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Abstract. Maxwell models for viscoelastic flows are famous for their potential to unify elastic motions of solids
with viscous motions of liquids in the continuum mechanics perspective. But the usual Maxwell models allow
one to define well motions mostly for one-dimensional flows only. To define unequivocal multi-dimensional
viscoelastic flows (as solutions to well-posed initial-value problems) we advocated in [ESAIM:M2AN 55
(2021), p. 807-831] an upper-convected Maxwell model for compressible flows with a symmetric-hyperbolic
formulation. Here, that model is derived again, with new details.
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1. Elastic and viscous motions in the continuum perspective

First, let us recall seminal systems of PDEs that unequivocally model the motions φt : B →⊂ R3

of continuum bodies B on a time range t ∈ [0,T ). PDEs governing elastic flows are a starting point
for all continuum bodies. PDEs governing viscoelastic flows, for liquid bodies in particular, shall
come next in Section 2.

Let us denote {xi , i = 1. . .3} a Cartesian coordinate system for the Euclidean ambiant space
R3. Let us assume, for t ∈ [0,T ), that B is a manifold equipped with a Cartesian coordinate
system {aα,α = 1. . .d} (d ∈ {1,2,3}), and that φt (a ≡ aαeα) = φi

t (a)ei is a bi-Lipshitz function
on B ∋ a. Given a vector force field f in R3, Galilean physics requires the deformation gradient
F i
α := ∂αφi

t ◦φ−1
t and the velocity ui := ∂tφ

i
t ◦φ−1

t , to satisfy the conservation of linear momentum:

ρ̂∂t (u◦φt ) = divaS + ρ̂(f ◦φt ) on B (1)

given a mass-density ρ̂(a) ≥ 0, see e.g. [1]. Neglecting heat transfers, the first Piola–Kirchoff stress
tensor S(F) is defined by an internal energy functional e(F):

Siα = ρ̂∂F i
α

e. (2)
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2 Sébastien Boyaval

Then, when ρ̂ ∈R+∗ is constant, motions can be unequivocally defined by solutions

(ui ◦φt ,F i
α ◦φt ) ∈C 0

t

(
[0,T ), H s (R3)3 ×H s (R3)3×3) with s > 3

2
to (1)–(2) complemented by (3)–(5), if (1)–(5) defines a symmetric-hyperbolic system [2],

∂t (F i
α ◦φt )−∂α(ui ◦φt ) = 0 (3)

∂t (|F i
α| ◦φt )−∂α(C i

α ◦φt ui ◦φt ) = 0 (4)

∂t (C i
α ◦φt )+σi j kσαβγ∂β(F j

γ ◦φt uk ◦φt ) = 0 (5)

denoting σi j k Levi-Civita’s symbol. But for physical applications, it is difficult to identify func-
tionals e(F) such that (1)–(5) defines a symmetric-hyperbolic system.

In the sequel, assuming ρ̂ ∈ R+∗ constant, we recall how one standardly defines e(F) for solid
and fluid dynamics, on considering the determinant |F i

α| of the deformation gradient (also
denoted |F | hereafter) and the cofactor matrix C i

α of F i
α (C in tensor notation) as variables

independent of F . Next, in Section 2, we recall with much details the function e(F) that we
proposed in [3] so as to properly define a viscoelastic dynamics of Maxwell type that unifies solids
and fluids.

1.1. Polyconvex elastodynamics

If e(F) in (2) is polyconvex, and if the initial conditions for (u,F , |F |,C) ◦ φt are given by(
∂tφt ,∇aφt , |∇aφt |,Cof(∇aφt )

)
(t = 0) ∈ H s (R3) with s > 3/2, such that ∇a ×F = 0 = divaC holds

i.e.
σαβγ∂αF i

β = 0 = ∂αC i
α ∀i , (6)

then (1)–(5) enters the framework of symmetric-hyperbolic systems. In particular, a unique time-
continuous solution can be built in H s (R3) for t ∈ [0,T ), given initial conditions F i

α(t = 0) ∈
H s (R3)3×3 and ui (t = 0) ∈ H s (R3)3 [2]. The latter solution, associated with a unique mapping
φt , is equivalently defined by [4]

∂t (ρui )+∂ j (ρui u j −σi j ) = ρ f i (7)

∂t (ρF i
α)+∂ j (ρF i

αu j −ρui F j
α) = 0 (8)

∂tρ+∂ j (ρu j ) = 0 (9)

∂t (ρC i
α)+∂i (ρC j

αu j ) = 0 (10)

where σi j := |F |−1SiαF j
α and ρ := |F |−1ρ̂, provided the initial conditions satisfy

∂ j (ρF j
α) = 0 =σi j k∂ j (ρC k

α) ∀α. (11)

Indeed, with the Eulerian description (7)–(10) of the body motions (i.e. in spatial coordinates,
as opposed to the Lagrangian description (1)–(5) in material coordinates)

∂t (ρu)+div(ρu⊗u−σ) = ρf (12)

∂t (ρF)−∇× (ρF T ×u) = 0 (13)

∂tρ+div(ρu) = 0 (14)

∂t (ρC)+∇⊗ (ρCT ·u) = 0 (15)

where CT is the dual (matrix transpose) of C, and with Piola’s identity (11)

div(ρF T ) = 0 =∇× (ρCT ), (16)

one can show that, when e(F) is polyconvex, the symmetric-hyperbolic framework applies to (12)–
(16) insofar as smooth solutions also satisfy the conservation law

∂t

(ρ
2
|u|2 +ρe

)
+div

((ρ
2
|u|2 +ρe

)
u−σ ·u

)
= ρf ·u (17)
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for (ρ/2)|u|2 +ρe, a functional convex in a set of independent conserved variables [2].
A first example of a physically-meaningful internal energy is the neo-Hookean

e(F k
αF k

α) := c2
1

2
(F k
αF k

α −d) (18)

with c2
1 > 0. Then, the quasilinear system (1)–(3) is symmetric-hyperbolic insofar as smooth

solutions additionally satisfy a conservation law for |u|2/2+e strictly convex in (u,F). Unequivocal
motions can be defined.1 The latter neo-Hookean model satisfyingly predicts the small motions
of some solids.

However, Equation (18) is oversimplistic: it does not model the deformations that are often
observed orthogonally to a stress applied unidirectionally, see e.g. [5] regarding rubber. Many
observations are better fitted when the Cauchy stressσ contains an additional spheric term −pI ,
with a pressure p(ρ) function of volume changes.

Next, instead of (18), one can rather assume a compressible neo-Hookean energy

e(F k
αF k

α) := c2
1

2
(F k
αF k

α −d)− d 2
1

1−γ |F |1−γ =: ẽ(|F |,F). (19)

The functional (19) is polyconvex as soon asγ> 1 [2]. Thus, using either (1)–(5) or (7)–(10) one can
define unequivocal smooth motions with Si

α(F) = ρ̂c2
1 F i

α− ρ̂d 2
1 |F |−γCof(F)i

α where an additional
pressure term arises2 in comparison with (18). Precisely, one can build unique solutions to
a symmetric reformulation of a system of conservation laws for conserved variables U (t ,x) :
R+×Rm →Rn i.e.

∂tU +∂αGα(U ) = 0 (20)

with k involutions Mα∂αU = 0, Mα ∈Rk×n i.e. MαGβ(U ) =−Gα(U )Mβ, α ̸=β.
An additional conservation law ∂tη(U )+∂αQα(U ) = 0 is satisfied by (20), for η(U ) = |u|2/2+

ẽ(|F |,F) a strictly convex functional of U . So a smooth function Ξ(U ) ∈ Rk exists such that
DQα(U ) = Dη(U )DGα(U )+Ξ(U )T Mα holds, D2η(U )DGα(U )+DΞ(U )T Mα is a symmetric matrix,
and (20) admits a symmetric-hyperbolic reformulation. The 2D Lagrangian case α ∈ {a,b}, c2

1 ρ̂ ≡
1, reads

∂t ux +∂a(F y
b p −F x

a )+∂b(−F y
a p −F x

b ) = 0, (21)

∂t uy +∂a(−F x
b p −F y

a )+∂b(F x
a p −F y

b ) = 0, (22)

∂t |F | = ∂a(−F x
b uy +F y

b ux )+∂b(−F y
a ux +F x

a uy ), (23)

∂t F x
a −∂aux = 0, (24)

∂t F x
b −∂bux = 0, (25)

∂t F y
a −∂auy = 0, (26)

∂t F y
b −∂buy = 0, (27)

with p(|F |) := −∂|F |ẽ ≡ (d 2
1 /c2

1 )|F |−γ, abusively denoting (u, |F |,F) the functions (u, |F |,F) ◦φt of
material coordinates as usual. Involutions Mα∂αU = 0 hold with

Ma =
(
0 0 0 0 1 0 0
0 0 0 0 0 0 1

)
Mb =

(
0 0 0 −1 0 0 0
0 0 0 0 0 −1 0

)
.

1Not only with fields in H s (R3), s > 3/2, for t ∈ [0,T ), but in fact whatever T > 0 and s ∈ R here, insofar as
Si
α(F) = ρ̂c2

1 F i
α so the Lagrangian description (1)–(3) reduces to linear PDEs.

2And thus the flux becomes nonlinear in the conservative variables, so T > 0 is definitely finite.
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They can be combined together with (20) by using Ξ(U )T = (
puy −pux)

to yield a symmetric
system after premultiplication by D2η(U ): note να(D2η(U )DGα(U )+DΞ(U )T Mα) reads

0 0 (ex Cν)∂|F |p −νa −νb 0 0
0 0 (ey Cν)∂|F |p 0 0 −νa −νb

(ex Cν)∂|F |p (ey Cν)∂|F |p 0 0 0 0 0
−νa 0 0 0 0 0 0
−νb 0 0 0 0 0 0

0 −νa 0 0 0 0 0
0 −νb 0 0 0 0 0


(28)

denoting ex Cν ≡ F y
b νa −F y

aνb , ey Cν ≡ −F x
b νa +F x

aνb and νT = (νa νb) ∈ Rm a unit vector. The
symmetric formulation allows one to establish the key energy estimates in the existence proof
of smooth solutions [2], as well as self-similar weak solutions to the 1D Riemann problem using
generalized eigenvectors R solutions to

να
(
D2η(U )DGα(U )+DΞ(U )T Mα

)
R =σD2η(U )R (29)

with eigenvalues σ ∈
{

0,±1,±
√

1+ (|ex Cν|2 +|ey Cν|2)∂|F |p
}

. For application to real materials,3

one important question remains: how to choose c2
1 and d 2

1 .
In most real applications of elastrodynamics, the material parameters c2

1 and d 2
1 should vary,

as functions of F e.g., but also as functions of an additional temperature variable so as to take into
account microscopic processes not described by the macroscopic elastodynamics system. For
instance, the deformations endured by stressed elastic solids increase with temperature, until the
materials become viscous liquids. Then, one natural question arises: could (19) remain useful for
liquids which are mostly incompressible (i.e. divu ≈ 0 holds) and much less elastic than solids?

In Section 1.2, we recall the limit case when the volumic term dominates the internal energy,
and p =C0ρ

γ dominates σ, which coincides with seminal PDEs for perfect fluids (fluids without
viscosity). In Section 2, we next consider how to rigorously connect fluids like liquids to solids
using an enriched elastodynamics system.

1.2. Fluid dynamics

Consider the general Eulerian description (12)–(15) for continuum body motions. It is noteworthy
that given u, each kinematic equation (10), (8) and (9) is autonomous. As a consequence, in
spatial coordinates, motions can be defined by reduced versions of the full Eulerian description
(7)–(10), with an internal energy e strictly convex in ρ but not in F ! One famous case is the
polytropic law

e(ρ) := C0

γ−1
ργ−1 (30)

with C0 > 0. Then, one obtains Euler’s system for perfect (inviscid) fluids

∂tρ+∂i (uiρ) = 0

ρ(∂t ui +u j∂ j ui )+∂i p = ρ f i
(31)

with a pressure p :=−∂ρ−1 e =C0ρ
γ characterizing spheric stresses:

σi j =−p δi j . (32)

The system (31) is symmetric-hyperbolic. It is useful to define unequivocal time-evolutions of
Eulerian fields (on finite time ranges) [2], although multi-dimensional solutions are then not

3So far, the only parameters to be specified for real application are ρ̂, c2
1 and d2

1 .
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equivalently described by one well-posed Lagrangian description [6]. In fact, for applications
to real fluids, the system (31) is better understood as the limit of a kinetic model based on
Boltzmann’s statistical description of molecules [7], and the model indeed describes gaseous
fluids better than condensed fluids (liquids). In any case, the fluid model (31) still lacks viscosity.

One classical approach adds viscous stresses as an extra-stress term τ in (32) i.e.

σ=−pδ+τ. (33)

The extra-stress is required symmetric (to preserve angular momentum), objective (for the sake
of Galilean invariance), and “dissipative” (to satisfy thermodynamics principles) [8]. Precisely,
introducing the entropy η as an additional state variable for heat exchanges at temperature
θ = ∂s e > 0, thermodynamics requires

∂tη+ (u j∂ j )η=D/θ

with a dissipation term D ≥ 0. Usually, denoting D(u)i j := (1/2)(∂i u j +∂ j ui ), one then postulates
a Newtonian extra-stress with two constant parameters ℓ, µ̇> 0

τi j = 2µ̇D(u)i j +ℓD(u)kk δi j (34)

which satisfies D ≡ τi j∂ j ui ≥ 0 [8]. The Newtonian model allows for the definition of causal
motions through the resulting Navier–Stokes equations. But it is not obviously unified with
elastodynamics; and letting alone that (34) is far from some real “non-Newtonian” materials, it
implies that shear waves propagate infinitely-fast, an idealization that is also a difficulty for the
unification with elastodynamics.

By contrast, Maxwell’s viscoelastic fluid models for τ possess well-defined shear waves of
finite-speed, and they can be connected with elastodynamics with a view to unifying solids and
fluids (liquids) in a single continuum description.

2. Viscoelastic flows with Maxwell fluids

Maxwell’s models [9] with viscosity µ̇> 0, relaxation time λ> 0, time-rate
♢
τ

λ
♢
τ+τ= 2µ̇D(u) (35)

are widely recognized as physically useful to link fluids where τ
λ→0−−−→ 2µ̇D(u) in the Newtonian

limit, with solids governed by elastodynamics when λ∼ µ̇→∞. In particular, one often considers

the Upper-Convected Maxwell (UCM) model, with objective time-rate
♢
τ in (35) defined by the

Upper-Convected (UC) derivative:4

▽
τ:= ∂tτ+ (u ·∇)τ− (∇u)τ−τ(∇u)T (36)

because
▽
τ= 2(µ̇/λ)D(u) is compatible with elastodynamics when τ= (µ̇/λ)(FF T − I).

However, a difficulty arises with the quasilinear system (12)–(14)–(33)–(35)–(36) to define
general multi-dimensional motions for any λ ∈ (0,∞) from solutions to Cauchy problems: the
system may not be hyperbolic and numerical simulations may become unstable [10]. As a cure,
we proposed in [3] a symmetric-hyperbolic reformulation of (12)–(14)–(33)–(35)–(36) using a new
variable A in τ= ρc2

1 (FAF T − I).
We review the reformulation in Section 2.2, after recalling in Section 2.1 well-known 1D

solutions to (12)–(14)–(33)–(35)–(36) which show the interest for Maxwell’s models.

4Other objective derivatives than UC can be used, which also allow symmetric-hyperbolic reformulations. They will
not be considered here for the sake of simplicity.
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2.1. Viscoelastic 1D shear waves for solids and fluids

Some particular solutions to (12)–(14)–(33)–(35)–(36) unequivocally model viscoelastic flows, and
rigorously link solids to fluids. Shear waves e.g. for a 2D body moving along ex ≡ ex1 following
b = y ≡ x2, a = x −X (t , y), X (0, y) = 0 are well-defined by (7) i.e.

∂t u = ∂yτ
x y (37)

where we recall u := ∂t X , and Maxwell’s constitutive relation (35) i.e.

λ∂tτ
x y +τx y = µ̇∂y u, (38)

given enough initial and boundary conditions. Denoting G := µ̇/λ > 0 the shear elasticity,
(37)–(38) indeed coincides with the famous hyperbolic system for 1D damped waves, which
implies λ∂2

t t u(t , y)+∂t u(t , y) = µ̇∂2
y y u(t , y) and λ∂2

t tτ
x y (t , y)+∂tτ

x y (t , y) = µ̇∂2
y yτ

x y (t , y). Time-
continuous solutions to (37)–(38) are well defined given initial conditions plus possibly boundary
conditions when the body has finite dimension along ey ≡ ex2 , such as y ≡ x2 > 0 in Stokes
first problem see e.g. [11]. Moreover, the latter 1D shear waves rigorously unify solids and fluids
insofar as they are structurally stable [12, 13]: when λ≡ (1/G) µ̇→∞, they satisfy

∂2
t tτ

x y =G∂2
y yτ

x y ∂2
t t u =G∂2

y y u

like elastic solids, and when λ→ 0, they satisfy

τx y = µ̇∂y u ∂t u = µ̇∂2
y y u

like viscous liquids. So the 1D shear waves illustrate well the structural capability of Maxwell’s
model to unify solid and Newtonian fluid motions.

But a problem arises with multi-dimensional motions: solutions to (12)–(14)–(33)–(35)–(36)
are not well-defined in general.

2.2. Maxwell flows with a symmetric-hyperbolic formulation

To establish multi-dimensional motions satisfying (35), we introduced in [3] a 2-tensor A:

λ(∂t +u ·∇)A+A = F−1F−T (39)

which can be understood as a material property that relaxes in fluid flows.

Proposition 1. Set µ̇=λc2
1 . Then τ := ρc2

1 (FAFT − I) satisfies (35) with

♢
τ:= ∂tτ+ (u ·∇)τ− (∇u)τ−τ (∇u)T + (divu)τ. (40)

Proof. Recall that (∂t +u ·∇)F T = F T · (∇u)T holds, using (8) and (11). Then compute (∂t +u ·∇)τ
straightforwardly using τ := ρc2

1 (FAF T − I). □

Noteworthily (35)–(40) coincides with a version of Maxwell’s models for compressible flu-
ids [14]. Moreover, it is contained in a larger symmetric-hyperbolic system, which allows one to
rigorously define viscoelastic motions unequivocally.

Proposition 2. With (33) such that τ := ρc2
1 (FAFT − I) and p(ρ)+ c2

1ρ = −∂ρ−1 e0 for e0 strictly
convex in ρ−1, (12)–(13)–(14)–(39) becomes symmetric-hyperbolic provided div(ρFT ) = 0 and A is
symmetric positive-definite (A ∈ S3+,∗).

Proof. Using div(ρF T ) = 0, (12)–(13)–(14)–(39) rewrites in material coordinates as the La-
grangian system (1)–(3)–(4) plus λ∂t A+A = F−1F−T where

S = (p(|F |)C + c2
1 F−T )+ ρ̂c2

1 FA = ρ̂∂F

(
e0 +

c2
1

2
FA : F

)
.
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Then, A ∈ S3+,∗ allows the variable change Y = A−2. The resulting Lagrangian system for
(u,F , |F |,Y ) with involution ∇a × F = 0 admits a “mathematical entropy” [15] so it is therefore
symmetric-hyperbolic. For details we refer to [3]. □

A unique smooth solution can be constructed for (12)–(13)–(14)–(39) using an initial condition
satisfying ρ|F | =: ρ̂ > 0, div(ρF T ) = 0, A ∈ S+,∗ [2]. On small time intervals, it unequivocally
defines viscoelastic multi-dimensional motions governed by the compressible UCM law (35)–
(40) as long as hyperbolicity holds and the solution remains bounded. Those motions satisfy
thermodynamics with

e = e0 +
c2

1

2
(FA : F − log detFA : F). (41)

Proposition 3. With (33), τ := ρc2
1 (FAFT − I) and p(ρ)+ c2

1ρ =−∂ρ−1 e0, smooth solutions to (12)–
(13)–(14)–(39) additionally satisfy

∂t

(ρ
2
|u|2 +ρe

)
+div

((ρ
2
|u|2 +ρe

)
u−σ ·u

)
= ρf ·u+ ρc2

1

2λ
(I−c−1) : (c− I)

provided div(ρFT ) = 0 and A ∈ S+,∗, on denoting c = FAFT ∈ S+,∗.

Proof. We will show (3) in material coordinates (the Lagrangian description). On one hand,
computing ∂t |u|2 = 2u ·∂t u is straightforward. One the other hand, using (1) and ∂t F =∇au one
computes

∂t e = ∂t e0 +
c2

1

2
(I −c−1) : ∂t c =−ρc2

1

2λ
(I −c−1) : (c− I)+∇au : S/ρ̂ (42)

where (I −c−1) : (c− I) ≥ 0 is a dissipation. □

Interestingly, notice that our free energy (41) is not useful for well-posedness: it is not strictly
convex in conserved variables. Morover, our formulation (12)–(13)–(14)–(39) for a sound Maxwell
model admits the 1D shear waves examined in Section 2.1 as solutions, so it preserves some
well-established interesting properties of the standard (incompressible) formulation of Maxwell
model.

Let us finally present the symmetric structure of our hyperbolic formulation for (compressible)
viscoelastic flows of Maxwell-type, with Lagrangian description

∂t u = divaS + f (43)

∂t |F | = diva(CT u) (44)

∂t CT =∇a × (u×F) (45)

∂t F T =∇a ⊗u (46)

∂t A = (F−1F−T −A)/λ (47)

where S =−p C +FA, p(|F |) = |F |−1 + (d 2
1 /c2

1 )|F |−γ, assuming c2
1 ρ̂ ≡ 1 in (41)

e(F) = c2
1

2
(F k
αAαβF k

β −2log |F k
β |)−

d 2
1

1−γ |F |1−γ.
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To that aim, we consider a 2D system when λ→∞:

∂t ux +∂a(F y
b p − (AaaF x

a + AabF x
b ))+∂b(−F y

a p − (AabF x
a + AbbF x

b )) = 0, (48)

∂t uy +∂a(−F x
b p − (AaaF y

a + AabF y
b ))+∂b(F x

a p − (AabF y
a + AbbF y

b )) = 0, (49)

∂t |F | = ∂a(−F x
b uy +F y

b ux )+∂b(−F y
a ux +F x

a uy ), (50)

∂t F x
a −∂aux = 0, (51)

∂t F x
b −∂bux = 0, (52)

∂t F y
a −∂auy = 0, (53)

∂t F y
b −∂buy = 0, (54)

∂t Y aa = ∂t Y ab = ∂t Y bb = 0 (55)

where, denoting ∆= Y aaY bb −Y abY ab , δ=
√

Y aa +Y bb +2
p
∆, we have

Aaa = Y bb +p
∆

δ
, Aab = −Y ab

δ
, Abb = Y bb +p

∆

δ
.

Rewriting ∂tU +∂αGα(U ) = 0 the system above, involutions Mα∂αU = 0 hold with

Ma =
(
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

)
Mb =

(
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0

)
and ∂tη(U ) + ∂αQα(U ) = 0 is satisfied for η(U ) = |u|2/2 + e, using Ξ(U )T = (puy − pux ) in
DQα(U ) = Dη(U )DGα(U )+Ξ(U )T Mα.

A symmetric formulation is obtained for our quasilinear formulation of Maxwell (compress-
ible) viscoelastic flows similarly to the standard compressible elastodynamics case: on premulti-
plying the system (48)–(55) by D2η(U ), insofar as the matrix (D2η(U )DGα(U )+DΞ(U )T Mα)να
is symmetric given a unit vector ν = (νa ,νb) ∈ R2. We do not detail the symmetric matrix
(D2η(U )DGα(U ) + DΞ(U )T Mα)να here: its upper-left block coincides with (28), but the other
blocks are complicate and depend on the choice of the variable Y = A−1/2 (key to exhibit the
symmetric-hyperbolic structure using a fundamental convexity result from [16]—Theorem 2
p. 276 with r = 1/2 and p = 0) a choice which is not unique (ours may not be optimal). In any
case, the symmetric structure yields a key energy estimate for the construction of unique smooth
solutions, and it also allows one to construct 1D waves similarly from (29) when λ→∞ (other-
wise one has to take into account the source term of relaxation-type).

3. Conclusion and perpsectives

Our symmetric-hyperbolic formulation of viscoelastic flows of Maxwell type [3] allows one to rig-
orously describe multidimensional motions, within the same continuum perspective as elasto-
dynamics and Newtonian fluid models. It remains to exploit that mathematically sound frame-
work, e.g. to establish the structural stability of the model and rigorously unify (liquid) fluid and
solid motions through parameter variations in our model: see [13] regarding the nonsingular limit
toward elastodynamics. Another step in that direction is to drive the transition between (liquid)
fluid and solid motions more physically, e.g. on taking into account heat transfers: see [17] for a
model of Cattaneo-type for the heat flux, which preserves the symmetric-hyperbolic structure.
Last, one may want to add physical effects for particular applications: the purely Hookean in-
ternal energy in (41) can be modified to include finite-extensibility effects as in FENE-P or Gent
models, or to use another measure of strain, with lower-convected time-rate for instance, see [17].
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