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Abstract. We introduce an adaptive element-based domain decomposition (DD) method for solving saddle
point problems defined as a block two by two matrix. The algorithm does not require any knowledge of the
constrained space. We assume that all sub matrices are sparse and that the diagonal blocks are spectrally
equivalent to a sum of positive semi definite matrices. The latter assumption enables the design of adaptive
coarse space for DD methods that extends the GenEO theory (Spillane et al., 2014) to saddle point problems.
Numerical results on three dimensional elasticity problems for steel-rubber structures discretized by a finite
element with continuous pressure are shown for up to one billion degrees of freedom.
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sance de l’espace contraint. Nous supposons que toutes les sous-matrices sont creuses et que les blocs diago-
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1. Introduction

Solving saddle point problems with parallel algorithms is very important for many branches of
scientific computing: fluid and solid mechanics especially for incompressible or nearly incom-
pressible materials, computational electromagnetism, multi-physics problems, inverse problems
and optimization. They also arise when analyzing realistic problems with the incorporation of a
set of linear multipoint constraints (MPC) into the linear solver. Examples of the problems de-
scribed by the MPCs are the non-penetration condition in the contact problem, connection of
different types of finite elements, modelling of rigid bodies, and so on. Using Lagrange multipli-
ers to enforce them, yields linear saddle point systems.

For small enough problems, direct solvers are the method of choice since they are robust and
have a predictable efficiency. But for large problems the memory requirements are very large and
at some point the solver runs out of memory, see e.g. the tests performed in § 5.5.1. Then iterative
solvers are needed. Domain decomposition methods are, alongside multigrid methods, one of
the dominant paradigms for defining efficient and robust preconditioners in modern large-scale
applications dealing with partial differential equations and algebraic systems of equations.

We are interested in domain decomposition (DD) methods since they are naturally well-fitted
to modern parallel architectures.

Recently adaptive spectral coarse spaces have been developed successfully for symmetric
positive definite systems, see [1–5] and the book [6] and references therein. In [7, § 6.2.], it is
shown that in the case of nearly incompressible elasticity in 2D with aP2/P0 discretization where
the pressure unknown can be condensed and the resulting velocity matrix is sparse and SPD, the
adaptive GenEO coarse space fails. Note that for a homogeneous nearly incompressible elasticity
problem, the extension of GenEO to FETI [5] works well but not in the highly heterogeneous case
considered in this paper. It is thus necessary to keep the saddle point formulation. Note also that
the method presented here applies as well to a P2/P1 discretization with a continuous pressure.

For specific systems of partial differential equations with a saddle point formulation, efficient
DD methods have been designed, see e.g., [8–10] and [11] references therein. Also in [12], a GenEO
coarse space is introduced for the P.L. Lions’ algorithm and its efficiency is mathematically
proved for symmetric definite positive problems. In the above article, numerical experiments
are conducted on three dimensional elasticity problems for steel-rubber structures discretized
by a finite element with continuous pressure. Although the method works well in practice, it
lacks theoretical convergence guarantees and also demands the design of specific absorbing
conditions as interface conditions.

As for a convergence rate analysis for a discretization with a continuous pressure, the recent
article [13] generalizes the theory developed in [14] to the case of nonzero pressure block but
under the assumption that the discontinuities are resolved by the subdomains. Compared to the
above mentioned works, the method we propose has a provable control on the condition number
for zero or non zero pressure block with a continuously discretized pressure also in the case of
arbitrary heterogeneities and, in contrast to [12], it bypasses the need for absorbing boundary
conditions.

Here as in [15–18], we consider the problem in the form of a two by two block matrix. Let m
and n be two integers with m < n. Let A n×n be a SPD matrix, B a sparse m×n full rank matrix of
constraints and C a m ×m non negative matrix (in particular, C = 0 is allowed), we consider the
following saddle point matrix:

A :=
(

A B T

B −C

)
. (1)

When the kernel of matrix B is known, very efficient multigrid methods have been designed in
the context of finite element methods, see e.g., [19–24]. Without this knowledge, it is nevertheless
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also possible to design efficient geometric multigrid methods as in [25] where the fine mesh is
obtained by several uniform mesh refinements. In the case where matrix C is zero, augmented
Lagrangian methods [26–28] may be used. Applications to incompressible fluid dynamics and
incompressible elasticity are numerous, see e.g. in [24, 29] and references therein.

Here we do not assume any knowledge on the kernel of matrix B nor that C is zero and we
work with arbitrary meshes. The following three factor factorization, see e.g., [30]:(

A B T

B −C

)
=

(
I 0

B A−1 I

)(
A 0
0 −(C + B A−1B T )

)(
I A−1B T

0 I

)
,

shows that solving the linear system with A can be performed by solving sequentially linear
systems with A and one with the Schur complement C +B A−1B T . In order to build a scalable
method, we assume that all three matrices A, B and C are sparse and that A and C are the sum of
positive semi definite matrices. This is easily achieved in finite element or finite volume contexts
for partial differential equations. The latter assumption enables the design of adaptive coarse
space for DD methods, see [6].

The highlights of the article are:

• new provably scalable DD method that is a blend of two-level Schwarz and Neumann–
Neumann domain decomposition methods.

• successfully application to the notorious difficult problem of large scale (1 billion d.o.f’s)
nearly incompressible elasticity with heterogeneities not resolved by the domain decom-
position and discretized with a continuous pressure.

The paper is organized as follows. In § 2, we recall the two-level additive Schwarz method
denoted MA used to precondition the matrix A (the primal-primal block of the saddle point
problem). Then in § 3, we introduce the operator PS :=C+B M−1

A B T which is spectrally equivalent
to the Schur complement S. Its preconditioning is studied in § 3.2. In § 4, we combine these
different components to define in a compact way the parallel saddle point preconditioner. In
§ 5, we present weak and strong scaling experiments on large scale elasticity problems for steel-
rubber structures discretized by a finite element with continuous pressure. Comparisons with
direct and multigrid solvers are also given. These problems are highly heterogeneous since the
Lamé-Poisson coefficients of the rubber are (E1,ν1) = (1e +7,0.4999) and those of the steel are
(E2,ν2) = (2e +9,0.35).

2. Preconditioning of the primal problem

The sparse n ×n SPD matrix A is preconditioned by a two-level Schwarz type DD method:

M−1
A := RT

0

(
R0 ART

0

)−1
R0 +

N∑
i=1

RT
i

(
Ri ART

i

)−1
Ri , (2)

where R0 is full rank di m(V0)×n with V0 denoting the space spanned by the columns of RT
0 . The

following assumptions are crucial to ensure the final method is scalable:

Assumption 1 (dimension and structure of the coarse space).

• The coarse space dimension, di m(V0), is O(N ) typically 10-20 times N .
• The coarse space is made of extensions by zero of local vectors.

Using the GenEO method [31], it is possible to specify in advance two constants 0 < λm < 1 <
λM and then build a coarse space V0 such that M−1

A is spectrally equivalent to A−1:

1

λM
M−1

A ≤ A−1 ≤ 1

λm
M−1

A . (3)
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The dimension of the coarse space V0 is typically proportional to the number of subdomains.
This corresponds to Assumption 1. More precisely, for each subdomain 1 ≤ i ≤ N , let Di be a non
negative diagonal matrix that defines a discrete partition of unity, i.e.:

N∑
i=1

RT
i Di Ri = I ,

and ANeu
i be a symmetric semi-definite positive matrix such that for the maximum multiplicity

of the intersection of subdomains denoted k1, we have:
N∑

i=1
RT

i ANeu
i Ri ≤ k1 A . (4)

Then, the GenEO eigenvalue problem is local to each subdomain and reads:
Find (λi k ,Vi k ) ∈R×Rr ank(Ri ) such that:(

Di Ri ART
i Di

)
Vi k =λi k ANeu

i Vi k . (5)

Let τ > 0 be a positive threshold, the coarse space is the vector space spanned by the vectors
RT

i Di Vi k for all λi k > τ. Then inequality (3) holds with λm := (1+k1τ)−1 and λM := k0 where k0 is
the maximal number of neighbours of a subdomain including itself.

Our aim in the next section is to precondition the Schur complement −S of matrix A (eq. (1))
where

S :=C +B A−1 B T . (6)

This is achieved by a series of spectrally equivalent matrices or preconditioners, the first one
being PS defined as follows:

PS :=C +B M−1
A B T (7)

and the final one being N−1
S introduced in § 3.3, see eq. (24). Finally in § 4.2 we will introduce the

preconditioner of the saddle point matrix A .

3. Schur complement preconditioning

3.1. First spectrally equivalent preconditioner

Note that PS is by definition a sum of N +2 positive semi definite matrices

PS := B RT
0

(
R0 ART

0

)−1
R0 B T +C +

N∑
i=1

BRT
i

(
Ri ART

i

)−1
Ri B T . (8)

Since B is a sparse matrix, it is interesting to introduce, for all 0 ≤ i ≤ N , R̃ i the restriction operator
on the support of ℑ(B RT

i ) (the image of B RT
i ) so that:

R̃T
i R̃ i BRT

i = BRT
i . (9)

Then, by defining for 0 ≤ i ≤ N ,
B̃ i := R̃ i B RT

i ,

the operator PS is rewritten as

PS := R̃T
0 B̃ 0

(
R0 ART

0

)−1
B̃ T

0 R̃0 +C +
N∑

i=1
R̃T

i B̃ i
(
Ri ART

i

)−1
B̃ T

i R̃ i . (10)

We consider a partition of unity on H := Rm defined with local diagonal matrices (D̃ i )1≤ i ≤N ∈
Rdim(ℑ(B RT

i ))×dim(ℑ(B RT
i )):

N∑
i=1

R̃T
i D̃ i R̃ i = IH .

We make the following assumption
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Assumption 2. There exist symmetric positive semi-definite matrices (C̃ i )1≤ i ≤N such that for
some constant k̃1

C ≤
N∑

i=1
R̃T

i C̃ i R̃ i ≤ k̃1 C . (11)

This assumption is not so restrictive. Indeed, for a minimization problem with constraints
enforced exactly without penalization nor relaxation, we have C = 0 and the assumption is
automatically satisfied. Moreover, we have:

Lemma 3. If C is a diagonal matrix, Assumption 2 is satisfied with k̃1 = 1.

Proof. If C is a diagonal matrix, it suffices to take

C̃ i := R̃ i C R̃T
i D̃ i ,

which is a diagonal non negative matrix. Indeed, we then have:

C =
N∑

i=1
C R̃T

i D̃ i R̃ i =
N∑

i=1
R̃T

i

(
R̃ i C R̃T

i D̃ i
)

R̃ i . □

Remark 4. Note also that in the finite element case it suffices to restrict the variational form
that defines C to the subdomains. In this case k̃1 is the multiplicity of the intersections of the
subdomains used to define the C̃ i ’s.

Let us define the operator MS as the sum of a non local but low rank matrix S0:

S0 := R̃T
0 B̃ 0

(
R0 ART

0

)−1
B̃ T

0 R̃0 ,

and of S1 which is a sum of N local positive semi definite matrices:

S1 :=
N∑

i=1
R̃T

i

(
C̃ i + B̃ i

(
Ri ART

i

)−1
B̃ T

i

)
R̃ i ,

that is

MS := S0 +S1 .

By Assumption 2, the operator MS is spectrally equivalent to PS which is also spectrally equivalent
to S. Note that we may assume that S1 is invertible whereas it does not make sense for S0. Note
that if it is not the case, since we build a preconditioner, S1 can be regularized by a small diagonal
term with little effect on the efficiency of the preconditioner.

We consider next the construction of a preconditioner M−1
S1

to S1 leveraging the fact that S1 is
a sum of symmetric semidefinite positive matrices. Let us stress that this property stems from the
domain decomposition structure of the preconditioner for matrix A which apart from the coarse
level is block diagonal.

3.2. Preconditioning of S1

It is well known that one-level domain decomposition methods are in most cases not scalable.
Nevertheless, the study of a one-level method in § 3.2.1 enables the identification of a suitable
coarse space that will be efficiently embedded in a scalable two-level domain decomposition
method in § 3.2.2.

Our studies of the spectrum of the DD preconditioners are based on the Fictitious Space
lemma which is recalled here, see [32] for the original paper and [33] for a modern presentation.
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Lemma 5 (Fictitious Space Lemma, Nepomnyaschikh 1991). Let H and HD be two Hilbert
spaces, with the scalar products denoted by (·, ·) and (·, ·)D . Let the symmetric positive bilinear
forms a : H × H → R and b : HD × HD → R be generated by the s.p.d. operators A : H → H and
B : HD → HD , respectively (i.e. (Au, v) = a(u, v) for all u, v ∈ H and (BuD , vD )D = b(uD , vD ) for all
uD , vD ∈ HD ). Suppose that there exists a linear operator R : HD → H that satisfies the following
three assumptions:

(i) R is surjective.
(ii) Continuity of R: there exists a positive constant cR such that

a(RuD ,RuD ) ≤ cR ·b(uD ,uD ) ∀ uD ∈ HD . (12)

(iii) Stable decomposition: there exists a positive constant cT such that for all u ∈ H there exists
uD ∈ HD with RuD = u and

cT ·b(uD ,uD ) ≤ a(RuD ,RuD ) = a(u,u) . (13)

We introduce the adjoint operator R∗ : H → HD by (RuD , u) = (uD , R∗u)D for all uD ∈ HD and
u ∈ H.
Then, we have the following spectral estimate

cT ·a(u,u) ≤ a
(
RB−1R∗Au, u

)≤ cR ·a(u,u) , ∀ u ∈ H , (14)

which proves that the eigenvalues of operator RB−1R∗A are bounded from below by cT and from
above by cR .

The Fictitious Space Lemma (FSL) can also conveniently be related to the book [11]: the first
assumption corresponds to equation (2.3), page 36, where the global Hilbert space is assumed to
satisfy a decomposition into subspaces, the second assumption is related to Assumptions 2.3 and
2.4, page 40, and the third assumption corresponds to the Stable decomposition Assumption 2.2
page 40.

3.2.1. One-level DD for S1

As in [6, Chapter 7], we begin with a one-level Neumann–Neumann [34] type DD method
defined in terms of the Fictitious Space Lemma (FSL). This study will be the basis for constructing
a scalable two-level preconditioner in § 3.2.2. Recall the formula for the one-level preconditioner
M−1

S1,1 for S1:

M−1
S1,1 :=

N∑
i=1

R̃T
i D̃ i

(
C̃ i + B̃ i

(
Ri ART

i

)−1
B̃ T

i

)†
D̃ i R̃ i , (15)

where the superscript † denotes a pseudo inverse in case the operator in brackets is not invertible.
For the sake of simplicity, we assume that they are invertible so that the following framework
enables the study of MS1,1 with the fictitious space lemma. Let

H :=Rm

and let a be the following bilinear form:

a : H ×H →R a(P,Q) := (S1P,Q) .

Let

HD :=ΠN
i=1R

r ank(B̃ i ) ,

and b be the following bilinear form:

b : HD ×HD →R b((Pi )1≤ i ≤N , (Qi )1≤i≤N ) :=
N∑

i=1

((
C̃ i + B̃ i

(
Ri ART

i

)−1
B̃ T

i

)
Pi , Qi

)
. (16)
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We define R:

R : HD →H

(Pi )1≤ i ≤N 7→
N∑

i=1
R̃T

i D̃ i Pi .

We now check the three assumptions of the FSL.

Surjectivity of R. For any P ∈ H , we have using the partition of unity that:

P =
N∑

i=1
R̃T

i D̃ i R̃ i P ,

so that
P =R

(
(R̃ i P)1≤ i ≤N

)
. (17)

Continuity of R. On the one hand, we have using k0 the number of neighbours of a subdomain
(including itself), k0 := max1≤ i ≤N #O (i ) where O (i ) := {1 ≤ j ≤ N | R̃ i D̃ i S1 D̃ j R̃T

j ̸= 0}:

a (R(P ) , R(P )) =
∥∥∥∥∥
(

N∑
i=1

R̃T
i D̃ i Pi

)∥∥∥∥∥
2

a

≤ k0

N∑
i=1

∥∥R̃T
i D̃ i Pi

∥∥2
a

≤ k0

(( ∑
j ∈O (i )

R̃T
j

(
C̃ j + B̃ j

(
R j ART

j

)−1
B̃ T

j

)
R̃ j

)
R̃T

i D̃ i Pi , R̃T
i D̃ i Pi

)
.

On the other hand, we have by definition:

b (P , P ) =
N∑

i=1

((
C̃ i + B̃ i

(
Ri ART

i

)−1
B̃ T

i

)
Pi , Pi

)
.

We can take:

cR := max
1≤ i ≤N

max
Pi ∈Rrank(B̃ i )

(∑
j ∈O (i ) R̃ i R̃T

j

(
C̃ j + B̃ j

(
R j ART

j

)−1
B̃ T

j

)
R̃ j R̃T

i D̃ i Pi , D̃ i Pi

)
((

C̃ i + B̃ i
(
Ri ART

i

)−1
B̃ T

i

)
Pi , Pi

) , (18)

but we have no control on cR which may be large. This motivates the introduction of a spectral
coarse space in § 3.2.2 with the generalized eigenvalue problem (19).

Stable decomposition. Let P ∈ H , we start from its decomposition (17) and estimate its b-norm

b (P , P ) =
N∑

i=1

((
C̃ i + B̃ i

(
Ri ART

i

)−1
B̃ T

i

)
R̃ i P , R̃ i P

)
= a(P , P) ,

so that we can take cT = 1 which is an optimal value.

3.2.2. Two-level DD for S1

In order to control the value of cR defined above, we introduce a two-level preconditioner
similarly to what is done for Schur complement methods in [6, § 7.8.3, p. 197] or in [5]. The
generalized eigenvalue problem in each subdomain 1 ≤ i ≤ N to be solved in order to build the
coarse space is inferred from the definition of the constant cR in eq. (18):

D̃ i R̃ i

( ∑
j ∈O (i )

R̃T
j

(
C̃ j + B̃ j

(
R j ART

j

)−1
B̃ T

j

)
R̃ j

)
R̃T

i D̃ i Pi k

=λi k

(
C̃ i + B̃ i

(
Ri ART

i

)−1
B̃ T

i

)
Pi k . (19)

This generalized eigenvalue problem contains inverses of some local matrices on both sides
and in order to solve it via e.g. Arpack, we have to factorize one of them. This difficulty can be
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overcome since the right matrix is the inverse of the Schur complement of the extended sparse
matrix (23). It is thus amenable to a factorization using only sparse matrix factorizations. Note
that matrix-vector products on the left hand side involve neighbor to neighbor communications
and thus synchronization points. Consequently, solving these generalized eigenvalue problem is
a little more involved to code than in the standard GenEO.

The coarse space is defined as follows. Let τS1 be a user-defined threshold; for each subdomain
1 ≤ i ≤ N , we introduce a subspace W̃ i ⊂Rrank (B̃ i ):

W̃ i := Span
{

Pi k
∣∣ λi k > τS1

}
. (20)

Then the coarse space W̃ 0 is defined (with some abuse of notation) as

W̃ 0 := ⊕
1≤ i ≤N

R̃T
i D̃ i W̃ i .

Let ZS1 be a rectangular matrix whose columns span the coarse space W̃ 0. Let P̃ 0 be the S1

orthogonal projection from Rm on W̃ 0 whose formula is

P̃ 0 = ZS1

(
Z T

S1
S1ZS1

)−1
Z T

S1
S1 . (21)

In order to avoid a too cumbersome analysis, we make the following assumption:

Assumption 6. We assume that for all subdomains 1 ≤ i ≤ N , C̃ i + B̃ i (Ri ART
i )−1 B̃ T

i is invertible.

Finally, the preconditioner for S1 reads

M−1
S1

:= ZS1

(
Z T

S1
S1ZS1

)−1
Z T

S1
+ (

I − P̃ 0
)

×
(

N∑
i=1

R̃T
i D̃ i

(
C̃ i + B̃ i

(
Ri ART

i

)−1
B̃ T

i

)†
D̃ i R̃ i

)(
I − P̃ T

0

)
. (22)

If Assumption 6 is not satisfied for some subdomain i , we should incorporate the kernel of
C̃ i + B̃ i (Ri ART

i )−1 B̃ T
i into the coarse space and make use of a pseudo inverse in the definition of

the preconditioner as it is done for the FETI method, see [35] or [6, §7.8.2] and references therein.
Recall that from [6, Chapter 7], we have for α := max(1, k0

τS1
):

1

α
M−1

S1
≤ S−1 ≤ M−1

S1
.

A careful implementation of (22) requires two coarse solves. Note that the application of M−1
S1

can be done using only sparse solvers sincesolving a linear system with a local Schur complement(
C̃ i + B̃ i

(
Ri ART

i

)−1
B̃ T

i

)
Pi = Gi ,

amounts to solving an augmented sparse system which has the form of a local saddle point
system:

−
(
Ri ART

i B̃ T
i

B̃ i −C̃ i

) (
Ui

Pi

)
=

(
0

Gi

)
. (23)

3.3. Final Preconditioner for the Schur complement

From the spectrally equivalent preconditioner MS1 to S1, we define NS a spectrally equivalent
preconditioner to MS and thus to S as well:

NS := S0 +MS1 . (24)

We now consider the application of the preconditioner NS , that is for some right-hand side
G ∈Rm , solving the following system for P:

NS P = G , (25)
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by a Krylov solver with M−1
S1

as a preconditioner.

4. Recap

4.1. Setup for the Schur complement preconditioner

We have a setup phase which is composed of:

(1) Build the two-level preconditioner M−1
A for A, see eq. (2),

(2) Build the two-level preconditioner M−1
S1

for S1, see eq. (22).

Once the setup is complete, applying preconditioner N−1
S can be performed following Algo-

rithm 1

Algorithm 1 N−1
S matvec product

INPUT: G ∈Rm OUTPUT: P = N−1
S G

1. Solve eq. (25) in P by a Krylov method with M−1
S as preconditioner.

4.2. DD solver for the saddle point system

Algorithm 2 DD saddle point solver

INPUT:

(
FU

FP

)
∈Rn+m OUTPUT:

(
U
P

)
the solution to (26).

1. Solve AGU = FU by a PCG with M−1
A as a preconditioner

2. Compute GP := FP −B GU

3. Solve (C +B A−1B T )P =−GP by a PCG with N−1
S as a preconditioner, see Algorithm 1

4. Compute GU := FU −B T P
5. Solve AU = GU by a PCG with M−1

A as a preconditioner

The solution to the saddle point problem:(
A B T

B −C

) (
U
P

)
=

(
FU

FP

)
) (26)

is obtained by Algorithm 2. Note that Step 3 requires the matrix-vector product with matrix
C +B A−1B T which is done by an iterative solve for matrix A−1.

5. Numerical experiments

In this section, we perform 3D experiments to illustrate the theory and the performance of the
method. We are interested in a heterogeneous elasticity problem with nearly incompressible
material, typically rubber-steel structures. First, we recall the definition of the coefficients and
the corresponding variational formulation.

The mechanical properties of a solid are characterized by its Young modulus E and Poisson
ratio ν, or alternatively by its Lamé coefficients λ and µ. They verify the following relations:

λ= Eν

(1+ν)(1−2ν)
and µ= E

2(1+ν)
. (27)
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For the discretization, we choose a continuous pressure space and take the lowest order
Taylor–Hood finite element C 0P2−C 0P1 whose stability is proved, see e.g., [36]. The domain
Ω is a beam and the variational problem consists in finding (uh , ph) ∈ Vh := P3

2 ∩ (H 1
0 (Ω))3 ×P1

with Dirichlet boundary conditions on the four lateral faces and Neumann boundary conditions
on the other two faces such that for all (v h , qh) ∈ Vh :

∫
Ω 2µε(uh) : ε(v h)d x −∫

Ω phdiv(v h)d x = ∫
Ω f v hd x

−∫
Ωdiv(uh)qhd x −∫

Ω
1
λph qh = 0.

(28)

Letting u denote the degrees of freedom of uh and p that of ph , the problem can be written in
matrix form as: (

A B T

B −C

) (
u
p

)
=

(
f
0

)
. (29)

The matrix C is a mass matrix arising from the discretization of a variational form. This enables
us to satisfy Assumption 2 with C̃ i the corresponding mass matrix but only defined on subdomain
Ω̃i which is the extension by a layer of direct neighbors of subdomainΩi .

In the following numerical experiments, we consider a heterogeneous beam composed of
10 alternating layers of rubber material (E1,ν1) = (1e +7,0.4999) and steel material (E2,ν2) =
(2e +9,0.35). Note that the decomposition into subdomains is generated automatically, indepen-
dently of the distribution of the coefficients, see Figure 1. As a result, the discontinuities are not
resolved by the domain decomposition.

5.1. Software, hardware, implementation details

In the following numerical experiments, the iteration counts assess the control of the condition
number via the adaptive coarse spaces. We also report timings along with iteration counts. We
also showcase the fact that the size of the GenEO coarse space adapts automatically to the diffi-
culty of the problem at hand, for example when going from a homogeneous to a heterogeneous
problem. We illustrate the efficiency of the method by performing weak and strong scalability
tests, using the automatic graph partitioner Metis [37] for the subdomain partitioning.

The problem is discretized and solved with the open-source parallel finite element software
FreeFEM [38]. FreeFEM is a domain specific language (DSL) where the problem to be solved is
defined in terms of its variational formulation. Then the local matrices (ANeu

i )1≤ i ≤N (see eq. (4))
and (C̃ i )1≤ i ≤N (see eq. (11)) are easily obtained by restricting the corresponding variational for-
mulations to adequate local subdomains. Note that these matrices are different from the restric-
tion of the global matrices A and C to the local degrees of freedom. The domain decomposition
algorithm presented in this paper is implemented on top of the ffddm framework, a set of parallel
FreeFEM scripts implementing Schwarz domain decomposition methods. ffddm already imple-
ments the GenEO method [31] for SPD problems, and its building blocks are designed to simplify
the implementation and prototyping of new domain decomposition methods such as the saddle
point solver presented in this paper. The ffddm documentation is available on the FreeFem.org
web page, see [39].

Numerical results are obtained on the french GENCI supercomputer Occigen, on the Haswell
partition composed of 50544 cores of Intel Xeon E5-2690V3 processors clocked at 2.6GHz. The
interconnect is an InfiniBand FDR 14 pruned fat tree. We use Intel compilers, the Intel Math
Kernel Library and Intel MPI.

As is usually done in domain decomposition methods, we assign one subdomain per MPI
process. Our implementation is pure MPI and no multithreading is done ; we assign one MPI
process per computing core. The mesh of the computational domain is partitioned using the
automatic graph partitioner Metis [37] (see Figure 1). Local subdomain matrices are factorized by

https://doc.freefem.org/documentation/ffddm/index.html
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the sparse direct solver MUMPS [40]. Local eigenvalue problems are solved with Arpack [41]; both
libraries are interfaced with FreeFEM. GenEO coarse space matrices R0 ART

0 in (2) and Z T
S1

S1ZS1

in (21) are assembled and factorized in a distributed manner on a few cores (24 in most of the
experiments) using the parallel solver MUMPS.

Figure 1. Heterogeneous beam composed of 10 alternating layers of rubber and steel.
Coefficient distribution (left) and mesh partitioning into 16 subdomains by the automatic
graph partitioner Metis (right).

For illustration purposes, we represent in Figure 2 (top) the eigenvalues of the local GenEO
eigenvalue problems for both coarse spaces, V0 for A and W̃ 0 for S1 (the former corresponding
to eq. (5) and the latter to eq. (19)), for the heterogeneous beam problem with 16 million degrees
of freedom, corresponding to the first row of Table 1. The figures show the inverse of the first 40
largest eigenvalues for 10 of the subdomains for the experiment corresponding to the first row of
Table 1, so that the eigenvectors corresponding to the smallest values on the graphs (below the
dashed line) will be selected to enter the coarse space. For comparison, we also solve the constant
coefficient problem corresponding to an homogeneous steel (and compressible) beam and show
the eigenvalues in Figure 2 (bottom).

We can see the effect of heterogeneities on the spread of eigenvalues for different subdomains
compared to the homogeneous case. In addition, we retrieve the 6 eigenvalues corresponding
to the rigid body modes for A in the homogeneous case, and we see that we need a larger set
of eigenvectors in order to build a robust coarse space in the heterogeneous case. Figure 2 also
shows that there is no need for a coarse space for S1 in the compressible homogeneous case. A
strong feature of the GenEO method is that relevant eigenvectors to enter the coarse space are
selected automatically, adapting to the problem at hand and its spatial heterogeneity. Moreover,
the robustness of the preconditioner does not rely on a specific partitioning, which allows the use
of automatic graph partitioners such as Metis [37] or Scotch [42].

5.2. Parameters of the method

The method has a few parameters in play:

• The number of layers of mesh elements in the overlap region between subdomains
is 2 for the velocity blocks (corresponding to Ri in (2)) and 4 for the pressure blocks
(corresponding to R̃ i in (10)). This corresponds to the minimum overlap that satisfies
relation (9) for a symmetric construction of the overlap between subdomains.
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Figure 2. Top: Heterogeneous steel and rubber beam. Bottom: Homogeneous steel only
beam. Inverse of the eigenvalues of the local GenEO eigenvalue problems for both coarse
spaces, V0 for A (left) and W̃ 0 for S1 (right), for 10 of the subdomains.

• For the heterogeneous beam problem, we set the threshold τA for selecting the local
eigenvectors entering the coarse space V0 to τA = 10 (corresponding to 1/λ = 0.1 on
Figure 2, left). The threshold τS1 for selecting the local eigenvectors entering the coarse
space W̃ 0 is set to τS1 = 3.33 (corresponding to 1/λ= 0.3 on Figure 2, right).

The selection of these thresholds is based on the fact that the iteration counts are very
stable in both weak and strong scaling experiments. It means that for a given physics the
parameters τA and τS1 can be tuned for a small test case and then used in large scale
experiments.

5.3. Weak scalability test for heterogeneous steel and rubber beam

Here we present weak scalability results for the heterogeneous beam composed of 10 alternating
layers of rubber (E1,ν1) = (1e +7,0.4999) and steel (E2,ν2) = (2e +9,0.35). The local problem size
is kept roughly constant as N grows, and the total number of dofs n goes from 16 million on 262
cores to 1 billion on 16800 cores.

We report in Table 1 the iteration counts and computing times for the DD saddle point solver
Algorithm 2. Note that in Algorithm 2 we replace PCG by right-preconditioned GMRES for step 3.
The stopping criterion is a tolerance smaller than 10−5. Moreover, we use flexible GMRES, as we
solve (25) inexactly using GMRES with a tolerance of 10−2 in order to apply N−1

S . In order, columns
correspond to: number of cores, number of dofs n, size of the coarse space for A dim(V0), size of
the coarse space for S1 dim(W̃ 0), setup time corresponding to the assembly and factorization of
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the various local and coarse operators, number of outer GMRES iterations, GMRES computing
time, total computing time (setup + GMRES) and average number of inner GMRES iterations for
each solution of (25). All timings are reported in seconds.

Table 1. Weak scaling experiment for 3D heterogeneous elasticity: beam with 10 alternat-
ing layers of steel and rubber. Reported iteration counts and timings for DD saddle point
algorithm 2.

#cores n di m(V0) di m(W̃ 0) setup(s) #It gmres(s) total(s) #It N−1
S

262 15987380 5383 3319 710.7 24 631.6 1342.3 11
525 27545495 9959 2669 526.6 21 519.5 1046.1 12

1050 64982431 17837 4587 675.2 22 665.9 1341.1 11
2100 126569042 32361 7995 689.2 25 733.8 1423.0 10
4200 218337384 59704 13912 593.0 27 705.4 1298.4 10
8400 515921881 141421 25949 735.8 32 1152.5 1888.3 10

16800 1006250208 260348 41341 819.2 29 1717.9 2537.1 12

Iteration counts

We first discuss iteration counts. We see that the outer iteration count remains stable, between
21 and 32. The inner iteration count is also stable and remains around 11. We also observed
(figures are not reported here) than the inner GMRES tolerance of 10−2 does not affect the outer
iteration count compared to an accurate solution with a stricter tolerance of 10−5, and allows a
significant reduction in inner iteration count. For example, 11 iterations on average instead of 28
on 1050 cores for the same outer iteration count of 22, leading to a decrease from 1178.2 to 665.9
seconds in GMRES timing.

Timings

In terms of setup timings, the computing time remains relatively stable, with roughly 15%
increase for a factor of 64 in problem size. Around 60% of the setup time is spent in the solution
of the eigenvalue problems (19) for S1.

The solution time stays relatively stable up to 4200 cores, where it starts to degrade. This can
be related to the increased cost of the coarse space solves with matrices R0 ART

0 and Z T
S1

S1ZS1 as
their size increases: total time spent in coarse space solves is 14.7, 62.1 and 679.3 seconds on 262,
4200 and 16800 cores respectively. A possible improvement would be to use a multi-level method
to solve the coarse problems iteratively.

5.4. Strong scalability test for heterogeneous steel and rubber beam

Strong scalability results for the same test case as above consisting of an heterogeneous beam
composed of 10 alternating layers of rubber and steel are presented in Table 2. The problem size
is 27.5 million and the strong scaling test ranges from 525 to 4200 cores. Iteration counts and
computing times for the DD saddle point solver Algorithm 2 are reported.

Iteration counts

Outer iteration count remains stable, with a slight increase from 21 to 23. Inner iteration
counts remains also stable, even slightly decreasing from 12 to 9.
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Table 2. Strong scaling experiment for 3D heterogeneous elasticity: beam with 10 alternat-
ing layers of steel and rubber. Reported iteration counts and timings for DD saddle point
Algorithm 2.

#cores n di m(V0) di m(W̃ 0) setup(s) #It gmres(s) total(s) #It N−1
S

525 27545495 9959 2669 526.6 21 519.5 1046.1 12
1050 27545495 15078 4082 265.7 21 224.7 490.4 11
2100 27545495 23172 6453 168.8 23 131.1 299.9 10
4200 27545495 37768 11152 103.8 23 91.3 195.1 9

Timings

We see that the setup timing decreases accordingly as the subdomains shrink in size, from
526.6 seconds on 525 cores to 103.8 seconds on 4200 cores; the speedup efficiency with respect
to 525 cores ranges from 99% on 1050 cores to 63% on 4200 cores.

We see a similar trend for the solution time, ranging from 519.5 seconds on 525 cores to 91.3
seconds on 4200 cores ; the speedup efficiency with respect to 525 cores ranges from 116% on
1050 cores to 71% on 4200 cores. This decrease in efficiency can be explained by the increased
relative cost of coarse space solves as subdomains get smaller: from 3% on 525 cores to 30% on
4200 cores. The added overlap also plays a greater role in the loss of efficiency as subdomains get
smaller.

5.5. Comparison with other algorithms

5.5.1. Comparison with a direct solver

Table 3. Comparison with the parallel sparse direct solver MUMPS for 3D heterogeneous
elasticity: beam with 10 alternating layers of steel and rubber. Reported timings for four
discretization levels while also varying the number of cores (OOM means the computation
ran out of available memory).

MUMPS DD saddle point solver
n #cores setup(s) solve(s) total(s) setup(s) #It gmres(s) total(s)

139809 16 7.1 0.1 7.2 27.1 18 19.7 46.8
1058312 32 85.7 0.8 86.5 166.2 20 137.2 303.4
1058312 65 71.0 0.6 71.6 91.0 21 77.1 168.1
1058312 131 63.2 0.5 63.7 59.7 24 49.7 109.4
3505582 55 477.8 3.7 481.5 404.1 24 430.1 834.2
3505582 110 392.3 2.3 394.6 242.5 23 212.8 455.3
3505582 221 387.0 2.1 389.1 134.8 23 109.4 244.2
3505582 442 453.9 2.2 456.1 88.2 24 68.6 156.8
8235197 262 OOM / / 278.5 25 264.3 542.8
8235197 525 1622.1 6.1 1628.2 172.1 24 136.0 308.1
8235197 1050 1994.3 7.4 2001.7 136.5 25 99.7 236.2

In Table 3, we compare the performance of the solver to the parallel sparse direct solver
MUMPS for the heterogeneous steel and rubber beam test case with four discretization levels,
while also varying the number of cores. As we can see, MUMPS is comparatively more efficient
for smaller problems, with for example a total time of 86.5 seconds compared to 303.4 seconds for
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our saddle point solver for 1 million unknowns on 32 cores. However, as expected, we see a large
increase in memory and computational cost as the size of the system gets larger: for 8.2 million
unknowns, MUMPS runs out of memory on 262 cores and solves the problem in 1628.2 seconds
on 525 cores, compared to 308.1 seconds for the DD solver. Moreover, we can see from Table 3
that the DD saddle point solver offers much better strong scalability.

5.5.2. Comparison with other Schwarz methods

In Figure 3, we plot the convergence history of GMRES for both compressible homogeneous
and heterogeneous steel-rubber cases with 27.5 million unknowns on 525 cores (left), with a
comparison to the standard one-level Additive Schwarz Method (ASM) from PETSc [43] on
the global problem (right), illustrating the difficulty of the test case at hand. Our saddle point
solver needs 15 and 21 iterations to converge for the homogeneous and heterogeneous cases
respectively, compared to 856 and 2880 for the one-level method, with significant undesired
plateaux.

Note also that for the same physical test case, iteration counts are better than in [12] but
timings are not as good. As mentioned in the introduction, our method has the advantage
of having a provable convergence estimate and of not depending on the design of specific
absorption conditions for the elasticity system.
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Figure 3. GMRES convergence history of the saddle point solver (left) compared to the one-
level Additive Schwarz Method (right) for the homogeneous steel beam and heterogeneous
rubber/steel beam problems discretized with 27.5 million unknowns (corresponding to the
first row of Table 2), on 525 cores.

5.5.3. Comparison with algebraic multigrid method

We also performed comparisons with the Geometric Algebraic Multigrid (GAMG) precondi-
tioner from PETSc. We were not able to find a suitable tuning of parameters for GAMG for the
saddle point formulation. However, we performed comparisons between GAMG and standard
GenEO for the velocity formulation on the homogeneous beam, varying the Poisson ratio ν from
0.48 to 0.499. The near kernel of the problem which corresponds to rigid body modes is provided
to the multigrid method. The GenEO threshold τ is set to 3.33, and we select at most 80 eigenvec-
tors in each subdomain. Even though GAMG is faster for ν≤ 0.49, we can see that GenEO is more
robust as ν increases. In particular, GAMG fails to converge in 2000 iterations for ν≥ 0.495.
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Table 4. GAMG versus standard GenEO for the velocity formulation on the homogeneous
beam discretized with 7.9 million unknowns, using 131 and 525 cores. Reported iteration
counts and timings for different values of the Poisson ratio ν ranging from 0.48 to 0.499.

131 cores GAMG GenEO
ν #It total(s) dim (V0) setup(s) #It gmres(s) total(s)

0.48 60 67.1 10480 200.7 24 11.2 212.0
0.485 109 89.0 10480 199.5 27 12.7 212.2
0.49 210 137.0 10480 202.0 32 15.0 217.0
0.495 >2000 / 10480 199.9 43 20.2 220.1
0.499 >2000 / 10480 199.2 99 48.6 247.7

525 cores GAMG GenEO
ν #It total(s) dim (V0) setup(s) #It gmres(s) total(s)

0.48 56 25.5 41766 60.4 18 5.0 65.4
0.485 60 26.1 41984 60.9 20 5.3 66.2
0.49 116 33.3 42000 60.4 23 5.9 66.3
0.495 >2000 / 42000 60.4 32 7.6 68.1
0.499 >2000 / 42000 60.6 95 20.3 81.0

6. Conclusion and outlook

Under the assumption that the diagonal block matrices of a saddle point problem are spec-
trally equivalent to a sum of positive semi definite matrices, we have introduced an adaptive do-
main decomposition (DD) method. The key ingredients of the algorithm are a two level Schwarz
method for the primal unknowns block and a two-level Neumann–Neuman for the Schur com-
plement problem on the dual unknowns.

Two coarse spaces are built by solving generalized eigenvalue problems, one for the primal
unknowns and the second one for the dual unknowns. The robustness of the method was as-
sessed on a notoriously difficult three dimensional elasticity problem for a steel-rubber structure
discretized with continuous pressure.

Several issues deserve further investigations. First a multilevel method with more than two lev-
els would enable even larger and possibly faster simulations. Also, the tests were performed with
FreeFEM scripts using the standalone ffddm [39] framework written in the FreeFEM language.
The integration of the method in the C++/MPI library hpddm [44], which already implements the
GenEO methods [12, 31], could lead to faster codes and a more general diffusion of the saddle
point preconditioner since hpddm is callable [45] from the PETSc library [46]. In a different set-
ting, the design of adaptive coarse space is strongly connected to multiscale finite element (MFE)
methods (see e.g., [47–49] and references therein) and this work could be used in designing MFE
methods for saddle point problems.

Code reproducibility

Our numerical results can be reproduced running the script https://github.com/FreeFem/
FreeFem-sources/blob/master/examples/ffddm/elasticity_saddlepoint.edp available in the
FreeFem distribution starting from version 4.10.

Conflicts of interest

The authors have no conflict of interest to declare.

https://github.com/FreeFem/FreeFem-sources/blob/master/examples/ffddm/elasticity_saddlepoint.edp
https://github.com/FreeFem/FreeFem-sources/blob/master/examples/ffddm/elasticity_saddlepoint.edp


Frédéric Nataf and Pierre-Henri Tournier 17

Acknowledgment

This work was granted access to the HPC resources of OCCIGEN@CINES under the allocation
2021-067730 granted by GENCI.

References

[1] J. Galvis, Y. Efendiev, “Domain decomposition preconditioners for multiscale flows in high contrast media: reduced
dimension coarse spaces”, Multiscale Model. Simul. 8 (2010), no. 5, p. 1621-1644.

[2] F. Nataf, H. Xiang, V. Dolean, N. Spillane, “A coarse space construction based on local Dirichlet to Neumann maps”,
SIAM J. Sci. Comput. 33 (2011), no. 4, p. 1623-1642.

[3] Y. Efendiev, J. Galvis, R. Lazarov, J. Willems, “Robust domain decomposition preconditioners for abstract symmetric
positive definite bilinear forms”, ESAIM, Math. Model. Numer. Anal. 46 (2012), no. 5, p. 1175-1199.

[4] P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud’homme, N. Spillane, “High performance domain decomposition
methods on massively parallel architectures with freefem++”, J. Numer. Math. 20 (2012), no. 3-4, p. 287-302.

[5] N. Spillane, D. J. Rixen, “Automatic spectral coarse spaces for robust finite element tearing and interconnecting and
balanced domain decomposition algorithms”, Int. J. Numer. Methods Eng. (2013), no. 11, p. 953-990.

[6] V. Dolean, P. Jolivet, F. Nataf, An Introduction to Domain Decomposition Methods: algorithms, theory and parallel
implementation, Other Titles in Applied Mathematics, vol. 144, Society for Industrial and Applied Mathematics, 2015.

[7] N. Spillane, “Robust domain decomposition methods for symmetric positive definite problems”, PhD Thesis, Uni-
versité Pierre et Marie Curie - Paris VI, Paris, France, 2014.

[8] J. E. Pasciak, J. Zhao, “Overlapping Schwarz methods in H(curl) on polyhedral domains”, J. Numer. Math. 10 (2002),
no. 3, p. 221-234.

[9] A. Klawonn, “An optimal preconditioner for a class of saddle point problems with a penalty term”, SIAM J. Sci.
Comput. 19 (1998), no. 2, p. 540-552.

[10] L. F. Pavarino, O. B. Widlund, “Balancing Neumann-Neumann methods for incompressible Stokes equations”,
Commun. Pure Appl. Math. 55 (2002), no. 3, p. 302-335.

[11] A. Toselli, O. B. Widlund, Domain Decomposition Methods - Algorithms and Theory, Springer Series in Computational
Mathematics, vol. 34, Springer, 2005.

[12] R. Haferssas, P. Jolivet, F. Nataf, “An Additive Schwarz Method Type Theory for Lions’s Algorithm and a Symmetrized
Optimized Restricted Additive Schwarz Method”, SIAM J. Sci. Comput. 39 (2017), no. 4, p. A1345-A1365.

[13] O. B. Widlund, S. Zampini, S. Scacchi, L. F. Pavarino, “Block FETI–DP/BDDC preconditioners for mixed isogeometric
discretizations of three-dimensional almost incompressible elasticity”, Math. Comput. 90 (2021), no. 330, p. 1773-
1797.

[14] X. Tu, J. Li, “A FETI-DP type domain decomposition algorithm for three-dimensional incompressible Stokes equa-
tions”, SIAM J. Numer. Anal. 53 (2015), no. 2, p. 720-742.

[15] M. F. Murphy, G. H. Golub, A. J. Wathen, “A note on preconditioning for indefinite linear systems”, SIAM J. Sci.
Comput. 21 (2000), no. 6, p. 1969-1972.

[16] M. Benzi, G. H. Golub, J. Liesen, “Numerical solution of saddle point problems”, Acta Numer. 14 (2005), p. 1-137.
[17] E. de Sturler, J. Liesen, “Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems.

I. Theory”, SIAM J. Sci. Comput. 26 (2005), no. 5, p. 1598-1619.
[18] T. Rees, M. Wathen, “An element-based preconditioner for mixed finite element problems”, SIAM J. Sci. Comput. 43

(2020), no. 5, p. S884-S907.
[19] J. Cahouet, J.-P. Chabard, “Some fast 3d finite element solvers for the generalized stokes problem”, Int. J. Numer.

Methods Fluids 8 (1988), no. 8, p. 869-895.
[20] R. Hiptmair, “Multigrid Method for H(div) in Three Dimensions”, Electron. Trans. Numer. Anal. 6 (1997), p. 133-152.
[21] R. Hiptmair, “Multigrid method for Maxwell’s equations”, SIAM J. Numer. Anal. 36 (1998), no. 1, p. 204-225.
[22] D. N. Arnold, R. S. Falk, R. Winther, “Multigrid in H(div) and H(curl)”, Numer. Math. 85 (2000), no. 2, p. 197-217.
[23] S. Reitzinger, J. Schöberl, “An algebraic multigrid method for finite element discretizations with edge elements”,

Numer. Linear Algebra Appl. 9 (2002), no. 3, p. 223-238.
[24] P. E. Farrell, L. Mitchell, F. Wechsung, “An Augmented Lagrangian Preconditioner for the 3D Stationary Incompress-

ible Navier–Stokes Equations at High Reynolds Number”, SIAM J. Sci. Comput. 41 (2019), no. 5, p. A3073-A3096.
[25] D. Drzisga, L. John, U. Rüde, B. Wohlmuth, W. Zulehner, “On the analysis of block smoothers for saddle point

problems”, SIAM J. Matrix Anal. Appl. 39 (2018), no. 2, p. 932-960.
[26] R. Glowinski, P. Le Tallec, “Numerical Solution of Problems in Incompressible Finite Elasticity by Augmented

Lagrangian Methods. I. Two-dimensional and Axisymmetric Problems”, SIAM J. Appl. Math. 42 (1982), p. 400-429.
[27] R. Glowinski, P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM

Studies in Applied Mathematics, vol. 9, Society for Industrial and Applied Mathematics, 1989.



18 Frédéric Nataf and Pierre-Henri Tournier

[28] M. Fortin, R. Glowinski, Augmented Lagrangian methods: applications to the numerical solution of boundary-value
problems, Studies in Mathematics and its Applications, vol. 15, Elsevier, 2000.

[29] R. Glowinski, P. Le Tallec, “Numerical Solution of Problems in Incompressible Finite Elasticity by Augmented
Lagrangian Methods II. Three-Dimensional Problems”, SIAM J. Appl. Math. 44 (1984), p. 710-733.

[30] M. Benzi, A. J. Wathen, “Some preconditioning techniques for saddle point problems”, in Model order reduction:
theory, research aspects and applications, Mathematics in Industry, vol. 13, Springer, 2008, p. 195-211.

[31] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, “Abstract robust coarse spaces for systems of
PDEs via generalized eigenproblems in the overlaps”, Numer. Math. 126 (2014), no. 4, p. 741-770.

[32] S. V. Nepomnyaschikh, “Mesh theorems of traces, normalizations of function traces and their inversions”, Sov. J.
Numer. Anal. Math. Model. 6 (1991), p. 223-242.

[33] M. Griebel, P. Oswald, “On the abstract theory of additive and multiplicative Schwarz algorithms”, Numer. Math. 70
(1995), no. 2, p. 163-180.

[34] J. F. Bourgat, R. Glowinski, P. Le Tallec, M. Vidrascu, “Variational formulation and algorithm for trace operator
in domain decomposition calculations”, in Domain Decomposition Methods (T. Chan, R. Glowinski, J. Périaux,
O. Widlund, eds.), Society for Industrial and Applied Mathematics, 1989, p. 3-16.

[35] C. Farhat, F.-X. Roux, “A method of Finite Element Tearing and Interconnecting and its parallel solution algorithm”,
Int. J. Numer. Meth. Eng. 32 (1991), no. 6, p. 1205-1227.

[36] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15,
Springer, 1991.

[37] G. Karypis, V. Kumar, “METIS: A software package for partitioning unstructured graphs, partitioning meshes, and
computing fill-reducing orderings of sparse matrices”, Tech. report, Department of Computer Science, University of
Minnesota, 1998, http://glaros.dtc.umn.edu/gkhome/views/metis.

[38] F. Hecht, “New development in Freefem++”, J. Numer. Math. 20 (2012), no. 3-4, p. 251-265.
[39] P.-H. Tournier, F. Nataf, “FFDDM: Freefem domain decomposition method”, 2019, https://doc.freefem.org/

documentation/ffddm/index.html.
[40] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. Koster, “A fully asynchronous multifrontal solver using distributed dynamic

scheduling”, SIAM J. Matrix Anal. Appl. 23 (2001), no. 1, p. 15-41.
[41] R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK users’ guide: solution of large-scale eigenvalue problems with

implicitly restarted Arnoldi methods, Software - Environments - Tools, vol. 6, Society for Industrial and Applied
Mathematics, 1998.

[42] C. Chevalier, F. Pellegrini, “PT-SCOTCH: a tool for efficient parallel graph ordering”, Parallel Comput. 34 (2008), no. 6-
8, p. 318-331.

[43] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, “Efficient management of parallelism in object oriented numerical
software libraries”, in Modern Software Tools in Scientific Computing, Birkhäuser, 1997, p. 163-202.

[44] P. Jolivet, F. Nataf, “HPDDM: High-Performance Unified framework for Domain Decomposition methods, MPI-C++
library”, 2014, https://github.com/hpddm/hpddm.

[45] P. Jolivet, J. E. Roman, S. Zampini, “KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods
and robust multilevel overlapping Schwarz preconditioners”, Comput. Math. Appl. 84 (2021), p. 277-295.

[46] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, K. Rupp, B. F. Smith, H. Zhang, “PETSc users manual”, Tech. Report ANL-95/11, Argonne
National Laboratory, 2014.

[47] Y. Efendiev, J. Galvis, T. Y. Hou, “Generalized multiscale finite element methods (GMsFEM)”, J. Comput. Phys. 251
(2013), p. 116-135.

[48] P. Jenny, S. H. Lee, H. A. Tchelepi, “Adaptive multiscale finite-volume method for multiphase flow and transport in
porous media”, Multiscale Model. Simul. 3 (2005), no. 1, p. 50-64.

[49] C. Ma, R. Scheichl, T. Dodwell, “Novel design and analysis of generalized FE methods based on locally optimal
spectral approximations”, https://arxiv.org/abs/2103.09545, 2021.

http://glaros.dtc.umn.edu/gkhome/views/metis
https://doc.freefem.org/documentation/ffddm/index.html
https://doc.freefem.org/documentation/ffddm/index.html
https://github.com/hpddm/hpddm
https://arxiv.org/abs/2103.09545

	1. Introduction
	2. Preconditioning of the primal problem
	3. Schur complement preconditioning
	3.1. First spectrally equivalent preconditioner
	3.2. Preconditioning of S1
	3.2.1. One-level DD for S1
	3.2.2. Two-level DD for S1

	3.3. Final Preconditioner for the Schur complement

	4. Recap
	4.1. Setup for the Schur complement preconditioner
	4.2. DD solver for the saddle point system

	5. Numerical experiments
	5.1. Software, hardware, implementation details
	5.2. Parameters of the method
	5.3. Weak scalability test for heterogeneous steel and rubber beam
	Iteration counts
	Timings

	5.4. Strong scalability test for heterogeneous steel and rubber beam
	Iteration counts
	Timings

	5.5. Comparison with other algorithms
	5.5.1. Comparison with a direct solver
	5.5.2. Comparison with other Schwarz methods
	5.5.3. Comparison with algebraic multigrid method


	6. Conclusion and outlook
	Code reproducibility
	Conflicts of interest
	Acknowledgment
	References

