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Abstract. In this article, three dimensional (3D) lid-driven flow in shallow cavities with a unit square base
are studied. The numerical solution of the Navier–Stokes equations modeling incompressible viscous fluid
flow in a cavity is obtained via a methodology combining a first order accurate operator-splitting scheme,
a L2-projection Stokes solver, a wave-like equation treatment of the advection and finite element space
approximations. Numerical results of a lid-driven flow in a cubic cavity show a good agreement with those
reported in literature. The critical Reynolds numbers (Recr) for having flow with increasing of oscillating
amplitude (a Hopf bifurcation) in different shallow cavities are obtained and associated oscillating modes
are studied.
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1. Introduction

Lid-driven cavity flow is a classical flow situation that has attracted much attention due to its
flow configuration relevant to many industrial applications, such as coating and melt-spinning
processes pointed out in [1], and its importance to the basic study of fluid mechanics, includ-
ing boundary layers, eddies, secondary flows, complex three-dimensional patterns, various in-
stabilities and transition, chaotic, and turbulent, as discussed in a review paper by Shankar and
Deshpande in [2]. Also its geometrical simplicity and unambiguous boundary conditions facili-
tate experimental calibrations and numerical computations, thus providing an ideal benchmark
problem for validating numerical methods and comparing results obtained from laboratory and
computational experiments.

It is known that, depending on the solution method, boundary conditions and mesh size
used in simulation, the critical Reynolds number (Recr) for the occurrence of transition from
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steady flow to oscillatory flow (a Hopf bifurcation) in two-dimensional square lid-driven cavity
flow varies between 8000 and 10,000 (e.g., see [3–7]). The oscillatory instability in cubic lid-
driven cavity flows has been studied recently in [8–11]. Numerically, Feldman and Gelfgat [8]
obtained that the critical Reynolds number for the occurrence of such Hopf bifurcation is at
Recr = 1914. Anupindi et al. [10] reported that their critical value is Recr = 2300 (but it was
obtained with regularized boundary conditions). Kuhlmann and Albensoeder’s critical Reynolds
number is at Recr = 1919.51 as obtained in [11]. Experimentally, Liberzon et al. [9] reported
that the critical Reynolds number is in the range [1700,1970], which is slightly lower than
Re = 2000, at which Iwatsu et al. [12] obtained a pair of Taylor–Görtler-like (TGL) vortices for
a cubic lid-driven cavity flow. Giannetti et al. obtained that the cubic lid-driven cavity flow
becomes unstable for Re just above 2000 via the three-dimensional global linear stability analysis
reported in [13].

In this article, we have studied numerically the transition from steady flow to oscillatory flow
in shallow cavities with a unit square base. We have applied a first order accurate operator-
splitting scheme (the Lie scheme, [14]) to the numerical solution of the Navier–Stokes equations,
which is an extension of the investigations reported in [7, 15, 16]. The resulting methodology
is easy to implement and quite modular since, at each time step, one has to solve a sequence
of three simpler sub-problems. For the first sub-problem we have used a L2-projection Stokes
solver à la Uzawa to force the incompressibility condition. To solve the advection problem as
the second sub-problem, we have applied a wave-like equation method (see, e.g., [17, 18]). The
third sub-problem is a diffusion problem which can be solved easily. The numerical results for
a lid-driven flow in a cubic cavity show a good agreement with numerical and experimental
results available in the literature (see Section 3.1). For investigating the mode associated with
the transition from steady flow to oscillatory flow in shallow cavities, we have focused on the
flow fields at Re close to Recr. The distortion of flow field with respect to the averaged flow
field in one period of the oscillation shows periodic behavior of vortices close to the bottom
wall and next to the upstream wall. The change of those oscillating modes in shallow cavities
has been studied for different cavity heights. The outline of this article is as follows: We first
introduce the formulation of flow problem and then the numerical methods briefly in Section 2.
In Section 3, numerical results obtained for lid-driven flow in a cubic cavity are compared with
numerical and experimental results available in literature. Then critical Reynolds numbers for the
transition from steady flow to oscillatory flow in shallow cavities are obtained and the connection
between oscillatory flow and oscillating mode is investigated. Conclusions are summarized
in Section 4.

2. Problem formulation

The governing equations for modeling incompressible viscous Newtonian fluid flow in a cavity
Ω⊂R3 (see Figure 1) for T > 0 are the Navier–Stokes equations, namely

∂u

∂t
−ν∆u+ (u ·∇)u+∇p = f inΩ× (0,T ), (1)

∇·u = 0 inΩ× (0,T ), (2)

u(0) = u0, with ∇·u0 = 0, (3)

u = uB (x) on ∂Ω× (0,T ) with
∫
∂Ω

uB ·ndγ= 0 on (0,T ), (4)

where u and p are the flow velocity and pressure, respectively, ν is a viscosity coefficient, f is the
body force, uB (x) is the boundary data, and n is the unit outward normal vector at the boundary
γ= ∂Ω. We denote by v(t ) the function x → v(x, t ), x being the generic point of R3.
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Figure 1. Cubic cavity of edge length 1.

The numerical solution of problem (1)–(4) has generated a most abundant literature. Follow-
ing Chorin [19, 20] and Temam [21, 22], most “modern” Navier–Stokes solvers are based on op-
erator splitting algorithms (see, e.g., Refs. [23, 24], [25, Chapter 3] and [26, Chapters 2 and 7]) in
order to force the incompressibility condition via either H 1-projection or L2-projection Stokes
solver method. Among those methods which can be applied to the numerical solution of (1)–(4),
we have chosen one based on the Lie scheme (see, e.g., see [26, 27] for a general discussion of
that scheme). It is first order accurate in time, but its low order time accuracy is compensated
by its modularity, easy implementation, stability, and robustness properties. To speed up the nu-
merical solution of the cubic lid-driven cavity flow problem, we have time-discretized the related
problem (1)–(4), using a three stage Lie scheme, namely: (i) using a L2-projection Stokes solver à
la Uzawa to force the incompressibility condition, (ii) an advection step, and (iii) a diffusion step.
The resulting scheme reads as follows:

u0 = u0. (5)

For n ≥ 0, un → {un+1/3, pn+1} → un+2/3 → un+1 via the solution of:
un+1/3 −un

∆t
+∇pn+1 = 0 inΩ,

∇·un+1/3 = 0 inΩ,

un+1/3 ·n = 0 on γ,

(6)


∂w

∂t
+ (un+1/3 ·∇)w = 0 inΩ× (t n , t n+1),

w(t n) = un+1/3,

w(t ) = uB (x) on γn+1− × (t n , t n+1),

(7)

un+2/3 = w(t n+1), (8)
un+1 −un+2/3

∆t
−µ∆un+1 = fn+1 inΩ,

un+1 = uB (x) on γ.
(9)

Two simplifications take place for the lid-driven cavity flow problem considered here: namely,
f = 0 and γn+1− = {x|x ∈γ,uB (x) ·n(x) < 0} =;.

For the space discretization, we have used, as in [26, Chapter 5], [28], a P1-i so-P2 (resp., P1)
finite element approximation for the velocity field (resp., pressure) defined on uniform “tetra-
hedral” meshes Th (resp., T2h). The three sub-problems in (6)–(9) are very classical problems
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and each one of them can be solved by a variety of existing methods, this being one of the
key points of the operator-splitting methodology. Sub-problem (6) (equivalent to a saddle-point
problem) can be transformed into an elliptic problem for the pressure. But for the results pre-
sented in Section 3, it was solved by an Uzawa/preconditioned conjugate gradient algorithm as
discussed in [26, Section 21]. Using the pressure obtained at the previous time step as the ini-
tial guess for the Uzawa algorithm, it takes one iteration except the first few hundred time steps.
The advection problem (7)–(8) is solved by a wave-like equation method (see, e.g., [17, 18], [26,
Section 31]) which is explicit and does not introduce numerical dissipation. Since the advec-
tion problem is decoupled from the others, a sub-time step satisfying the CFL condition can
be chosen easily. The detailed scheme of wave-like equation method and properties can be
found in, e.g., [18], [29, Chapter 3]. Sub-problem (9) is a classical elliptic problem which can be
solved easily.

3. Numerical results

3.1. Lid-driven flow in a cubic cavity

For a lid-driven flow problem in a cubic cavity considered first in this section, we tookΩ= (0,1)3

as computational domain and defined the Dirichlet data uB by

uB (x) =
{

(1,0,0)T on {x | x = (x1, x2,1)T , 0 < x1, x2 < 1},

0 elsewhere on γ.
(10)

Then the Reynolds number is Re = 1/ν. We assumed that a steady state has been reached when
the change between two consecutive time steps, ∥un

h −un−1
h ∥∞/∆t , in the simulation is less than

10−7, and then took un
h as the steady state solution.

To validate the numerical methodologies briefly described above, we have taken for the
velocity mesh size the values h = 1/80, 1/120, and 1/160 associated with the time step∆t = 0.001.
For Re = 400 and 1000, the results reported in Figure 2 show a very good agreement with those
obtained in [30–32]. The steady flow velocity vectors for Re = 400 and 1000 are shown in Figure 3.
Those velocity field vectors are projected onto the three planes, x2 = 0.5, x1 = 0.5, and x3 = 0.5,
and the length of the vectors has been enlarged two times in the two later planes to improve
clarity. The plots show that the center of primary vortex moves down as Re increases from 400 to
1000 and secondary vortices appear in two lower corners, which is similar, in some sense, to what
happens for the two-dimensional wall-driven cavity flow. At x1 = 0.5, a pair of secondary vortices
moves toward the lower corners as Re increases. Also another pair of vortices appears at the top
corners. At x3 = 0.5, there is a pair of secondary vortices near the upstream wall.

For Re = 3200 in a cubic cavity, experiments reported in [33] indicate that there are usually
from two pairs of Taylor–Görtler-like (TGL) vortices. Moreover, these vortices are not stationary.
Indeed, they meander to and from over the bottom wall closer to the downstream wall in the
spanwise direction. In [34, 35], the number of pairs of TGL vortices obtained numerically varies
between two and three. The results in Figure 4 obtained at Re = 3200 for h = 1/120 and∆t = 0.001
show that the time averaged speed profiles u1(0.5,0.5, ·) and u3(·,0.5,0.5) are in a good agreement
with the experimental values obtained in [33]. Our simulation results show two to three pairs of
TGL vortices at Re = 3200 as in Figure 5.

A well documented feature of three-dimensional lid-driven cavity flows is that they may
exhibit Taylor–Görtler-like (TGL) vortices if Re is sufficiently large. Indeed, Iwatsu et al. [12]
obtained a pairs of TGL vortices at Re = 2000. Also as predicted in [8, 9], a transition from
steady flow to oscillatory one occurs at Recr < 2000. On the other hand, using a global linear
stability analysis, Gianetti et al. found (Ref. [13]) that the cubic lid-driven cavity flow becomes
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Figure 2. Comparisons of the numerical results obtained for h = 1/80, 1/120, and 1/160 at
Re = 400 (top) and 1000 (bottom).

unstable for Re just above 2000. All these results indicate that the Hopf bifurcation is related to
the existence of TGL vortices for Re slightly below 2000. Later, Kuhlmann and Albensoeder [11]
also pinpointed that the critical Reynolds number value is 1919.51 and associated frequency
is 0.58611.

We now want to locate the critical value of Reynolds number. As discussed above that if the
Reynolds number value is increased beyond the critical value, the flow field in a cubic cavity
switches to oscillatory one with the growth of oscillating amplitude in time. Thus, we have
computed the flow velocity un

h for different values of Re and mesh size h and analyzed its history
of L2-norm (i.e., plot of ∥un

h∥ versus t ). For h = 1/120, the flow field evolves to a steady state for
Re ≤ 1894 and the amplitude of its L2-norm oscillation decreases also in time. For Re ≥ 1895,
the steady state criterion is not satisfied and the amplitude of oscillation increases in time (see,
Figure 6 for the case of Re = 1900). Thus we conclude that the critical Reynolds number Recr for
the occurrence of transition is somewhere between 1894 and 1895. Applying the same analysis
to the histories of flow velocity L2-norm for h = 1/160 (see some of them in Figure 7), the critical
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Figure 3. Steady flow velocity vector at Re = 400 (left) and 1000 (right) projected on the
planes: x2 = 0.5 (top), x1 = 0.5 (middle), and x3 = 0.5 (bottom) for h = 1/160 and ∆t = 0.001.
(In the middle and bottom plots, the vector scale is twice that of the actual one to enhance
visibility.)

Recr is between 1913 and 1914. The oscillating frequency is between 0.5875 and 0.5860. These
Recr and associated frequency for h = 1/160 are in a good agreement with obtained by Kuhlmann
and Albensoeder in [11], which are 1919.51 and 0.58611, respectively.

3.2. Lid-driven flow in shallow cavities

To study the transition from steady flow to oscillating one in a shallow cavity with a unit square
base, we have considered the lid-driven flow in a cavity Ω = [0,1]× [0,1]× [0,Γ] for 0 < Γ < 1.
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Figure 4. Comparisons of the time averaged numerical results obtained at Re = 3200 for
h = 1/120 over 500 time units.

Figure 5. Projected velocity vectors on the plane x1 = 68/120 at different instants of time
showing interaction between TGL vortices and corner vortices at Re = 3200 for h = 1/120
and ∆t = 0.001 (the vector scale is twice that of the actual one to enhance visibility).

The velocity mesh size is h = 1/96 and time step is ∆t = 0.001. Following the approach used to
obtain results presented in the previous section, we have located the critical Reynolds number
for several values of height (Γ) as shown in Table 1. In [36], the linear-stability of steady two-
dimensional lid-driven cavity flow in Ω = [0,Γ]× [0,1] was studied. Their approach was actually
considering the stability of such two-dimensional steady flow in a three-dimensional cavity with
infinite depth. Unlike theirs, our study has taken into account the effect of all cavity boundary
walls. Thus our results are different from theirs.

For those cavity heights presented in Table 1, we have studied how oscillating mode evolves
when decreasing the height Γ via direct numerical simulation. For example, let us first study the
case of Γ= 3/4 in details. The plots in Figure 8 show oscillations of the flow velocity L2-norm, the
oscillation amplitude being decreasing (resp., increasing) in time for Re = 1721 (resp., Re = 1722).
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Figure 6. Histories of ∥uh∥ for Re = 1850 (red), 1875 (blue), and 1900 (black) (top left plot) in
a cubic cavity obtained with h = 1/120 and ∆t = 0.001 and the enlargements for Re = 1850
(top right), 1875 (bottom left), and 1900 (bottom right).

Figure 7. Histories of ∥uh∥ for Re = 1800 (red), 1900 (blue), and 1920 (black) (top left plot) in
a cubic cavity obtained with h = 1/160 and ∆t = 0.001 and the enlargements for Re = 1800
(top right), 1900 (bottom left), and 1920 (bottom right).

Table 1. Critical Reynolds number is between ReL (lower bound) and ReU (upper bound)
and associated frequencies are ωL and ωU . Those results are obtained with velocity mesh
size h = 1/96 and time step ∆t = 0.001

Γ ReL ReU ωL ωU

3/4 1721 1722 0.21974 0.21985
2/3 1656 1657 0.28777 0.28782
5/8 1689 1690 0.33755 0.33795

13/24 1730 1731 0.50557 0.50549
25/48 1522 1523 0.58394 0.58394

1/2 1364 1365 0.64127 0.64127
3/8 1179 1180 1.00114 1.00083

Thus its critical Reynolds number is between 1721 and 1722. To analyze the mode associated
with those oscillations, we have selected one period of the oscillation for Re = 1721 and 1722,
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Figure 8. Histor of ∥uh∥ (left) and that of one period (right) in a cavity of height Γ = 3/4
for ReL = 1721 (top) and ReU = 1722 (bottom). Each averaged velocity field is obtained by
averaging those at the time marked by “∗” shown in each plot.

respectively, as presented in Figure 8. The averaged velocity field of each Reynolds number is
computed by averaging the velocity fields obtained at times marked by “∗” in the right plots of
Figure 8. The projections of averaged velocity field on the planes are shown in Figure 9, for both
Re = 1721 and 1722, respectively. Although those projected velocity fields are almost identical to
each other, we have plotted the difference between averaged velocity field and the one having
about the maximum (resp. minimum) of ∥uh∥ in Figures 10 and 11 for Re = 1721 and 1722,
respectively. In Figure 10, the vector scale is either 25,000 or 10,000 times that of the actual one
to enhance visibility due to the decreasing of oscillating amplitude in time for Re = 1721. But
for Re = 1722 in Figure 11, the vector scale is either 2500 or 1000 times that of the actual one.
When the values of ∥uh∥ changes from the local maximum to local minimum (or vice versa),
the vectors in Figures 10 and 11 change the direction to the opposite one. Obviously, the mode
associated with the oscillation of ∥uh∥ has been identified in Figures 10 and 11 for the cavity of
height Γ= 3/4.

For Γ = 2/3, 5/8, 13/24, 25/48, 1/2, and 3/8, we have obtained similar flow results, but with
some differences. In the following, flow field results obtained for Re = ReU are discussed due
to the similarity of those obtained for Re = ReL . In Figure 12, histories of ∥uh∥ and selected
one period are presented for (Γ,Re) = (2/3,1657), (5/8, 1690), (13/24, 1731), (25/48, 1523), (1/2,
1365), and (3/8, 1180). The associated averaged velocity fields projected on planes are shown in
Figure 13. The size of main vortex becomes smaller when decreasing the value of Γ as shown
in plots (a)–(f) in Figure 13. Similarly, two pairs of small vortices near the bottom of cavity
are pushed toward lower corners and then disappeared when decreasing Γ from 3/4 to 3/8
(see Figure 9 and plots (g)–(l) in Figure 13). To show how the oscillating mode evolves for dif-
ferent values of the cavity height Γ, we have visualized the difference between averaged ve-
locity field and the one having about the maximum value of ∥uh∥ in Figure 14. When de-
creasing Γ value from 3/4 to 2/3, the number of vortices near the bottom of cavity increases.
Then the middle vortices become weaker when Γ goes from 2/3 to 13/24. When changing
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Figure 9. Projected averaged flow velocity vector on the planes: x2 = 0.5 (top), x1 = 0.625
(middle), and x3 = 0.375 (bottom) in a cavity of height Γ = 3/4: (i) ReL = 1721 for 24,000 ≤
t ≤ 24,028.596 (left three) and (ii) ReU = 1722 for 22,001 ≤ t ≤ 22,029.58 (right three). (In the
middle and bottom plots, the vector scale is four times that of the actual one to enhance
visibility.)

Γ from 13/24 to 1/2, the middle vortices next to the bottom wall disappear. Also the ma-
jor one next to the top wall is gone. Finally for Γ changing from 1/2 to 3/8, four new vor-
tices are observed in the middle region. The disappearance of those middle vortices is quite
unusual. We believe that this change of the oscillating mode is one of the reasons why the
critical Reynolds numbers suddenly become smaller for Γ = 1/2, and 3/8 as in Table 1. For
the study of two-dimensional lid-driven flow in shallow cavities obtained in [36], the criti-
cal Reynolds number increases when decreasing Γ to zero. Our result of the critical Reynolds
number is different since their cavity has infinite depth (i.e., there are no walls in the depth
direction).
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Figure 10. Projected velocity field of the difference between the averaged velocity field and
the ones at t = 24,008 (left) and t = 24,022 (right), respectively, on the planes x1 = 0.625
(top) and x3 = 0.375 (bottom) for ReL = 1721 in a cavity of height Γ = 3/4 where the
minimum (resp., maximum) of ∥uh∥ occurs at about t = 24,008 (resp., t = 24,022) for
24,000 ≤ t ≤ 24,028.596 as in Figure 8. (In the upper (resp., lower) two plots, the vector scale
is 25000 (resp., 10,000) times that of the actual one to enhance visibility.)

4. Conclusion

In this article, we have studied numerically the transition from steady flow to oscillatory one in
cavities via a three-stage Lie’s scheme. The numerical results obtained for Re = 400, 1000 and
3200 in a cubic cavity show a good agreement with numerical and experimental results available
in the literature. Our simulation results show that the value of critical Reynolds number Recr for
for having flow with increasing of oscillating amplitude (a Hopf bifurcation) lie somewhere in the
interval (1913, 1914) for h = 1/160. The oscillating frequency is between 0.5875 and 0.5860. The
Recr and associated frequency for h = 1/160 are in a good agreement with obtained by Kuhlmann
and Albensoeder in [11]. Then the flow velocity distortion at Re close to Recr in shallow cavities has
been investigated. We have visualized the how oscillating mode evolves for different values of the
cavity height Γ. When decreasing Γ value from 3/4 to 2/3, the number of vortices near the bottom
of cavity increases. Then the middle vortices close to the bottom wall become weaker whenΓ goes
from 2/3 to 25/48. But for Γ = 1/2 and 3/8, the disappearance of those middle vortices occurs.
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Figure 11. Projected velocity field of the difference between the averaged velocity field and
the ones at t = 22,009 (left) and t = 22,023 (right), respectively, on the planes x1 = 0.625
(top) and x3 = 0.375 (bottom) for ReU = 1722 in a cavity of height Γ = 3/4 where the
maximum (resp., minimum) of ∥uh∥ occurs at about t = 22,009 (resp., t = 22,023) for
22,001 ≤ t ≤ 22,029.58 as in Figure 8. (In the upper (resp., lower) two plots, the vector scale
is 2500 (resp., 1000) times that of the actual one to enhance visibility.)

We believe that this change of the oscillating mode is one of the reasons why critical Reynolds
numbers suddenly becomes smaller for Γ = 1/2 and 3/8. Our results are different from those
obtained by the linear stability study of two-dimensional flow.
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Figure 12. History of ∥uh∥ (left) and that of one period (right) in a cavity for (Γ,ReU ) =
(2/3,1657), (5/8, 1690), (13/24, 1731), (25/48, 1523), (1/2, 1365), and (3/8, 1180) (from top
to bottom). Each averaged velocity field is obtained by averaging those at times marked
by “∗”.
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Figure 13. Projected averaged flow velocity vector on the planes: (a)–(f) x2 = 0.5, (g) x1 =
62/96, (h) x1 = 64/96, (i) x1 = 65/96, (j) x1 = 66/96, (k) x1 = 67/96, and (l) x1 = 73/96 for
(Γ,ReU ) = (2/3,1657), (5/8, 1690), (13/24, 1731), (25/48, 1523), (1/2, 1365), and (3/8, 1180)
(from top to bottom). (In plots (g)–(l) the vector scale is four times that of the actual one to
enhance visibility comparing those in plots (a)–(f).)
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Figure 14. Projected velocity field of the difference between averaged velocity field and the
one having about the maximum value of ∥uh∥: (a) x1 = 60/96, (b) x1 = 62/96, (c) x1 = 64/96,
(d) x1 = 65/96, (e) x1 = 66/96, (f) x1 = 67/96, and (g) x1 = 73/96 for (Γ,ReU ) = (3/4,1722),
(2/3, 1657), (5/8, 1690), (13/24, 1731), (25/48, 1523), (1/2, 1365), and (3/8, 1180) (from top
to bottom and from left to right). (All the vector fields are magnified.)
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