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Abstract. Reduction of a Bessel integral solution for the average transient temperature change at the surface
of a constant flux thermal source/sink of circular disk aspect embedded in an otherwise insulating plane
boundary of a homogeneous, isotropic, and conducting half-space is reported. The analytic solution com-
prises algebraic expressions of tabulated functions.

Keywords. Embedded disk, Average temperature, Analytic solution, Heat equation, Constant flux.

Funding. Prior affiliation where work was conceived.

Manuscript received 31 October 2022, accepted 28 November 2022.

1. Introduction

Determination of exact, analytic expressions, without integrals, sums, etc. for solutions to heat
transfer problems concerned with finite dimension heat sources and/or sinks is frequently
complicated by the apparent intractability of reducing infinite integrals containing multiple
special functions. This is often the case for the resolution of parabolic differential equation
systems wherein heat transport at the surface of an embedded, finite 2D source/sink of arbitrary
aspect is the subject of interest; the circular disk structure remains important because of its
common use as conveniently fabricated detectors or source devices found in various technical
applications and studies of heat transfer.
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In a seminal work on the “constant flux” boundary problem on the disk, Selim [1] refers to
applications of the general transient temperature solution to problems in heat transfer theory,
as well as to studies in fluid flow, soil permeability, and percolation in porous materials. The au-
thors used a double integral transform (Laplace–Hankel) procedure to find an exact solution for
the spatial transient concentration profiles for the system comprising definite integrals. The in-
tegrands involved therein are relatively simple in structure with finite limits, are monotonic, and
contain no special functions; these therefore are particularly amenable to numerical integration.
Tables of concentration profiles of up to 4 significant figures as a function of normalized time and
circular coordinates were provided therein.

Attention here is directed to the determination of a closed form analytic solution for the tran-
sient average surface temperature of a circular disk source/sink operating at constant thermal
flux, which is embedded in the insulated plane z = 0 facing the half-space above. The measure
of the average surface temperature of the source/sink, is often a transient indicator of the time
to approach to steady state heating or cooling of the medium, and is used to determine other
quantities of importance in heat transfer, e.g. surface contact resistance and conductance. The
measure can be applied directly to temperature sensor data (e.g. from fast precision thermistors,
thermocouples, modified circular foil gauges, infrared surface imaging techniques, etc.). Applica-
tion of same is pertinent as well to describe thermal resistance between circular contact regions
between conducting spheres of different temperatures; there has been work resulting in approx-
imating series solutions [2] based on a previous technique[3]. Beck [4] and Cole [5] have applied
series approximations for the values of a Green’s function-based approach for problems applied
to partitioned (short, medium, and long-time (dimensionless variable)) domains, to determine
numerical estimates of the average concentration measure over the disk. At long times (or small
values of the disk radius), the nature of the mixed boundary condition at the interface of the disk
and insulator affects the rate of convergence of approximating series, and significant errors in the
average temperature estimate are known to occur if sufficient numbers of terms are not included.
The regions of significant errors have been studied and characterized so that the approximations
have therefore been useful for many present day applications.

In the present work, we report the reduction of an infinite Bessel integral from [1] to an
analytic expression in algebraic, exponential, and Bessel functions for the transient average
surface temperature. Comparison of several existing approximate solutions now in use to the
analytic solution is included to demonstrate more accurately the magnitudes and ranges of
existing errors in these applications. The results of an application from electrochemical mass
transport which uses a numerical estimation for values of the subject Bessel integral is also
included for comparison.

2. Analysis

Presented first is the statement of the problem and the replacement of the integral representation
of the solution with the analytical result. Following this is a set of standard error comparisons of
existing numerical and heuristic solutions in the literature to the analytic result.

2.1. The problem and result

The original exact analysis of [1] comprises the solution to the problem of the temperature
T = T (r, z, t ) throughout a medium of thermal conductivity k and thermal diffusivity α, initially
at temperature T = 0. A planar insulating boundary at z = 0 is assumed, which contains an
embedded circular disk heat source (or sink) of radius a maintained at a constant thermal flux Q
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beginning at time z = 0. Heat conduction into the medium was specified in circular cylindrical
coordinates by the system of equations

1

α

∂T

∂t
= ∂2T

∂r 2 + 1

r

∂T

∂r
+ ∂2T

∂z2 , T = 0, r, z ⩾ 0 t = 0, (1)

T (r, z,0) = 0; z > 0, (2)

k
∂T

∂z

∣∣∣
z=0

=−Q, 0⩽ r < a, z = 0, t > 0, (3)

= 0, r > a, z = 0, t > 0, (4)

lim
r→∞T (r, z, t ) = 0, t > 0, 0 < z <∞, (5)

which after integral transforming the time dependent temperature to its Laplace space equiv-
alent, and the radial part of the result to its Hankel space equivalent in the usual way, exposes
two tractable differential equations in the transformed variables; the first in terms of the Laplace
space parameter temperature [(T (r, z, t )] = T (r, z, p)

T
(
r, z, p

)= ∫ ∞

0
e−pt T (r, z, t )d t

pT

α
= ∂2T

∂r 2 + 1

r

∂T

∂r
+ ∂2T

∂z2 ,

and the second in terms of the Hankel transform H0T (r, z, p) = T0(σ, z, p),

T0
(
σ, z, p

)= ∫ ∞

0
σJ0 (σr )T (r, z, p)dr

∂2T0

∂z2 +
(
σ2 − p

α

)
T0 = 0.

The latter differential equation is readily solved, and using the Laplace–Hankel transform of the
system boundary condition at infinity, followed by inverse transformation of the the Hankel
representation to the Laplace representation, and subsequent use of a known Bessel function
identity, it is found that the infinite integral Laplace space representation

T
(
r, z, p

)= Qa

pk
·
∫ ∞

0

J0 (σr ) J1 (σa)√
σ2 +p/α

exp

(
−

√
σ2 + p

α
z

)
dσ

gives the transformed temperature when the radius of the disk is a. The result has also been
confirmed for analogous mass transfer applications, e.g. for electrochemical analyses using the
surface concentration over disk electrodes subject to constant flux conditions [6].

Attention to the temperature measure on the surface of the embedded disk source/sink z = 0:

T
(
r,0, p

)= Qa

pk

∫ ∞

0

J0 (σr ) J1 (σa)√
σ2 +p/α

d σ (6)

and considering the Bessel identities∫ δ+2π

δ
J0 (σR)d ψ′ = 2πJ0

(
σρ

)
J0

(
σρ′

)
∫ a

0
ρ′J0

(
σρ′

)
d ρ′ = a

σ
J1 (σa) ,

performing another integration of the Laplace temperature in Eq.(6) over the surface of the disk,
and normalizing to the disk area πa2 provides a representation of the average Laplace space
temperature 〈

T (p)
〉
= 2Q

pk

∫ ∞

0

J2
1 (σa)

σ

d σp
σ2 +κ2

= 2Q

p
p

k

∫ ∞

0

J2
1 (σa)

σ

d σ√
kσ2 +p

.
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Following application of the inverse Laplace transformation
1

p
√

p +β
→ 1√

β
erf

(√
βt

)
,

the result

〈T (t )〉 = 2Q

k

∫ ∞

0

J2
1 (σa)

σ2 erf
(p

ktσ
)

dσ (7)

is an exact measure of the average temperature across the surface of the embedded disk
source/sink. The reduction of the two parameter integral form therein,∫ ∞

0

J2
1

(
γx

)
x2 erf(βx)d x, (8)

is the main focus of this report, for which the details of reduction are presented in the Appendix.
The use of the final analytic result Eq.(A.8) in Eq.(7) then gives the variable form

〈T (t )〉 = 2Q

k

[
4γ

3π
+ βp

π

{
1−

(
1+ 2γ2

3β2

)
exp

(
− γ2

2β2

)
I0

(
γ2

2β2

)
−

(
1

3
+ 2γ2

3β2

)
exp

(
− γ2

2β2

)
I1

(
γ2

2β2

)}]
,

and with the substitutions
β=

p
kt , γ=a, τ=β2/γ2, (9)

the average temperature at the active surface

〈T (t )〉

= 2Qa

k

p
τ

[
4

3π
p
τ
+ 1p

π

{
1−

(
1+ 2

3τ

)
exp

(
− 1

2τ

)
I0

(
1

2τ

)
−

(
1

3
+ 2

3τ

)
exp

(
− 1

2τ

)
I1

(
1

2τ

)}]
(10)

is cast in terms of the dimensionless variable τ = kt/a2. At long times, and conditions under
which the heat transfer characteristics of the medium above the disk remain under homogeneous
heat conduction conditions, e.g. no phase changes, convection, etc., the average surface temper-
ature 〈T (r ⩽ a,0, t )〉 is seen to approach the known steady-state value 8Qa/3πk, e.g . see [7].

2.2. Comparison of the analytic result to literature approximations

In general, applications in the literature which utilize the integral (8) typically comprise series
approximations with dimensionless multipliers and variable changes to scale the integral to
the particular infinite series functional form being used. For comparative analysis therefore, it
is required to re-scale the series representatons to establish values equivalent to the analytical
result containing the same dimensionless variable τ = kt/a2. Evidently, a convenient basis
representation for this purpose is the form

Φ1
(
kt/a2)= X · Integral Approximation, (11)

wherein X is the factor used to make the integral series approximation appropriately dimension-
less and consistent.

For heat transfer applications, it is appropriate to consider the various Green’s function based
results of Cole and Beck. A number of their approximating series results corresponding to various
specified time segments already expressed in terms of the dimensionless variable τ = kt/a2.
One result for short diffusion times (small τ values), on the surface of the disk provides their
approximation to Φ1(kt/a2), which results after multiplying the right-hand side of the series
approximation ([5, Eq. (7.149) p. 275]) by the dimensionless factor X = a/2

p
kt (which in their

notation is 1/2
p

t+), i.e.

Φ1,Cole short time

(
kt

a2

)
= a

2
p

kt

2

√
kt

πa2 − kt

πa2

[
2− kt

4a2 − 1

4

(
kt

4a2

)2

− 15

4

(
kt

4a2

)3]
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Likewise for long times, the estimating function is available by multiplication of the right-hand
side ([5, Eq. (7.148) p. 275]) by the same dimensionless factor X = a/2

p
kt (= 1/2

p
t+):

Φ1,Cole long time

(
kt

a2

)
= a

2
p

kt

{
8

3π
− a

2
p
πkt

[
1− 2a2

24kt
+

(
5a4

480k2t 2

)
−

(
19a6

10752k3t 3

)]}
Similarly, comparisons can be made to other reported short and long time approximations

from [8,9](see e.g. [9, Eqns. (3.158) and (3.159)]) after normalizing the series representations using
the appropriate common multiplier X =πa/8

p
kt on the right-hand sides of each:

Φ1,Beck short time

(
kt

a2

)
= πa

8
p

kt

 8

π

√
kt

πa2 − kt

πa2 + 1

8π

(
kt

a2

)2

+ 1

32π

(
kt

a2

)3

+ 15

512π

(
kt

a2

)4


Φ1,Beck long time

(
kt

a2

)
= πa

8
p

kt

{
32

3π2 − 2ap
π3kt

[
1− a2

3(4kt )
+ a4

6(4kt )2 + a6

12(4kt )3

]}
An application to mass transfer experiments that comprises the integral in question has

been reported [6, 7]. In that work, the average disk surface concentration measure C (r,0, t )Av , is
analogous to the temperature 〈T (r ⩽ a,0, t )〉 above, after replacement of the thermal conductivity
k by the diffusion coefficient D .:

C (r,0, t )Av = 2Qa

D
·pτ

∫ ∞

0
J2

1

(
βa

l

)
erf(β)

dβ

β2 .

In contrast to the technique of developing approximating series for the values of the integral
over long and short time regions, the work in [6, 7] uses numerical integration techniques to
approximate the values of the Φ1 integral over the dimensionless variable range. Efficiency in
convergence of the integration was attained by recasting same to the sum of two integrals, with
a precision of 4 significant figures over the reported range. The derived approximation to the
integral for comparison to the others in this work becomes, after multiplication by the parameter
X = D/2Qa ·

p
Dt/a2 = D/2Qa ·pτ,

Φ1,Fleisch

(
kt

a2

)
=p

τ

{∫ ∞

0
J2

1

(
βp
τ

)
dβ

β2 +
∫ ∞

0
J2

1

(
βp
τ

)
(erf(β)−1)

dβ

β2

}
Finally, the analytic result from (10) for determining the percentage error of the various

approximations becomes

Φ1,Anal.

(
kt

a2

)
=p

τ

[
4

3π
p
τ
+ 1p

π

{
1−

(
1+ 2

3τ

)
exp

(
− 1

2τ

)
I0

(
1

2τ

)
−

(
1

3
+ 2

3τ

)
exp

(
− 1

2τ

)
I1

(
1

2τ

)}]
and a plot of the analytic function is given in Figure 1.

Results for the percentage error for all the various estimates are given in Figures 2 and 3. In
those figures, the dashed zero error (analytical reference) base line comprises the Fleischmann
numerical error data, which is only precise to 4 significant figures.

3. Summary

An analytical solution to a heretofore unreduced infinite integral, containing the square of a
Bessel function, is described. The subject integral is expanded to a sum of two new Bessel
integrals after a change of variables. It is then considered that a second order, two term scaled
differentiation (with respect to the function parameter) of the Bessel component allows part of
one Bessel integrand to be recast to a double integral comprising a finite one over a simpler
infinite Bessel representation. The second integral of the expansion, after a similar differentiation
with respect to the same parameter, leads to the required remaining and reducible integrals, after
some further manipulation.
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Figure 1. A plot of the values of the analytic Φ1 function v s. the dimensionless variablep
kt/a (or
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Dt/a).
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Figure 2. A plot of the percentage error of the Beck approximations Φ1,Beck v s. the dimen-
sionless variable

p
kt/a with reference to the analytic value (dotted line).

The described solution can be used in error analysis of existing approximations to verify
their usefulness as heuristic expressions for predicting physical quantities on active circular disk
sources/sinks commonly used in diffusion analysis in heat and mass transfer measurements.
Since an analytical solution which comprises well-known tabulated functions is in general more
efficient to implement in test use, and inherently more accurate and precise than numerical
integration techniques on modern laboratory computers, they are increasingly important in
developing better models for improved high performance applications.

Since mathematically analogous differential equation systems exist for other areas of research
(e.g. neutron density in reactors, velocity potential in incompressible fluids, (steady state) electric
potential in electrostatics, displacement of vibrating stretched membranes, etc.) the solution
is applicable to modeling in those applications as well, after appropriate unit parameter and
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Figure 3. A plot of the percentage error of the Cole/Beck approximations Φ1,Cole v s. the
dimensionless variable

p
kt/a with reference to the analytic value (dotted line).

variable substitutions changes to the the heat transfer differential equation system ((1)-(5))
introduced at the outset of this report.

4. Symbols used

a Circular disk radius
C∞ Bulk diffusant concentration
C Av Average transient surface concentration
〈T (t )〉 Average transient surface temperature

D Diffusion coefficient
erf Error function
H Hankel transform operator
Jx Bessel functions of the first kind
L Laplace transform
p Laplace parameter operator
Q Heat or mass Flux
r Radial distance coordinate
t Time
T Temperature
z z−distance coordinate
α Thermal diffusivity
τ Dimensionless variable kt/a2 or Dt/a2

Φ1,x Scaled variants of
∫ ∞

0

[
J2

1

(
γx

)
/x2

]
erf(βx)d x

α−ω In Appendix, various integration variables.
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Appendix A. Reduction of the Integral in (8)

Denoting as I the integral in (8), a change of variables shows

I =
∫ ∞

0

J2
1

(
γx

)
x2 erf(βx)d x =

∫ ∞

0
d

(
− 1

x

)
J2

1

(
γx

)
erf

(
βx

)
=

∫ ∞

0

1

x

{
2γJ1

(
γx

)[
J0

(
γx

)− J1
(
γx

)
γx

]
erf(βx)

}
d x + 2p

π
β

∫ ∞

0

1

x
J2

1

(
γx

)
e−β

2x2
d x

3I = 2γ
∫ ∞

0
J0

(
γx

)
J1

(
γx

)
erf

(
βx

) d x

x
+ 2p

π
β

∫ ∞

0
J2

1

(
γx

)
e−β

2x2 d x

x
. (A.1)

The first integral in (A.1)

F1 =
∫ ∞

0
J0

(
γx

)
J1

(
γx

)
erf

(
βx

) d x

x
,

is rearranged according to a Bessel product identity

ĹJ0
(
γx

)
J1

(
γx

)
1 =

2

π

∫ π/2

0
J1

(
2γx cosϑ

)
cosϑdϑ :

F1 = 2

π

∫ π/2

0
cosϑ

∫ ∞

0
J1

(
2γx cosϑ

)
erf

(
βx

) d x

x
.

(A.2)

Now ∫ ∞

0
J1

(
γx

)
erf

(
βx

) d x

x
= erfc

(
γ

2β

)
+ 2βp

πγ

[
1−exp

(
− γ2

4β2

)]
(A.3)

as can be checked by differentiation with respect to β; thus

d

dβ

∫ ∞

0
J1

(
γx

)
erf

(
βx

) d x

x
= 2p

π

∫ ∞

0
J1

(
γx

)
e−β

2x2
d x

1 = 2p
π
·
p
π

2β
exp

(
− γ2

8β2

)
I1/2

(
γ2

8β2

)
= 1

β
exp

(
− γ2

8β2

)
·
√

16β2

πγ2 sinh

(
γ2

8β2

)
1 = 2p

π
· 1

γ

[
1−exp

(
− γ2

4β2

)] (A.4)

and

d

dβ

{
erfc

(
γ

2β

)
+ 2βp

πγ

[
1−exp

(
− γ2

4β2

)]}
= 2p

π
· γ

2

2β2 exp

(
− γ2

4β2

)
+ 2p

π
· 1

γ

[
1−exp

(
− γ2

4β2

)]
− 2βp

πγ
exp

(
− γ2

4β2

)
2γ2

4β3

= 2p
π
· 1

γ

[
1−exp

(
− γ2

4β2

)]
in agreement with (A.4). Combining (A.2) and (A.3),

F1 = 2

π

∫ π/2

0
cosϑ

{
erfc

(
γcosϑ

β

)
+ βp

πγcosϑ

[
1−exp

(
−γ

2 cos2ϑ

4β

)]}
dϑ

= 2

π

∫ π/2

0
cosϑerfc

(
γcosϑ

β

)
d sinϑ+2

β

γ

1

π3/2

∫ π/2

0

[
1−exp

(
−γ

2 cos2ϑ

4β

)]
dϑ

= 2

π
− 2

π

2p
π

γ

β

∫ π/2

0
sin2ϑexp

(
−γ

2 cos2ϑ

4β

)
d sinϑ

+ β

γ

1p
π
−2

β

γ

1

π3/2

∫ π/2

0
exp

(
−γ

2 cos2ϑ

β2

)
dϑ.

(A.5)
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Before continuing with the integrals in (A.5), consider

F2 =
∫ ∞

0
J2

1

(
γx

)
e−β

2x2 d x

x

D2 =
(

d 2

dγ2 + 3

γ

d

dγ

)
F2 = 4

π

∫ π

0
cos2ϑ

∫ ∞

0
J0

(
2γx cosϑ

)
xe−β

2x2
d xdϑ

= 4

π

∫ π

0
cos2ϑ

∫ π

0
J0

(
2γx cosϑ

)
d

(
e−β

2x2

−2β2

)
dϑ

= 4

π

∫ π

0
cos2ϑdϑ

{
1

2β2 − γ

β2 cosϑ
∫ ∞

0
J1

(
2γx cosϑ

)
e−β

2x2
d x

}
= 2

πβ2

∫ π

0
cos2ϑdϑ− 4γ

πβ2

∫ π

0
cos3 1

2γcosϑ

[
1−exp

(
−γ

2 cos2ϑ

β2

)]
dϑ

= 2

πβ2

∫ π

0
cos2ϑexp

(
−γ

2 cos2ϑ

β2

)
dϑ.

Thus

d

dγ

(
γ3 dF2

dγ

)
= 2

πβ2

∫ π

0
cos2ϑγ3 exp

(
−γ

2 cos2ϑ

β2

)
dϑ,

and since

∫ γ

0
exp

(−λx2)d x =
∫ γ

0
x2d

exp
(−λx2

)
−2λ

d x

=− γ
2

2λ
exp

(−λx2)exp
(−λγ2)+ 1

λ

∫ γ

0
x exp

(−λx2)d x

=− γ
2

2λ
exp

(−λγ2)+ 1

2λ2

[
1−exp

(−λγ2)] ,

it follows that

dF2

dγ
= 2

πγ3β2

∫
cos2ϑ

{
β4

2cos4ϑ

[
1−exp

(
−γ

2 cos2ϑ

β2

)]
− γ2β2

2cos2ϑ
exp

(
−γ

2 cos2ϑ

β2

)}
dϑ

= β2

πγ3

∫ π

0

1

cos2ϑ

{[
1−exp

(
−γ

2 cos2ϑ

β2

)]
γ2

β2 cos2ϑexp

(
−γ

2 cos2ϑ

β2

)}
dϑ.

Making use of the reduction

∫ γ

0

1

x3

{
1−exp

(−λx2)−λx2 exp
(−λx2)}d x =

∫ γ

0
d

(
− 1

2x2

){
1−exp

(−λx2)−λx2 exp
(−λx2)}

= 1

2γ2

{
1−exp

(−λx2)−λx2 exp
(−λx2)}+ 1

2

∫ γ

0

1

x2

{
2λx exp

(−λx2)−2λx exp
(−λx2)

+2λ2x3 exp
(−λx2)}d x

=− 1

2γ2

{
1−exp

(−λγ2)−λγ2 exp
(−λx2)}+ λ

2

(
1−exp

(−λγx2)),



26 William Pons and Stanley Pons

it follows next that

F2 = 1

2π

∫ π

0

[
1−exp

(
−γ

2 cos2ϑ

β2

)]
dϑ

− 1

2π

β2

γ2 ·
∫ π

0

dϑ

cos2ϑ

{
1−exp

(
−γ

2 cos2ϑ

β2

)
− γ2 cos2ϑ

β2 ·exp

(
−γ

2 cos2ϑ

β2

)}
= 1

2π

∫ π

0

[
1−exp

(
−γ

2 cos2ϑ

β2

)]
dϑ

+ 1

2π

∫ π

0
exp

(
−γ

2 cos2ϑ

β2

)
dϑ− 1

2π

β2

γ2 ·
∫ π

0

dϑ

cos2ϑ

{
1−exp

(
−γ

2 cos2ϑ

β2

)}
=1

2
− 1

2π

β2

γ2

∫ π

0
d

(
sinϑ

cosϑ

){
1−exp

(
−γ

2 cos2ϑ

β2

)}
=1

2
− 1

2π

β2

γ2

∫ π

0

sinϑ

cosϑ
· γ

2

β2 cosϑsinϑ ·exp

(
−γ

2 cos2ϑ

β2

)
dϑ

=1

2
− 1

π

∫ π

0
sin2ϑexp

(
−γ

2 cos2ϑ

β2

)
dϑ

=1

2
− 2

π

∫ π/2

0
sin2ϑexp

(
−γ

2

β2 cos2ϑ

)
dϑ.

(A.6)

A simpler determination of F2 which also serves as a check is the following

dF2

dβ
=−2β

∫ ∞

0
J2

1

(
γx

)
xe−β

2x2
d x =−2β · 1

2β2 exp

(
− γ2

2β2

)
I1

(
γ2

2β2

)
∴ F2 =

∫ ∞

β

1

x
exp

(
− γ2

2β2

)
I1

(
γ2

2β2

)
d x = 1

2

∫ γ2/2β2

β

1

x
e−y I1

(
y
) d y

y
.

Now∫ σ

0
exp

(−y
)

I1
(
y
) d y

y
=

∫ σ

0
d

(
− 1

y

)
y exp

(−y
)

I1
(
y
)

=− I1 (σ)exp(−σ)+
∫ σ

0

1

y
exp

(−y
)[

yI0
(
y
)− yI1

(
y
)]

d y

=− I1 (σ)exp(−σ)+
∫ σ

0
exp

(−y
)

I0
(
y
)

d y −
∫ σ

0
exp

(−y
)

I1
(
y
)

d y

=− I1 (σ)exp(−σ)+
∫ σ

0
exp

(−y
)

I0
(
y
)

d y −
∫ σ

0
exp

(−y
)

dI0

=− I1 (σ)exp(−σ)+
∫ σ

0
exp

(−y
)

I0
(
y
)

d y −exp(−σ) I0 (σ)+1−
∫ σ

0
exp

(−y
)

I0
(
y
)

d y

=1−exp(−σ) [I0 (σ)+ I1 (σ)] .

Hence

F2 = 1

2
− 1

2
exp

(
− γ2

2β2

)[
I0

(
γ2

2β2

)
+ I1

(
γ2

2β2

)]
(A.7)

in full agreement with (A.6), since∫ π/2

0
sin2ϑexp

(−λcos2ϑ
)

dϑ=
∫ π/2

0

1−cos2ϑ

2
exp

(
−λ

2

)
exp

(
−λ

2
cos2ϑ

)
dϑ

= 1

4

∫ π

0
(1−cos2ϕ)exp

(
−λ

2

)
exp

(
−λ

2
cos2ϕ

)
dϕ

= π

4
exp

(
−λ

2

)
I0

(
λ

2

)
+ π

4
exp

(
−λ

2

)
I1

(
λ

2

)
.
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Note that

F2 →
∫ ∞

0

J2
1

(
γx

)
d x

x
= 1

2
, whenβ→ 0

as implied by (A.7).
Upon collecting the results obtained

3I =2γF1 + 2p
π
βF2

F1 = 2

π
+ β

γ
p
π
− β

γ
p
π

exp

(
− γ2

2β2

)
I0

(
γ2

2β2

)
− γ

β
p
π

exp

(
− γ2

2β2

)[
I0

(
γ2

2β2

)
+ I1

(
γ2

2β2

)]
F2 =1

2
− 1

2
exp

(
− γ2

2β2

)[
I0

(
γ2

2β2

)
+ I1

(
γ2

2β2

)]
,

so that

3I =4γ

π
+ 2βp

π
− 2βp

π
exp

(
− γ2

2β2

)
I0

(
γ2

2β2

)
− 2γ2

β
p
π

exp

(
− γ2

2β2

)[
I0

(
γ2

2β2

)
+ I1

(
γ2

2β2

)]
+ βp

π
− βp

π
exp

(
− γ2

2β2

)[
I0

(
γ2

2β2

)
+ I1

(
γ2

2β2

)]
=4γ

π
+ 3βp

π
− 3βp

π
exp

(
− γ2

2β2

)
I0

(
γ2

2β2

)
− 2γ2

β
p
π

exp

(
− γ2

2β2

)
I0

(
γ2

2β2

)
− βp

π
exp

(
− γ2

2β2

)
I1

(
γ2

2β2

)
− 2γ2

β
p
π

exp

(
− γ2

2β2

)
I1

(
γ2

2β2

)
,

and, finally

I = 4γ

3π
+ βp

π

{
1−

(
1+ 2γ2

3β2

)
exp

(
− γ2

2β2

)
− I0

(
γ2

2β2

)(
1

3
+ 2γ2

3β2

)
exp

(
− γ2

2β2

)
I1

(
γ2

2β2

)}
(A.8)

represents the full reduction of the integral (8).
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