω), and x0 a point where u −ϕ reaches a local minimum: (2)
means that if x0 ∈Ω, ∥∇ϕ(x0)∥−1 ≥ 0, and if x0 ∈ ΓD min(∥∇ϕ(x0)∥−1,u(x0)) ≥ 0 while, if x0 ∈ ΓS

∥∇ϕ(x0)∥ − 1 ≥ 0. If x0 is a minimum of u −ϕ, we get: if x0 ∈ Ω, ∥∇ϕ(x0)∥ − 1 ≤ 0, if x0 ∈ ΓD

max(∥∇ϕ(x0)∥−1,u(x0)) ≤ 0 and there is no condition on ΓS .
Here we propose a method where we solve a viscous regularisation of (2), or more precisely of

∥∇u∥2 −1 = 0 x ∈Ω
u = 0 x ∈ ΓD

u =+∞ x ∈ ΓS

(3)

since the two problems have the same solutions, we consider, for ν > 0, the problem (in the
viscosity sense, see [7] for second order problems)

∥∇u∥2 −1 = ν∆u x ∈Ω
u = 0 x ∈ ΓD

u =+∞ x ∈ ΓS

(4)

3. Rewriting the problem

If, instead of looking at the steady problem (4), we consider the unsteady one,

∂u

∂t
+∥∇u∥2 −1 = ν∆u

with the same initial and boundary conditions, this is “almost” the viscous Burgers equation,

∂u

∂t
+ 1

2
∥∇u∥2 = ν∆u.



Rémi Abgrall 3

for which it is very well known that we can transform it into the heat equation by using the Hopf-
Cole transform,

u(x, t ) =−2ν log
(
ϕ(x, t )

)
. (5)

The proof is classical (though done in one dimension in most textbooks), but we nevertheless
repeat it.

Our notations will be: ∇u represents the first derivative of the function u: for any h ∈Rd

u(x+h) = u(x)+∇u(x) ·h +o(h),

and D2u represents the second derivative (the Hessian) of u:

∇u(x+h) =∇u(x)+D2u(x) ·h +o(h).

With this in mind, we have, from (5), that

∇u(x, t ) =−2ν
∇ϕ(x, t )

ϕ(x, t )
,

∂u

∂t
=−2ν

∂ϕ(x, t )

∂t
ϕ(x, t )

and

D2u(x, t ) =−2ν
D2ϕ(x, t )

ϕ(x, t )
+2ν

∇ϕ(x, t )⊗∇ϕ(x, t )

ϕ(x, t )2 ,

so that

∆u = trace
(
D2u(x, t )

)=−2ν
∆ϕ(x, t )

ϕ(x, t )
+2ν

∥∥∇ϕ(x, t )
∥∥2

ϕ(x, t )2 .

Hence plugging this into the Burgers equation, we have

∂u

∂t
+ 1

2
∥∇u∥2 −ν∆u =−2ν

∂ϕ(x, t )

∂t
ϕ(x, t )

+ 1

2

(
4ν2

∥∥∇ϕ(x, t )
∥∥2

ϕ(x, t )2

)

−ν
(
−2ν

∆ϕ(x, t )

ϕ(x, t )
+2ν

∥∇ϕ(x, t )∥2

ϕ(x, t )2

)
=− 2ν

ϕ(x, t )

(
∂ϕ(x, t )

∂t
−ν∆ϕ(x, t )

)
so that in the end we see that ϕ needs to satisfy

∂ϕ(x, t )

∂t
−ν∆ϕ(x, t ) = 0

with ϕ= 1 on the Dirichlet boundary and ϕ≥ 0 onΩ.
Unfortunately, the time dependant problem

∂u

∂t
+∥∇u∥2 −1 = ν∆u

does not go through as well, but this is not an issue because this is not the problem we want to
solve. We want to solve

∥∇u∥2 −1 = ν∆u

for which we again use the change of variable

u(x) =α log
(
ϕ(x)

)
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with α to be determined. We get

∥∇u∥2 −1−ν∆u =α2

∥∥∇ϕ(x, t )
∥∥2

ϕ(x, t )2 −1−ν
(
α
∆ϕ(x, t )

ϕ(x, t )
−α

∥∥∇ϕ(x, t )
∥∥2

ϕ(x, t )2

)

= −1

ϕ(x, t )

(
αν∆ϕ(x, t )+ϕ(x, t )

)+ α2 +να
ϕ(x, t )2

∥∥∇ϕ(x, t )
∥∥2

(6)

so we take α=−ν and we need to solve inΩ

ν2∆ϕ(x, t ) =ϕ(x, t ). (7)

with the boundary condition
ϕ(x, t ) = 1, x ∈ ΓD . (8)

On ΓS , inspired by what is done for the inviscid problem, and using (6), we see that a condition is

ν2∆ϕ(x, t ) ≤ϕ(x, t )

on ΓS . This looks a bit like an obstacle problem, but this is not exactly the same (because the
“obstacle” is at the boundary). In the next section, inspired by what is done for the Eikonal
equation, we will propose a discretisation of this kind of condition. In the numerical section, we
will also compare this boundary condition with more natural ones, such as a Neuman condition
on the distance function, on ΓS .

4. Numerical discretisation

4.1. Formulation

We consider a triangulation of the polygonal domain Ω that respects ΓD and ΓS . They consist of
triangles (or tetrahedrons) that are generically denoted by K . The vertices of the triangulation are
denoted by ai , i = 1, . . . , ns . The number of element is ne . For any vertex ai , V ( j ) is the set of ver-
tices connected to ai by an edge of the triangulation. Often, we make the identification between
a vertex ai and its index i . For the sake of simplicity we only consider the two dimensional case,
the three dimensional one can be done in a similar way. The approximation space is

V h = {
ψ ∈ H 1(Ω),∀ K ,ψ|K ∈P1(K )

}∩{
ψ= 1 on ΓD

}
.

The trial space is

W h = {
ψ ∈ H 1(Ω),∀ K ,ψ|K ∈P1(K )

}∩{
ψ= 0 on ∂Ω

}
.

We write the problem as: find ϕh ∈V h such that for any ψh ∈W h ,

ν2
∫
Ω
∇ϕh ·∇ψh dx+

∫
Ω
ϕhψh dx = 0 (9a)

coupled to boundary conditions on ΓS . If ΓS =;, there is nothing more to do.
In the case when ΓS ̸= ;, we define the boundary conditions according to what is done for the

Eikonal equations, see for example [8]. There is defined a numerical Hamiltonian H which role
is to translate the viscosity inequality

∥∇u∥−1−ν2∆u ≥ 0

on ΓS in the limit ν→ 0. There are several possible versions, but the best (because the gradient of
the numerical solution is controlled, see [8]) is to use a Godunov Hamiltonian which amounts to
write for any vertex ai ∈ ΓS , that

max
j ∈V (i )

(
ui −u j∥∥ai a j

∥∥ −1

)
= 0
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that is the distance function d satisfies

ui = min
j ∈V (i )

(
u j +

∥∥ai a j
∥∥)

.

Keeping in mind that the solution of (9) is related to the solution of (4) by d = −ν logϕ, we will
consider the following implementation for the Soner boundary condition: for ai ∈ ΓS ,

ui = exp
(
−ϕi

ν

)
, ϕi = max

j ∈V (i )

(−ν logu j +
∥∥ai a j

∥∥)
. (9b)

4.2. Numerical procedure

We use the following notations. A triangle K has 3 vertices, denoted by ai , a j , ak . We assume that
the elements are oriented positively. The gradient of the basis function, θi associated to the vertex
ai is

∇θi |K = a j a⊥
k

2|K |
where, for any vector x, x⊥ is orthogonal to x such that the basis (x,x⊥) is direct. As usual, the
angle at ai in K is denoted by αK

i .
The variational formulation inΩ leads to

Mϕ+ν2Rϕ= 0 (10a)

with the boundary condition
ϕi = 1, for any ai ∈ ΓD (10b)

and (9b) on ΓS when this set is not empty. Here, M is the mass matrix and R the rigidity matrix,

Mi j =
∫
Ω
θiθ j dx,Ri j =

∫
∇θi ·∇θ j dx.

If ΓS = ;, this can be solved by an iterative or a direct solver. Here we have chosen the direct
solver PastiX [9]. If ΓS ̸= ; the problem becomes non linear. In that case we use an Uzawa-type
procedure: we construct a sequence of functions by initialising withϕ0 = 1 onΩ, and fromϕn we
construct ϕn+1 by setting:

(1) We compute ϕ̃n+1 solution of (10a) with the Dirichlet boundary�ϕn+1 = 1 on ΓD and �ϕn+1 =ϕn on ΓS . (11)

(2) Then we set

ϕn+1 = �ϕn+1 on Ω\ΓS

ϕn+1
i = exp

(
−vi

ν

)
, vi = max

j ∈V ( j i

(
−ν log �ϕn+1

j +
∥∥ai a j

∥∥)
on ΓS .

(12)

It is well known that for P1 approximation on triangular elements, the contribution of K for
R is

1

2

cotαK
j +cotαK

k −cotαK
k −cotαK

j

−cotαK
k cotαK

i +cotαK
k −cotαK

i
−cotαK

j −cotαK
i cotαK

i +cotαK
j


Since cotα+cotβ= sin(α+β)

sinαsinβ , and since αK
i +αK

j +αK
k = π, the diagonal terms are positive 1. The

term Ri j for two adjacent points is, since ai and a j defines the common edges between two
triangles K + and K −,

Ri j =
∫

K +

〈∇θi ,∇θ j
〉+∫

K −

〈∇θi ,∇θ j
〉=−1

2

(
cotαK +

k +cotαK −
k

)

1a quicker way to see this is to write Ri i =
∥a j −ak∥2

2|K | .
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and it is known that Ri j ≤ 0 for i ̸= j if and only if

αK +
k +αK −

k ≤π, (13)

see Figure 1.

i

j

kK+

kK−

K+

K−

αK−
k

αK+

k

1

Figure 1. Notations.

The mass matrix M is a matrix with positive entries, and the contribution MK of element K to
it is

|K |
 1/6 1/12 1/12

1/12 1/6 1/6
1/12 1/12 1/6


If for any vertex, the condition (13) is met, the solution of the auxiliary problem satisfies

min
x∈ΓS

ϕn(x) ≤ ϕ̃n+1 ≤ 1,

and from (12), we see that
0 ≤ min

x∈ΓS
ϕn+1(x) ≤ϕn+1 ≤ 1.

Similarly, we can show that the sequence is monotone increasing, and since ϕn ≥ 0, it is conver-
gent. The monotone increasing nature comes from ϕ1 ≤ 1 = ϕ0 and then we proceed by induc-
tion. We have (using the discrete maximum principle thanks to the condition (13)) that �ϕn+1 ≥ϕn

and then using (12), we see that ϕn+1 ≤ �ϕn+1 on ΓS . We have thus shown:

Proposition 1. If the variational formulation of the Laplace operator satisfies a maximum prin-
ciple, the sequence (ϕn)n∈N converges. This is in particular true is the triangulation satisfies the
angle condition (13).

5. Numerical examples

All the calculations have been done on an Imac with 3.5GHz Quad-Core Intel core i7 processors
with the version 6.0.2 of PastiX [9]. To report the performance of the solver, for a mesh with 295
296vertices, 587 520 elements generated by GMSH [10] using the frontal Delaunay option, the
symbolic factorisation takes 0.47 s, the evaluation of the non zeros entries of the matrices and
the second hand side takes 0.11 s, and the solution takes 9.16 seconds. The averaged maximal
band-with of the matrix was 171 781, its maximal band-with is 292 530. The computations have
been done sequential. We do only calculations when ΓS ̸= ; because they are a priori more
complicated. The symbolic factorisation is done once for all (for a given mesh) if the Uzawa-type
method is needed.
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The first test is the evaluation of the distance function on the annulus {x,1 ≤ ∥x∥ ≤ 2} The
viscosity is set toν= 0.1. The Dirichlet condition is set for the inner circle, and the Soner condition
on the outer circle. The solution is displayed on Figure 2-a, while the error to the true solution is
on Figure 2-b.

(a) (b)

Figure 2. Results for the distance in an annulus. On (a) we have the solution, and on (b) we
have |−ν logui −di |.

The second case is that of the distance to a body made of two NACA airfoils. The Dirichlet
condition is set on the airfoils, and the Soner one on the outer boundary. The results are displayed
on Figure 3 as well as the mesh. Here again, ν= 0.1.

We also have considered a case where ΓD and ΓS are not disjoint. The example under consid-
eration is

Ω= {
x = (x1, x2) ∈R2,1 ≤ ∥x∥ ≤ 2, x1 ≥ 0

}
. (14a)

We take

ΓD = {(x1,0),1 ≤ x1 ≤ 2} , and ΓS = ∂Ω\ΓS . (14b)

We take ν= 0.01. We provide the result on a fine mesh (151 713 points and 301 568 elements) on
Figure 4.

In Figure 5, we compare the iterative convergence of the algorithm for several meshes (2473,
9657 and 151 713 vertices).

We observe that we need 65 iterations for the coarse mesh, 130 for the medium one and 485 for
the fine one. The ratio of mesh points w.r.t. the coarse one is 1:4:61, and for the iteration the ratios
1:2:7.5, so we see that the cost evolves like h−1 (the mesh is very regular). For a classical explicit
hyperbolic solver, the cost scales like the number of points, so h−2. In this case, and others that
we have computed (such as the airfoil case, the conclusion is similar, or even better.

To end this paragraph, let us comment a bit on the boundary condition of Soner type. Since we
expect that approximation of the distance has a gradient of norm approximately equal to unity,
one may wonder why a Neuman type boundary condition on the distance, say ∇u ·n = 1, would
not fit. Indeed, this has been our starting point for imposing boundary conditions on ΓS .

If we do that, we first have, since u =−ν logϕ,

∂u

∂n
=∇u ·n =−ν∇ϕ ·n

ϕ
.
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(a) (b)

(c)

Figure 3. Results for the two NACA problem. The mesh and a zoom of the mesh is
displayed.

Figure 4. Solution for the geometry and the boundary conditions defined by (14). The
values range between 0 and 3.907, 30 isolines.
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Thus, to set
∂u

∂n
= 1, we are let to Robin type conditions onϕ. We have compared our formulation

and this one on the fine mesh of the previous test case to the exact solution

u(x, y) =
{

y if 1 ≤ x ≤ 2 and (x, y) ∈Ω
d1 +θ else,

where, if x = (x, y),

d1 =
∥∥x−p

∥∥ with p = x

∥x∥2 −
√

1− 1

∥x∥2

x⊥

∥x∥
and θ is the arclength on the inner circle between p and (1,0). The results are displayed on Figure 6
with ν= 0.01.

Figure 5. Convergence to the steady solution for several meshes.

(a) (b)

Figure 6. (a): isolines for the exact solution (red) and the solution with the Hopf–Cole
transform, (b): isolines for the exact solution(red) and the solution with Robin boundary
conditions (black). The background colour is that of the exact solution, in both case we have
30 isolines between 0 and u = 3.826 (the maximum value of the distance on this domain).
The solution with the Neumann condition get values larger than 3.9, this explains why the
isolines stop.
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From the figure it is clear that the solution with the Neumann condition is completely off
compared with our method, though this one is not perfect (because of ν not small enough).
However, the solution with the Robin condition could be used as an initial guess, this has not
been done in our code.

6. Conclusion

A final remark is that it is certainly possible to establish rigorous error bounds between the dis-
tance function and what is computed here using approximation results between the viscous reg-
ularisation of Hamilton Jacobi equations and standard L∞ error estimates on P1 approximation
of elliptic equations. This has not been done here because we were motivated by designing a
working algorithm.

This algorithm has its own drawbacks. The first one is that when ν becomes very small, the
problem becomes stiffer and stiffer. When the domain is large, the actual value of the solution of
the elliptic problem becomes extremely small. It is interesting to note links with large deviation
problems (see the last chapter of [7] where exactly the same PDE is studied, for completely
different reasons). However, if one comes back to the initial motivation of this work (finding the
distance function for turbulence modelling), our experience is that the computation close to the
Dirichlet boundary is very reliable, and that applying the Dirichlet condition on all boundaries is
enough to get a good approximation.

When the mesh is too distorted so that a discrete maximum principle does not apply, the
solution can be slightly above 1 (so that the ’distance’ would be negative): in that case, the solution
provided by this method can be used as a good initial condition to a ’traditional ’ Hamilton Jacobi
problem.
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