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Abstract. In this work, we propose a theoretical framework for computing pessimistic and optimistic esti-
mates of effective properties in the case of heterogeneous elastic materials with uncertain microscopic elas-
tic properties. We rely on a risk-averse measure widely used in finance called the conditional-value at risk
(CVaR). The CVaR computes the conditional expectation of events occurring above a given risk level, thereby
characterizing the extreme tails of the probability distribution of a random variable. In the context of elastic
materials, we propose to use the CVaR on the elastic free energy to compute an optimistic estimate of the
global stiffness for some confidence level α. Similarly, we also use the CVaR on the complementary elastic
energy to compute a pessimistic estimate of the global stiffness. The obtained CVaR estimates benefit from
a convex optimization formulation. The resulting material behavior is still elastic but not necessarily linear
anymore. We discuss approximate formulations recovering a linear elastic behavior. We apply the proposed
formulations to the micromechanical estimates of effective elastic properties of random heterogeneous ma-
terials.

Résumé. Dans ce travail, nous proposons un cadre théorique pour le calcul d’estimations pessimistes et op-
timistes des propriétés effectives dans le cas de matériaux élastiques hétérogènes avec des propriétés élas-
tiques microscopiques incertaines. Nous nous appuyons sur une mesure d’aversion au risque largement uti-
lisée en finance appelée la valeur conditionnelle au risque (CVaR). La CVaR calcule l’espérance condition-
nelle des événements se produisant au-delà d’un niveau de risque donné, caractérisant ainsi les queues ex-
trêmes de la distribution de probabilité d’une variable aléatoire. Dans le contexte des matériaux élastiques,
nous proposons d’utiliser la CVaR sur l’énergie libre élastique pour calculer une estimation optimiste de la ri-
gidité globale pour un certain niveau de confiance α. De même, nous utilisons également la CVaR sur l’éner-
gie élastique complémentaire pour calculer une estimation pessimiste de la rigidité globale. Les estimations
CVaR obtenues bénéficient d’une formulation par optimisation convexe. Le comportement du matériau ré-
sultant est toujours élastique mais plus nécessairement linéaire. Nous proposons également des approxima-
tions conduisant à un comportement élastique linéaire. Nous appliquons les formulations proposées aux
estimations micromécaniques des propriétés élastiques effectives de matériaux hétérogènes aléatoires.
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1. Introduction

When considering the behavior of real materials, various factors can influence the resulting me-
chanical properties (e.g. defects, inclusions, mechanical properties of the constitutive phases,
geometry of the microstructure, etc.). Many of such factors cannot be predicted exactly and are
often considered as random. Even in the elastic regime, the mechanical properties of the mate-
rial therefore exhibit stochastic fluctuations. A typical example is concrete which is an inherently
multiscale material in which uncertainties on constitutive properties occur at various scales. For
instance, at the cement paste level, uncertainties on the hydrate mechanical properties can be
magnified during the upscaling process towards the macroscopic elastic properties [1]. At the
mortar scale, the Interfacial Transition Zone (ITZ) is also known to be a major parameter im-
pacting the effective properties whereas its constitutive properties are very difficult to determine
precisely [2]. In practice, one often attempts at measuring experimentally or estimating numer-
ically the average behavior of such stochastic properties. Developments in uncertainty quantifi-
cation techniques now aim at also including additional statistical information such as variance
or higher-order moments [3,4]. However, including such additional information in a global struc-
tural analysis (e.g. via stochastic finite-element methods [5]) remains challenging. Moreover, the
generation of prior stochastic models of random elastic tensors is not a trivial task, especially
when considering anisotropic symmetry classes [6, 7]. Finally, even if the variance of quantities
of interest is valuable, engineering design often requires to estimate accurately worst-case sce-
narios with low probabilities of occurrence. In this context, information about the distribution
tail of quantities of interest is required which is even more challenging to obtain and include in
a global analysis. Various reliability analysis approaches (e.g. FORM/SORM [8]) have then been
proposed to assess the risk of failure of a structure. Without being exhaustive, other illustrations
of uncertainty propagation techniques in the context of heterogeneous materials can be found
for instance in [9–13].

In the present work, we propose a novel approach to estimate pessimistic (and also optimistic)
values of stochastic elastic material properties by exploiting the concept of risk measures which
is widely used in financial mathematics, see [14] for a broad overview. More precisely, attention
has been turned in recent years towards convex coherent risk measures which benefit from
interesting mathematical properties, see [15]. A risk measure assigns to a given random variable
a single value representing an estimate of its typical value. For instance, one can think about
the mean value, the median value, the minimum value, etc. Some risk measures are obviously
more useful than others. For instance, the mean value is not particularly useful if one looks for
a safe design in engineering applications. Designing with respect to the minimum value of a
mechanical property (such as elastic stiffness or strength for instance) would, on the contrary,
be overly conservative. Additionally, the mean value ± k standard deviations is often used as a
measure of data variability. However, it cannot be directly used as an accurate confidence interval
measure unless the underlying distribution is precisely known. It is therefore not easy to use
for describing low probability events without any additional information. A very popular risk
measure which succeeds in describing the typical value in the distribution tail is the so-called
Conditional Value-at-Risk (CVaR) which can be defined as the expected value of the α-quantile
of the random variable, see Section 3.1. For α going from 0 to 1, the CVaR evolves from the mean-
value to the supremum value of the random variable. If high values of the latter are undesirable,
we can then say that the CVaR evolves from a risk-neutral estimate (for α = 0) to a risk-averse
estimate (forα close to 1, typically 0.95, 0.99, etc.). The risk-averse estimate therefore corresponds
to the expected value of the largest values of the random variable which occur with a probability
1−α. In our opinion, such a definition corresponds to a reasonable worst-case estimate without
being overly conservative for engineering applications.
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Our main contribution is to make use of the CVaR on the elastic free and complementary
energies to produce optimistic and pessimistic estimates of elastic properties. Obviously, the
latter seem more relevant from the engineering point of view than the latter. To do so, we will rely
on a key aspect which is that the CVaR is a convex risk measure. This will ensure thermodynamic
stability of the resulting risk-averse elastic behavior. To make our developments more explicit, we
will formulate them in the context of homogenization by considering the effective macroscopic
behavior of an elastic heterogeneous RVE depending on random microscopic properties (e.g.
the elastic properties of its constituents). Nevertheless, the proposed formulations can be readily
applied to other situations involving an elastic behavior.

The manuscript will be organized as follows: Section 2 recalls notations and generic homog-
enization results in random heterogeneous elasticity; Section 3 introduces the CVaR optimistic
and pessimistic estimates; Section 4 then applies the proposed estimates to the case of isotropic
composites; Section 5 discusses a linear elastic approximation of the proposed risk-averse effec-
tive behaviors; finally, Section 6 draws some conclusions and research perspectives.

2. Random homogenization setting

In the remainder, we will consider the homogenization setting of a heterogeneous elastic mate-
rial. We will assume that a RVE Ω exists and that effective elastic properties Chom can be com-
puted for given microscopic material properties, assuming in particular separation of scales. We
will consider that the latter are stochastic and we are interested in the corresponding stochastic
estimate of the macroscopic elastic properties. In particular, we do not investigate the limit of
infinitely large RVE domain for which effective properties become deterministic but rather focus
on a fixed RVE size. The RVE is subjected to a macroscopic strain E and denote by Σ the cor-
responding macroscopic stress. The effective elastic properties Chom related to the elastic total
strain energyΨ(E ) can be obtained from the solution of a microscopic elasticity problem defined
on the RVE since:

Ψ(E ) = 1

2
E :Chom : E = min

ε∈KA(E )

1

|Ω|
∫
Ω
ψ(ε; y)dΩ (1)

where ψ(ε; y) is the local elastic strain energy at a given point y ∈Ω and ε denotes any kinemati-
cally admissible (KA) strain field with the macroscopic strain E .

Similarly, we have the corresponding characterization of the effective compliance Shom =
(Chom)−1 using the complementary elastic energy:

Ψ∗(Σ) = 1

2
Σ :Shom :Σ= min

σ∈SA(Σ)

1

|Ω|
∫
Ω
ψ∗(σ; y)dΩ (2)

where ψ∗(σ; y) is the local elastic stress energy for any statically admissible (SA) stress field σ
with the macroscopic stress Σ.

For a given macroscopic strain E , the corresponding macroscopic stress can therefore be
obtained as follows:

Σ= ∂Ψ

∂E
(E ) = argmin

Σ̂

Ψ∗(Σ̂)− Σ̂ : E (3)

Let us now assume that the constitutive materials possess random properties characterized
by a random variable ζwith a known probability distribution. The macroscopic strain and stress
energies, and thus the corresponding macroscopic stiffness and compliance, are now random
variables i.e.:

Ψ(E ;ζ) = 1
2 E :Chom(ζ) : E (4)

Ψ∗(Σ;ζ) = 1
2Σ :Shom(ζ) :Σ (5)
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Figure 1. Illustration of the CVaR definition.

It is then customary to consider the ensemble average of the above relations to compute
effective macroscopic properties:

Ψeff(E ) = E[Ψ(E ;ζ)] = 1
2 E : E[Chom(ζ)] : E (6)

Ψ∗
eff(E ) = E[Ψ∗(Σ;ζ)] = 1

2Σ : E[Shom(ζ)] :Σ (7)

Note that one classically defines the corresponding effective elastic stiffness as follows:

Chom
eff = E[Chom(ζ)] (8)

so thatΨeff(E ) = (1/2)E :Chom
eff : E .

Our aim is now to provide some risk-averse estimates of the macroscopic stiffness and com-
pliance.

3. CVaR estimates

3.1. The conditional value-at-risk

To introduce the CVaR, we first define the Value-at-Risk (VaRα) of level α ∈ [0;1) (typically close
to 1) of a random variable X as follows:

VaRα(X ) = inf{Z s.t. FX (Z ) ≥α} (9)

where FX (Z ) =P(Z ≤ X ) is the cumulative distribution function of X .
For a continuous distribution, the CVaR is defined as the expected value of X above VaRα (see

Figure 1)
CVaRα(X ) = E[X s.t. X ≥ VaRα(X )] (10)

The above definition is slightly more technical when considering discrete distributions, we refer
the reader to [16] for a rigorous definition.

A key result due to [17] is that CVaR benefits from the following convex optimization charac-
terization:

CVaRα(X ) = inf
λ
λ+ 1

1−αE[〈X −λ〉+] (11)

where 〈⋆〉+ = max{⋆,0} denotes the positive part. From this definition, it is clear that CVaR0(X ) =
E[X ]. Let us also point out that, if the minimum of (11) is unique, then the optimal value is exactly
λ= VaRα(X ).

The CVaRα of a vector x in RN can also be interpreted as a norm parameterized by α. Indeed,
for α = 0, it reduces to the L1-norm scaled by a factor 1/N , whereas for α = 1 it reduces to the
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L∞-norm. For intermediate values, it can be seen as an average of the k largest values of |x| where
k/N = 1−α, see [18] for a more precise definition.

3.2. Optimistic estimate

We now introduce the notation Ψα(E ) to represent, for a given E , the CVaR of the stochastic
macroscopic strain energyΨ(E ;ζ) for some confidence level α:

Ψα(E ) = CVaRα(Ψ(E ;ζ)) (12)

Owing to the convex representation formula (11),Ψα is still a convex function of E . However, it is
no longer quadratic but only piecewise-quadratic. It remains however quadratic for radial paths
E (η) = ηE 0 sinceΨα(ηE 0) = η2Ψα(E 0). Note that:

Ψ0(E ) = E[Ψ(E ;ζ)] (13)

Ψα(E ) ≤ Ψ
β

(E ) ∀α≤β (14)

As a result, for a confidence level α close to 1, Ψα(E ) will provide an optimistic estimate
for the random macroscopic strain energy Ψ(E ;ζ), resulting in an optimistic estimate of the
macroscopic stiffness.

Since Ψα(E ) is convex, we can define the corresponding risk-averse macroscopic stress for a
given strain by generalizing (3) as follows:

Σα = ∂Ψα

∂E
(E ) = argmin

Σ̂

(Ψα)∗(Σ̂)− Σ̂ : E (15)

Again, owing to the piecewise-quadratic nature ofΨα, the resulting macroscopic stress–strain
relationship is piecewise-linear elastic, except for radial loading paths on which it remains linear
elastic.

3.3. Pessimistic estimate

Conversely, we can define the CVaR (Ψ∗)α of the stochastic macroscopic complementary energy
Ψ∗(Σ;ζ):

(Ψ∗)α(Σ) = CVaRα(Ψ∗(Σ;ζ)) = E[Ψ∗|Ψ∗ ≥ VaRα(Ψ∗)] (16)

Similarly to Ψα(E ), (Ψ∗)α(Σ) is a convex function of Σ and provides a risk-averse estimate of the
random complementary energy Ψ∗(Σ;ζ) for α close to 1. (Ψ∗)α(Σ) is also piecewise-quadratic
and quadratic along radial paths and the resulting macroscopic strain–stress relationship is
piecewise-linear elastic.

Considering a Legendre–Fenchel transformation, we can compute its corresponding conju-
gate function ((Ψ∗)α)∗. Let us therefore introduce:

Ψα = ((Ψ∗)α)∗ (17)

Using (47) forΨ∗, one obtains the following convex optimization formulation forΨα:

Ψα(E ) = ((Ψ∗)α)∗(E ) = inf
Ê ,z

E

[
1

z
Ψ(Ê )

]
s.t. E[Ê ] = E

0 ≤ z ≤ 1

1−α
E[z] = 1

(18)
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which corresponds to some weighted average ofΨ. We also have:

Ψ0(E ) = (E[Ψ∗])∗(E ) (19)

Ψα(E ) ≥ Ψβ(E ) ∀α≤β (20)

As a result, for a confidence level α close to 1, Ψα(E ) provides a pessimistic estimate of the
random strain energy, resulting in a pessimistic estimate of the macroscopic stiffness.

4. Application to isotropic composites

4.1. Bulk and shear moduli risk-averse estimates

Let us consider the case of an isotropic composite material described by apparent bulk and shear
moduli κ(ζ) and µ(ζ). One has:

Ψ(E ;ζ) = 1
2 (κ(ζ)(trE )2 +2µ(ζ)E d : E d) (21)

Ψ∗(Σ;ζ) = 1

2

(
1

9κ(ζ)
(trΣ)2 + 1

2µ(ζ)
Σd :Σd

)
(22)

where E d = dev(E ) and Σd = dev(Σ).
For purely deviatoric strain states i.e. tr(E ) = 0, one hasΨ(E ;ζ) =µ(ζ)E d : E d so that:

Ψα(E ) = inf
λ
λ+ 1

1−α 〈µ(ζ)E d : E d −λ〉+

=
(
inf
λ̂
λ̂+ 1

1−α 〈µ(ζ)− λ̂〉+
)

E d : E d

= CVaRα(µ)E d : E d (23)

As a consequence, Ψα is still a quadratic form on the space of purely deviatoric strains and
corresponds to a linear elastic material of shear modulus µα = CVaRα(µ).

A similar reasoning can be made for purely spherical strains. Ψα is still a quadratic form on
such a space and corresponds to a linear elastic material of bulk modulus κα = CVaRα(κ).

Similarly, considering the case of purely deviatoric stress states i.e. tr(Σ) = 0, then one has
Ψ∗(Σ;ζ) = (1/4µ(ζ))Σd :Σd so that:

Ψ∗
α(Σ) = inf

λ
λ+ 1

1−α
〈

1

4µ(ζ)
Σd :Σd −λ

〉
+

= 1

4
CVaRα

(
1

µ

)
Σd :Σd (24)

As a consequence,Ψ∗
α

is quadratic on the space of purely deviatoric stresses and corresponds to a
linear elastic material of shear modulus µα = CVaRα(µ−1)−1. Similarly, for purely spherical stress
states, one obtains a linear elastic material of bulk modulus κα = CVaRα(κ−1)−1.

Finally, let us recall that the optimal value ofλ corresponds to the VaR. Then, 1/µ∗ = VaRα(µ−1)
is such that Fµ−1 (1/µ∗) =α. But one also has F1/X (x) = 1−FX (1/x) so that:

Fµ−1 (1/µ∗) = 1−Fµ(µ∗) =α ⇒ Fµ(µ∗) = 1−α (25)

We conclude that µ∗ = 1/VaRα(µ−1) corresponds to the (1 −α)-quantile of µ(ζ). However, µα
does not correspond to the expectation below this (1 −α)-quantile but rather the “harmonic
expectation” E[µ−1]−1 below this quantile.
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Figure 2. Empirical PDF and CDF (light gray) and computed CVaR and VaR optimistic and
pessimistic estimates for f = 0.25.

Table 1. Numerical values of risk-averse and risk-neutral homogenized shear modulus
estimates

CVaRα(µ−1)−1 VaRα(µ−1)−1 E[µ] CVaRα(µ) VaRα(µ)
12.856 13.290 15.174 17.211 17.810

4.2. Numerical example

As an illustrative example, let us consider an isotropic biphasic material consisting of two
incompressible phases of shear moduli µ1 and µ2 and where f is the volume fraction of phase 2.
We estimate the effective modulus by resorting to a self-consistent scheme [19]. Both phases
shear moduli are considered as random variables following a lognormal distribution of mean
value µ0

1 = 10 and µ0
2 = 50 and a standard deviation of 10% for both phases. Note that we choose

lognormal distributions for the shear modulus for illustration purposes only. More accurate
choices on probability distribution of elastic behaviors can be found in the work of [20] for
instance. We consider a set of N = 10,000 Monte-Carlo realizations to estimate the different
expectations and CVaR. We choose a confidence level of α= 0.95 unless stated otherwise.

For f = 0.25, Figures 2a and b respectively display the empirical PDF and CDF of the homoge-
nized shear moduli estimate. The computed expected value and the various risk-averse estimates
are reported in Table 1. One can see that both pessimistic and optimistic VaR levels indeed corre-
spond to the values for which the empirical CDF reaches a value of 1−α and α respectively (thin
horizontal dashed lines in Figure 2b) and that the CVaR corresponds to an average value of the
remaining part (below or above the VaR) of the distribution. Figure 3 also reports the evolution
of both pessimistic µα and optimistic µα shear modulus estimates, normalized by the effective
modulus µeff = E[µ] as a function of the chosen confidence level α. One can see that the risk-
averse estimates deviate slowly from the effective modulus for low values of α and more rapidly
when α approaches 1, capturing the effect of the flatter tails of the distribution.

Finally, Figure 4 also reports the evolution of the various estimates as a function of the
volume fraction f . For each volume fraction, the dotted symbols represent a discrete value
of the empirical distribution, the size and the color being proportional to the corresponding
probability of occurrence. We can clearly see that the proposed risk-averse estimates provide a
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Figure 3. Risk-averse shear modulus estimates as a function of the confidence level α for
f = 0.25.

Figure 4. Risk-averse shear modulus estimates as a function of the volume fraction.

nice bracketing of the random modulus around the central part of the distribution for the whole
range of volume fractions.

5. A linear elastic approximation

As demonstrated previously, the CVaR estimates are an efficient risk-averse measure of the
elastic properties of a random material. However, considering the CVaR on the total free or
complementary energy does not yield a linear elastic material anymore but a piecewise-linear
elastic which may be more cumbersome to use in practice. Nonetheless, we have seen that the
corresponding behavior is still linear elastic for purely deviatoric and spherical states. It therefore
appears natural to consider, as an optimistic (resp. pessimistic) estimate of the random material,
an isotropic linear elastic material characterized by the bulk and shear moduli κα,µα (resp.
κα,µα).

Let us now give a more formal definition of such a proposition. We consider the spherical and
deviatoric decomposition of an isotropic linear elastic material free energy:

Ψ(E ;ζ) = Ψsph(E ;ζ)+Ψdev(E ;ζ) = 1
2κ(ζ)(trE )2 +µ(ζ)E d : E d (26)

Ψ∗(Σ;ζ) = (Ψsph)∗(Σ;ζ)+ (Ψdev)∗(Σ;ζ) = 1

18κ(ζ)
(trΣ)2 + 1

4µ(ζ)
Σd :Σd (27)
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Owing to the sub-additivity property of the CVaR, we have that:

Ψα(E ) ≤Ψsph
α

(E )+Ψdev
α

(E ) ∀E (28)

(Ψ∗)α(Σ) ≤ ((Ψsph)∗)α(Σ)+ ((Ψdev)∗)α(Σ) ∀Σ (29)

where the right-hand sides are given by:

Ψ
sph
α

(E ) = 1
2κα(trE )2 (30)

Ψdev
α

(E ) = µαE d : E d (31)

((Ψsph)∗)α(Σ) = 1

18
(κ−1)α(trΣ)2 = 1

18κα
(trΣ)2 (32)

((Ψdev)∗)α(Σ) = 1

4
(µ−1)αΣ

d :Σd = 1

4µα
Σd :Σd (33)

Since the Legendre–Fenchel transform is order-reversing and since (Ψsph)∗ (resp. (Ψdev)∗) de-
pends only on trΣ (resp. Σd), (27) is equivalent to:

Ψα = ((Ψ∗)α)∗(E ) ≥ (((Ψsph)∗)α)∗(E )+ (((Ψdev)∗)α)∗(E ) (34)

with:

(((Ψsph)∗)α)∗(E ) = Ψ
sph
α (E ) = 1

2κα(trE )2 (35)

(((Ψdev)∗)α)∗(E ) = Ψdev
α (E ) =µαE d : E d (36)

As a result, we have ∀E :

Ψ
sph
α (E )+Ψdev

α (E ) ≤Ψα(E ) ≤Ψeff(E ) ≤Ψα(E ) ≤Ψsph
α

(E )+Ψdev
α

(E ) (37)

where the left-most estimate Ψsph
α (E )+Ψdev

α (E ) is a quadratic form corresponding indeed to an

isotropic elastic material of moduli (κα,µα) and the right-most estimate Ψsph
α

(E )+Ψdev
α

(E ) is a
quadratic form corresponding indeed to an isotropic elastic material of moduli (κα,µα).

5.1. Generalization to other symmetry classes

The previous approximate linear elastic formulation can also be easily generalized to other
material symmetry classes by considering the Kelvin decomposition of the elastic moduli [21].
Let C(ζ) = {c(i )(ζ)} (resp. S(ζ) = {s(i )(ζ)}) be defined by its stochastic eigen-moduli c(i )(ζ) (resp.
s(i )(ζ)). The stochastic elastic free and complementary energies therefore write as:

Ψ(E ;ζ) = 1

2

K∑
i=1

c(i )(ζ)E (i ) : E (i ) (38)

Ψ∗(Σ;ζ) = 1

2

K∑
i=1

s(i )(ζ)Σ(i ) :Σ(i ) (39)

where E (i ) = P(i ) : E and Σ(i ) = P(i ) :Σ where P(i ) denotes the projector onto mode number (i ) in
the Kelvin decomposition.

Note that in (38)–(39), we assume that the uncertainty ζ does not affect the symmetry class1

and the corresponding projectors P(i ). The optimistic elastic material can then be defined as
Cα = {c(i )

α
}. Similarly, the pessimistic elastic material can be defined from Sα = {s(i )

α
} and thus

Cα = (Sα)−1 = {c(i )
α }, thereby generalizing the previously discussed approximation.

1In the case when this is no longer true, one can still use the generic CVaR estimates of Section 3.
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Table 2. Numerical parameters of Case 1

Property Distribution Numerical values
E1 Lognormal Mean 10, std 20%
E2 Lognormal Mean 50, std 20%
ν1 Uniform [0.15,0.25]
ν2 Uniform [0.25,0.35]

Table 3. Numerical parameters of Case 2

Property Distribution Numerical values
κ1 Lognormal Mean 5.56, std 20%
κ2 Lognormal Mean 41.67, std 20%
µ1 Lognormal Mean 4.17, std 20%
µ2 Lognormal Mean 19.23, std 20%

Table 4. Numerical parameters of Case 3

Property Distribution Numerical values
E1 Lognormal Mean 10, std 20%
E2 Lognormal Mean 50, std 20%
ν1 Uniform [−0.45,0.45]
ν2 Uniform [−0.45,0.45]

5.2. Numerical example

We now consider an isotropic biphasic composite consisting of two linear elastic materials of
Young modulus and Poisson ratio Ei , νi for i = 1,2. f still denotes the volume fraction of phase
2 and is taken as f = 0.25 in the following. We again estimate the effective moduli using a self-
consistent scheme for the various cases of Tables 2–4.

We first consider Case 1 of Table 2 where both phases Young modulus to be random variables
following a lognormal distribution of mean value E 0

1 = 10 and E 0
2 = 50 and a standard deviation of

20% for both phases. The Poisson ratios are assumed to be random variables with a uniform dis-
tribution centered around ν0

1 = 0.2 and ν0
2 = 0.3 with a ±0.05 maximum deviation. In such a con-

text, the empirical PDF of the effective bulk and shear moduli of the composite are represented
in Figure 5a. The corresponding pessimistic and optimistic CVaR estimates for a 0.95-confidence
level have also been reported on this figure. In order to assess the accuracy of the linear elastic
approximation which has just been proposed, we represent, for a given free energy densityΨ, the
level-set 2Ψ∗(Σ) = 1. Results are represented in the normalized stress space Σm = (1/3trΣ)/

p
κeff

and Σd = ∥dev(Σ)∥/
√

2µeff so that the level set corresponds to a unit circle for Ψeff = E[Ψ]. Linear
elastic materials possess level sets which form an ellipse in such a space. Clearly from Figure 5b,
the proposed linear elastic approximation Ψsph

α
+Ψdev

α
is extremely close to the CVaR optimistic

estimate Ψα in the present case. Similarly, the linear elastic approximation Ψ
sph
α +Ψdev

α is also
extremely close to the CVaR pessimistic estimateΨα for this example.

To assess the quality of the approximation in other situations, we also considered Case 2 of
Table 3 where κi and µi are assumed to be lognormal random variable with a 20% standard
deviation and a mean value corresponding to the previous values of E 0

i and ν0
i . Results are

reported in Figure 6 where we can first observe that the empirical PDF are slightly different,
especially regarding the bulk modulus distribution. As regards the linear elastic approximations,
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Figure 5. Results for Case 1.

Figure 6. Results for Case 2.

the quality is still very good, exhibiting only a small overestimation (resp. underestimation)
compared to the original CVaR estimates for mixed spheric–deviatoric stress states. As a result, we
can conclude that the proposed approximations will furnish very good risk-averse linear elastic
estimates of the stochastic composite material.

Finally, to further assess under which conditions the proposed approximation becomes too
crude, we investigated the very artificial and non-realistic setting of Case 3 of Table 4 in which
the Young modulus is again lognormal with the same mean and 20% standard deviation as
before but in which both phases Poisson ratios are assumed to be uniformly distributed in the
interval [−0.45;0.45]. The corresponding results are reported in Figure 7. In this artificial case,
the corresponding PDF of the bulk modulus is extremely heavy-tailed and the proposed linear
elastic approximations to the CVaR estimates deviate significantly from the latter for mixed
spheric/deviatoric stress states. One can clearly see in this case that the CVaR estimates Ψα
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Figure 7. Results for Case 3.

and Ψα are not quadratic functions since their level set is far from being an ellipse, whereas the
proposed elastic approximation are the tightest ellipse which coincides for purely spherical and
deviatoric states.

6. Conclusions and perspectives

In this work, we proposed to use the conditional value-at-risk (CVaR) as a risk measure to replace
a stochastic elastic model with either an optimistic or a pessimistic model depending on a given
confidence level α. The main interest of the CVaR is that it benefits from a definition based
on convex optimization. More precisely, when applied to the stochastic convex free energy of
a stochastic elastic material, the CVaR free energy is still convex (but not necessarily quadratic)
and defines an optimistic elastic material. The pessimistic counterpart is obtained when taking
the CVaR of the complementary energy. Our approach enables to define in a systematic and
consistent way risk-averse estimates of a stochastic convex potential. Finally, since the resulting
risk-averse behaviors are elastic but not necessarily linear anymore, we also proposed lower and
upper approximations based on the Kelvin decomposition of the considered symmetry class.

These developments obviously pave the way to their extension towards nonlinear constitutive
models. The convex property of the CVaR risk measure makes it natural to consider the case of
generalized standard materials (GSM) characterized by stochastic convex free energy and dissi-
pation pseudo-potential. Upon proper definition of the CVaR-based risk averse estimates of such
free energy and dissipation potentials, one could therefore aim at proposing risk-averse estimates
of various stochastic nonlinear behavior entering the GSM framework. Finally, the computation
of the CVaR might require a large number of samples when using a Monte-Carlo approximation.
Computing such samples might be prohibitive in the case of full-field simulations for instance.
In this case, various approaches attempting at reducing this cost could be used such as variance
reduction, importance sampling or surrogate modeling.
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Appendix A. Dual characterization of CVaR

Starting from the convex representation formula (11), Ψα also benefit from the following convex
dual formulation (see for instance [22]):

Ψα(E ) = sup
z

E[zΨ(E )]

s.t. 0 ≤ z ≤ 1

1−α
E[z] = 1

(40)

Applying a Legendre–Fenchel transform, one has:

(Ψα)∗(Σ) = sup
E
Σ : E −Ψα(E ) = sup

E
inf

z
Σ : E −E[zΨ(E )]

s.t. 0 ≤ z ≤ 1

1−α
E[z] = 1

(41)

Restricting to a discrete setting with N random variables for simplicity and exchanging the
inf/sup order, the objective function is given by:

inf
z

sup
E
Σ : E − 1

N

N∑
i=1

ziΨ(E ;ζi ) (42)

= inf
z

sup
E
Σ : E − 1

N

N∑
i=1

gi (E ) (43)

= inf
z

inf
σi

1

N

N∑
i=1

g∗
i (Σ̂i )

s.t.
1

N

N∑
i=1
Σ̂i =Σ

(44)

where gi (E ) = ziΨi (E ) withΨi (E ) denoting the i -th realization ofΨ(E ;ζ). Moreover, one has:

g∗
i (Σ) = ziΨ

∗
i

(
Σ

zi

)
(45)

Accounting for the fact thatΨ∗
i is quadratic, one finally has:

(Ψα)∗(Σ) = inf
Σi ,zi

1

N

N∑
i=1

1

zi
Ψ∗

i (Σ̂i )

s.t.
1

N

N∑
i=1
Σ̂i =Σ

0 ≤ zi ≤ 1

1−α
1

N

N∑
i=1

zi = 1

(46)

https://doi.org/10.5802/crmeca.171
https://doi.org/10.5802/crmeca.171
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which can be generalized to a continuous setting as follows:

(Ψα)∗(Σ) = inf
Σ̂,z

E

[
1

z
Ψ∗(Σ̂)

]
s.t. E[Σ̂] =Σ

0 ≤ z ≤ 1

1−α
E[z] = 1

(47)
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