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Abstract. With view on the context of convex thermomechanics, we propose tools based on the concept of
Bregman divergence, a notion introduced in the 1960s and used in learning and optimization as well. This
study is motivated by the need of “discrepancy measures” between physically constrained fields that are used
both in traditional algorithms, analysis methods and data driven modelling or applications as well.

We give also a characterization of symmetrical Bregman divergences through their generating functions
which can only be quadratic forms. Some properties of the Bregman divergence and the introduced concept
of Bregman Gap between couples of dual quantities are given, and some existing errors in thermomechanics
are recovered. Exploiting the framework of Standard Generalized Materials, we give a set of generating
functions for a large range of applications, including coupled multi-physics. Finally some results useful for
computational geometry are detailed.

Résumé. Dans le contexte de la thermomécanique convexe, nous proposons des outils basés sur le concept
de divergence de Bregman, une notion introduite dans les années 1960 et utilisée dans d’autres domaines
aussi bien en apprentissage qu’en optimisation. Cette étude est motivée par le besoin de « mesures de dissi-
milarité » entre des champs physiquement contraints, champs qui sont utilisés à la fois dans les algorithmes
traditionnels, les méthodes d’analyse et les applications ou les modélisations basées sur les données.

Nous donnons également une caractérisation des divergences de Bregman symétriques à travers leur
fonction génératrice qui ne peut être qu’une fonction quadratique. Certaines propriétés de la divergence de
Bregman et du concept introduit d’écart de Bregman entre les couples de quantités duales sont données, et
certaines erreurs existantes en thermomécanique sont retrouvées. En exploitant le cadre des matériaux stan-
dard généralisés, nous donnons un ensemble de fonctions génératrices pour une large gamme d’applications,
y compris la multiphysique couplée. Enfin, certains résultats utiles pour la géométrie computationnelle sont
détaillés.
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1. Introduction

In thermomechanics as for many multi-physics applications, the need for metrics, “discrepancy
measures” or various concepts derived from a distance in order to compare fields of quantities
of interest is growing, not only but mainly with the development of large amount of digitalized
data, coming the experiments, computations or in-operation measurements. Indeed, a very large
majority of algorithms or data processing methods use, at one time or another, the comparison
of fields. We can cite mechanical analysis, inverse problems, model reduction as well as classifi-
cation or knowledge extraction from massive data.

In order to introduce a correct processing of data, or more generally of fields with different
physical dimensions, in order to try to introduce the a priori knowledge which we have, thanks
to the modeling works and the descriptions of the physics, it is essential to go beyond the usual
norms of IRn or even of functional spaces, used until now mainly to deal with a single physics.
The more and more frequent irruption of high dimension spaces or probabilistic tools also
raises questions about the usual norms and even about the notions of neighborhood [1, 2]. In
the case of thermomechanics, for example, “solution fields” such as displacement, temperature,
strain and stress tensors, are structured both locally and spatially through the conservation laws,
the thermodynamics requirements, the constitutive equations and the symmetries, and some
invariant quantities or global properties are also well established. Even if in practice, data issued
from experiments, measurements or even computations are corrupted with some noise, it seems
that trying to incorporate as such as possible this a priori knowledge can lead to a guarantee of
objectivity and performance, especially when mixing the different types or origins of the data that
are manipulated.

Coming back to thermomechanics, the general concept of energy has been used for decades
and some authors already proposed derived concepts which revealed fruitful in this direction
in various applications. To mention only a few: the Kohn–Vogelius functional [3] for distributed
parameters identification, the constitutive relation error [4–6] for finite element error estimation
and model updating or identification of material parameters, the Reciprocity Gap [7] for crack
identification, the Equilibrium Gap [8] used together with image correlation techniques, . . . .

Let’s take a simple illustration. Suppose we want to identify the rigidity of springs distributed
along a bar in the traction–compression regime. The bar is clamped at one end and submitted
to a prescribed force C at the other. The identification is performed provided the corresponding
displacement is measured all along the bar and known. Two situations are considered, in the
first one (a), the springs are linear ones, whereas in the second one (b), a supplementary cubic
nonlinearity is added. The equations of the two systems are respectively:

(a)−u′′+α2u = 0, u(0) = 0,u′(1) =C (b)−u′′+α2u +εβu3 = 0, u(0) = 0,u′(1) =C

In the case (a) the rigidity α2 is sought whereas in the case (b) it is known and the rigidity εβ
is sought. A classical approach is to minimize a squared measure of discrepancy between the
actual displacement (for the true value of the rigidity, that is α0 for case (a) and εβ0 for case (b))
and the computed one for a given value of the rigidity. The Figure 1 displays for the cases (a) and
(b), the usual least-square function, the energy of the difference of the two fields, and what will
be called below the symmetrized Bregman divergence between the two fields (which in case (a)
turns about to be exactly the energy of the difference) that is:

(a) G1(α2) = α2
0

2

∫ 1

0
(u(α2)−u(α2

0))2dx

G2(α2) = 1

2

∫ 1

0

[
(u′(α2)−u′(α0))2 +α2(u(α2)−u(α2

0))2]dx
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Figure 1. (a) Error functions for the identification of α. (b) Error functions for the identifi-
cation of β. α0 = 8,β0 = 25,ε= 0.1,C = 50.

(b) H1(εβ) = α2

2

∫ 1

0
(u(εβ)−u(εβ0))2dx,

H2(εβ) = 1

2

∫ 1

0

[
(u′(εβ)−u′(εβ0))2 +α2(u(εβ)−u(εβ0))2 +εβ(u(εβ)−u(εβ0))4]dx

H3(εβ) = 1

2

∫ 1

0

[
(u′(εβ)−u′(εβ0))2 +α2(u(εβ)−u(εβ0))2

+εβ(u(εβ)−u(εβ0))(u3(εβ)−u3(εβ0))
]

dx.

In both cases, closed form solutions are used, and for case (b) it is obtained by the first two
terms of an asymptotic expansion with ε as the small parameter.

It can be observed that, even in this simplistic case, the functions G2 and H3 are more suited
for the minimization procedure. Indeed the ratios of the Hessians are respectively 1.2 and 5.9 at
points α0 and β0. The difference being much more pronounced in the nonlinear case.

This paper is devoted to the introduction of various concepts, involving or derived from, the
Bregman divergence and leading to various forms of discrepancy measures, in a special sense,
for thermomechanics quantities. These concepts encompass some of the concepts cited previ-
ously and have been already used for solving nonlinear Cauchy problems in various situations in
thermomechanics [9–11]. The paper is organized as follows. First, the Bregman divergence is de-
fined and various properties are described together with the definition of derived concepts such
as the Symmetrized Bregman Divergence and the Bregman Gap. Then generating functions for
the Bregman divergence and derived concepts are given for a large class of constitutive relations
or situations in thermomechanics. Finally, some properties useful for elementary computational
geometry are given.

2. The Bregman divergence: main properties and generalization

2.1. The Bregman divergence

The Bregman divergence has been introduced by Bregman [12] in convex programming con-
text [13], although the name Bregman divergence has been coined later [14]. It has also been stud-
ied and used for some years in the field of statistical inference and data processing problems [15],
such as estimation, detection, classification, compression, and recognition, in particular for clas-
sification or clustering applications [16], and even, more recently, in deep learning applications.
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Figure 2. Geometrical interpretation of the Bregman divergence in IRd , d = 1 and 2 for
differentiable generating functions.

In learning applications, the Bregman divergence is used as a discrepancy measure and in some
optimization algorithms [17] it is recognized as superior to the usual Euclidian distance.

We give here a slight generalization of the Bregman divergence, which includes the case of
non-differentiable generating functions, because they are to be encountered in thermomechan-
ics.

Definition. Let J be a proper convex function, J (e) : IRn 7→ IR, the Bregman divergence, gener-
ated by J , between two points (e1,e2) belonging to dom(J )2 is the non-negative scalar:

D J (e1,e2) = J (e1)− J (e2)−〈p21,e1 −e2〉
p21 = 1

2

[
argmax
p∈∂J (e2)

〈p,e1 −e2〉+argmin
p∈∂J (e2)

〈p,e2 −e1〉
]

(1)

where ∂J (e) is the subdifferential of J at e: ∂J (e) = {p, J (d) ≥ J (e)+〈p,d −e〉 ∀d ∈ dom(J )}.
If the generating function J is differentiable at point e2, then the Bregman divergence reduces

to:
D J (e1,e2) = J (e1)− J (e2)−〈∇J (e2),e1 −e2〉 (2)

Roughly speaking, the Bregman divergence is the tail of the Taylor expansion of J. An extension
to infinite dimensional spaces of the Bregman divergence has been provided [18]. The positivity
of the Bregman divergence results simply from the genuine definition of a convex function which
lies “above its tangent planes” as illustrated on Figure 2. The Bregman divergence can be used as
a discrepancy measure between two vectors as it takes strictly positive values if the two vectors
are different (when the generating function is strictly convex), and is zero on any pair (e, e).

The definition (1) for non-differentiable generating functions is chosen as to obtain a
“medium” discrepancy measure (see Figure 3), and leads also to a non-zero divergence between
zero and other points for generating functions that are positively homogeneous with degree one.
The geometrical interpretation is slightly different than in the case of differentiable generating
functions, and the value p12, which is an element of ∂J (e), by convexity of the subdifferential,
turns out to be also the mean value of the directional derivatives in the directions (e1–e2) and
(e2–e1).

The choice retained within the subdifferential of J in e2 does not however guarantees the
directional continuity of the Bregman divergence around the point of non-differentiability e2.
Consider for example J (e) = e2 +αe+ −βe−,α,β ≥ 0, then ∂J (0) = [−β,α] and D J (e,0) = J (e)−
(1/2)(α−β)e.
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Figure 3. Geometrical interpretation of the Bregman divergence in IR for non-
differentiable generating function at e = 0.

Table 1. Examples of generating functions and associated Bregman divergences

Domain
Generating

function J(x)
Bregman

divergence D J (x, y)
Name

IRn ∥x∥2 ∥x − y∥2 Euclidian distance

IRn J (x) = xT Ax
A symmetric positive

(x − y)T A(x − y) Mahalanobis distance

IR+∗n ∑
xi log xi −xi

∑
xi log

xi

yi
−xi + yi

Kullback–Leibler
divergence or relative

entropy

IR+∗n ∑− log xi
∑ xi

yi
− log

xi

yi
−1

Itakura–Saito discrete
distance

]0,1[ x log x + (1−x) log(1−x) x log
x

y
+ (1−x) log

1−x

1− y
Logistic loss

There are situations in the field of learning, for example in image classification, which do not
require finer concepts such as true metrics that by the way do not really make sense, for example
for the triangle inequality [19]. Nevertheless, even if D J (e1,e2) vanishes when e1 = e2 (and
reciprocally if the generating function J is strictly convex), Bregman divergences are not distances
as they are neither symmetric nor satisfying the triangle inequality in general. In Table 1, some
Bregman divergences are displayed, the two first ones are genuine distances whereas the last
ones, which are not, are used in learning applications and statistics.

Nevertheless, the following interesting properties [16] which are useful in optimization as well
as in computational geometry have been established and have been extended to the infinite
dimensional context [18].

Convexity. D J (e1,e2) is always convex in the first argument (but not necessarily in the second
argument, take for example J (e) = e3 in IR+, De3 (e1,e2) is not convex in e2 when e2 < e2).

Linearity. The Bregman divergence is a linear operator with respect to generating functions

DλJ+µF (e1,e2) =λD J (e1,e2)+µDF (e1,e2) (J ,F convex λ,µ positive).

Projection onto convex sets. There exists a Bregman projection onto convex sets C with unique-
ness if J is differentiable at e

∀C ∃!ẽ suchas ẽ = ArgMin
g∈C

D J (g ,e).

Note that the order of arguments in the definition of the projection is crucial as the Bregman
divergence is generally not symmetric and not always convex with respect to its second argument.
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Hyperplane separation. The set of points equidistant, in terms of Bregman divergence, to a pair
of distinct points is an hyperplane.

Weak form of Pythagoras theorem (for differentiable J).

D J (e1,e3) = D J (e1,e2)+D J (e2,e3)+〈∇J (e2)−∇J (e3),e1 −e2〉
then

when C is a convex set

∀e2 ∈ IRn et ∀e1 ∈C , D J (e1,e2) ≥ D J (e1, ẽ2)+D J (ẽ2,e2)

when C is an affine subspace

∀e2 ∈ IRn et ∀e1 ∈C , D J (e1,e2) = D J (e1, ẽ2)+D J (ẽ2,e2).

As the generating function J is defined up to an affine function because of the linearity property:

D〈a,e〉+b(e1,e2) ≡ 0, D J+F (e1,e2) = D J (e1,e2)+DF (e1,e2)

we can suppose, or prescribe, that J (0) and ∇J (0) are zero: D J ≡ D J−J (0)−∇J (0)·e . In this case, it can
easily be seen that the following properties hold:

D J (e,0) ≡ J (e) ≤ 〈∇J (e),e〉. (3)

As the Bregman divergence can nevertheless be symmetric, even it is generally not the case, it
is interesting to derive a characterization of the symmetric Bregman divergences, because the
preceding properties are clearly improved.

Proposition (Characterization of symmetric Bregman divergences). The Bregman divergence
generated by the convex differentiable function J is symmetric iff J is a (positive) quadratic form.

The proof is provided in Appendix A. This condition is stronger than the condition of posi-
tive homogeneity of degree two. For example in IR, the Bregman divergence generated by the
function positively homogeneous of degree two H(x) = a(〈x〉+)2+b(〈x〉−)2, with a ̸= b, cannot be
symmetric. Indeed for any x > 0:

DH (x,−x) = ax2 +3bx2 ̸= bx2 +3ax2 = DH (−x, x).

This result, perhaps disappointing by the restriction it imposes on the generating functions J, has
nevertheless as a corollary that symmetric Bregman divergences are actually distances (namely
Mahalanobis distances in finite dimension).

Corollary. Symmetric Bregman divergences satisfy the triangle inequality and are therefore dis-
tances.

2.2. Symmetrized Bregman divergences, Bregman gaps and ε-Bregman gaps

For application in thermomechanics, it can be desirable to have concepts of dissimilarity that
first give the same role to both components of the pair (e1, e2) to be analyzed, and second involve
primal and dual variables as well, because their dual product has a strong energetic sense. That
is the reason why we introduce first the notion of symmetrized Bregman divergence and second
the notion of Bregman Gap. The symmetrized Bregman divergence, as illustrated on Figure 4,
is simply taken as the sum of the Bregman divergences (the first idea seems to come back to
1946, [20]):

D s
J (e1,e2) = D J (e1,e2)+D J (e2,e1). (4)

Another definitions have been given: the Jensen–Bregman divergence [21]:

JB J (e1,e2) = D J

(
e1,

e1 +e2

2

)
+D J

(
e2,

e1 +e2

2

)
(5)
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Figure 4. Geometric interpretation of the symmetrized Bregman divergence in IR for dif-
ferentiable generating functions.

and the symmetrized divergence of Chen et al. [22] (a positive quantity because J is convex):

m J (e1,e2) = 1

2
[J (e1)+ J (e2)]− J

(e1 +e2

2

)
(6)

grounded on the property: m J (e1,e2) = minz (1/2)[D J (e1, z) + D J (e2, z)]. The properties of the
symmetrized divergence (6), mainly for the scalar case, rely strongly on the regularity of the
generating function, at least a C 2. Nevertheless, in the context of thermomechanics, potentials
useful for defining generating functions can be not differentiable (see part 3).

These definitions are not equivalent even for symmetric Bregman divergences and the first
definition (4) is chosen here.

If the generating function of the Bregman divergence is differentiable, then the symmetrized
Bregman divergence takes a very simple form, which can be used to calculate it:

D s
J (e1,e2) = 〈∇J (e1)−∇J (e2),e1 −e2〉. (7)

This expression provides another justification for the positivity the symmetrized Bregman diver-
gence by the property of monotonicity of the gradient of a convex function. It also provides a
convenient procedure for calculation of the symmetrized Bregman divergence; the following ex-
ample is obtained in this way:

J (e) = 1

2

[
e4 + e2

2
−e2 lne

]
⇒ D s

J (e1,e2) = 2(e3
1 −e3

2 +e lne1 −e2 lne2)(e1 −e2).

In the framework of linear elasticity in small perturbations, then if e is the linearized strain tensor
ε, and J is taken as ϕ the elastic energy density, the symmetric Bregman divergence is the so-
called error in (elastic) constitutive equation, involving also the stress tensor σ, or twice the
energy of the difference, or even up to a multiplication coefficient, the Kohn–Vogelius functional
integrand:

D s
ϕ(ε1,ε2) = 〈∇ϕ(ε1)−∇ϕ(ε2),ε1 −ε2〉 = (σ1 −σ2) : (ε1 −ε2) = 2ϕ(ε1 −ε2). (8)

Moreover when the generating function J of the Bregman divergence is twice differentiable, it
can be given a quadratic expression of the symmetric divergence using the Hessian value at some
point e12 of the segment [e1, e2], thanks to the intermediate value theorem, but obviously the
point e12 depends on the pair (e1, e2):

D s
J (e1,e2) = t (e1 −e2)∇2 J (e12)(e1 −e2) e12 ∈ [e1,e2].
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The symmetric Bregman divergence, although symmetric by construction, still does not possess
generically the triangle property; nevertheless it can be shown that the violation of triangle
inequality is limited by a quantity related to the Hessian bounds [23]:

∃m, M > 0 mtξ ·ξ≤ tξ ·∇2 J ·ξ≤ M tξ ·ξ⇒√
D s

J (e1,e3) ≤
√

D s
J (e1,e2)+

√
D s

J (e2,e3)+ (
p

M −p
m)[D s

J (e1,e2)D s
J (e2,e3)]1/4.

It is worth noting that the symmetrized Bregman divergence, as a function of (e1,e2), is generally
not separately convex. This can be illustrated by the simple counter example of the generating
function J (e) = e−sine on [0,π]. The symmetrized divergence with the origin D J (0,e) =∇J (e)·e =
e(1−cose), is not convex over the entire segment [0, π]. The same counter-example applies to the
Jensen–Bregman divergence (5) and the Chen et al. symmetrized divergence (6) as well.

With a view to application in thermomechanics, it is of interest to introduce a concept that
enjoys symmetry while simultaneously involving dual and primal variables. More precisely, it is
useful in applications concerning data structured by an underlying physics (experimental data or
data from numerical simulations involving partial differential equations), to have divergences or
discrepancy measures between couples of dual variables (e.g. stress and strain tensors, tempera-
ture gradient and heat flux, . . . ).

Definition (Bregman Gap). Let J be a convex, not necessarily differentiable function, the
Bregman gap BG J generated by J between e1 and the couple of dual quantities (e2, p2), p2 ∈
∂J (e2), is the non-negative quantity:

BG J (e1, [e2, p2]) = J (e1)− J (e2)−〈p2,e1 −e2〉. (9)

Here in contrast with the definition (1) of Bregman divergences for non-differentiable func-
tions, no choice is made for the element in the subdifferential of J at e2 because it is itself an ar-
gument of the Bregman Gap. In turn, this notion allows to define a symmetric gap between any
couples of dual variables [e1, p1], and [e2, p2].

Definition (Symmetrized Bregman Gap). Generated by the convex function J , the Sym-
metrized Bregman Gap BG s

J between the two couples of dual quantities (e1, p1) and (e2, p2),
p1 ∈ ∂J (e1), p2 ∈ ∂J (e2), is the nonnegative scalar:

BG s
J ([e1, p1], [e2, p2]) = BG J (e1, [e2, p2])+BG J (e2, [e1, p1]).

A straightforward calculation gives the following expression for the Symmetrized Bregman
Gap:

BG s
J ([e1, p1], [e2, p2]) = 〈p1 −p2,e1 −e2〉 ≥ 0. (10)

Note that the Symmetrized Bregman Gap is separately convex (the proof is provided in
Appendix B). The generating function does not appears anymore in this expression, but its
positivity relies strongly on the existence of a convex function J such that pi ∈ ∂J (ei ), because this
expression is nothing but the monotony of the differential of convex functions. In applications,
the determination of J is then not necessary as soon as the pi are available, although its existence
is mandatory (an interesting example is given by elasticity with large transformations, cf. part 3
and Appendix C). Going back to the example of linear elasticity where the elastic energy densityϕ
is quadratic (provided the reference state is stress-free), the Symmetrized Bregman Gap between
two states (σ1, ε1) and (σ2, ε2), or their discrepancy measure, is simply twice the elastic energy of
the difference of the strain tensors 2ϕ(ε1 −ε2), or twice the elastic complementary energy of the
difference of the stress tensors 2ϕ∗ (σ1 −σ2), provided that σi ∈ ∂εϕ(εi ),εi ∈ ∂σϕ∗ (σi ). Again,
an expression already existing in the literature for application with elastic materials or structures
with quadratic potentials is recovered.



Stéphane Andrieux 67

Figure 5. Original function J (dotted line) and its biconjugate (solid line) that can be used
as generating function for a Bregman divergence and associated concepts.

More generally, the convex framework [24, 25] used here leads to two properties involving the
convex conjugate J* of the generating function J.

The Bregman Gap generated by the convex function J is nothing but the Legendre–Fenchel
residual.

If J∗ is the Legendre–Fenchel conjugate function of J then: D J (e1,e2) = D J∗ (p21, p12) or if the
function J is differentiable: D J (e1,e2) = D J∗ (∇J (e2),∇J (e1))

These results come from the property of the Legendre–Fenchel transform:

J (e)+ J∗(p) = 〈p,e〉⇔ e ∈ ∂J∗(p), p ∈ ∂J (e).

So that:
D J (e1,e2) = J (e1)−〈p21,e1〉− (J (e2)−〈p21,e2〉)

= J (e1)−〈p21,e1〉+ J∗(p21)
= 〈p12,e1〉− J∗(p12)−〈p,e1〉+ J∗(p) ∀p ∈ ∂J (e1)
= J∗(p21)− J∗(p12)−〈p21 −p12,e1〉
= D J∗ (p21, p12).

This expression makes particularly sense in a thermodynamic framework were the thermody-
namic potentials (cf. part 3) are used as generating functions: coherently, dual potentials are in
correspondence in the Bregman divergence through the dual variables. Because the biconjugate
J∗∗ of any function J is convex (like its conjugate J∗), one can use it in order to derive a Bregman
divergence for a nonconvex function. And then we have again (because J∗∗∗ = J∗):

D J∗∗ (e1,e2) = D J∗ (p21, p12).

As an example, the following double-well free energy potential, used in phase transformation
models, is not convex, but its conjugate is convex, although not strictly convex, and can be
calculated by taking advantage from the fact that the biconjugate of J is also the largest closed
convex function smaller than J.

J (e) = 1

2
(e2 −1)2, J∗∗(e) =

∣∣∣∣ 1
2 (e2 −1)2 if |e| < 1
0 if |e| < 1.

However, the separation property of the generated Bregman divergence fails in the interphase
segment [−1,1] as illustrated on Figure 5.

D
J∗∗ (e1,e2) = 1

2 (e2
1 −1)2I[−1,1](e1)− 1

2 (e2
2 −1)2I[−1,1](e2)−2e2(e2

2 −1)(e1 −e2)I[−1,1](e2).

In applications, the dual quantities p, a gradient or a sub-gradient, are often prone to errors,
coming either from computations or measurements. If an estimation of the approximation
level, say ε, is known, we can use the notion of ε-subdifferential, coming from the optimization
community [26, 27] and proved to be the right approximation notion for subdifferential, and
incorporate it in a definition of ε-Bregman Gaps.
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Figure 6. ε-sub-differential of J (e) = |e| as a function of e along the real axis for ε= 0.4. For
ε= 0, the subdifferential (heavy grey line) is the segment [−1,1] at e = 0, and reduces to {1}
and {−1} for e > 0 and e < 0 respectively.

Definition (ε-subgradients, ε-sub differentials [26, 27]). Let J be any convex function and pick
any e in dom J , then for a positive scalar ε, a vector p is called an ε-subgradient of J at e, when
the following property holds:

J (v)− J (e)−〈p, v −e〉 ≥−ε ∀v or equivalently J (e)+ J∗(p)−〈p,e〉 ≤ ε.

The set of all ε-subgradients at e is called the ε-sub differential of J at e, and denoted by ∂ε J (e).

If J is a quadratic function, J (x) = (1/2)x t Qx, then the ε-subdifferential is simply the set
∂ε J (x) = {Qx +τ : τt Q−1τ ≤ 2ε}. In the context of linear elasticity, the ε–stress tensors associated
to a strain tensor e, are then the sum of the actual stress tensor σ associated by the constitutive
equation to e and any stress tensor with elastic energy lesser than ε. As an example in one
dimension, the ε-subdifferential of the function J (e) = |e| is illustrated on Figure 6.

Definition (ε-Bregman Gaps). Let J be a convex, not necessarily differentiable function, and ε
a non-negative scalar:

(i) the ε-Bregman Gap ε-BGJ generated by J between e1 and the couple of approximate dual
quantities (e2, p2), p2 ∈ ∂ε J (e2), is the non-negative quantity:

εBG J (e1, [e2, p2]) = J (e1)− J (e2)−〈p2,e1 −e2〉+ε, p2 ∈ ∂ε J (e2).

(ii) the ε-Symmetrized Bregman Gap εBG s
J generated by J between the couple of approximate

dual quantities (e1, p1) and (e2, p2), p1 ∈ ∂ε J (e1), p2 ∈ ∂ε J (e2) is the non-negative quantity:

εBG s
J ([e1, p1], [e2, p2]) = εBG J (e1, [e2, p2])+εBG J (e2, [e1, p1]) = 〈p1 −p2,e1 −e2〉+2ε

p1 ∈ ∂ε J (e1), p2 ∈ ∂ε J (e2).

The interest of this definition is that, is leads to a positive discrepancy measure without
knowing the generating function but only provided it exists with an approximation ε for the
relation p ∈ ∂J (e). Unfortunately, any property of separated convexity does not make sense
for BG s nor for ε-BG s because their domains are not convex unless the generating function is
quadratic. Indeed, the convexity would necessitate the convexity of the domains, and therefore
prescribe the following implication, which is not ensured except for quadratic functions:

p1 ∈ ∂J (e1), p2 ∈ ∂J (e2) ⇒ (λp1 + (1−λ)p2) ∈ ∂J (λe1 + (1−λ)e2).
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3. Thermodynamic potentials as Bregman generating functions in thermomechanics

The objective of section is to build suitable Bregman divergences and Bregman Gaps for the pro-
cessing of data that originate either from physical experiments or from simulation computations
of these same physical phenomena. As mentioned in the introduction, it is believed that taking
into account the specific structure of these data that is brought by the physical constraints, con-
servations laws or constitutive equations can lead to better performance of the algorithms used
for processing this kind of data. Indeed metrics and scalar products are at the heart of process-
ing methods such as Proper Order Decomposition used for the sparse representation of the data,
identification of structures buried in it or model reductions for the PDE governing it, or such
as classification, clustering and regression algorithms in learning, often by the way of minimiz-
ing discrepancy functions between data. The application to nonlinear cases, emanating notably
from the nonlinearity of the constitutive equation (for small deformation), are appealing for the
definition of non-quadratic pseudo (squared) metrics.

While the merits of various metrics or pseudo-metrics, scalar or pseudo scalar products, can
be considered at the very least to be more or less the same when applied to data corresponding to
a single physics, the situation is very different in the case of multi-physics data relating to coupled
phenomena. This is due on the one hand to the question of the physical units of the data, and on
the other hand to the need to make the best use of a priori information contained in the coupled
equations satisfied by the data. Even with uncertainties, it is desirable to construct more elaborate
metrics than the usual Euclidean metrics of IRn , and the concepts associated with the Bregman
divergence seem fruitful in that respect. The main reason for this is the flexibility they allow in
the choice of generating functions.

In mechanics, in thermics or more generally as soon as thermodynamic phenomena are in-
volved, it is natural, when choosing generating functions for Bregman divergences, to turn to
thermodynamic potentials or dissipation functions and potentials. Indeed, in a large majority
of cases, these are convex functions of their arguments. Furthermore, these potentials were fun-
damentally conceived to introduce an energetic notion but also to define the relations between
dual variables, and it is precisely this last particularity that can be exploited with Bregman di-
vergences. It appears then the gap functions defined by the Symmetric Bregman Gaps coincide
with some forms of error in constitutive equations. In multi-physics situations, advantage can be
taken of the additivity property of the Bregman divergence (cf. part 2.1):

DλJ+µF (e1,e2) =λD J (e1,e2)+µDF (e1,e2) (J ,F convex λ,µpositive scalars)

for combining various potentials either coupled or involving different physical quantities, in
order to build pseudo-metrics covering all the involved data and taking into account all the
couplings between them. In this section, advantage is taken from the convex framework of
Generalized Standard Materials to build ad hoc Bregman Gaps, and extension is made for the
generalization of this framework with Implicit Generalized Standard Materials. Nevertheless, the
classical framework of linear elliptic problems first is analyzed, where the (linear) constitutive
equations are incorporated directly in the conservation laws.

3.1. Potentials for data from physical fields

When the data to be processed come from vector fields, issued from experiments or from
numerical simulations, more or less accurately obeying a system of PDEs, energy quantities such
as the potentials from which these equations derive can be used for the building of generating
functions for Bregman divergences. An important first field of application is provided by the
framework of linear symmetric PDEs. If, in the quasi-static assumption, the data field u(x) on



70 Stéphane Andrieux

Table 2. Quadratic energies or dissipations associated with various linear physics

Physics U space Energy or dissipation density A

Scalar conduction or diffusion (thermal, electrical,
Darcean flow, incompressible Stokes flow)

H 1(Ω) 1
2 k.∇u.∇u

Elasticity H 1(Ω)3 1
2C : ε(u) : ε(u)

Plane elasticity on elastic support H 1(Ω)2 1
2C : ε(u) : ε(u)+ 1

2 ku2

a spatial domain Ω is supposed to obey such a system of equations, the variational form of these
equations reads:

u ∈V , a(u, v) = l (v) ∀v ∈V0

where a is a symmetric bilinear form defined on the product of functions spaces U (Ω)× U (Ω), l
is a linear form on U, V ⊂U is the space of admissible fields (with respect to boundary conditions
on parts of ∂Ω) and V0 its tangent space. If a is continuous and coercive and l is continuous, the
solutions of the system are characterized by the optimization property of a potential P:

u = argmin
V

P (v) ≡ 1
2 a(v, v)− l (v).

The convexity and positivity of a lead to consider the global Bregman divergence, i.e. having as
argument the field u over Ω, and generated by the quadratic form associated with a.

J (u) = a(u,u)

because J is positive, convex and, in addition, J (u) = 0 implies u equals zero as well. J being a
quadratic function, the Bregman divergence generated by J is symmetric and takes the simple
form:

D J (u, v) = a(u,u)−a(v, v)−2a(v,u − v) = a(u − v,u − v).

The local Bregman divergence is generated by the integrand A of a:

a(u, v) =
∫
Ω

A(u(x), v(x))dx, D A(u(x), v(x)) = A(u(x)− v(x),u(x)− v(x)).

The previous expression is an abuse of notation because in general A is also a function of the
derivatives of u and v: A([u,∂u/∂xi , . . .], [v,∂v/∂xi , . . .]). A(u, u) can be often interpreted as the
density of a global energy or a dissipation V (u) = 1/2a(u,u) as illustrated in the Table 2.

In some situations where A is only a function of the derivatives of u, and not of the values of u,
attention must be paid to the space V, which is usually a quotient space, in order to recover the
strict convexity by eliminating the “rigid modes” with no energy. Table 2 displays some examples.

The discrepancy measure generated by the Bregman divergence is of particular interest in
relation with usual Euclidean metrics in situation where the medium is anisotropic and/or
heterogenous [28]. Another important field of application arises in fluid mechanics. For Navier–
Stokes equations where the variable of interest is the velocity field v, two quadratic functions
can be used for generating Bregman divergences: the kinetic energy: ρ∥v∥2 and the enstrophy
ρ∥rot v∥2. The enstrophy is the square of the vorticity for incompressible flows. Then, using the
associated Bregman divergence allows to compare two velocity fields (or more precisely their
fluctuations) in terms of the vorticity contents, this can be of interest for example in POD in order
to identify coherent structures like vortexes in a flow.
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3.2. Generating functions in thermomechanics for Generalized Standard Materials

The theory of Generalized Standard Materials (GSM) [29] is a coherent thermodynamic frame-
work for modelling constitutive equations using only convex potentials. In addition to the usual
description of the thermomechanical state constituted by the state variables (ε,σ, T ), that is (me-
chanical deformation, stress tensor, temperature), some internal (hidden) variables collectively
denoted by α are introduced.

Then complementing the free energy (Helmholtz energy), ϕ(ε,T,α), a pseudo potential of
dissipation appears as a function of the rates of the internal variables D(α̇), and the constitutive
equations are split into two groups:

σ= ∂ϕ

∂ε
, S =−∂ϕ

∂T
, A =−∂ϕ

∂α
and A = ∂D

∂α̇
.

The first group expresses the relation between dual variables (S is the entropy, A the ther-
modynamic force), the second group gives the evolution equation of the internal variable α,
and is extended for non-differentiable pseudo-potentials thanks to the notion of subdifferen-
tial: A ∈ ∂D(α̇). This extension is necessary when modeling constitutive equation involving yield
functions, which are associated with positively homogeneous dissipation pseudo-potentials with
degree one.

For the simplicity of the presentation, we now limit ourselves to isothermal evolutions. The
Euler implicit time incremental form of these constitutive equations reads:

σ+∆σ= ∂ϕ

∂ε
[ε+∆ε,α+∆α], A+∆A =−∂ϕ

∂α
[ε+∆ε,α+∆α], A+∆A = ∂D

∂α̇

(
∆α

∆t

)
(11)

showing that the (thermodynamically) conjugate couples for describing the thermodynamic
state are [(σ+∆σ,ε+∆ε), (A+∆A,α+∆α)]. So, denoting:

ϕ̂(∆ε,∆α) =ϕ(ε+∆ε,α+∆α), D̂(∆α) =D

(
∆α

∆t

)
(12)

a Bregman divergence on the increments of the primal state variables ∆e = (∆ε,∆α) can be
built using Jχ = (1 − χ)ϕ̂+ χ∆tD̂ as the generating function, where χ is a non-dimensional
weighting factor between the free energy potential and the dissipation pseudo-potential (χ∈[0,1]
and χ < 1 if D is homogeneous of degree one, for preserving the strict convexity). This leads to
the following Symmetrized Bregman Gap on incremental couples of dual state variables [∆e, ∆p],
with ∆e = (∆ε,∆α) and ∆p = (∆σ,∆A):

BG s
Jχ

([∆e1,∆p1], [∆e2,∆p2]) = (1−χ)(∆σ1−∆σ2) : (∆ε1−∆ε2)+ (1−2χ)〈∆A1−∆A2,∆α1−∆α2〉.
(13)

This reduces to the so called Drücker mechanical error [30,31] when χ takes the value 1/2, that is
when the free energy and dissipation are equally balanced in building the discrepancy measure.

BG s
J1/2

([∆e1,∆p1], [∆e2,∆p2]) = 1
2 (∆σ1 −∆σ2) : (∆ε1 −∆ε2). (14)

For perfect isotropic elasto-plasticity for example, the primal state is described by the couple
(ε,εp ) where εp is the plastic strain, the free energy is simplyϕ(ε,εp ) = 1/2C : (ε−εp ) : (ε−εp ) and
the pseudo-potential of dissipation is the non-differentiable positively homogeneous function of
degree one D(ε̇p ) = σ0∥ε̇p∥dev. The Symmetrized Bregman Gap reads then (for χ= 0, the elastic
energy gap is of course retrieved):

BG s
J ([(∆ε1,∆εp

1 ), (∆σ1,−∆σ1)], [(∆ε2,∆εp
2 ), (∆σ2,−∆σ2)])

= (∆σ1 −∆σ2) : [(1−χ)(∆ε1 −∆ε2)− (1−2χ) : (∆εp
1 −∆ε

p
2 )].

By a reverse approach to the situations in Section 3.1, Global Symmetrized Bregman Gaps are
simply built by integrating over the geometrical domain of interest Ω. It is worth noting, that
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a direct approach on the domain Ω is also possible following [32]. Because the Bregman Gap
takes exactly the value of the Fenchel residual [25] of its generating function J, involving its
conjugate J∗:

rF (e, p) = J∗(p)+ J (e)−〈p,e〉
the Symmetrized Bregman gaps are closely related to the errors in constitutive equations largely
used in thermomechanics. Furthermore, it is possible to define a dual Bregman Gap with J∗ as
generating function with the property:

BG J (e1, [e2, p2]) = BG J∗ (p2, [p1,e1]).

This result just reflects that conjugate thermodynamic potentials can equivalently be used for
building the Bregman Gaps within the framework of Generalized Standard Materials. Nonethe-
less, it has to be kept in mind that even if the generating function J does not appear anymore
in the final expression (7) or (8) of the Bregman gaps, existence of a convex generating func-
tion is the essential condition for these expressions being positive. In finite elasticity for exam-
ple, the Coleman–Noll error which involves the gradient of the deformation F and the first Piola–
Kirchhoff stress tensor T, and which is exactly the expression of the Bregman Gap, is not a posi-
tive quantity. Fortunately here, it is possible to turn to a weaker notion of convexity, namely the
poly-convexity [33], and to use then as primal variables (F, Cof F, det F) in a correctly build, and
consequently positive, Bregman Gap, details are given in the Appendix C.

3.3. Bregman gaps generated by bi-potentials

Unfortunately, while the GSM framework is very wide, there are still many constitutive laws that
do not fit into it, such as Armstrong–Frederick hardening plasticity, Drücker–Prager elastoplas-
ticity, Clam-Clay models, some damage models or even Coulomb friction. An extension of the
framework of Generalized Standard Materials has been proposed [34] in order to take into ac-
count these behaviors that do not obey the normality law in the complementary equation. In
this formulation, the pseudo-dissipation potential becomes a function of both the primal vari-
able e and its dual variable p, justifying the name of bi-potential, or implicit potential since the
relationship between e and p is expressed by a subdifferential implicit equation:

e ∈ ∂p b(e, p) or p ∈ ∂e b(e, p).

Definition (Bi-potentials [34]). Let e and p be two vectors of variables in duality. A function b
of IRn × IRn with value in IR∪ {+∞} is a bi-potential for (e, p) if and only if:

(i) b is separately convex and lower semi-continuous for e and p
(ii) b satisfies the generalized Fenchel inequality: b(e, p) ≥ 〈e, p〉 ∀e, p

(iii) b(e, p) = 〈e, p〉⇔ e ∈ ∂p b(e, p) ⇔ p ∈ ∂e b(e, p).

The material models defined using a bi-potential for the dissipation pseudo-potential are
called Implicit Generalized Standard Materials. Indeed, in the particular case where b is a sep-
arate variables function, b(e, p) = f (e)+ g (p), then necessarily g and f are mutually conjugate.
Therefore, Generalized Standard Materials are a special cases of Implicit Generalized Standard
Materials for which the bi-potential takes the special form: b(e, p) = f (e)+ f ∗ (p). General bi-
potentials can be used as generating functions for a Bregman Gap provided that the definition of
the latter is adapted as follows.

Definition (Bregman Gap generated by a bi-potential). The Bregman gap generated by the bi-
potential b(e, p) is defined by the positive quantity:

BGb(e1, [e2, p2]) = b(e1, p2)−b(e2, p2)−〈p2,e1 −e2〉 with p2 ∈ ∂p b(e2, p2) (15)
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or equivalently:

BGb(e1, [e2, p2]) = b(e1, p2)−〈p2,e1〉. (16)

This definition generalizes the initial definition of Bregman Gaps: if the bi-potential is a
separate variables function, then the genuine definition is retrieved. Similarly, Symmetrized
Bregman Gaps can be derived.

Definition (Symmetrized Bregman Gap generated by a bi-potential). Let b be a bi-potential,
the Symmetrized Bregman Gap generated by b is:

BG s
b([e1, p1], [e2, p2]) = BGb(e1, [e2, p2])+BGb(e2, [e1, p1])

= b(e1, p2)+b(e2, p1)−〈p2,e1〉−〈p1,e2〉. (17)

As soon as the bi-potential b is (separately) strictly convex, nullity of the Symmetric Bregman
Gap generated by b implies the equality between primal state variables e1 and e2 and the associ-
ated dual variables p1 and p2. However, the normality law, characteristic of Generalized Standard
Materials, being deduced from the inequality 〈p1 −p2,e1 − e2〉 ≥ 0, it can be then expected that,
since it is violated for non-standard materials, the reduction to (10) of the Symmetrized Breg-
man Gap to this expression is no longer verified for Symmetrized Bregman Gaps generated by a
bi-potential. Indeed,

BG s
b([e1, p1], [e2, p2]) = 〈p1 −p2,e1 −e2〉+R

R = b(e1, p2)+b(e2, p1)−〈p1,e1〉−〈p2,e2〉 ̸= 0.

However, the following calculation ensures the positivity of BG s
b :

R = b(e1, p2)+b(e2, p1)−b(e1, p1)−b(e2, p2) ≥ 〈p1,e2 −e1〉−〈p2,e1 −e2〉 =−〈p1 −p2,e1 −e2〉.
This results shows that for constitutive relations not entering the Generalized Standard Materi-
als framework but the implicit potential framework, convex generating functions for Bregman
Gaps can be built with bi-potentials. This extends considerably the application field of the Sym-
metrized Bregman Gaps.

3.4. Expression of Symmetrized Bregman Gaps for various modelling in thermomechanics

Table 3 gathers some Symmetrized Bregman Gaps associated with phenomena (or models)
encountered in thermo-mechanics. Global Symmetrized Bregman Gaps are obtained by spatial
integration over the domain occupied by the solid or over the interface between two contacting
solids.

The expression of Global Symmetrized Bregman Gaps can sometimes be drastically simplified
by using in supplement the equilibrium equation satisfied by the stress field and the compatibil-
ity of the strain tensor field. This is the case for the Drücker error (14), where domain integration
can be replaced with boubdary integration:∫

Ω
(∆σ1 −∆σ2) : (∆ε1 −∆ε2)dΩ≡

∫
∂Ω

(∆σ1 ·n −∆σ2 ·n) : (∆u1 −∆u2)dS. (18)

This leads to significant reduction of the burden computations

4. Computational geometry with Bregman concepts

Various learning techniques like SVM, clustering or partitioning, manifold learning, topologi-
cal data analysis, classification etc. rely on basic problems of computational geometry,where a
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Table 3. Bregman Gaps from various models in thermomechanics χ are non-dimensional
scalars in [0,1], D is a characteristic time

Phenomenon Generating function Symmetrized Bregman Gap
Scalar conduction or

diffusion
Dissipation function K : ∇(u1 −u2) ·∇(u1 −u2)

Linear elasticity Elastic energy C : ε(u1 −u2) : ε(u1 −u2)

Non-linear elasticity Elastic energy
(if convex)

(∆σ1 −∆σ2) : (∆ε(u1)−∆ε(u2))

Hyper-elasticity
(Finite strain)

Polyconvex elastic
energy (variables:

cofactors of F)

(T1 −T2) : (M1 −M2)+ (cT1 − cT2) : (N1 −N2)
+ (p1 −p2)(d1 −d2)

Standard
elastoplasticity

Free energy dissipation
pseudo-potential

(1−χ)(∆σ1 −∆σ2) : (∆ε(u1)−∆ε(u2))
+χ(∆A1 −∆A2) : (∆α1 −∆α2)

Contact/Friction
(contact zone) [11]

Dissipation bi-potential (σ1
nt −σ2

nt ) : (u1
t −u2

t )− (ρσ1
nn −ρσ2

nn )(|ut
1|− |ut

2|)

Non-standard
elastoplasticity

Elastic energy
dissipation bi-potential

(1−χ)(∆σ1 −∆σ2) : (∆ε(u1)−∆ε(u2))
+χ(∆A1 −∆A2) : (∆α1 −∆α2)

Thermo-elasticity Elastic energy thermal
dissipation

(1−χ)C : [ε(u1 −u2)−α(T1 −T2)I d ] : [ε(u1 −u2)
−α(T1 −T2)I d ]+χDK∇(u1 −u2) ·∇(u1 −u2)

distance or a metric usually named loss function in learning application, plays a central role. In
order to use Bregman divergences or Bregman Gaps as loss functions, hopefully better adapted
to the processing of data structured by physics, we give below some essential geometric prop-
erties. Methods for dimension reduction like the Proper Orthogonal Decomposition methods or
generalizations of them can also benefit from more physically informed scalar products or, even
more importantly, inner-products on product-spaces of different physical quantities. Computa-
tional geometry with Bregman divergences can be challenging because of the non-symmetry of
the original Bregman divergence but also and over all because of the violation of the triangle in-
equality, except for quadratic Bregman divergences (Mahalanobis distances). Nevertheless, the
convex basis of the Bregman divergence leads to properties that allow almost all the operations
of computational geometry, sometimes at the cost of slightly altered concepts. In this section are
given some geometric properties and indications on the computation of interesting geometric
quantities regarding applications.

4.1. Centroid properties and Bregman balls

The first and essential geometric property of the Bregman divergence, especially for applications
in clustering is the following. It expresses that the mean of a finite set S of N points minimizes the
sum of Bregman divergences or Bregman Gaps between this point and any other points of the set
S, whatever the choice of the Bregman divergence or gap.

Property (Centroid property for Bregman divergences [16] and for Symmetrized Bregman
Gaps). For any set S of N points in IRn , and any Bregman divergence D J , one has:

µ= 1

N

∑
i=1,N

xi = argmin
s∈IRn

C J (s) ≡ 1

N

∑
i=1,N

D J (xi , s). (19)
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For any set S of N couples [ei , pi ] , dual points with respect to any convex function J in IR2n , and
for the symmetrized Bregman gap BG s

J generated by J , one has:[
µe

µp

]
= 1

N

∑
i=1,N

[
ei

pi

]
= argmin[x

y
]
∈IRn

C J ([x, y]) ≡ 1

N

∑
i=1,N

BG s
J ([ei , pi ], [x, y]). (20)

Proof. Using the expression of BG s
J , we can calculate the derivatives of C J with respect to x and

y:

C J ([x, y]) = 1

N

∑
i=1,N

〈ei −x, pi − y〉 = 1

N

∑
i=1,N

〈ei , pi 〉−
〈

1

N

∑
i=1,N

ei , y

〉
−

〈
x,

1

N

∑
i=1,N

pi

〉
+〈x, y〉

∂

∂x
C J ([e, p]) = p − 1

N

∑
i=1,N

pi ,
∂

∂y
C J ([e, p]) = e − 1

N

∑
i=1,N

ei .

Equating to zero the two derivatives leads to the announced result because the Symmetrized
Bregman Gap, hence C J , is separately convex. This also shows that the minimum is unique. □

The property extends to the probabilistic context with the expectation replacing the mean,

Eν[ f (x)] = 1

N

∑
i=1,N

νi f (xi )

and an exhaustiveness property [35] states that the centroid property is in fact a characterization
of Bregman divergences when the minimization is extended over every probability distributions.
If the centroid property holds for a positive function F, such that F(x, x) = 0, then F is necessarily
a Bregman divergence. By the same arguments, this can be established also for the Symmetrized
Bregman Gap.

The generalization of the ball and sphere concepts, usually defined by means of a distance, is
straightforward for both Bregman divergences and gaps. Nevertheless, due to the non-symmetry
of D J , two distinct kinds of balls or spheres appear.

Definition (Bregman balls [36,37] and Bregman Gap balls). The Bregman ball BB J , respectively
the second type Bregman Ball BB ′

J , associated to the generating function J , with center c and
pseudo-radius ρ is the set:

BB J (c,ρ) = {e,D J (e,c) ≤ ρ2}
BB ′

J (c,ρ) = {e,D J (c,e) ≤ ρ2}
(21)

the associated Bregman spheres are respectively ∂BB J (c,ρ) and ∂BB ′
J (c,ρ).

The Bregman Gap ball, associated to the generating function J , with center µ and radius ρ is
the set:

BBG s
J (µ,ρ) = {e,BG s

J (e,µ) ≤ ρ2} = {e,BG s
J (µ,e) ≤ ρ2} (22)

the associated Bregman sphere is ∂BBG s
J (c,ρ).

When the generating function is the Euclidean norm, the usual notions of balls and spheres are
recovered. As the Bregman divergences and symmetrized Bregman gaps are convex with respect
to its first variable, Bregman balls and Bregman Gap balls are convex sets (whereas the second
type Bregman balls BB ′

J are generally not). To get some insights into the concepts of Bregman
balls, it is interesting to look at origin centered balls, although these balls are not invariant by
translation of their center. Recalling that the generating function is chosen with J (0) =∇J (0) = 0,
the simple expressions are obtained:

BB J (0,ρ) = {J (e) ≤ ρ}, BB ′
J (0,ρ) = {∇J (e) ·e − J (e) ≤ ρ}

BBG s
J (0,ρ) = {∇J (e) ·e ≤ ρ}.

(23)

Illustrations of these different balls are displayed on Figure 7 for various generating functions.



76 Stéphane Andrieux

Figure 7. Bregman Balls. (a) BB ′ and BB for Itakura–Saito (two first balls), and Kullback–
Leibler Bregman divergences (two last balls), from [NN1]. (b) Symmetrized Bregman Gap
origin-centered balls generated by the elastic potential for an isotropic elastic material with
different moduli in traction and compression.

If the generating function J is positively homogeneous with degreeα (necessarilyα> 1), these
expressions can be further simplified and involve only the value of the function J. This illustrates
the strong relation between the Bregman balls and the level-lines of their generating functions:

BB J (0,ρ) = {J (e) ≤ ρ}, BB ′
J (0,ρ) = {(α−1)J (e) ≤ ρ}

BBG s
J (0,ρ) = {αJ (e) ≤ ρ}.

These examples show how the physically information one can a priori have on the data can be
taken into account and have potentially a strong qualitative impact on manipulating and com-
paring these data. The concept of (convex) ball seems to be the right way of dealing with ques-
tions like nearest neighbor determination or minimization of dissimilarity measures between
physical fields. If the Bregman divergence is strictly convex then the Smallest Enclosing Bregman
Ball, in the sense of the smallest radius ρ, is unique and an efficient algorithm has been given for
computing it [38].

4.2. Computational geometry with Bregman concepts

This section is devoted to some basic tools in computational geometry that are commonly used
in situations where a true distance or a true scalar product exists. Much work has been done
with Bregman divergence in the learning community, especially for classification algorithms
or building Voronoi diagrams [37–41]. It was necessary for adapting methods that rely on the
triangle inequality, a property that is not satisfied by most Bregman concepts, except of course
for the Mahalanobis divergences which are norms (cf. Section 2.1). Some results can be extended
to Bregman Gaps for use in applications in the field of thermomechanics and more generally in
processing physically based data. The first useful concept is the bisector concept. Interestingly,
bisectors are hyperplanes independently of the generating function, even strongly nonlinear.

Definition (Bregman bi-sectors [37] and Bregman Gaps bisectors). The Bregman bisector of a
pair (e1, e2) is the set of equidistant points x with respect to a Bregman divergence:

BB s J (e1,e2) = {x,D J (x,e1) = D J (x,e2)}.

The Bregman Gap bisector of a couple of dual quantities ([e1, p1], ([e2, p2]) is the set of equidistant
points x with respect to symmetrized Bregman Gap:

BGB s J ([e1, p1], [e2, p2]) = {[e, p],BG s
J ([e, p], [e1, p1]) = BG s

J ([e, p], [e2, p2])}.

Bisectors are hyperplanes, the two points or couples lie on the different sides of this hyperplane.
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The Bregman divergence being not symmetric, there is another notion of Bregman bisector,
namely of the second type [37] which is generally not an hyperplane.

BB s′J (e1,e2) = {x,D J (e1, x) = D J (e2, x)}.

Regarding the Bregman balls, the classical approach for determining an orthogonal projection
on a distance-defined ball cannot be followed because it relies strongly on the use of the triangle
inequality. Let e be a point in IRn and a Bregman ball of center c and radius ρ, with e not belonging
to the closure of BB J (c,ρ). The projection ẽ on BB J (c, ρ) is:

ẽ = argmin
x∈BB J (c,ρ)

D J (x,e).

Because the ball is strictly convex, the projection lies on the boundary of BB J (c,ρ) or hypersphere
∂BB J (c,ρ), the projection ẽ can then be determined by the stationary point (ẽ,λ) of the following
Lagrangian:

L(x,µ) = D J (x,c)+µ(BB J (x,c)−ρ)

= (1+µ)J (x)− J (e)−µJ (c)−〈∇J (e)+µ∇J (c), x〉+〈∇J (e),e〉+µ〈∇J (c),c〉.
So that:

Dx L(ẽ,λ) ·δx = (1+λ)〈∇J (ẽ),δx〉−〈∇J (e)+λ∇J (c),δx〉 ∀δx
= 〈(1+λ)∇J (ẽ)−∇J (e)−λ∇J (c),δx〉 ∀δx
= 0 ∀δx

and, setting η=λ/(1+λ) ∈ ]0,1[, we obtain the characterization [Ca2]:

∇J (ẽ) = (1−η)∇J (e)+η∇J (c).

In the very special case where J is quadratic, that is D J is a Mahalanobis distance, we get that
the projection ẽ of e lies is the intersection of the hypersphere and the line segment joining e
and the center c of the ball. This is because the gradient at x is simply Ax with A a symmetric
definite positive matrix. But in all other cases, the characterization of ẽ tells us that the alignment
only takes place in the gradient space. Because the symmetric Bregman divergences are in fact
true (squared) distances, and in view to derive efficient approximation procedures, the following
definition of a subclass, relating a Bregman divergence to a symmetric one is of interest:

Definition (µ-similar Bregman divergences [42]). A Bregman divergence D J defined on a
domain K of a vector space V is µ-similar for some 0 <µ< 1 if there exists a symmetric Bregman
divergence generated by Q□ such that:

µDQ□ (e1,e2) ≤ D J (e1,e2) ≤ DQ□ (e1,e2) ∀(e1,e2) ∈ K 2.

Q□ is necessarily a quadratic form, as shown previously, so that the Bregman divergence gener-
ated by Q□ is a Mahalanobis distance.µ-similar Bregman divergences enjoy the following proper-
ties: they are approximately symmetric and satisfy a variant of the double triangle inequality [42]:

D J µ-similar ⇒ D J (e1,e2) ≤ 1

µ
D J (e2,e1), D J (e1,e2) ≤ 2

µ
[D J (e1,e3)+D J (e2,e3)] ∀(e1,e2,e3).

This concept can then be used for deriving approximated methods involving the Bregman
divergence or to obtain quickly a first result to be further refined, because for example the
associated Bregman balls can be bordered by ellipsoids. As quoted by [43], most Bregman
divergences that are used in practice for clustering are µ-similar when restricted to a domain X
that avoids the possible singularities of J. In the thermomechanics context however, this is not the
case. As an example, the Bregman divergence generated by the function positively homogeneous
of degree two J (x) = a(〈x〉+)2 +b(〈x〉−)2, with a < b, is µ-similar with Q□(x) = bx2 and m = a/b.
But the Bregman divergence generated by the function J (x) = a(〈x〉+)2 +b(〈x〉−)2 +α|x|,α > 0 is
not (just examine the function f (x) = D J (x,−x)).
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5. Conclusion

In this paper, we try to extend the concept of Bregman divergence in thermomechanics, and
we show how the large domain covered by the convex framework allows to systematically build
discrepancy measures between fields of thermodynamic variables including couples of dual
ones. Most of the already existing “errors” or “gaps” can then be encompassed. This gives rise
to discrepancy measures between variables with different dimensions, encountered especially
in multi-physic applications, allowing to consider truly coupled approaches. We also give some
useful properties related to these concepts for geometrical computation that is at the heart
of the algorithms used or already imagined for the processing of massive data produced by
experiments, computations or in-service measurements.

The perspectives of direct applications are numerous. In inverse problems, the symmetrized
Bregman Gaps have been used, even if not always under this denomination, for nonlinear Cauchy
problems in mechanics and the subsequent identification problems (nonlinear elasticity with
small transformations, [9], plastic zones identification [10], cracks identification in contact me-
chanics [11]). As mentioned in the introduction, replacement of usual least-squares function-
als in various algorithms or procedures in nonlinear mechanics and data-driven approaches can
also be of interest and is seemingly straightforward.

Also, adapted algorithms to Bregman divergence have been developed for some years in the
field of statistical inference and data processing problems, such as estimation, detection, clas-
sification, compression, and recovery, in particular for classification or clustering applications,
and even, more recently, in deep learning applications. The way is then paved for using the tools
presented in this paper in new thermomechanics applications.

Future work will focus on the use of the Bregman divergence in (a revised form of) the
Proper Orthogonal Decomposition, especially in nonlinear and coupled thermomechanics. The
link with processing or using large amount of data being clear either for exploring the data
(or efficiently store it, whether digital or experimental in origin), or for building reduced order
models. The global objective remaining to use the Bregman tools for physically informed data
processing.
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Appendix A. Proof of the characterization of symmetric Bregman divergences

The condition for symmetry of D J reads, for the generating convex function J

2(J (e1)− J (e2)) = 〈∇J (e1)+∇J (e2),e1 −e2〉 ∀(e1,e2) ∈ IRn × IRn .

Step 1: Let’s suppose first that e2 = 0, then: 2J (e) = 〈∇J (0) +∇J (e),e〉 ∀e ∈ IRn , leading to the
necessary condition: J (e) = 1/2〈∇J (e),e〉. Introduce now the real function fe parameterized
with e:

fe (λ) = J (λe), λ ∈ IR+.

The derivative of fe with respect to λ being (d/dλ) fe (λ) = ∇J (λe)·e, we have: fe (λ) =
(λ/2)(d/dλ) fe (λ). fe is a positive function because J is convex, J (0) and ∇J (0) are null, so:

fe (λ) = J (λe)− J (0) ≥∇J (0)·λe ≡ 0 ⇒ fe (λ) ≥ 0.

Integrating, we get the result fe (λ) = Keλ
2 ∀λ ∈ IR+ , leading to the following expression for J :

J (e) = ∥e∥2

2
k

(
e

∥e∥
)

∀e ∈ IRn .
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Note that the condition on J for the symmetry of D J ensures recursively that fe is infinitely
directionally derivable in each direction e. This result also shows that J is necessarily positively
homogeneous of degree 2.

Step 2: Going back to the condition for symmetry of J , and using the consequence of the property
of positive homogeneity of the degree two (∇J (e)·e = 2J (e)), we have now for any (e1, e2):

2(J (e1)− J (e2)) = 〈∇J (e1)+∇J (e2),e1 −e2〉
= 〈∇J (e1),e1〉−〈∇J (e1),e2〉+〈∇J (e2),e1〉−〈∇J (e2),e2〉
= 2J (e1)−〈∇J (e1),e2〉+〈∇J (e2),e1〉−2J (e2)

so that 〈∇J (e2),e1〉 = 〈∇J (e1),e2〉 ∀e1,e2. Next, for any (e1,e2,e3) and any (λ,µ)

〈∇J (λe1 +µe2),e3〉 = 〈∇J (e3),λe1 +µe2〉
= λ〈∇J (e3),e1〉+µ〈∇J (e3),e2〉
= λ〈∇J (e1),e3〉+µ〈∇J (e2),e3〉
= 〈λ∇J (e1)+µ∇J (e2),e3〉.

So that ∇J (λe1 +µe2) = λ∇J (e1)+µ∇J (e2), showing that is ∇J (e) is linear, ∇J (e) = Ai j 〈e,E j 〉Ei ,
with A necessarily a symmetric matrix, because:

Al k = 〈∇J (El ),Ek〉 = 〈∇J (Ek ),El 〉 = Akl .

The function J is then necessarily a quadratic form: J (e) = (1/2)〈Ae,e〉, A = At recalling that
J (0) =∇J (0) = 0.

Appendix B. Proof of separate convexity of the Symmetrized Bregman Gap

The following inequality has to be established.

∀([e1, p1], [e2, p2], [e0, p0])BG s
J (λ[e1, p1]+ (1−λ)[e2, p2], [e0, p0])

≤λBG s
J ([e1, p1], [e0, p0])+ (1−λ)BG s

J ([e2, p2], [e0, p0]).

Consider the two functions of λ:

F (λ) = 〈λe1 + (1−λ)e2 −e0,λp1 + (1−λ)p2 −p0〉
G(λ) =λ〈e1 −e0, p1 −p0〉+ (1−λ)〈e2 −e0, p2 −p0〉.

We are now led to show that the function f (λ) = F (λ)−G(λ) is negative along the segment [0, 1].
But f (0) = 0, so that we can consider the derivative of f which turns out to be expressed by:

f ′(λ) = (2λ−1)〈e1 −e2, p1 −p2〉 =C (2λ−1) C ≥ 0.

The function f can be calculated as f (λ) =Cλ(λ−1) and is strictly negative for λ in ]0, 1[ as soon
as C = BG s

J ([e1, p1], [e2, p2]) = 〈e1 −e2, p1 −p2〉 > 0, and null if C = 0.

Appendix C. Dual quantities involved in polyconvex elastic potentials

In the framework of finite transformations, the most used concepts are the gradient of the trans-
formation F and the first Piola–Kirchhoff tensor T [44]. Mimicking the infinitesimal transforma-
tions framework an elastic law could be simply stated via an elastic potential as:

T = ∂W el

∂F
.
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Unfortunately, the potential W el, function of the three invariants of F is generally not convex with
respect to F , so that the Coleman–Noll error

(T1(F1)−T2(F2)) : (F1 −F2)

is not always a positive expression. This error could be formally derived as the Bregman Gap
with generating function W el. But this last function being not convex, the formally defined
Bregman divergence associate to W el cannot be Bregman divergence. For studying the existence
of solution in elasticity J . Ball [33] introduced the following notion of polyconvexity.

The potential W el is polyconvex if it exists a convex function W of F , cof F , det F such that:

W el(F ) =W (F,cofF,detF ) for any F s.t . det F > 0

with cof F = (det F )F−T .
Then, introducing the duals quantities of F , cof F 1 et det F , namely T , cT , and p (where p is

the actual pressure), the Bregman divergence generated by the now convex function W leads in
turn to the Symmetrized Bregman Gap

(T1 −T2) : (M1 −M2)+ (cT1 − c2T ) : (N1 −N2)+ (p1 −p2)(d1 −d2)

which is then a positive quantity.
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