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1. Introduction

In this article, we consider highly oscillatory partial differential equations (PDEs) of the form
L εuε = f , posed in a bounded domain Ω ⊂ Rd , where L ε is a second-order linear differential
operator with (possibly rough) coefficients that oscillate on a microscopic length scale of size
ε much smaller than the diameter of Ω. (See Sections 2 and 4 for a complete description of
the problems that we study.) We seek a numerical approximation of uε by applying a Galerkin
approach.

It is well-known that standard (say P1) finite element methods (FEMs) yield a poor approxi-
mation as a consequence of the highly oscillatory nature of the problem, unless a prohibitively
expensive fine mesh is employed. An explicit example of this phenomenon is given, e.g., in [1, Ex-
ample 1.1]. Dedicated multiscale approaches have thus been introduced, which provide a reason-
ably accurate approximation of uε at a limited computational cost. Among the many multiscale
approaches that have been proposed in the literature, we mention the Heterogeneous Multiscale
Method (abbreviated HMM) [2], the Localized Orthogonal Decomposition (LOD) [3] method, and
the Multiscale Finite Element Method (MsFEM) [4], on which we focus here. We refer the reader
to [1, 5–7] for more comprehensive expositions of these multiscale methods.

The MsFEM is a finite element type approach that relies on the adaptation of the finite element
space to the highly oscillatory differential operator, an idea that was first introduced in [8]. The
MsFEM was introduced in [4]. It consists of two steps:

(1) An “offline” stage, where highly oscillatory, problem-dependent basis functions are com-
puted numerically as solutions to local problems (that mimic the reference problem on
a subdomain). The local problems serve as a preprocessing step of the microstructure.

(2) An “online” stage, where a Galerkin approximation of the reference problem, performed
in the finite-dimensional space generated by the basis functions that are computed
in the offline stage, is solved. This constitutes the global coupling between the local
computations performed in the offline stage.

The MsFEM approach is particularly interesting for multi-query contexts, where the PDE of
interest is to be solved repeatedly for multiple right-hand sides f (think e.g. of optimization
problems or time-dependent problems where the time discretization results in a PDE in space to
advance from one time step to the next). In this case, the basis functions, which depend on L ε,
remain unchanged, so the offline stage is performed only once. The online stage solves a problem
on a space of much lower dimension than a high fidelity space that fully resolves the microscale,
resulting in a significant computational gain.

The specific choice of problem-dependent basis functions has led to various MsFEM variants
in the literature (see, for instance, [4, 6, 9, 10]). Although their implementation is rightfully con-
sidered relatively easy [6, 11], these methods dictate an intrusive workflow, i.e., substantial mod-
ifications have to be made to the code of some existing finite element software to implement
the MsFEM. For instance, all automatic computations involving integrals of standard (e.g. poly-
nomial) basis functions have to be replaced by the corresponding computations for specialized
basis functions for each specific problem. We explore this further in Section 2.3.

The intrusive character of the MsFEM hinders the use of the method in many industrial
contexts, because the time and tools required to adapt a legacy code that is currently in use
may not be available. In this work, we propose a “non-intrusive” MsFEM strategy that uses an
existing legacy code for single-scale problems (based on standard finite elements), without any
modifications, to obtain an accurate resolution of oscillatory PDEs.

The intrusiveness of the MsFEM is due to the following fact: the microstructure is prepro-
cessed through the computation of specialized basis functions, thereby coupling the microstruc-



Rutger A. Biezemans, Claude Le Bris, Frédéric Legoll and Alexei Lozinski 3

ture explicitly to the global numerical model. We circumvent this coupling with a novel formula-
tion of the MsFEM basis functions. The resulting MsFEM strategy can be summarized as follows:

(1) In the offline stage, so-called numerical correctors are computed as the solution to
problems mimicking the reference problem on a subdomain. The numerical correctors
are then used to average the microstructure in the form of effective, piecewise constant
coefficients, leading to an effective PDE.

(2) In the online stage, the effective PDE is solved by a standard FEM with the legacy code.
(3) A post-processing stage is introduced to restore microscopic features in the macroscopic

FEM result (obtained in the online stage) with the help of the numerical correctors
computed in the offline stage.

Our non-intrusive MsFEM approach was introduced on a prototypical example in [12]. In this
article, we extend the findings of [12] to a large class of MsFEM variants that can be “related” to
a P1 FEM, in a sense that will be made precise in Remark 7. This requires the formulation of a
general MsFEM framework, covering a generic definition of the MsFEM for the approximation of
an abstract variational formulation of second-order linear PDEs. To the best of our knowledge, the
question of how to make MsFEM approaches less intrusive has not been studied in the literature,
except for the preliminary study in [12], and this work is a first step in that direction. We comment
on the intrusiveness of other multiscale methods in Section 5.4.

An overview of the contents of this article is as follows. In Section 2, we recall the basic
principles of the FEM and the MsFEM and we explain the intrusive character of the MsFEM.
We also review the non-intrusive MsFEM approach that was proposed in [12] for the simplest
MsFEM variant on the example of a diffusion problem. We also highlight a link between the
non-intrusive MsFEM approach and classical homogenization here. Then we summarize in
Section 3 which properties of the MsFEM are essential for the non-intrusive workflow, and
motivate the development of a general framework covering a wide variety of MsFEMs that
we present in Section 4. We extend the non-intrusive MsFEM approach of [12] to our general
MsFEM framework in Section 5. The non-intrusive MsFEM approach of [12] was found to be
equivalent to a Petrov–Galerkin MsFEM (with P1 test functions). This is no longer true for all
MsFEMs covered by our general framework, and we obtain two non-intrusive MsFEMs: the
Petrov–Galerkin MsFEM, which is completely equivalent to its non-intrusive implementation,
and an approximate version of the Galerkin MsFEM that can be implemented in a non-intrusive
way. The three essential formulas for the formulation of the non-intrusive MsFEM are highlighted
in special boxes, both for the diffusion problem in Section 2 and for the general framework in
Sections 4 and 5. We then study the general MsFEM framework applied to diffusion problems
in Section 6, where we obtain a number of convergence results for the difference between
the intrusive and non-intrusive MsFEM approaches. We conclude the article in Section 7 by
a numerical comparison of the intrusive and non-intrusive MsFEM approaches for diffusion
problems, in order to assess the efficiency of our approaches for cases that are not covered by the
convergence results of Section 6. Our results show that the Petrov–Galerkin MsFEM as well as the
non-intrusive approximation of the Galerkin MsFEM are close to the original Galerkin MsFEM.
Any possible additional error introduced by making the MsFEM non-intrusive is thus negligible.

Notation

In this article, we shall adopt standard notation for Sobolev spaces. In particular, the dual
space of H 1

0 (Ω) is denoted H−1(Ω). Further, for a given simplicial mesh TH of Ω, we use the
notation H 1(TH ) to denote the broken Sobolev space

H 1(TH ) = {
u ∈ L2(Ω)

∣∣u|K ∈ H 1(K ) for all mesh elements K ∈TH
}

.
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The standard norm for the space H 1(Ω) is

∥u∥H 1(Ω) =
√
∥u∥2

L2(Ω)
+∥∇u∥2

L2(Ω)

and the corresponding broken norm is

∥u∥H 1(TH ) =
√ ∑

K ∈TH

∥u∥2
H 1(K )

.

The space of functions whose restriction to each element of TH is a polynomial of degree k is
denoted Pk (TH ).

2. The (intrusive) multiscale finite element method for diffusion problems

2.1. Discrete variational formulation

Let d ≥ 1 denote the space dimension of interest and let Ω ⊂ Rd be a bounded polytope (e.g. a
polygon in dimension d = 2, a polyhedron in dimension d = 3). Convexity of Ω can be assumed
for elliptic regularity results to hold, for which we refer to [13]. This technical assumption is not
necessary for the algorithmic aspects of the MsFEM that are the main focus of this article.

By way of example, we consider first the diffusion equation with homogeneous Dirichlet
boundary conditions. In a second step, from Section 4 onwards, we will also consider more
general problems, and we will mention other types of boundary conditions in Section 5.3. More
precisely, we focus here on the boundary value problem{

−div(Aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
(1)

where the diffusion tensor Aε ∈ L∞(Ω, Rd×d ) satisfies the uniform bounds

∀ ξ ∈Rd , m|ξ|2 ≤ ξ · Aε(x)ξ a.e. in Ω,

and ∀ ξ,η ∈Rd ,
∣∣η · Aε(x)ξ

∣∣≤ M |ξ| |η| a.e. in Ω,
(2)

for some M ≥ m > 0 independent of ε. The right-hand side f does not vary on the microscopic
scale ε. We denote the diffusion tensor with a superscript ε to keep in mind that Aε might be
highly oscillatory on a typical length scale of size εmuch smaller than the diameter ofΩ (assumed
to be of order 1). No further structural assumptions on Aε are made. In particular, Aε need not
be the rescaling of a fixed periodic matrix of the form Aε(x) = A(x/ε). We will specialize to this
periodic setting in Section 6.3 only to obtain convergence results, but this assumption is of no
relevance for the practical implementation of the MsFEM. Let us also mention that none of the
considerations in this article require symmetry of the diffusion tensor. Our development of non-
intrusive MsFEMs also generalizes to linear systems of PDEs. The analysis we provide is also
expected to extend to e.g. the system of linear elasticity up to some technicalities that we do not
consider here.

For simplicity of exposition, we assume that f ∈ L2(Ω) (rather than f ∈ H−1(Ω), for which the
problem (1) is in fact well-posed). We do so to avoid unnecessary technicalities. Our proposed
non-intrusive MsFEM carries over to the more general case. For some convergence results, the
condition f ∈ L2(Ω) cannot be relaxed. In this case, this is also explicitly stated.

Problem (1) admits a unique solution in the space H 1
0 (Ω). This solution is also characterized

by the variational formulation{
Find uε ∈ H 1

0 (Ω) such that

aε,diff (uε, v) = F (v) for all v ∈ H 1
0 (Ω),

(3)



Rutger A. Biezemans, Claude Le Bris, Frédéric Legoll and Alexei Lozinski 5

where the bilinear form aε,diff and the linear form F are defined, for any u, v ∈ H 1
0 (Ω), by

aε,diff (u, v) =
∫
Ω
∇v · Aε∇u, F (v) =

∫
Ω

f v. (4)

The coercivity hypothesis in (2) ensures that the bilinear form aε,diff is coercive on the
space H 1

0 (Ω). Then the Lax–Milgram Theorem [14, Theorem 5.8] shows that (3) is indeed well-
posed.

The numerical approximation of (3) with a finite element method starts by the introduction of
a mesh TH for Ω. The subscript H denotes the typical size of the mesh elements. We assume TH

to be a simplicial, conformal mesh. For some convergence results, we shall assume quasi-
uniformity. These assumptions are standard in finite element analysis. We refer, e.g., to [15–17]
for a general exposition and various examples. Again, these regularity properties of the mesh do
not have any impact on the implementation of the MsFEM on a given mesh. The regularity plays
a role only to obtain convergence results.

A finite element method for (1) is obtained by restricting the equivalent formulation (3) to
a finite-dimensional subspace of H 1

0 (Ω), typically consisting of functions that are piecewise
polynomial on the mesh TH . We suppose that we are in the regime where H is larger than or
comparable to the microscale ε. In this case, it is well known that a Galerkin approximation of (3)
on, say, the standard (conforming) Lagrange P1 space on TH provides only a poor, not to say an
incorrect approximation of uε. See [1, Example 1.1], for instance, for an explicit example where
theP1 approximation on a coarse mesh fails. At the same time, the use of a finite element method
on a fine mesh of size H ≪ ε might be unfeasible from a computational point of view because of
its prohibitive computational cost. To remedy this issue, we shall next introduce the multiscale
finite element method (MsFEM) [4, 6].

2.2. A simple multiscale finite element method

The MsFEM is a Galerkin approximation of (3) for which the approximation space is adapted
in order to achieve satisfactory accuracy even on a coarse mesh. The correct choice of approx-
imation space yields a numerical approximation that is much closer to uε than a standard
P1-approximation when ε is smaller than H , and especially when ε becomes asymptotically
small. To begin with, we introduce here the simplest variant of the MsFEM, which originally ap-
peared in [4], before moving on to other MsFEM variants in Section 4.

Let x1, . . . , xN0 be an enumeration of the interior vertices of the mesh TH , i.e., the vertices that
do not lie on ∂Ω. We denote by φP1

i the unique piecewise P1 function such that φP1
i (x j ) = δi , j for

all 1 ≤ j ≤ N0. (These are the basis functions for the standard P1 Lagrange finite element.) We
define the multiscale basis functions φεi (for 1 ≤ i ≤ N0) by

∀ K ∈TH ,

{
−div

(
Aε∇φεi

) = 0 in K ,

φεi =φP1
i on ∂K .

(5)

All these problems, on each mesh element K , are again well-posed by coercivity of Aε and the
Lax–Milgram Theorem. The functions φεi so defined belong to the global space H 1

0 (Ω) because
the local boundary conditions on ∂K imply continuity across all mesh elements K . It is also
immediately seen that φεi is supported by exactly the same mesh elements as φP1

i .

Remark 1. On each mesh element K , problem (5) defines at most d +1 non-trivial basis func-
tions. Let i1, . . . , id+1 be the indices of the vertices of K . It is easily inferred from (5) that

φεid+1

∣∣∣∣∣K = 1−
d∑

j=1
φεi j

∣∣∣∣∣
K

.

Thus, one only has to compute d basis functions by the resolution of the PDE (5) on K .
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The multiscale approximation space is defined as V ε
H ,0 = span{φεi | 1 ≤ i ≤ N0}. This is a finite-

dimensional space of the same dimension as the one used for a P1 Lagrange finite element
approximation on the mesh TH . The MsFEM consists in computing the approximation uε

H ∈V ε
H ,0

defined by the problem

∀ vεH ∈V ε
H ,0, aε,diff(

uε
H , vεH

)= F
(
vεH

)
. (6)

Since V ε
H ,0 is a subspace of H 1

0 (Ω), the bilinear form aε,diff is coercive on V ε
H ,0 and the discrete

problem (6) is again well-posed by virtue of the Lax–Milgram Theorem.
The computation of the multiscale basis functions φεi is called the offline stage of the MsFEM

and only has to be carried out once if (1) has to be solved multiple times for different right-
hand sides. Also note that all problems (5) are independent of each other, and can thus be
solved in parallel. Once all basis functions are known, one can compute the stiffness matrix of
the MsFEM (see Section 2.3 for more details), which is also part of the offline stage. In practice,
the φεi are approximated numerically on a fine mesh of K ∈ TH of mesh size h ≤ ε that resolves
the oscillations of Aε. We omit these details here because they have no importance for the non-
intrusive strategy that we shall propose later in this article.

The resolution of the global problem (6), each time the right-hand side F changes, is called
the online stage. The computational cost for this problem is the same as for a standard P1

approximation on the same mesh. A further discussion of the practical implementation of the
MsFEM is provided in Section 2.3. This discussion partially reproduces some elements of [12].
We include it here to clarify and motivate the developments in the sequel.

2.3. Intrusive workflow

The practical resolution of the global problem (6) consists in the construction and resolution of
the following linear system:

AεU ε =Fε, (7)

with the stiffness matrixAε and the right-hand side Fε of the linear system given by

∀ 1 ≤ i , j ≤ N0, Aε
j ,i = aε,diff

(
φεi , φεj

)
, Fεj = F

(
φεj

)
, (8)

where we recall that N0 denotes the number of interior vertices of TH . The MsFEM approxima-
tion uε

H is given by uε
H = ∑N0

i=1 U ε
i φ

ε
i . The MsFEM can then be written (as it is traditionally pre-

sented) as in Algorithm 1. We use the notation aε,diff
K (u, v) = ∫

K ∇v · Aε∇u for all u, v ∈ H 1(K ) and
we write FK (v) = ∫

K f v for any v ∈ L2(K ).
Lines (1)-(12) of Algorithm 1 (resp. (13)-(17)) constitute the offline (resp. online) stage of the

MsFEM. Note that the computation of the stiffness matrix Aε in line (11) only depends on the
multiscale basis functions (and not on the right-hand side f ) and can therefore be carried out
once and for all in the offline stage. Also note that, for an efficient computation of the φεi in
line (6), one should apply Remark 1. Only the online stage is to be repeated when problem (1)
is to be solved multiple times for various right-hand sides f .

Implementing Algorithm 1 in an industrial code is challenging. Indeed, the practical imple-
mentation of any finite element method relies on (i) the construction of a mesh, (ii) the construc-
tion of the linear system associated to the discrete variational formulation and (iii) the resolution
of the linear system. An efficient implementation of the second step heavily relies on the choice
of the discretization space.

Regarding the construction of the linear system (performed in line (11) of Algorithm 1), it is
by no means obvious to adapt existing finite element codes based on generic approximation
spaces (for instance spaces of piecewise polynomial functions, such as the piecewise affine
functions that we will introduce in Definition 10 below) to a different, problem-dependent choice
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Algorithm 1 MsFEM approach for problem (1) (see comments in the text)

1: Construct a mesh TH ofΩ, denote N0 the number of internal vertices and N (n,K ) the global
index of the vertex of K ∈TH that has local index 1 ≤ n ≤ d +1 in K

2: SetAε := 0 and Fε := 0
3: for all K ∈TH do
4: for 1 ≤ n ≤ d +1 do
5: Set i :=N (n,K )
6: Solve for φεi

∣∣
K

in (5)
7: end for
8: for 1 ≤ l ≤ d +1 do
9: Set j :=N (l ,K )

10: for 1 ≤ n ≤ d +1 do
11: Set i :=N (n,K ) andAε

j ,i += aε,diff
K

(
φεi , φεj

)
12: end for
13: Set Fεj += FK

(
φεj

)
14: end for
15: end for

16: Solve the linear systemAεU ε =Fε

17: Obtain the MsFEM approximation uε
H =

N0∑
i=1

U ε
i φ

ε
i

of space such as V ε
H . No analytic expressions for the basis functions φεi are available (and thus

a fine mesh should be used to approximate them), the computation of aεK (φεi ,φεj ) should be
performed by quadrature rules on the fine mesh because the integrands are highly oscillatory,
one should have at hand the correspondence between element and vertex indices of the coarse
mesh (N (n,K ) in Algorithm 1), the assembly of the global stiffness matrix {Aε

j ,i }1≤ i , j ≤N0 should
be executed by a dedicated new piece of software, etc. To alleviate these obstacles, we introduce
below a way of implementing the MsFEM that capitalizes on an existing code for solving (1) by
a P1 approximation on TH in the case of slowly varying diffusion coefficients. The three central
identities for our approach that we aim to generalize to other MsFEMs in this article are framed
in distinctive boxes.

2.4. Effective problem on the macroscopic scale

Let us consider the construction of the stiffness matrix of the MsFEM in more detail. The stiffness
matrix defined in (8) requires the computation of the quantities

Aε
j ,i = aε,diff

(
φεi ,φεj

)
= ∑

K ∈TH

∫
K
∇φεj · Aε∇φεi , (9)

for all 1 ≤ i , j ≤ N0.
Following [12], we rewrite the multiscale basis functions as

∀ K ∈TH , φεi =φP1
i +

d∑
α=1

(
∂αφ

P1
i

)∣∣∣
K
χε,α

K in K , (10)
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for all 1 ≤ i ≤ N0, where, for each mesh element K , we define the numerical correctorχε,α
K ∈ H 1

0 (Ω)
(1 ≤α≤ d) as the function supported by K that is the unique solution to the local problem

{
−div

(
Aε∇χε,α

K

)= div(Aεeα) in K ,

χε,α
K = 0 on ∂K .

(11)

Here, eα denotes the α-th canonical unit vector of Rd . The expansion (10) is obtained upon
rewriting (5) as a PDE for φεi −φP1

i , and then using linearity of the PDE and the fact that ∇φP1
i

is constant in K to show that
d∑
α=1

(
∂αφ

P1
i

)∣∣∣
K
χε,α

K

is indeed the unique solution to this PDE.
Inserting (10) for the trial and test functions in (9) and again exploiting the fact that all φP1

i
have piecewise constant gradients, we obtain

Aε
j ,i =

∑
K ∈TH

d∑
α,β=1

(
∂βφ

P1
j

)∣∣∣
K

(∫
K

(
eβ+∇χε,β

K

)
· Aε

(
eα+∇χε,α

K

)) (
∂αφ

P1
i

)∣∣∣
K

= ∑
K ∈TH

d∑
α,β=1

(
∂βφ

P1
j

)∣∣∣
K

aε,diff
K

(
xα+χε,α

K , xβ+χε,β
K

) (
∂αφ

P1
i

)∣∣∣
K

.

Next we define the piecewise constant effective diffusion tensor A ∈P0(TH , Rd×d ) by

Aβ,α

∣∣∣
K
= 1

|K |aε,diff
K

(
xα+χε,α

K , xβ+χε,β
K

)
for each K ∈TH and each 1 ≤α,β≤ d , (12)

where |K | denotes the measure of the mesh element K . Then (9) can be written as

Aε
j ,i =

∫
Ω
∇φP1

j · A∇φP1
i . (13)

Motivated by (13), we introduce the coarse-scale problem{
−div

(
A∇u

)
= f in Ω,

u = 0 on ∂Ω,
(14)

and its Galerkin discretization with P1 Lagrange elements: with VH ,0 = span{φP1
i | 1 ≤ i ≤ N0}

(note that the definition of VH ,0 will be generalized in Definition 11), find uH ,0 ∈VH ,0 such that

∀ vH ∈VH ,0, adiff (uH , vH ) = F (vH ), (15)

where the linear form F is defined in (3) and the bilinear form adiff is defined as

∀ u, v ∈ H 1
0 (Ω), adiff (u, v) =

∫
Ω
∇v · A∇u. (16)

Problem (15) equivalently writes
AP1 UP1 =FP1 , (17)

with

∀ 1 ≤ i , j ≤ N0, A
P1
j ,i = adiff

(
φ
P1
i ,φP1

j

)
, F

P1
j = F

(
φ
P1
j

)
. (18)

Comparing the expressions (13) and (18), we deduce thatAε =AP1 . In other words:

Lemma 2. The stiffness matrix of the MsFEM problem (6) is identical to the stiffness matrix of
the P1 problem (15).
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This lemma immediately implies that the P1 problem (15) is well-posed, since the MsFEM
problem (6) itself is well-posed.

Let us point out that problems (14) and (15) are defined entirely in terms of quantities that
vary only on the macroscopic scale H . The finite element problem (15) can thus be solved using
a legacy code that is designed for standard FEMs. Lemma 2 then suggests including the P1

approximation (15) of the effective, coarse-scale problem (14) as an integral part of the MsFEM
approach. We do so in Algorithm 2 below.

The right-hand side vector Fε in (8) is, in general, different from FP1 in (18). Indeed, we
integrate the product of f with highly oscillatory basis functions in the former problem and
with P1 basis functions in the latter. The solutions U ε and UP1 to (7) and (17), respectively, are
thus different a priori.

2.5. Non-intrusive workflow

We propose the following non-intrusive MsFEM variant:

Set uε
H = uH + ∑

K ∈TH

(∂αuH )|K χε,α
K ∈V ε

H ,0 where uH ∈VH ,0 is the unique solution to (15). (19)

The MsFEM approximation uε
H is well-defined, since we have seen above that problem (15) is

well-posed.
Note that the symbol uε

H shall be used here and in the sequel for the solution to various
MsFEMs variants to alleviate the notation. The exact MsFEM will be specified by the context.
We will use distinct notation for different MsFEM variants when required for clarity.

The most efficient way to compute uε
H from uH is not as stated here, however. The evaluation

of uH (x) may require the determination of the degrees of freedom associated to the simplex K
to which x belongs. This demands the use of the internal mechanisms of the legacy code that is
used to compute uH . The use of the legacy code can be avoided by expanding uH as follows. For
any affine function ϕ on K , we have

ϕ(x) =ϕ(
xc,K

)+ d∑
α=1

∂αϕ
(
xα−xαc,K

)
on K , (20)

where xα denotes the function that to a point x ∈ Ω associates its αth coordinate, and xc,K =
(x1

c,K , . . . , xd
c,K ) is the centroid of K . If one uses the legacy code to store the values of uH (xc,K )

and ∂αuH element by element at the end of the online stage, then uε
H defined in (19) can be

computed element by element according to

∀ K ∈TH , uε
H (x) = uH (xc,K )+

d∑
α=1

(∂αuH )|K
(
xα−xαc,K +χε,α

K (x)
)

on K , (21)

without using the legacy code.
The above observations culminate in the computational approach presented in Algorithm 2.

We can distinguish

(1) the offline stage consisting of lines (1)-(7),
(2) the online stage being executed entirely in line (8),
(3) a post-processing step in line (9).

The superiority of Algorithm 2 over the classical MsFEM Algorithm 1 is that the global problem
of the online stage can completely be constructed and solved by the use of a pre-existing P1

PDE solver. The only requirements for the legacy code are the functionality to provide piecewise
constant diffusion coefficients to the solver and the existence of a procedure to store the value
of the P1 solution and its gradient at the centroids of the mesh. An additional advantage in the
online stage is that the construction of the right-hand side FP1 (see (18)) for the global problem
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Algorithm 2 Non-intrusive MsFEM approach for problem (1)

1: Let TH be the mesh used by the legacy code

2: for all K ∈TH do
3: for 1 ≤α≤ d do
4: Solve for χε,α

K defined by (11)
5: end for
6: Compute A|K defined by (12)
7: end for

8: Use the legacy code to solve for uH defined by (15) and to save
{
uH (xc,K )

}
K ∈TH

and
{(∂αuH )|K }K ∈TH ,1≤α≤d

9: Obtain the MsFEM approximation uε
H by (21)

only requires a numerical quadrature on the coarse mesh and is therefore cheaper than the
construction of Fε (see (8)), involving the multiscale basis functions and requiring numerical
quadratures at the microscale.

The part of the offline stage that manipulates fine meshes (lines (2)-(7)) and the post-
processing step can be developed independently of the legacy code used in line (8). The require-
ment for these fine-scale solvers is that they have access to the coarse mesh TH used by the global
solver. Note also that the local problem (11) is only indexed by the coarse mesh element K , in con-
trast to the local problem (5) that is indexed both by the coarse mesh element K and the vertex
index i . For the latter problems, one has to know, for each element K , the global index that corre-
sponds to the vertices of K , a piece of information that may be difficult to access in a legacy code.
For the problems (11), this correspondence is not needed to compute A, nor for the computation
of the fine-scale solution uε

H in (21), both of which are entirely defined element-wise.

Remark 3 (Quantities of interest). In the post-processing step of Algorithm 2, it is easy to com-
pute pointwise values of the approximation uε

H by (21) and to use these for further computational
steps, such as the evaluation of the energy or other quantities of interest. This task can be carried
out element wise, hence Eq. (21) can easily be used. (See also Remark 51.)

Remark 4 (Visualization). We focus our attention here on the visualization of the MsFEM ap-
proximation uε

H , which can be an important tool in engineering practices. Visualization requires
the combination of information on neighbouring mesh elements, and this can in general not be
carried out by the legacy code since it does not have access to the fine meshes used to compute
the numerical correctors. Even if this were the case, the fine meshes may not yield a globally con-
formal mesh when combined. The question of a global visualization then becomes a complex
one that requires innovations beyond the contributions of this article. Instead, we propose the
following two-step visualization approach:

• One can visualize the coarse part uH of the MsFEM approximation for a global view of
the solution with the tools provided by the legacy code that is used to compute uH ;

• The fine scale details of uε
H in regions of interest can be studied through zooms inside

mesh elements, using the code that is used for computations at the microscale.

2.6. Interpretation of the non-intrusive MsFEM

We emphasized above that the right-hand sides of the linear system for the MsFEM in (8) and the
linear system solved for the non-intrusive MsFEM in (18) are different in general. This motivates
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the comparison of the non-intrusive MsFEM approach (19) to the following Petrov–Galerkin
MsFEM:

Find uε
H ∈V ε

H ,0 such that aε,diff
(
uε

H ,φP1
j

)
= F

(
φ
P1
j

)
for all 1 ≤ j ≤ N0, (22)

based on the trial space V ε
H ,0 and the test space VH ,0 for both the bilinear and the linear form. The

following result was shown in [12].

Lemma 5. The non-intrusive MsFEM variant (19) coincides with the Petrov-Galerkin Ms-
FEM (22).

The non-intrusive MsFEM approach is generalized in Section 5 after the development of a
general framework to define a wide variety of MsFEMs in Section 4. Lemma 5 does not generalize
to the full framework. We will see the conditions under which the non-intrusive approach leads
to a Petrov–Galerkin MsFEM in Lemma 38.

2.7. Relation to homogenization theory

We highlight in this section the fact that many ingredients of our non-intrusive MsFEM ap-
proach are reminiscent of standard quantities of homogenization theory, or the theory of H-
convergence, which studies the limit of a sequence of solutions uε to a PDE as ε tends to 0. This
relation to H-convergence provides an interesting interpretation of the effective tensor A intro-
duced in (12).

Let us suppose in this section (and in this section only, except for Section 6.3) that Aε(x) =
Aper(x/ε) for some bounded, Zd -periodic matrix Aper satisfying the coercivity property in (2).
In this case, the sequence of matrices Aε has a homogenized limit that is explicitly known.
(An explicit characterization of the limit is not available for H-convergence in general.) We
summarize the main results below. See, for instance, [18, 19] or [20, Chapter 1] for details on
periodic homogenization.

Due to H-convergence of Aε, the functions uε, solution to (1), converge to a limit function u⋆

(weakly in H 1(Ω), strongly in L2(Ω)) as ε→ 0. The homogenized limit u⋆ is the solution to the
homogenized equation (25) below.

Let Q denote the unit cube of Rd . We introduce the corrector functions w1, . . . , wd ∈ H 1
per (Q)

solution to {
−div(Aper∇wα) = div(Apereα) in Rd ,

wα is Q-periodic,
(23)

which uniquely defines wα up to an irrelevant additive constant. The entries of the (constant)
homogenized diffusion tensor A⋆ ∈Rd×d are given by

A⋆β,α =
∫

Q

(
eβ+∇wβ

) · Aper (eα+∇wα) , 1 ≤α, β≤ d . (24)

The homogenized limit u⋆ of uε is the unique solution in H 1
0 (Ω) to the boundary value problem{

−div(A⋆∇u⋆) = f in Ω,

u⋆ = 0 on ∂Ω.
(25)

The truncated reconstruction of u⋆ that is called the first-order two-scale expansion takes the
form

uε,1(x) = u⋆(x)+ε
d∑
α=1

∂αu⋆(x) wα

( x

ε

)
. (26)

Under suitable regularity assumptions, the difference uε−uε,1 converges to 0 strongly in H 1(Ω)
as ε→ 0. This property will be used for the convergence results in Section 6.3.
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In the periodic setting, the expansion (26) can be used to construct a numerical approximation
of uε, without the need of any computations at the fine scale. This approximation is presumably
valid only in the regime of very small parameters ε and deteriorates if ε grows. Moreover, in more
general settings, the corrector functions are not local nor explicit, for their definition involves a
PDE posed on the whole domain Ω and that depends on an effective tensor that is itself defined
in terms of the corrector functions. Details can be found, e.g., in [19–21]. This prevents the
H-convergence theory from being directly applicable for the numerical approximation of uε.

Numerical homogenization techniques, that draw their inspiration from the various elements
above, offer an alternative for the approximation of uε that can be applied in much more
general contexts. We can see the similarities between the corrector functions wα in (23) and
the numerical correctors χε,α

K in (11). Note that the χε,α
K solve problems similar to (23), but that

they need to be solved at the microscale and on each mesh element K . Similarly, we note the
resemblance between the reconstruction (26) and the definition of uε

H in (19), and between
the homogenized coefficient A⋆ defined in (24) and the effective macroscopic coefficient A
from (12). However, contrary to A⋆, the MsFEM quantity A has to be computed on an element-
by-element basis, and it is not necessarily constant throughout Ω. Finally, the MsFEM analogue
of the homogenized problem (25) is the resolution of the effective macroscale problem (14).

Example 6. A very particular setting, although academic in nature and only useful for pedagogi-
cal purposes, actually leads to an MsFEM approximation that is exactly equivalent to a discretiza-
tion of the periodic homogenization setting. Consider (1) in 2D posed on the unit square. Let us
consider a mesh consisting of squares that are perfectly aligned with the periodicity of Aε. We
solve the corrector problems (11) on all square mesh elements with periodic boundary condi-
tions and subsequently compute the effective diffusion tensor A according to (12).

In this case, the problems for the numerical correctors all reduce to (23) and A is constant and
equal to the homogenized coefficient A⋆ as defined by (24). A Q1 discretization of the effective
problem (14) thus constitutes a non-intrusive MsFEM that is equivalent to theQ1 approximation
of the homogenized equation (25).

3. Why develop a general framework?

In the sequel we develop a general framework for a wide variety of MsFEMs in an abstract setting.
We motivate here why this general framework for MsFEMs is useful.

3.1. Local boundary conditions

First, let us explain why various MsFEMs have been proposed in the literature. One reason is
that different equations than (1) (e.g. advection-diffusion equations) give rise to different choices
of the local problem (5), depending on which terms of the global PDE are included (see, for
instance, [10, 22].)

The other reason is that, even for the pure diffusion problem (1), the choice of the basis
functions defined in (5) has an important drawback. The definition of the multiscale basis
functions requires a choice of arbitrary boundary conditions on the mesh element boundary ∂K ,
since the exact boundary condition satisfied by uε is unknown. In (5), affine boundary conditions
are imposed. In view of this choice, we shall refer to the MsFEM defined above as the “MsFEM-
lin”.

The MsFEM-lin cannot yield an accurate representation of uε near ∂K if Aε is highly oscillatory
and the mesh TH is coarse. Variations on the definition of the functionsφεi have been proposed to
improve the MsFEM. Here we summarize the ideas of oversampling and of MsFEM à la Crouzeix–
Raviart, which together inspire the formulation of a general MsFEM framework in Section 4.
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The oversampling variant of the MsFEM was introduced along with the variant based on (5) at
the time of its first appearance in [4]. For this method, an oversampling domain SK is associated
to each mesh element K (details are provided in Section 4.3.1). The problems (5) are solved on the
larger domain SK rather than K , so the inadequate boundary conditions are pushed away from
the actual mesh elements. To construct the multiscale basis functions, the resulting functions
on SK are restricted to the actual mesh elements K and suitably combined around each vertex xi .
The new multiscale basis functions oscillate on ∂K if the oversampling patch is taken large
enough. We note that, in general, this strategy leads to discontinuous basis functions. Hence,
the finite element space obtained is no longer conforming.

The MsFEM with Crouzeix–Raviart type boundary conditions for the local problems (which
we shall abbreviate as “MsFEM-CR”) was introduced in [9]. It uses basis functions associated
to the edges of the mesh (in contrast to the MsFEM-lin presented above, and its oversampling
variant, where basis functions are associated to the vertices of the mesh). A typical basis function
satisfies the following on ∂K : the flux through each face of K is constant, and the constants are
determined by the condition that the average of the basis function be 1 over one particular face
and 0 over all other faces. Again, this is a way to avoid imposing any conditions on the trace of the
basis function directly. The multiscale functions can thus be oscillatory on the faces of the mesh.
As is the case for oversampling methods, the resulting finite element space is nonconforming.

All of these variations, applied to any MsFEM for linear second-order PDEs, are covered by the
general MsFEM framework that we develop in Section 4.

3.2. The non-intrusive approach

The intrusiveness of the specific MsFEM-lin variant introduced in Section 2.2 is exemplary
for all MsFEMs described in Section 3.1. It turns out that the non-intrusive MsFEM approach
introduced in [12] and recalled in Section 2.5 can also be generalized to all these MsFEM variants.
We summarize the key ingredients that allow for the formulation of the non-intrusive MsFEM
approach of Algorithm 2 (corresponding to the identities in boxes in Section 2.4).

The non-intrusive MsFEM follows from the expansion (10), namely the expression of the
multiscale basis function as a P1 basis function and a linear combination of numerical correctors
that are fully localized. We note that

• the full localization of the numerical correctors defined in (11) allows the preprocessing
of the microstructure independently of the global approximation indices related to the
finite element method;

• the expansion (10) follows from the fact that ∇φP1
i is piecewise constant combined with

linearity of the local problems (5);
• the stiffness matrix can be formulated in terms of a piecewise constant effective diffusion

tensor in (13) thanks to full localization of the corrector functions, the piecewise constant
gradient of φP1

i in the expansion (10) and bilinearity of the global problem (3).

These observations provide the main structure of the general framework. First, we choose
an underlying, low-dimensional space of piecewise affine functions to which the MsFEM is
associated (Definition 10). This will be the standard conforming Lagrange space of order 1 (for
the MsFEM-lin), or the Crouzeix–Raviart space of order 1 (for the MsFEM-CR). Second we need to
formulate the local problems for the numerical correctors (Definition 17 and Definition 22). This
involves the definition of oversampling patches (for MsFEMs with oversampling, Definition 13),
and an extension of the notion of degrees of freedom to define the boundary conditions for the
numerical correctors (Definitions 11, 14 and 15) on oversampling patches. It is then possible to
define the multiscale basis functions as a generalization of (10) (see Definition 26) and finally to
define the MsFEM for our general framework in Definition 33.
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Remark 7. We note that our development of non-intrusive MsFEM approaches relies to a great
extent on the fact that (10), and its generalization (36) in the general framework developed below,
provide a description of the multiscale basis functions in terms of P1 basis functions, without the
need of higher-order functions, in a linear manner. Higher-order MsFEMs can be found in [23,24]
(see also [25]). Possible analogues of (36) for such MsFEMs and the subsequent techniques to
design a non-intrusive MsFEM variant are more involved and may be the topic of future work.
See [22].

3.3. Other motivations for the general framework

Besides a unified formulation of our non-intrusive MsFEM approach, our general framework
can also be beneficial to concrete code development for the MsFEM. Common features among
various multiscale methods have previously been used to design flexible and efficient software
for the implementation of such methods on the DUNE platform [26, 27] within the Exa-Dune
project [28]. For example, the distribution of local problems over multiple processors and sub-
sequent coupling in a global problem are handled by designated software components [29].
Our work may contribute to the efficient implementation of all MsFEMs covered by our general
framework in such a project and similar endeavours yet to come.

When formulating the general framework, we also clarify a few practical matters that are often
left pending in the various research articles we are aware of. In particular, we give a rigorous
definition of the oversampling procedure near the boundary ∂Ω of the global domain.

As we explore the general framework, we will also propose an MsFEM variant that has not
yet appeared in the literature: the MsFEM-CR combined with the oversampling technique (see
Example 30). We hope that our framework may also further the development of new MsFEM
variants in an attempt to improve on the shortcomings of the methods known today.

Finally, the present study may also uncover a deeper understanding of MsFEMs by paving the
way to a unified convergence analysis of different variants. This work is currently in preparation.

4. Abstract definition of the MsFEM

We develop here a general framework for multiscale finite element methods. The ultimate aim
is to generalize the key identities of Section 2.4. This is done in Definition 17 and 22 for the
numerical correctors introduced in (11), and in Definition 26 for the expansion (10) of the
multiscale basis functions. This allows the reformulation of the linear system of the MsFEM as
the linear system of an effective problem in (48) (for a Petrov–Galerkin MsFEM) and (53) (for
a Galerkin MsFEM) in Section 5. The other notions introduced in this section, although rather
technical and abstract, are necessary tools to capture a wide variety of MsFEMs in our general
framework.

4.1. The continuous problem

The abstract variational problem for our general MsFEM framework is as follows. Let aε be a
continuous bilinear form on H 1(Ω)×H 1(Ω). We are interested in the solution to the problem

Find uε ∈ H 1
0 (Ω) such that aε

(
uε, v

)= F (v) for any v ∈ H 1
0 (Ω), (27)

where F is defined as in (4) for any f ∈ L2(Ω). To ensure well-posedness of (27), we suppose that
the bilinear form aε is coercive on H 1

0 (Ω). The bilinear form aε may contain coefficients that
oscillate on a microscopically small scale.
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The oversampling and Crouzeix–Raviart variants of the MsFEM introduced in Section 3.1 show
that we need to accommodate for approximation spaces with discontinuities at the interfaces.
This requires some additional assumptions on the formulation of the abstract problem. We
suppose that the bilinear form aε is in fact defined on the broken Sobolev space H 1(TH ) ×
H 1(TH ). More precisely, we assume that we can represent it as aε = ∑

K ∈TH aεK , where, for each
K ∈TH , aεK is a continuous bilinear form defined on H 1(K )×H 1(K ).

To ensure well-posedness of MsFEMs, which may use nonconforming approximation spaces,
coercivity on H 1

0 (Ω) may be insufficient. Therefore, we add the following coercivity hypothesis
for the bilinear forms aεK :

for all K ∈TH , there exists αK > 0 such that ∀ u ∈ H 1(K ), aεK (u,u) ≥αK ∥∇u∥2
L2(K ). (28)

In order to perform a convergence analysis, one also has to assume that theαK are bounded from
below by some α̃> 0 that does not depend on H . We provide convergence results in Section 6 for
the pure diffusion problem (1), in which case we have αK = m from (2).

As an example, the introductory problem (1) with the associated bilinear form aε,diff is covered
by this framework as is made explicit in Example 8 below. Other second-order PDEs that fit in our
abstract variational formulation are given in Example 9.

Example 8. The diffusion problem (1) is covered by the abstract variational formulation above.
Indeed, we can set

aε = aε,diff ,

where aε,diff is the bilinear form defined in (4). Further, we define

aεK (u, v) = aε,diff
K (u, v) :=

∫
K
∇v · Aε∇u,

for all u, v ∈ H 1(TH ), so that we have indeed aε,diff = ∑
K∈TH aε,diff

K . Clearly, each aε,diff
K satis-

fies (28) with αK = m the coercivity constant from (2).

Example 9. The reaction-advection-diffusion equation,

−div
(

Aε∇uε
)+b ·∇uε+σuε = f ,

with a divergence-free advection field b : Ω 7→ Rd and a non-negative reaction coefficient
σ : Ω 7→ R, can be modelled (under some regularity hypotheses that we do not state here) with
the bilinear forms

aεK (u, v) =
∫

K
∇v · Aε∇u + v b ·∇u +σuv.

However, these bilinear forms aεK do not satisfy (28) even though the bilinear form aε is coercive
on H 1

0 (Ω). To this end, a skew-symmetrized formulation of the transport term can be used. The
skew-symmetrized formulation uses the bilinear form

aεK (u, v) =
∫

K
∇v · Aε∇u + 1

2
v b ·∇u − 1

2
u b ·∇v +σuv, (29)

which does satisfy (28). Assumption (28) is used for proving well-posedness of the MsFEM in
Lemma 34, but note that both choices for aεK mentioned here can be studied in practice. We refer
e.g. to [22, 30, 31] for more details. Within the general MsFEM framework, b and σ are allowed to
be highly oscillatory, and this may impact the specific MsFEM strategy to be preferred.

4.2. Piecewise affine structure

In Section 2.2, we have seen that the relation between multiscale basis functions and piecewise
affine functions is essential for the development of our non-intrusive MsFEM. For the MsFEM
definition in the general framework, we start by choosing such a structure in the following
definition.
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Definition 10. Let a mesh TH be given. The underlying P1 space for the MsFEM, denoted VH , is
one of the following two spaces: the Lagrange approximation space

V L
H = {

v ∈P1(TH )
∣∣v is continuous on Ω

}
,

in which case we shall refer to the associated MsFEM as the MsFEM-lin, or the Crouzeix–Raviart
approximation space

V C R
H =

{
v ∈P1(TH )

∣∣∣∣∀ K ∈TH , ∀ e ∈F (K ) such that e ⊂Ω :
∫

e
�v� = 0

}
,

in which case the associated MsFEM shall be called the MsFEM-CR. We use the notation F (K ) for
the set of faces of K and �v� denotes the jump of v over the face e. The space V L

H is a subspace
of H 1(Ω), but V C R

H is not. Note that no restrictions apply on faces lying on ∂Ω.

We note that the underlying P1 space has the following property: if v ∈ VH is piecewise
constant on the mesh TH , then v is constant in Ω. Contrary to the space V L

H , functions in the
Crouzeix–Raviart space V C R

H are discontinuous in general. They are continuous, however, at the
centroids of all faces of the mesh.

For standard finite elements, the notion of degrees of freedom allows to characterize any finite
element function. The idea of the MsFEM is to preserve this notion of degrees of freedom (in
a suitable way made precise below) in the definition of a multiscale approximation space, while
adapting the piecewise affine structure to the microstructure of the PDE. We formalize this notion
for the two underlying P1 spaces that we introduced in Definition 10. The definition involves an
arbitrary simplex K , which is typically an element of the mesh TH , or an associated oversampling
patch (for the oversampling technique of the MsFEM) that we shall define in Definition 13. The
latter is not always a simplex, and we extend Definition 11 to such oversampling patches in
Definitions 14 and 15.

Definition 11. A degree of freedom operator (DOF operator) Γ associates to any simplex K ⊂ Rd

and v ∈ P1(K ) a vector Γ(K , v) ∈ Rd+1, whose components are called the degrees of freedom of v
on K , in such a way that the application v 7→ Γ(K , v) is a linear bijection from P1(K ) to Rd+1. More
precisely, Γ(K , ·) will denote in the sequel one of the following two operators:

(1) (DOF operator for the MsFEM-lin.) Let x0, . . . , xd denote the vertices of K . We set

∀ v ∈P1(K ), ΓL(K , v) = (v(x0), . . . , v(xd )) .

For K ∈TH , the degree of freedom [ΓL(K , ·)] j is said to be associated to the boundary if, for
all v ∈P1(K ), [ΓL(K , v)] j = v(x) for a vertex x of the mesh that lies on ∂Ω.

(2) (DOF operator for the MsFEM-CR.) Let e0, . . . , ed denote the faces of K . We set

∀ v ∈P1(K ), ΓC R (K , v) =
(

1

|e0|
∫

e0

v, . . . ,
1

|ed |
∫

ed

v

)
.

For K ∈ TH , the degree of freedom [ΓC R (K , ·)] j is said to be associated to the boundary if,
for all v ∈P1(K ), [ΓC R (K , v)] j = 1

|e|
∫

e v for a face e of the mesh that lies on ∂Ω.

The P1 test space is defined as

VH ,0 =
{

v ∈VH

∣∣∣∣∣ ∀ K ∈TH , ∀ 1 ≤ j ≤ d +1,[Γ(K , v)] j = 0 if the degree

of freedom [Γ(K , ·)] j is associated to the boundary

}
.

The P1 test space is used in practice to approximate the subspace H 1
0 (Ω) of H 1(Ω). The

degrees of freedom are defined element per element and are thus local. Global properties of the
underlying P1 space VH are most easily made explicit through the identification of a basis for VH .

Definition 12. Let VH be an underlying P1 space as in Definition 10, and let Γ be the associated
DOF operator. We shall denote by N the dimension of VH . The P1 basis functions φP1

1 , . . . , φP1
N are

defined as follows:
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• For the MsFEM-lin, let x1, . . . , xN be an enumeration of the (internal and boundary)
vertices of TH . Then φP1

i is defined by φP1
i (x j ) = δi , j for all 1 ≤ i , j ≤ N .

• For the MsFEM-CR, let e1, . . . , eN be an enumeration of the (internal and boundary) faces
of TH . Then φP1

i is defined by 1
|e j |

∫
e j
φ
P1
i = δi , j for all 1 ≤ i , j ≤ N .

In both cases, these functions form a basis of the corresponding space VH of Definition 10.

4.3. Local problems

4.3.1. Oversampling patches

To replace the (standard) underlyingP1 space by a space of the same (low) dimension, adapted
to the microstructure of aε, we associate to each mesh element K ∈ TH an oversampling patch.
It serves to avoid imposing artificial, non-oscillatory boundary conditions on K directly when
computing numerical correctors to process the microstructure.

Definition 13. Let K ∈ TH be any mesh element and let S′
K be a simplex obtained from K by

homothety around the centroid of K with homothety ratio ρ ≥ 1. The oversampling patch SK is
defined as SK = S′

K ∩Ω.

See Figure 1 for an illustration of the construction of oversampling patches in dimension 2.
In this work, we allow for the trivial homothety ratio ρ = 1. In this case, the patch SK coincides
with K .

We will call an MsFEM without oversampling an MsFEM for which all oversampling patches
satisfy SK = K . Otherwise, the MsFEM is called an MsFEM with oversampling. We speak simply
of an MsFEM when there are no assumptions on the oversampling patches.

(a) (b)

Figure 1. Oversampling patches for MsFEM in 2D. Left: the patch for the mesh element K
is obtained from K by homothety. Right: The triangle S′

K partially lies outside the domain
Ω and the oversampling patch SK is not homothetic to K . It is not even a triangle.

For most mesh elements K , the patch SK in Definition 13 is a simplex. However, for mesh
elements close to the boundary ∂Ω, alternative constructions should be considered. We have
not found any explicit description of such a construction in the literature. This complicates the
reproducibility of the method as well as a rigorous convergence analysis. The precise definitions
of this section provide a first step to address these issues. A fully rigorous convergence analysis of
the MsFEM with oversampling as described here is the subject of ongoing investigations [22].
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4.3.2. Degrees of freedom on oversampling patches

Definition 11 provides the definition of DOF operators on any simplex. For the MsFEM, we
wish to compute multiscale functions on oversampling patches SK , in which case Definition 11
may be insufficient. We illustrated this in Figure 1b. Indeed, the number of vertices/faces of the
oversampling patch may be larger than d + 1. In order to associate a multiscale basis function
to every P1 basis function, we still need a notion of DOF operator such that Γ(SK , ·) is a linear
bijection from P1(SK ) to Rd+1. Therefore, we extend the definition of the degrees of freedom
operators ΓL and ΓC R in Definitions 14 and 15.

Definition 14. Let K ∈ TH and let SK be its associated oversampling patch. Let x0, . . . , xd be a
selection of d +1 distinct vertices of SK . We define the DOF operator ΓL by

∀ v ∈P1(SK ), ΓL(SK , v) = (v(x0), . . . , v(xd )) .

We note that any choice of d +1 nodal values unequivocally characterizes an affine function
on SK . Hence, ΓL(SK , ·) is indeed a bijection. Now the precise choice of the vertices in Defini-
tion 14 is unimportant, because ΓL(SK , ·) will only be used in the sequel to describe the trace
of P1 functions on ∂SK in boundary value problems. For any P1 function, this trace is uniquely
defined by its values in d +1 distinct vertices of SK . Finally, when SK is a simplex, it has only d +1
vertices and Definition 14 reduces to Definition 11.

To generalize the notion of degrees of freedom for the Crouzeix–Raviart space to non-
simplicial patches, we need to introduce some additional notation. On the boundary of a non-
simplicial oversampling patch, we can identify some faces that collapse to a single vertex if we
shrink SK to K . We call these faces the additional faces and denote the set containing them
by Fa(SK ). The other faces of SK are referred to as the dilated faces, collected in the set Fd (SK ).
When the patch SK does not touch ∂Ω, we have Fd (SK ) = F (SK ) and Fa(SK ) = ;. In Figure 2a,
for example, the additional faces are exactly those faces that lie on ∂Ω. This is not always the case,
as is illustrated by Figure 2b.

For the definition of ΓC R (SK , ·), we shall rely on the existence of d + 1 dilated faces, because
we need ΓC R (SK , ·) to be a bijection between P1(SK ) and Rd+1. This imposes a constraint on the
choice of the homothety ratio used to construct SK . For example, in the case of Figure 2a, the
lower right dilated face falls outside Ω if the homothety ratio is too large, and the oversampling
patch SK only has two dilated faces (edges here) and two additional faces. We do not consider
this case hereafter.

Definition 15. Let K ∈ TH and let SK be its associated oversampling patch. We assume that SK

has d +1 dilated faces, and we denote them by e0, . . . , ed . We define the DOF operator ΓC R by

∀ v ∈P1(SK ), ΓC R (SK , v) =
(

1

|e0|
∫

e0

v, . . . ,
1

|ed |
∫

ed

v

)
.

When SK is a simplex, we have Fd (SK ) =F (SK ), and Definition 15 coincides with the respec-
tive elements of Definition 11.

4.3.3. Numerical correctors: first oversampling strategy

We now provide the precise assumptions under which we will consider local problems, i.e.,
the analogues of (5) defining the MsFEM-lin basis functions and the definition of the numerical
correctors in (11). In fact, since the numerical correctors play an essential role in the construction
of non-intrusive MsFEM approaches, we define the numerical correctors first and use them to
define the multiscale basis functions in Definition 26.

We discuss two definitions of the numerical correctors, corresponding to two ways to define
the oversampling technique for the MsFEM. The functional settings for these constructions
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(a) (b)

Figure 2. Non-simplicial oversampling patches in 2D. The dilated edges of the patch SK ,
those that “correspond” to the edges of the original triangle K , are dashed and drawn in
red.

are provided by Definitions 16 and 21. These definitions involve a “sampling space”, whose
name is inspired by the idea that only a limited number of local problems will be solved to
encode the microstructure of the PDE in the numerical model. The choice of sampling space
has to accommodate for the boundary conditions that one wishes to impose on the numerical
correctors and basis functions (e.g. essential or natural; see Examples 18 and 19).

Definition 16. Let K ∈TH , let SK be its associated oversampling patch and let Γ be a DOF operator
from Definitions 11, 14 or 15. A subspace VK of H 1(SK ) and bilinear form sεK : VK ×VK →R are called
sampling space and sampling form, respectively, if they satisfy the following:

(1) the space VK contains the space of affine functions P1(SK );
(2) the operator Γ(SK , ·) is well-defined on VK ;
(3) the DOF-extended local problem: find v ∈VK such that{

sεK (v, w) = 〈g , w〉 for all w ∈VK ,0,

Γ(SK , v) = given,
(30)

has a unique solution for any g ∈ (H 1(SK ))′. Here, VK ,0 = {w ∈ VK | Γ(SK , w) = 0} is the
sampling test space.

Problem (30) is called “DOF-extended” because the degrees of freedom, controlling the
boundary conditions associated to the local problem, are imposed on the oversampling patch SK

rather than the (generally smaller) mesh element K .
The sampling form sεK shall be used to encode the oscillations of the bilinear form aε and

thus the microstructure of the problem in the multiscale finite element functions. There is some
flexibility in choosing the sampling form; one may choose to include all the same terms as those
in the bilinear form aεK of the original problem (27), or only some of them. When the MsFEM
was first proposed in [4], it was suggested that sεK should include those terms that correspond to
the highest-order terms of the PDE that is to be solved. In the context of the advection-diffusion
equation, one may thus choose to include in our MsFEM framework only the diffusion terms, or
both the diffusion and advection terms. Both options have been studied e.g. in [10, 31].
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In the functional setting of Definition 16, the generalization of (11) to define the numerical
correctors for the general MsFEM framework is as follows.

Definition 17. For all K ∈ TH , for any 0 ≤ α ≤ d, we introduce the function χε,α,e
SK

∈ VK ,0 as the
unique solution to the corrector problem

∀ w ∈VK ,0, sεK

(
χε,α,e

SK
, w

)
=

{−sεK (1, w) if α= 0,

−sεK

(
xα−xαc,K , w

)
if 1 ≤α≤ d .

(31)

The DOF-extended numerical corrector χε,α,e
K is defined as the restriction of χε,α,e

SK
to K , extended

to all of Ω by 0.

Note that the above definition introduces one more numerical corrector than introduced
in (11) (namely the corrector for α = 0). The precise definition of the numerical correctors is
chosen such that the analogous expansion of (10) for the general framework (see (36)) leads to
a PDE for the multiscale basis functions analogous to (5); we show this in Lemma 27 and (for
a second oversampling strategy introduced below) in Lemma 28. In the following example, we
see that Definition 17 is indeed a generalization of the numerical correctors defined by (11) in
Section 2.4.

Example 18 (MsFEM-lin for diffusion problems). We consider VH = V L
H and Γ = ΓL from

Definition 11. For the diffusion problem (1), we have aε = aε,diff and we set sεK = aε,diff
K (see

Example 8). The sampling space for the MsFEM-lin is defined as

VK =V L
K := {

v ∈ H 1(SK )
∣∣ ∃ w ∈P1(SK ) such that v |∂SK = w |∂SK

}
.

Then the sampling test space V L
K ,0 is the space H 1

0 (SK ). In this case, it holds aε,diff
K (1, w) = 0 for

all w ∈V L
K ,0. Consequently, the DOF-extended numerical corrector χε,0,e

K is identically equal to 0;
we obtain indeed exactly d numerical correctors as in Section 2.4. For the non-trivial numerical
correctors, Definition 17 corresponds to the weak formulation of the following boundary value
problem:

−div
(

Aε∇χε,α,e
SK

)
= div

(
Aεeα

)
in SK , χε,α,e

SK
= 0 on ∂SK , (32)

which is clearly well-posed.

Example 19 (MsFEM-CR for diffusion problems). Taking aε, aεK and sεK as in the previous
example, we construct the MsFEM-CR with the sampling space V C R

K := H 1(SK ). With VH = V C R
H

and Γ = ΓC R from Definition 11, the corrector problem (31) for α = 0 reduces to χε,0,e
K = 0, as in

Example 18. For 1 ≤ α ≤ d , the DOF-extended numerical corrector χε,α,e
K is obtained from the

boundary value problem:

−div
(

Aε∇χε,α,e
SK

)
= div(Aεeα) in SK ,

n⃗ · Aε∇χε,α,e
SK

=−n⃗ · Aεeα on each h ∈Fa(SK ),

n⃗ · Aε∇χε,α,e
SK

= ch − n⃗ · Aεeα on each h ∈Fd (SK ),
1

|h|
∫

h
χε,α,e

SK
= 0 for each h ∈Fd (SK ),

(33)

where n⃗ denotes the outward unit vector on ∂SK and ch is a constant whose value is uniquely
determined by the above problem. We note that the condition for the flux on the additional faces
of SK is entirely determined by the right-hand side in (31), whereas the flux on the dilated faces
of SK involves an additional constant, due to the fact that the test functions in V C R

K ,0 cannot take
arbitrary values on the dilated faces. Indeed, their mean vanishes on these faces according to
Definition 16.
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When SK = K and when the faces of K do not lie on ∂Ω, this corresponds to the setting of the
original MsFEM-CR defined in [9]. The latter work also provides an alternative characterization
of the multiscale Crouzeix–Raviart space.

When a face e of K lies on ∂Ω, the basis functions that we will define below do not satisfyφεe = 0
on e, but only satisfy a weak boundary condition in the average sense on e (and so does the
corresponding MsFEM approximation to (27) defined below). This does not correspond to the
original definition of the MsFEM-CR in [9,32]. The MsFEM-CR with local boundary conditions as
defined here was studied in [33–35].

Remark 20. In both Examples 18 and 19, the numerical corrector χε,0,e
K vanishes, because

sεK (1, w) = 0 for all w in the sampling test space. This is no longer the case e.g. for an MsFEM
for advection-diffusion problems in which the sampling problem uses the skew-symmetrized
bilinear form defined in (29). In this case, the numerical corrector χε,0,e

K does not vanish. In the
corresponding effective numerical scheme that we will derive in (52), this leads to a term of
order 0 even if such a term is not present in the advection-diffusion equation itself.

When Sk = K (i.e., in the absence of oversampling), the DOF operator allows us to prescribe
certain continuity properties on the faces of the mesh elements K . More precisely, when the
MsFEM-lin with DOF operator ΓL is employed, the numerical correctors χε,α,e

K vanish at the
vertices of the mesh, and, with the correct choice of sampling space (see Example 18), they vanish
on all faces of K and are thus continuous on Ω. When the MsFEM-CR with DOF operator ΓC R is
considered, we obtain weak continuity of the numerical correctors over all faces of the mesh. The
definition of the multiscale basis functions that we give below (see Definition 26, in the vein of the
expansion (10)) shows that the continuity properties of the P1 basis functions of the underlying
P1 space are not perturbed when building the multiscale basis functions.

In the general case, when the oversampling patch SK is larger than K , we cannot preserve any
of these continuity properties if we use DOF-extended local problems for our local computations,
since the values on ∂K are not controlled by the degrees of freedom Γ(SK , ·) on ∂SK . Therefore, we
introduce another variant of the local problems to define DOF-continuous numerical correctors
in the next section.

4.3.4. Numerical correctors: second oversampling strategy

Definition 21. Let K ∈TH and let VK and sεK be a sampling space and sampling form, respectively,
according to Definition 16. Additionally, suppose that the operator Γ(K , ·) is well-defined on VK .
Then a DOF-continuous local problem is to find v ∈VK such that{

sεK (v, w) = 〈g , w〉 for all w ∈VK ,0,

Γ(K , v) = given,
(34)

for some g ∈ (H 1(SK ))′.

Definition 22. Suppose any DOF-continuous local problem in Definition 21 is well-posed. Then
we introduce, for all K ∈ TH and all 0 ≤ α ≤ d, the functions χε,α,c

SK
as the unique functions

in VK with Γ(K ,χε,α,c
SK

) = 0 satisfying the corrector problem (31). We define the DOF-continuous
numerical correctors χε,α,c

K as the restriction of χε,α,c
SK

to K , extended to all of Ω by 0.

We emphasize that the local problems of Definitions 17 and 22 use test functions w in the same
space VK ,0. This means that the test functions satisfy Γ(SK , w) = 0 rather than Γ(K , w) = 0. The
difference between DOF-extended and DOF-continuous numerical correctors is that the former
satisfy Γ(SK ,χε,α,e

K ) = 0, whereas the latter satisfy Γ(K ,χε,α,c
K ) = 0.

Remark 23. Clearly, when SK = K , there is no difference between the DOF-extended and
DOF-continuous problems (30) and (34). We shall in this case simply refer (30) (or (34)) as
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local problems, and we write χε,α,•
K = χε,α

K for the numerical correctors of MsFEMs without
oversampling.

Example 24 (MsFEM-lin for diffusion problems). Continuing Example 18, consider now the
DOF-continuous numerical corrector χε,α,c

K . Equation (34) solves the following problem for 1 ≤
α≤ d : there exists w ∈P1(SK ) such that

−div
(

Aε∇χε,α,c
K

)= div
(

Aεeα
)

in SK , χε,α,c
K = w on ∂SK , χε,α,c

K = 0 at the vertices of K .

The boundary condition on ∂SK is complemented by a condition at the vertices of K . Except
when Aε is constant (and a solution is χε,α,c

K = 0), it is not evident whether a solution to this
problem exists. For α= 0, the numerical corrector χε,0,c

K vanishes, as in the DOF-extended case.

Example 25 (MsFEM-CR for diffusion problems). For the MsFEM-CR considered in Exam-
ple 19, the DOF-continuous numerical correctors satisfy the same problem (33) (for 1 ≤ α ≤ d)
as the DOF-extended numerical correctors, but with the average condition (the final equation
in (33)) replaced by 1

|h|
∫

h χ
ε,α,c
K = 0 for each h ∈F (K ). As we saw for the MsFEM-lin in Example 24,

this is not a standard boundary value problem on SK . For the caseα= 0, we have χε,0,c
K = 0, which

clearly satisfies the constraints 1
|h|

∫
h χ

ε,0,c
K = 0 for each h ∈F (K ).

Examples 18 and 19 show that a DOF-extended local problem is typically equivalent to a
PDE with boundary conditions on SK . Under reasonable assumptions, these problems have a
unique solution as required by Definition 16. We have seen in Examples 24 and 25 that this is not
the case for DOF-continuous problems, for which one finds some boundary conditions on ∂SK

(because the degrees of freedom of test functions in VK ,0 are prescribed on SK ) and another set of
conditions on ∂K that are explicitly imposed through the degrees of freedom on K in (34). Well-
posedness is not obvious in general, and cannot always be deduced from well-posedness of the
DOF-extended counterpart (30). We address the well-posedness of DOF-continuous problems in
more detail in Section 4.3.5. The advantage of DOF-continuous oversampling is that it imposes
certain continuity properties on the multiscale basis functions, and we will see in Section 7 that
it yields better numerical approximations than DOF-extended oversampling.

4.3.5. Well-posedness of DOF-continuous numerical correctors

We have seen in Examples 24 and 25 that DOF-continuous local problems lead to non-
standard boundary conditions. This poses not only a theoretical issue, but also a computational
challenge. To complete our study of the general MsFEM framework, we now present a computa-
tional strategy to obtain the DOF-continuous numerical correctors, and we use this strategy to
discuss the well-posedness of the associated local problems.

In Definition 16 we assume the well-posedness of DOF-extended problems, and we have
seen in Examples 18 and 19 that this is a natural assumption. It is also natural to assume
that we can compute DOF-extended numerical correctors numerically. We compute the DOF-
continuous numerical correctors from the DOF-extended numerical correctors, by subtracting
a linear combination of suitable functions W β from the DOF-extended numerical correctors.
The W β must all satisfy the homogeneous equation sεK (W β, w) = 0 for all w ∈ VK ,0, in order not
to perturb the local problem (31) that is already satisfied by both types of numerical correctors.
We shall use the functions W 0 := 1+χε,0,e

SK
and W β := xβ− xβc,K +χε,β,e

SK
for 1 ≤ β≤ d , where χε,β,e

SK
is defined in Definition 17. The precise strategy is as follows.

Fix 0 ≤ α ≤ d . We look for coefficients cα0 , . . . , cαd such that χε,α,c
SK

= χε,α,e
SK

−∑d
β=0 cα

β
W β on SK ,

where we recall that χε,α,c
SK

is defined by Definition 22. Note that both sides of the equation clearly
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satisfy (31). The desired equality thus holds if and only if Γ(K ,χε,α,e
SK

−∑d
β=0 cα

β
W β) = 0. Since the

DOF operators are linear, this leads to the linear system

 | | |
Γ(K ,W 0) Γ(K ,W 1) . . . Γ(K ,W d )

| | |


︸ ︷︷ ︸

=:M


cα0
cα1
...

cαd

= Γ
(
K ,χε,α,e

SK

)
. (35)

Invertibility of the matrixM is thus a sufficient condition for the existence of all DOF-continuous
numerical correctors, and the resolution of the linear system (35) for each α (where all DOF-
extended numerical correctors are replaced by their numerical approximation) allows to com-
pute the DOF-continuous numerical correctors numerically.

Before studying the invertibility of the matrix M in a few special cases, let us consider the
matrix composed of the degrees of freedom on SK , i.e., the matrix

M̃ :=
 | | |
Γ

(
SK ,W 0

)
Γ

(
SK ,W 1

)
. . . Γ

(
SK ,W d

)
| | |

 .

By definition of the functions χε,β,c
SK

, we have Γ(SK ,W β) = Γ(SK , xβ − xβc,K ) for 1 ≤ β ≤ d , and

Γ(SK ,W 0) = Γ(SK ,1). Note that the constant function together with the coordinate functions xβ−
xβc,K (1 ≤β≤ d) span P1(SK ). Since Γ(SK , ·) is a bijection, the vectors Γ(SK ,W 0), . . . , Γ(SK ,W d ) are

linearly independent. Hence the matrix M̃ is invertible. One may hope that the linear indepen-
dence of the vectors Γ(SK ,W β) is preserved for the degrees of freedom on the interior bound-
ary ∂K instead of ∂SK , yielding invertibility of M. We found this to hold for all numerical tests
that we performed, involving both the MsFEM-lin and the MsFEM-CR.

We can prove invertibility of M in a few special cases. When sεK is the sampling form that was
used in Example 18 (corresponding to a diffusion problem; we will consider this case until the
end of this section) and if Aε is constant, all numerical correctors vanish on SK and the foregoing
argument for the matrix M̃ shows invertibility ofM.

In the periodic setting (see Section 2.7), even though Aε itself is not constant, its homogenized
limit A⋆ is. In this case, the χε,β,e

SK
converge to zero weakly in H 1(SK ). (We show this in Lemma 45

in the absence of oversampling, but the argument can be generalized to DOF-extended oversam-
pling.) Now consider the MsFEM-CR. The weak convergence of the χε,β,e

SK
in H 1(SK ) ensures weak

convergence on each face of K in the H 1/2-norm by continuity of the trace operator. Since the
embedding of H 1/2(∂K ) in L2(∂K ) is compact, the χε,β,e

SK
converge to 0 strongly in L2 on each face

of K . Consequently, the degrees of freedom Γ(K ,χε,β,e
SK

) (the averages on the faces of K ) converge
to zero as ε→ 0. Thus,

Γ
(
K ,W 0)→ Γ(K ,1) and Γ

(
K ,W β

)
→ Γ

(
K , xβ−xβc,K

)
as ε→ 0 for all 1 ≤β≤ d

and, by the above argument for the matrix M̃, the matrixM is invertible in this limit. By continuity
of the determinant function, the matrix M is invertible when ε is small enough, and the DOF-
continuous basis functions exist in this regime.

The study of the DOF-continuous numerical correctors for the MsFEM-lin is more delicate,
since pointwise operations are involved in evaluating the degrees of freedom, which are ill-
defined on H 1(SK ). One can invoke the De Giorgi–Nash result, which can be found e.g. in [14,
Theorem 8.22], to see that the multiscale basis functions, obtained from the numerical correctors
in Definition 26 below, are in fact continuous for any bounded diffusion tensor. (See Example 29
for a definition of the multiscale basis functions for the MsFEM-lin independent of the numerical
correctors.) Pointwise evaluation is then justified. It would therefore be convenient to study
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the DOF-continuous basis functions directly, without the intermediate step of the numerical
correctors. We do not further pursue this topic here.

4.4. The multiscale basis functions

We can now define the multiscale basis functions for the approximation of the abstract prob-
lem (27) in terms of the numerical correctors. We recall that in Section 2.2, the numerical correc-
tors were derived from the definition of the basis functions. We give an equivalent definition of
the multiscale basis functions, independent of the numerical correctors, in Lemmas 27 and 28.
Recall thatφP1

1 , . . . , φP1
N is a basis of the space VH (see Definition 12). We can suppose that the first

N0 basis functions form a basis of VH ,0. The following definition is the generalization of (10) to
the general MsFEM framework.

Definition 26. For each i = 1, . . . , N , the multiscale basis function φεi is defined by

∀ K ∈TH , φεi
∣∣
K = φ

P1
i

∣∣∣
K
+φP1

i (xc,K )χε,0,•
K +

d∑
α=1

∂α

(
φ
P1
i

∣∣∣K

)
χε,α,•

K , (36)

where • = e corresponds to DOF-extended multiscale basis functions and • = c corresponds to DOF-
continuous multiscale basis functions.

The DOF-extended multiscale basis functions satisfy a variational problem on the oversam-
pling patches SK as shown by the following lemma.

Lemma 27. Let K be any mesh element and let 1 ≤ i ≤ N . Consider an MsFEM with DOF-extended
basis functions. Define an extension of φεi from K to SK by

φ̂εi =
�
φ
P1
i

∣∣∣
K
+φP1

i

(
xc,K

)
χε,0,e

SK
+

d∑
α=1

∂α

(
φ
P1
i

∣∣∣K

)
χε,α,e

SK
, in SK , (37)

where �
φ
P1
i |K denotes the affine extension of φP1

i |K to SK , and χε,α,e
K is as in Definition 17. Then φ̂εi

is the unique solution in VK to 
sεK

(
φ̂εi , w

)
= 0 for all w ∈VK ,0,

Γ
(
SK , φ̂εi

)
= Γ

(
SK ,

�
φ
P1
i

∣∣∣
K

)
.

(38)

In the case of the MsFEM-lin for the diffusion problem (1), problem (38) with SK = K coincides
with the definition of the multiscale basis functions in (5); see Example 29.

Proof. Problem (38) has a unique solution in view of Definition 16. It thus suffices to show that φ̂εi
satisfies (38). Since the numerical correctors χε,α,e

K belong to VK ,0 for all 0 ≤ α ≤ d , it is clear
from (37) that

Γ
(
SK , φ̂εi

)
= Γ

(
SK ,

�
φ
P1
i

∣∣∣
K

)
.

Inserting (37) into (38) and applying (31) to all χε,α,e
K , we find, for any test function w ∈VK ,0,

sεK

(
φ̂εi , w

)
= sεK

( �
φ
P1
i

∣∣∣
K

, w

)
+φP1

i

(
xc,K

)
sεK

(
χε,0,e

SK
, w

)
+

d∑
α=1

(
∂αφ

P1
i

)∣∣∣
K

sεK

(
χε,α,e

SK
, w

)
= sεK

( �
φ
P1
i

∣∣∣
K

, w

)
−φP1

i

(
xc,K

)
sεK (1, w)−

d∑
α=1

(
∂αφ

P1
i

)∣∣∣
K

sεK

(
xα−xαc,K , w

)
= sεK

( �
φ
P1
i

∣∣∣
K

, w

)
− sεK

(
φ
P1
i

(
xc,K

)+ d∑
α=1

(
∂αφ

P1
i

)∣∣∣
K

(
xα−xαc,K

)
, w

)
.
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Here we use that sεK is a bilinear form on VK , that all piecewise affine functions are contained
in VK according to Definition 16 (this ensures that φ̂εi indeed lies in the domain of sεK ), and the

property that ∇φP1
i is piecewise constant. Finally, we use (20) for ϕ= φ̂P1

i to conclude that

sεK

(
φ̂εi , w

)
= sεK

( �
φ
P1
i

∣∣∣
K

, w

)
− sεK

( �
φ
P1
i

∣∣∣
K

, w

)
= 0,

which establishes the desired variational formulation satisfied by φ̂εi . □

If the DOF-continuous problems (34) are well-posed, we obtain by the same arguments the
following result for DOF-continuous multiscale basis functions.

Lemma 28. Let K be any mesh element and let 1 ≤ i ≤ N . Assume that any DOF-continuous local
problem (34) is well-posed. Consider an MsFEM with DOF-continuous basis functions. Define an
extension of φεi from K to SK by

φ̂εi =
�
φ
P1
i

∣∣∣
K
+φP1

i

(
xc,K

)
χε,0,c

SK
+

d∑
α=1

∂α

(
φ
P1
i

∣∣∣
K

)
χε,α,c

SK
, in SK ,

where χε,α,c
K is as in Definition 22, and �

φ
P1
i |K is as defined in Lemma 27. Then φ̂εi is the unique

solution in VK to sεK

(
φ̂εi , w

)
= 0 for all w ∈VK ,0,

Γ
(
K , φ̂εi

)
= Γ

(
K ,φP1

i

)
.

(39)

Example 29 (MsFEM-lin for diffusion problems). In the setting of Example 18, any DOF-
extended multiscale basis function φεi for the MsFEM-lin constructed in (38) is obtained, in each
mesh element K , as the restriction of a function φ̂εi , which is the unique solution in H 1(SK ) to

−div
(

Aε∇φ̂εi
)
= 0 in SK , φ̂εi = φ̂

P1
i on ∂SK .

For a DOF-continuous basis function, φ̂εi solves the same PDE in SK , is affine on ∂SK , and satisfies

φ̂εi (x j ) =φP1
i (x j ) at all vertices x j of K .

Example 30 (MsFEM-CR for diffusion problems). In the continuation of Example 19, the DOF-
extended multiscale basis function φεi for the MsFEM-CR is the restriction to K of φ̂εi , the unique
solution in H 1(SK ) to 

−div
(

Aε∇φ̂εi
)

= 0 in SK ,

n⃗ · Aε∇φ̂εi = 0 on each h ∈Fa(SK ),

n⃗ · Aε∇φ̂εi = ch on each h ∈Fd (SK ),
1

|h|
∫

h
φ̂εi = 1

|h|
∫

h
φ̂
P1
i for each h ∈Fd (SK ),

where the constants ch are uniquely determined by the problem. We recall that the sets of
faces Fa(SK ) and Fd (SK ) are defined in Section 4.3.2. For DOF-continuous basis functions, the
last condition is applied to the faces h ∈F (K ) (and all other conditions remain unchanged).

Our general framework allows two characterizations of the multiscale basis functions,
namely (36) and (38) or (39), as was the case for the MsFEM studied in Section 2.2 (where φεi
is given by (5) or (10)). The essential advantage of (36) is that the microscale is fully encoded in
the numerical correctors χε,α,•

K , that can be computed element per element without any global
information. In particular, the global index i of the multiscale basis function φεi is irrelevant for
the computation of the numerical correctors. The expression in (36) is therefore the crucial rela-
tionship that we will employ to develop non-intrusive MsFEMs within the general framework in
Section 5, just as was (10) in Sections 2.4 and 2.5.
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The second formulation of the multiscale basis functions, as solutions to the local prob-
lems (38) or (39), provides a more direct interpretation of the multiscale basis functions in terms
of the sampling form chosen. It also gives a relation between the degrees of freedom of the P1

basis functions and the associated multiscale basis function. This is useful in particular for the
well-posedness of the MsFEM, that we study in Lemma 34.

Remark 31. Our definition of the multiscale basis functions in (36) is reminiscent of the Varia-
tional Multiscale Method, a framework developed in [36,37] to adapt Galerkin approximations on
low-dimensional spaces to the presence of multiscale features. In this context, our formulation
of the MsFEM also exhibits a link with residual-free bubbles, see e.g. [37–39].

Remark 32. The first introduction of the MsFEM in [4] corresponds to the idea of oversampling
with DOF-continuous basis functions. Although their existence cannot be established in general,
they are computed numerically by taking linear combinations of DOF-extended basis functions
(following an analogous strategy to the one we discussed in Section 4.3.5). The MsFEM with DOF-
extended basis functions is studied in the works [40, 41] dealing with the convergence analysis of
the MsFEM-lin with oversampling.

Let us also note that the combination of Crouzeix-Raviart MsFEM and oversampling has, to
the best of our knowledge, not yet been proposed in the literature. This method, for which the
basis functions are given explicitly in Example 30, is a natural by-product of the identification of
the abstract MsFEM framework.

4.5. The global problem

We can now define the multiscale trial and test spaces, respectively V ε
H and V ε

H ,0, as follows:

V ε
H = {

φεi
∣∣ 1 ≤ i ≤ N

}
, V ε

H ,0 =
{
φεi

∣∣ 1 ≤ i ≤ N0
}

.

We recall that we have assumed the first N0 basis functions of VH to form a basis of VH ,0 in Sec-
tion 4.4. Note that we only use V ε

H ,0 in the present section, because (27) is posed with homo-
geneous Dirichlet boundary conditions, but that the larger space V ε

H is useful for more general
boundary conditions (see Section 5.3). Applying (36), we have the equivalent characterization in
terms of the P1 space VH ,

V ε
H =

{
vεH = vH + ∑

K ∈TH

(
vH (xc,K )χε,0,•

K +
d∑
α=1

∂α (vH ||K )χε,α,•
K

)∣∣∣∣∣ vH ∈VH

}
.

Definition 33. Let VH be an underlying P1 space defined in Definition 10 with the associated
DOF operator Γ from Definition 11 and Definitions 14-15. Define for each mesh element K ∈ TH

an oversampling patch (Definition 13), a sampling space and sampling form in accordance with
Definition 16. Let the multiscale basis functions φεi be given as in Definition 26. Then a Multiscale
Finite Element Method (MsFEM) for problem (27) is: find uε

H ∈V ε
H ,0 such that

∀ vεH ∈V ε
H ,0,

∑
K ∈TH

aεK
(
uε

H , vεH
)= F

(
vεH

)
. (40)

In the following lemma, we investigate the well-posedness of the MsFEM.

Lemma 34. Consider an MsFEM without oversampling, or an MsFEM with oversampling us-
ing DOF-continuous basis functions (assuming the associated basis functions are well-defined).
When aε satisfies (28), the MsFEM (40) has a unique solution.

Proof. Note that, with DOF-continuous oversampling, but also without oversampling, the multi-
scale basis functions satisfy (39). In particular, all degrees of freedom of uε

H related to the bound-
ary vanish. Also note that, the dimension of V ε

H ,0 being finite, it suffices to show that uε
H = 0 is the

unique solution to problem (40) with F = 0.
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If 0 = F (uε
H ) = aε(uε

H ,uε
H ), it follows from (28) that uε

H is piecewise constant. Let us write
uε

H = ∑N0
i=1αi φ

ε
i for some coefficients αi ∈ R and introduce the function uH = ∑N0

i=1αi φ
P1
i ∈ VH .

Because of (39), we have Γ(K ,uε
H ) = Γ(K ,uH ) for all mesh elements K . Since uε

H is piecewise
constant and Γ(K , ·) is a bijection from P1(K ) to Rd+1 (recall Definition 11), it follows that uε

H =
uH . In particular, the multiscale function uε

H in fact belongs to the underlying P1 space VH .
We remarked immediately below Definition 10 that, for either of the two spaces VH = V L

H
or V C R

H , the above implies that uε
H is constant throughout Ω. Since the degrees of freedom of uε

H
associated to the boundary vanish, we readily deduce that uε

H = 0. □

We do not know of the existence of a result on the well-posedness of MsFEMs with oversam-
pling using DOF-extended multiscale basis functions. In [41], the authors establish an inf-sup re-
sult for a variant of the MsFEM-lin-OS with P1 test functions (see also Definition 35). This result
is obtained for a periodic diffusion coefficient in the limit of sufficiently small ε.

5. Non-intrusive MsFEM for the general framework

We show in this section how to develop a non-intrusive approach for the general MsFEM frame-
work of Section 4. We have seen in Lemma 5 that, for a particular MsFEM variant, the non-
intrusive Galerkin MsFEM approach coincides with a Petrov-Galerkin MsFEM. This does not hold
for all MsFEMs in the general framework. We first develop a non-intrusive MsFEM approach for
a Petrov–Galerkin MsFEM in the general framework. We show that the non-intrusive approach
for the Petrov–Galerkin MsFEM is actually equivalent to the Petrov–Galerkin MsFEM itself. In a
second step, we introduce a non-intrusive approximation of the Galerkin MsFEM. Before doing
so, let us summarize the main steps of Sections 2.4 and 2.5 to obtain a non-intrusive MsFEM
approach:

(1) the expansion (10) allows to recast the matrix Aε of the linear system for the MsFEM as
the matrixAP1 associated to the P1 discretization of an effective problem;

(2) we approximate the right-hand sideFε of the MsFEM problem by the right-hand sideFP1

of this P1 discretization;
(3) the post-processing step (21) applied to the P1 approximation of the effective problem

yields the MsFEM approximation.

5.1. The Petrov–Galerkin MsFEM

We recall that the abstract continuous problem for which we developed the MsFEM in Section 4 is
given by (27) and that it can be rewritten in terms of the bilinear forms aεK satisfying (28). Petrov-
Galerkin variants of the multiscale finite element method with P1 test functions were previously
studied in [24, 41]. In our general MsFEM framework, the adaptation of Definition 33 to a Petrov-
Galerkin MsFEM is the following.

Definition 35. Let VH be an underlying P1 space defined in Definition 10 with the associated
DOF operator Γ from Definition 11 and Definitions 14-15. Define for each mesh element K ∈ TH

an oversampling patch (Definition 13), a sampling space and sampling form in accordance with
Definition 16. Let the multiscale basis functions φεi be given as in Definition 26. Then a Petrov-
Galerkin Multiscale Finite Element Method (PG-MsFEM) for problem (27) is: find uε

H ∈ V ε
H ,0 such

that

∀ vH ∈VH ,0,
∑

K ∈TH

aεK
(
uε

H , vH
)= F (vH ). (41)



28 Rutger A. Biezemans, Claude Le Bris, Frédéric Legoll and Alexei Lozinski

When confusion may arise, we shall refer to the MsFEM defined in Definition 33 as the
Galerkin MsFEM (G-MsFEM). To study well-posedness of the PG-MsFEM, it is most convenient to
relate this method to the G-MsFEM. Therefore, we postpone well-posedness of (41) to Lemma 38.

We now execute step 1 of the summary of the non-intrusive MsFEM approach at the beginning
of this section. The matrixAε of the linear system associated to (41) is defined by

Aε
j ,i =

∑
K ∈TH

aεK

(
φεi , φP1

j

)
, 1 ≤ i , j ≤ N0. (42)

To find an effective P1 formulation with the same linear system, we will use the definition (36) of
the multiscale basis functions in the general framework, but first we combine it with (20) applied
to ϕ=φP1

i to rewrite (36) as

φεi
∣∣
K =φP1

i

(
xc,K

)+φP1
i

(
xc,K

)
χε,0,•

K +
d∑
α=1

∂αφ
P1
i

∣∣∣
K

(
xα−xαc,K +χε,α,•

K

)
=φP1

i

(
xc,K

)
Λε,0

K +
d∑
α=1

∂αφ
P1
i

∣∣∣
K
Λε,α

K ,

(43)

where

Λε,0
K := 1+χε,0,•

K , Λε,α
K := xα−xαc,K +χε,α,•

K , (44)

for all 1 ≤ α ≤ d and each K ∈ TH . We recall that • ∈ {e,c} indicates the choice of DOF-extended
or DOF-continuous basis functions. Inserting (43) into (42) for φεi and (20) for ϕ=φP1

j yields

Aε
j ,i =

∑
K ∈TH

(
φ
P1
i

(
xc,K

)
aεK

(
Λε,0

K ,1
)
φ
P1
j

(
xc,K

)+ d∑
α=1

(
∂αφ

P1
i

)∣∣∣
K

aεK
(
Λε,α

K ,1
)
φ
P1
j

(
xc,K

)
+

d∑
β=1

φ
P1
i

(
xc,K

)
aεK

(
Λε,0

K , xβ−xβc,K

) (
∂βφ

P1
j

)∣∣∣
K

+
d∑

α,β=1

(
∂αφ

P1
i

)∣∣∣
K

aεK

(
Λε,α

K , xβ−xβc,K

) (
∂βφ

P1
j

)∣∣∣
K

)
,

and therefore,

Aε
j ,i =∑

K ∈TH

|K |
(
Mφ

P1
i φ

P1
j

)
(xc,K )+

∫
K
φ
P1
j B

1 ·∇φP1
i +φP1

i B
2 ·∇φP1

j +∇φP1
j · A∇φP1

i , (45)

where we have defined the effective mass M , (adjoint) advection vector B
1

and B
2

, and the
effective diffusion tensor A, for all 1 ≤α,β≤ d and for each K ∈TH , as

M
∣∣∣
K
= 1

|K | aεK

(
Λε,0

K ,1
)
, B

1
α

∣∣∣
K
= 1

|K | aεK
(
Λε,α

K ,1
)
,

B
2
β

∣∣∣
K
= 1

|K | aεK

(
Λε,0

K , xβ−xβc,K

)
, Aβ,α

∣∣∣
K
= 1

|K | aεK

(
Λε,α

K , xβ−xβc,K

)
.

(46)

Note that M , B
1

, B
2

and A are all piecewise constant quantities. All integrals in (45) can be
computed exactly by evaluating the integrand at the centroid. With this quadrature rule, we ob-
serve that the term |K |(Mφ

P1
i φ

P1
j )(xc,K ) also equals the numerical approximation of the integral∫

K Mφ
P1
i φ

P1
j .
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The new expression (45) for the matrix of the linear system motivates us to introduce the
effective bilinear forms aK defined on H 1(K )×H 1(K ) by

aK (u, v) =
∫

K
∇v · A∇u + v

(
B

1 ·∇u
)
+u

(
B

2 ·∇v
)
+M u v, for all u, v ∈ H 1(K ), (47)

and the associated P1 Galerkin approximation on the space VH ,0:

Find uH ∈VH ,0 such that
∑

K∈TH

aK (uH , vH ) = F (vH ) for all vH ∈VH ,0. (48)

This discrete problem leads to a linear system with the matrix

A
P1
j ,i = a

(
φ
P1
i , φP1

j

)
= ∑

K ∈TH

aK

(
φ
P1
i , φP1

j

)
, 1 ≤ i , j ≤ N0.

The identity (45) thus implies the following result, which generalizes Lemma 2 to the PG-MsFEM
in the general framework.

Lemma 36. The matrices Aε and AP1 are identical if the integrals in (47) are evaluated at the
centroid of each mesh element K for the computation of AP1 . Then the PG-MsFEM (41) coincides
with the resolution of the effective problem (48) combined with the post-processing step

uε
H

∣∣
K = uH (xc,K )Λε,0

K +
d∑
α=1

∂αuH |K Λε,α
K . (49)

Note that Step 2 of the summary at the beginning of this section is irrelevant for the
PG-MsFEM. The computation of the right-hand side in (41) is clearly part of any standard FEM
software. We refer to Remarks 3 and 4 for some additional comments on the post-processing step.

The computational approach described by Lemma 36 naturally fits within the non-intrusive
workflow of Algorithm 2. The numerical correctors on line (4) are, of course, replaced by those
of Definition 17 or Definition 22. Line (6) is replaced by the computation of all effective quanti-
ties in (46), where Λε,α

K is related to the numerical correctors by (44). The online phase in line (8)
amounts to solving the P1 problem (48), where all integrations to construct the matrix of the lin-
ear system are to be performed by evaluation at the centroid. (This is not the case for the con-
struction of the right-hand side, however.) Finally, in the post-processing phase, we construct uε

H
from uH by virtue of (49).

Next we generalize the above expansions to design a non-intrusive approximation of the
G-MsFEM.

5.2. The non-intrusive Galerkin MsFEM

For the G-MsFEM (introduced in Definition 33), we need to replace the P1 test space VH ,0 of the
PG-MsFEM by the multiscale test space V ε

H ,0. The matrix of the linear system associated to (40) is
given by

A
ε,G
j ,i = ∑

K ∈TH

aεK

(
φεi ,φεj

)
, 1 ≤ i , j ≤ N0.

Upon inserting (36) for the test function φεj , we find, for all 1 ≤ i , j ≤ N0,

A
ε,G
j ,i =Aε

j ,i +
∑

K ∈TH

(
φ
P1
j

(
xc,K

)
aεK

(
φεi ,χε,0,•

K

)
+

d∑
β=1

(
∂βφ

P1
j

)∣∣∣
K

aεK

(
φεi ,χε,β,•

K

))
,

whereAε is the matrix of the Petrov–Galerkin MsFEM, see (42) and (45).
An effective formulation can again be derived by inserting (43) for the φεi . We obtain
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A
ε,G
j ,i =∑

K∈TH

|K |
(
M

G
φ
P1
i φ

P1
j

)
(xc,K )+

∫
K
φ
P1
j B

1,G ·∇φP1
i +φP1

i B
2,G ·∇φP1

j +∇φP1
j · A

G∇φP1
i , (50)

where the effective mass, (adjoint) advection vectors and diffusion tensor are given by (using
those defined in (46))

M
G∣∣∣

K
= M

∣∣∣
K
+ 1

|K | aεK

(
Λε,0

K ,χε,0,•
K

)
, B

1,G
α

∣∣∣
K

= B
1
α

∣∣∣
K
+ 1

|K | aεK

(
Λε,α

K ,χε,0,•
K

)
,

B
2,G
β

∣∣∣
K
= B

2
β

∣∣∣
K
+ 1

|K | aεK

(
Λε,0

K ,χε,β,•
K

)
, A

G
β,α

∣∣∣
K
= Aβ,α

∣∣∣
K
+ 1

|K | aεK

(
Λε,α

K ,χε,β,•
K

)
.

(51)

Again, these quantities are all piecewise constant.
The above computations lead to the introduction of the effective bilinear form aG = ∑

K ∈TH

aG
K

with

aG
K (u, v) =

∫
K
∇v · A

G∇u + v
(
B

1,G ·∇u
)
+u

(
B

2,G ·∇v
)
+M

G
u v. (52)

We formulate the following effective variational problem:

Find uH ∈VH ,0 such that
∑

K ∈TH

aG
K (uH , vH ) = F (vH ) for all vH ∈VH ,0. (53)

The associated linear system has coefficients AP1,G
j ,i = aG(φP1

i ,φP1
j ). We have the following ana-

logue of Lemma 36, which generalizes Lemma 2 to the G-MsFEM in the general framework.

Lemma 37. The matricesAε,G andAP1,G are identical if the integrals in (52) are evaluated at the
centroid of each mesh element K in the computation ofAP1,G.

Contrary to the matrices, the right-hand sides of the effective problem (53) and the Galerkin
MsFEM (40) are not equal in general. We apply step 2 formulated at the beginning of this section:
the right-hand side of the G-MsFEM is approximated by the right-hand side of the effective
problem to obtain an approximate, but non-intrusive, MsFEM. The non-intrusive G-MsFEM
becomes:

Find uε
H ∈V ε

H ,0 such that
∑

K∈TH

aεK

(
uε

H ,φεj

)
= F

(
φ
P1
j

)
for all 1 ≤ j ≤ N0. (54)

This problem is no longer a Galerkin approximation of (1), because different test spaces are used
for the bilinear and for the linear form. In view of Lemma 37, the non-intrusive MsFEM can
equivalently be formulated as

compute uH ∈VH ,0 solution to (53) and compute uε
H from uH by (49),

provided all integrals in (52) are evaluated at the centroid for the construction of the matrix of the
linear system in (53).

The latter formulation of the non-intrusive MsFEM immediately suggests how to effectively
implement the non-intrusive MsFEM in a non-intrusive way similar to Algorithm 2. For com-
pleteness, we provide the algorithm for the non-intrusive G-MsFEM in Algorithm 3.

The discussion surrounding Algorithm 2 regarding the advantages for the implementation of
this non-intrusive MsFEM approach also applies here.

Let us now comment on the well-posedness of the MsFEMs for the general framework intro-
duced above. We recall that the hypotheses of the general framework without oversampling, or
with DOF-continuous oversampling, provide well-posedness of the G-MsFEM (40) by Lemma 34.
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Algorithm 3 Non-intrusive G-MsFEM for the general framework

1: Let TH be the mesh used by the legacy code, let • ∈ {e,c} be the chosen oversampling variant

2: for all K ∈TH do
3: for 0 ≤α≤ d do
4: Solve for the applicable χε,α,•

K from Definition 17 or 22
5: end for
6: Compute the effective tensors defined in (51)
7: end for

8: Use the legacy code to construct the matrix AP1 by evaluating (52) at the centroid of each
mesh element and to solve for uH defined by (53)

9: Save
{
uH (xc,K )

}
K ∈TH

and {(∂αuH )|K }K ∈TH ,1≤α≤d

10: Obtain the MsFEM approximation uε
H from (49)

In this case, the non-intrusive approximation (54) is also well-posed, because the matrices associ-
ated to both MsFEM variants are the same. Regarding the PG-MsFEM (41), we can only establish
well-posedness if the associated matrix coincides with the matrix of the corresponding Galerkin
MsFEM. This is stated in the following lemma, which generalizes Lemma 5 to the general frame-
work.

Lemma 38. Consider a G-MsFEM as defined by Definition 33 without oversampling and sup-
pose that the sampling form sεK equals the local bilinear form aεK . Then the matrix associated to
this G-MsFEM coincides with the matrix associated to the corresponding PG-MsFEM of Defini-
tion 35. Consequently, the non-intrusive Galerkin MsFEM (54) coincides with the Petrov–Galerkin
MsFEM (41) and in particular, the Petrov–Galerkin MsFEM is well-posed.

Proof. To prove the lemma, we show that the matrices corresponding to the linear problems
defined in (54) and (41) are equal. Using that sεK = aεK , we have for all 1 ≤ i , j ≤ N0,

A
ε,G
j ,i −Aε

j ,i =
∑

K ∈TH

aεK

(
φεi ,φεj −φP1

j

)
= ∑

K ∈TH

sεK

(
φεi ,φεj −φP1

j

)
= 0. (55)

The last equality stems from the fact that the multiscale basis functions satisfy Γ(K ,φεi ) =
Γ(K ,φP1

i ) for all K , so that φεj −φP1
j ∈ VK ,0 (see (38) with SK = K and recall Definition 16 for the

sampling test space V ε
K ,0), and the variational problem in (38) (with SK = K ) shows that the above

quantity vanishes. □

5.3. Further extensions of the non-intrusive MsFEM

We sketch some other FEM settings to which we have applied the above strategy to develop non-
intrusive MsFEM approaches. For more details, we refer to [22].

Stabilized finite element formulations. In the context of advection-diffusion problems, stabi-
lized finite element formulations add mesh-dependent terms to a discrete variational formula-
tion (such as (40)) to remove numerical instabilities, for example caused by sharp boundary lay-
ers of the exact solution. See [10] for such a variant of the MsFEM and see [15, 42, 43] for the sta-
bilization of single-scale problems. The expansion (43) can also be inserted in these additional
terms to find a non-intrusive implementation of the associated MsFEM.

Petrov–Galerkin formulations. Other test spaces than the P1 space VH ,0 can be considered in
Petrov-Galerkin formulations. An example would be to use multiscale test functions that locally
solve the adjoint problem rather than the direct problem, introducing yet another bilinear form
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than sεK in (38) or (39). See e.g. [44]. An expansion of the kind (43) can still be found for such
test functions, with a suitably adapted definition of the numerical correctors. This way, a non-
intrusive formulation can be found using the techniques of this work.

Non-homogeneous Dirichlet conditions. Suppose that a legacy FEM code can provide a solu-
tion to an effective problem such as (48) posed on the space VH ,0 and complemented with non-
homogeneous Dirichlet conditions for uH on ∂Ω. This solution can directly be used to construct
a multiscale approximation uε

H ∈ V ε
H from (49). The translation of the Dirichlet condition to the

MsFEM approximation is as follows: if DOF-continuous oversampling is applied, the function uε
H

satisfies [Γ(K ,uε
H )] j = [Γ(K ,uH )] j for all degrees of freedom associated to the boundary. Here,

[Γ(K ,uH )] j is determined by the legacy code. When DOF-extended oversampling is used, the de-
grees of freedom associated to the boundary are equal to the sum of [Γ(K ,uH )] j and a perturba-
tion due to the fact that the degrees of freedom of the numerical correctors do not vanish.

Neumann conditions. To apply Neumann conditions on ∂Ω, one solves a Galerkin approxima-
tion of the variational formulation in the space V ε

H . The suitable adaptation of (40) can be ap-
proximated by a non-intrusive Galerkin MsFEM following the same methodology as above. The
effective P1 approximation that is obtained corresponds to the resolution of an effective PDE
with Neumann conditions, for which a legacy code can be used. In the case of the diffusion prob-
lem (1), the Neumann boundary condition in the effective problem is imposed on the effective
flux n⃗ · A∇uH , where A is defined in (12).

Parabolic equations. When a parabolic equation is discretized in time, problems of the
form (27) are typically obtained for each time step, but with a right-hand side that depends on
the solution of the previous time step. This term belongs to the space V ε

H , so it varies on the mi-
croscale and cannot be integrated numerically by the legacy code that operates on the coarse
mesh. The non-intrusive strategy of the foregoing sections cannot be applied directly to find a
non-intrusive MsFEM. In the vein of our non-intrusive approach, one could introduce an addi-
tional approximation by replacing the multiscale solution of the previous time step by its under-
lying P1 representation in the P1 space VH . Studying the effect of this approximation is beyond
the scope of the present work.

5.4. Intrusiveness of other multiscale methods

Some work on the formulation of effective P1 problems in multiscale methods, and the related
question of non-intrusive approaches, can be found in the literature. We discuss here the case of
the HMM and the LOD method in the context of numerical homogenization, and provide some
additional references to other fields at the end of the section.

First, the HMM is less intrusive than the original MsFEM, because its main objective is to
approximate uε on the coarse scale. The HMM directly proposes to solve a P1 problem on the
coarse scale, where effective coefficients of the P1 problem are defined in terms of the solutions
to local problems. This workflow corresponds to our non-intrusive MsFEM approach, and when
the local problems of the HMM coincide with the computation of the numerical correctors
introduced in this work, the HMM and the MsFEM for the pure diffusion problem are identical.
For more general problems, there is an important difference between the two methods. In the
MsFEM, the form of the effective equation and the definition of the effective coefficients follow
directly from the choice of basis functions, and thus from the choice of local problems. For the
HMM, the local problems and the effective equation are formulated independently, and the link
between the two is only justified heuristically, drawing inspiration from homogenization theory.

The LOD method aims at approximating uε at both the coarse and the microscale by the use of
multiscale basis functions, like the MsFEM. It is shown in [45] that a Petrov-Galerkin LOD method
(see also [46]) can, with some additional approximations, be recast as the P1 discretization of an



Rutger A. Biezemans, Claude Le Bris, Frédéric Legoll and Alexei Lozinski 33

appropriate coarse-scale problem. This opens the way to non-intrusive implementations in the
spirit of the present article. The LOD method and the MsFEM notably differ in the fact that the
LOD basis functions are defined on a patch around the vertices of the mesh that should generally
be taken larger than the support of the associated P1 functions. In contrast, the MsFEM uses
fully localized basis functions (even though they may have been computed using oversampling
patches), each of which has the same support as the corresponding P1 basis functions.

The question of non-intrusive implementations of multiscale algorithms is an interesting
and relevant question in many more fields of scientific computing than we can discuss here.
Beyond the field of finite element methods, we mention the multiscale finite volume method [47,
48], in which a non-intrusive coupling between the local and global computations is natural,
since the local computations lead to transmissibilities that can be used in a separate, global
finite volume simulator. Other than numerical homogenization methods, there are mixed finite
element methods for multiscale modelling [49–51] and domain decomposition techniques (such
as the generalized FEM, patches of finite elements, numerical zoom; see [52–54]), for which non-
intrusive approaches can e.g. be found in [55, 56]. Finally, we would like to mention the reduced
basis method for the efficient resolution of parameterized PDEs. Non-intrusive adaptations
of this method (both for finite element and finite volume schemes) have been proposed and
analyzed e.g. in [57–59].

6. Comparison of the classical and non-intrusive MsFEM for diffusion problems

We study in this section a particular setting within the general MsFEM framework, namely that of
MsFEMs for diffusion problems. We set in this section aεK = aε,diff

K defined in Example 8, and we

choose the sampling form sεK = aε,diff
K .

6.1. The general framework for diffusion problems

For the convenience of the reader, we first give an explicit description of the simplifications of the
general framework in the diffusion setting. In Definitions 17 and 22 for the numerical correctors,
Equation (31) reduces to

aε,diff
K

(
χε,α,•

SK
, w

)
=−aε,diff

K

(
xα, w

)
, (56)

for all w ∈ VK ,0 (where VK ,0 is the sampling test space for either the MsFEM-lin or the MsFEM-
CR; see Examples 18 and 19) when 1 ≤ α ≤ d , whereas χε,0,•

SK
= 0. (The notation χε,α

K will be used

in the absence of oversampling, see Remark 23.) This means that Λε,0
K = 1 in (43). Consequently,

regarding the formulation of the effectiveP1 problem, only the effective diffusion coefficient does
not vanish in (46) and (51). Its definition in (51) is identical to the formula in (12) for the applicable
choice of the numerical correctors.

The definition of the multiscale basis functions by (36) reduces to (10) (again upon replacing
the numerical correctors χε,α

K by the relevant ones for the MsFEM under consideration). Hence,
we can associate a multiscale counterpart in V ε

H to any vH ∈VH , given by

vεH = vH + ∑
K ∈TH

d∑
α=1

(∂αvH )|K χε,α,•
K . (57)

The non-intrusive MsFEM (54) becomes

Find uε
H ∈V ε

H ,0 such that
∑

K ∈TH

aε,diff
K

(
uε

H ,φεj

)
= F

(
φ
P1
j

)
for all 1 ≤ j ≤ N0. (58)

Lemma 38 now amounts to the following.
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Lemma 39. Let “MsFEM” refer to the MsFEM-lin or the MsFEM-CR, both without oversampling.
The non-intrusive Galerkin MsFEM (58) coincides with the following Petrov-Galerkin MsFEM:

Find uε
H ∈V ε

H ,0 such that
∑

K ∈TH

aε,diff
K

(
uε

H ,φP1
j

)
= F

(
φ
P1
j

)
for all 1 ≤ j ≤ N0, (59)

We will specify for all results in this section to which specific MsFEMs they apply among
the MsFEM-lin and the MsFEM-CR, with or without oversampling. Lemmas 40, 42 and 48 are
generalizations of results in [12], where the MsFEM-lin without oversampling is considered.

6.2. Convergence results

We estimate here the difference between the solutions to the (intrusive) Galerkin approxima-
tion (40) and the non-intrusive MsFEM (58), which coincides with the Petrov-Galerkin Ms-
FEM (59). We first show coercivity of the effective diffusion tensor A.

Lemma 40. Consider the MsFEM-lin or the MsFEM-CR, without oversampling, or the MsFEM-CR
with DOF-continuous oversampling. The effective tensor A defined by (12) with the appropriate
numerical correctors satisfies

∀ ξ ∈Rd , m|ξ|2 ≤ ξ · Aξ.

Here, m is the same coercivity constant as in (2).

Proof. Let ξ= (ξ1, . . . , ξd ) ∈Rd , and let K be any simplex of the mesh TH . We have

|K |ξ · A
∣∣∣
K
ξ=

d∑
α,β=1

aε,diff
K

(
ξα

(
xα+χε,α

K

)
, ξβ

(
xβ+χε,β

K

))
=

∫
K

(
ξ+∇χξ

)
· Aε

(
ξ+∇χξ

)
,

denoting by χξ the function χξ =∑d
α=1 ξαχ

ε,α
K . Using (2), we obtain

|K |ξ · A
∣∣∣
K
ξ≥ m

∫
K

∣∣∣ξ+∇χξ
∣∣∣2 ≥ m |K | |ξ|2 +2m

∫
K
ξ ·∇χξ.

Using an integration by parts, we see that
∫

K ξ · ∇χξ =
∫
∂K χ

ξn · ξ, where n is the unit outward
normal vector on ∂K . In the case of the MsFEM-lin, the function χξ vanishes on ∂K . In the case
of the MsFEM-CR with DOF-continuous oversampling, or without oversampling, the function χξ

has average zero on each face of K . Since the factor n · ξ is constant on each face, the integral
again vanishes. In conclusion, we have

∫
K ξ ·∇χξ = 0.

We thus obtain the inequality ξ · A|K ξ ≥ m|ξ|2. Since K ∈ TH is arbitrary here, this shows
coercivity of A and completes the proof. □

Coercivity of the effective tensor A implies coercivity of the bilinear form adiff on H 1
0 (Ω).

By an application of the Lax-Milgram Theorem, we conclude that the (continuous) effective
problem (14) is well-posed for the MsFEM-lin and the MsFEM-CR without oversampling, and
for the MsFEM-CR with DOF-continuous oversampling.

Remark 41. The proof of the above lemma does not extend to the MsFEM-lin with oversampling,
because there is no global information about χε,α

K on the faces of K .

The following lemma provides a variational characterization of the bijection (57).

Lemma 42. Consider the MsFEM-lin or the MsFEM-CR, both without oversampling. Let vεH ∈V ε
H .

The unique vH ∈VH for which (57) holds, is the unique solution in VH to the problem

∀ wH ∈VH , adiff (vH , wH ) = aε,diff(
vεH , wH

)
. (60)

In addition, we have, with the constants m and M from (2), the estimate

∥∇vH∥L2(TH ) ≤
M

m

∥∥∇vεH
∥∥

L2(TH ) .
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Proof. Let vH ∈ VH be the unique element of VH such that vεH and vH satisfy (57). Take any
wH ∈VH . Using that ∇vH and ∇wH are piecewise constant, we compute

aε,diff (
vεH , wH

)= ∑
K ∈TH

d∑
α,β=1

(
∂βwH

)∣∣
K aε,diff

K

(
xα+χε,α

K , xβ
)

(∂αvH ) |K .

For the MsFEM without oversampling, the numerical correctors belong to the sampling test
space VK ,0. We can thus use (56) to obtain

∀ 1 ≤α, β≤ d , aε,diff
K

(
xα+χε,α

K , xβ
)
= aε,diff

K

(
xα+χε,α

K , xβ+χε,β
K

)
.

Using the definitions of A in (12) and of adiff in (16) (we recall that these expressions hold true
here upon replacing the numerical correctors by those under consideration), we conclude that

aε,diff(
vεH , wH

)= ∑
K ∈TH

d∑
α,β=1

∫
K
∂βwH Aβ,α∂αvH = adiff (vH , wH ).

It follows that vH satisfies (60). In addition, in view of the coercivity of A established in Lemma 40
and by the Lax-Milgram Theorem, problem (60) uniquely characterizes vH .

The estimate on vH follows by testing the characterization (60) against wH = vH . This yields

m ∥∇vH∥2
L2(TH ) ≤ adiff (vH , vH ) = aε,diff(

vεH , vH
)= ∑

K ∈TH

∫
K
∇vH · Aε∇vεH

≤ M
∑

K ∈TH

∥∇vH∥L2(K )

∥∥∇vεH
∥∥

L2(K ) .

The first inequality follows from coercivity of A and the second inequality from the upper bound
on Aε in (2) and the Cauchy-Schwarz inequality. With a discrete Cauchy-Schwarz inequality, we
obtain

m ∥∇vH∥2
L2(TH ) ≤ M

∑
K ∈TH

∥∇vH∥L2(K )

∥∥∇vεH
∥∥

L2(K ) ≤ M ∥∇vH∥L2(TH )

∥∥∇vεH
∥∥

L2(TH ) .

The proof of Lemma 42 is completed upon simplifying by ∥∇vH∥L2(TH ). □

For the remainder of this section, we consider MsFEMs without oversampling. Let uε,G
H denote

the solution to the MsFEM approximation (40) (we use the superscript G to stress that this is
a Galerkin approximation) and let uε,PG

H denote the solution to the non-intrusive MsFEM (58)
(which is equivalent to the Petrov-Galerkin MsFEM (59), since we do not apply the oversampling
technique).

We first study the error uε,G
H − uε,PG

H when ε → 0. In this case, we do not need a rate of
convergence in H and we shall relax the condition f ∈ L2(Ω) to the condition f ∈ H−1(Ω).
Then the definition of the linear form F in (4) has to be adapted. Given f ∈ H−1(Ω), there exist
f0, f1, . . . , fd ∈ L2(Ω) such that

F (v) = ∑
K ∈TH

(∫
K

f0 v +
d∑
β=1

∫
K

fβ∂βv

)
,

which is in fact well-defined for any v ∈ H 1(TH ) and thus in particular on VH , the underlying
affine space for the MsFEM, and the multiscale space V ε

H .
We consider in Lemma 43 a sequence of diffusion tensors Aε that H-converges to a constant

diffusion tensor. This means that uε converges weakly in H 1(Ω) as ε→ 0 towards a function u⋆ ∈
H 1

0 (Ω), solution to the homogenized problem (25), and Aε∇uε* A⋆∇u⋆ weakly in L2(Ω).
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Lemma 43. Consider the MsFEM-lin or the MsFEM-CR, both without oversampling. Suppose that
(Aε)ε>0 is a sequence of matrices satisfying (2) that H-converges to a constant matrix. Let f ∈
H−1(Ω). Then ∥∥∥uε,G

H −uε,PG
H

∥∥∥
H 1(TH )

→ 0 as ε→ 0.

Remark 44. A rate of convergence can be obtained under some additional structural assump-
tions on Aε; see Lemma 50.

We need a few auxiliary results to establish Lemma 43. The first result below concerns the
convergence of the numerical correctors as ε→ 0.

Lemma 45. Suppose that Aε H-converges to a constant homogenized matrix A⋆. Consider the
MsFEM-lin or the MsFEM-CR, both without oversampling. Then, for all K ∈TH and all 1 ≤α≤ d,
we have χε,α

K * 0 weakly in H 1(K ) as ε→ 0.

Proof. We introduce for each α = 1, . . . , d the function τε,α = xα +χε,α
K . Then (56) implies the

equation −div(Aε∇τε,α) = 0 in K . For the MsFEM-lin, the boundary conditions of the local
problems for χε,α

K (see (32) with SK = K ) lead to τε,α = xα on ∂K . The boundary conditions
associated to the MsFEM-CR follow from (33) and are as follows: the flux n⃗ · Aε∇τε,α is constant
on each face of K (but may depend on ε) and

∫
h τ

ε,α = ∫
h xα for all faces h of K .

It follows that the homogenized limit τ⋆,α of τε,α satisfies the equation −div(A⋆∇τ⋆,α) = 0
in K . For the MsFEM-lin, the boundary condition for the homogenized problem is τ⋆,α = xα

on ∂K . The boundary conditions associated to the MsFEM-CR are a constant flux n⃗ · A⋆∇τα,⋆ on
each face of K and

∫
h τ

⋆,α = ∫
h xα for all faces h of K .

Both for the MsFEM-lin and the MsFEM-CR, the homogenized equation has a unique solution,
which is easily seen to be τ⋆,α = xα, because A⋆ is constant. Therefore, τε,α* xα weakly in H 1(K ).
Subtracting the function xα, we deduce the desired convergence. □

We will also use the following result, which is a straightforward generalization of the extended
Poincaré inequality in [17, Lemma 3.31].

Lemma 46. Let W be the subspace of H 1(TH ) defined by

W =
{

v ∈ H 1(TH )

∣∣∣∣∫
h
�v� = 0 for each face h of Th ,

∫
h

v = 0 for each face h ⊂ ∂Ω
}

.

There exists a constant C > 0 depending only on Ω but not on H such that

∀ v ∈W, ∥v∥L2(Ω) ≤C ∥∇v∥L2(TH ).

Note that the multiscale space V ε
H ,0 is contained in W for both the MsFEM-lin and the MsFEM-

CR, without oversampling. Finally, we provide a number of useful bounds for the difference
between uε,G

H and uε,PG
H .

Lemma 47. Let f ∈ H−1(Ω) and consider the MsFEM-lin or the MsFEM-CR, both without over-
sampling. Let eεH = uε,G

H −uε,PG
H . There exists a unique eP1

H ∈ VH and a linear combination of the
numerical correctors, that we denote by eosc

H , such that eεH = eP1
H + eosc

H , and it holds, with the con-
stants m, M from (2) and the constant C from Lemma 46,

aε,diff(
eεH , eεH

)= F
(
eosc

H

)
, (61)∥∥∇eosc

H

∥∥
L2(K ) ≤

M

m

∥∥∥∇eP1
H

∥∥∥
L2(K )

for all K ∈TH , (62)∥∥∥∇eP1
H

∥∥∥
L2(TH )

≤ M

m

∥∥∇eεH
∥∥

L2(TH ) , (63)∥∥∇eεH
∥∥

L2(TH ) ≤
√

1+C 2 M 2

m3 ∥F∥L (H 1(TH )), (64)

where ∥·∥L (H 1(TH )) is the operator norm on L (H 1(TH )).
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Proof. Since the numerical approximations uε,G
H and uε,PG

H both belong to the multiscale ap-
proximation space V ε

H , it follows that eεH ∈ V ε
H , and we are in a position to use (57): there exists a

unique eP1
H ∈VH such that

eεH = eP1
H +eosc

H , eosc
H = ∑

K ∈TH

d∑
α=1

(
∂αeP1

H

)∣∣∣
K
χε,α

K . (65)

Applying Lemma 42 to vεH = eεH , we immediately obtain (63).
Now recall that the numerical correctors are defined by (56). Using the fact that ∇eP1

H is
piecewise constant, this implies that eosc

H satisfies the following variational problem in each
K ∈TH :

∀ w ∈VK ,0, aε,diff
K

(
eosc

H , w
)=−aε,diff

K

(
eP1

H , w
)
.

Without oversampling, it holdsχε,α
K ∈VK ,0 for each 1 ≤α≤ d , so eosc

H can be used as a test function

here. With the bounds in (2), implying continuity and coercivity of aε,diff
K , we obtain (62).

Next using (65), we can write

aε,diff(
eεH , eεH

)= aε,diff
(
uε,G

H , eεH

)
−aε,diff

(
uε,PG

H , eP1
H

)
−aε,diff

(
uε,PG

H , eosc
H

)
.

We deduce from (55) that aε,diff (uε,PG
H , eosc

H ) = 0. Since eεH can be used as a test function in the
discrete problem (40) and eP1

H in (59), we have

aε,diff
(
uε,G

H , eεH

)
−aε,diff

(
uε,PG

H , eP1
H

)
= F

(
eosc

H

)
,

which shows (61). It follows that

aε,diff(
eεH , eεH

)≤ ∥F∥L (H 1(TH ))
∥∥eosc

H

∥∥
H 1(TH ) ≤ ∥F∥L (H 1(TH ))

√
1+C 2

∥∥∇eosc
H

∥∥
L2(TH ) ,

where C is the Poincaré constant from Lemma 46. Now applying (62) and (63) on the right, and
using coercivity of aε,diff on the left, we find

m
∥∥∇eεH

∥∥2
L2(TH ) ≤

√
1+C 2

(
M

m

)2

∥F∥L (H 1(TH ))
∥∥∇eεH

∥∥
L2(TH ) ,

from which we deduce (64). □

Proof of Lemma 43. Let eεH = uε,G
H −uε,PG

H . We will use (65). By Lemma 47, we have (61). Com-
bined with (2) and Lemma 46, this implies

C
∥∥∥uε,G

H −uε,PG
H

∥∥∥2

H 1(TH )
≤ aε,diff(

eεH , eεH
)= F

(
eosc

H

)= ∑
K ∈TH

d∑
α=1

(
∂αeP1

H

)∣∣∣
K

F
(
χε,α

K

)
.

By Lemma 45, we know that χε,α
K * 0 as ε → 0 weakly in H 1(K ) for each K and for each α.

Therefore, F (χε,α
K ) → 0 as ε→ 0. In view of (63) and (64), every derivative (∂αeP1

H )|K is bounded
independently of ε. It follows that F (eosc

H ) → 0 as ε → 0. The conclusion now follows from the
above inequality. □

We next study the convergence of uε,G
H −uε,PG

H as H → 0. To this end, we return to the original
hypotheses of Section 2, i.e., f ∈ L2(Ω). Note that for the next result, the additional convergence
hypothesis of Lemma 43 for Aε is not needed.

Lemma 48. Consider the MsFEM-lin or the MsFEM-CR, both without oversampling. Assume
that f ∈ L2(Ω). Then there exists a constant C independent of ε, H and f such that∥∥∥uε,G

H −uε,PG
H

∥∥∥
H 1(TH )

≤C H∥ f ∥L2(Ω).

To prove this lemma, we will use some Poincaré–Friedrichs inequalities, for which we refer
e.g. to [9, Lemma 4.3], [17, Lemma B.66].
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Proof. Let eεH = uε,G
H −uε,PG

H and recall the results of Lemma 47. We have eεH = eP1
H +eosc

H (see (65)),
and (61) provides, for f ∈ L2(Ω), the equality aε,diff (eεH , eεH ) = ( f ,eosc

H )L2(Ω). Hence, by the Cauchy–
Schwarz inequality,

aε,diff(
eεH , eεH

)≤ ∥ f ∥L2(Ω)

∥∥eosc
H

∥∥
L2(Ω) . (66)

For the MsFEM-lin (without oversampling), it holds that χε,α
K = 0 on ∂K for all mesh ele-

ments K and all 1 ≤α≤ d , and it follows that eosc
H = 0 on the boundaries of all mesh elements. In

the case of the MsFEM-CR (without oversampling), it holds that
∫

h χ
ε,α
K = 0 for all faces h of the

mesh and all 1 ≤α≤ d . (Note that the average of χε,α
K over any face h is well-defined even if χε,α

K is
in general discontinuous along faces.) Since ∂αeP1

H is constant on each mesh element K , we also
have

∫
h eosc

H = 0. Hence, both for the MsFEM-lin and for the MsFEM-CR, an appropriate variant
of the Poincaré–Friedrichs inequality yields a constant C independent of K but dependent on the
regularity of the mesh, such that ∥∥eosc

H

∥∥
L2(K ) ≤C H

∥∥∇eosc
H

∥∥
L2(K ) . (67)

Upon inserting the inequalities (67), (62) and (63) into (66), it follows that

aε,diff(
eεH ,eεH

)≤C H

(
M

m

)2 ∥∥∇eεH
∥∥

L2(TH ) ∥ f ∥L2(Ω).

One more time using the lower bound in (2), we find∥∥∇eεH
∥∥

L2(TH ) ≤C H
M 2

m3 ∥ f ∥L2(Ω).

The proof is concluded by application of Lemma 46 to eεH . □

6.3. Convergence results in the periodic setting

We now study the MsFEM-lin applied to the periodic setting introduced in Section 2.7 in some
more detail. To the best of our knowledge, all convergence results known for the MsFEM are
obtained in this periodic setting (see e.g. [6,9,23,24,31,32,40,41,60]). The analysis in these works
relies on the explicit description of the microstructure that we summarized in Section 2.7. In
particular, recall the existence of a homogenized diffusion coefficient given by (24) and the first-
order two-scale expansion (26). We emphasize, however, that the application of the MsFEM does
not require the periodic setting, nor does it even suppose the PDE under consideration to be
embedded in a sequence of PDEs for a family of parameters ε that tend 0. We refer to Section 7
for examples of such numerical experiments.

Applying the MsFEM to a sequence of matrices Aε = Aper(·/ε), we obtain a sequence of
effective tensors A(ε). Each A(ε) is defined by (12) for a fixed value of ε. We have the following
convergence result.

Lemma 49. Let A(ε) be the sequence of effective tensors obtained in (12) by applying the MsFEM-
lin without oversampling to Aε = Aper(·/ε). We have A(ε) → A⋆ as ε→ 0.

Proof. We fix a mesh element K ∈TH . First observe that A(ε) and A⋆ satisfy

Aβ,α(ε)
∣∣∣
K
= 1

|K |aε,diff
K

(
xα+χε,α

K , xβ
)
, A⋆β,α =

∫
Q

eβ · Aper (eα+∇wα) , (68)

for each 1 ≤ α,β ≤ d , in view of the variational formulations satisfied by χε,α
K (solution to the

PDE (11)) and wα (solution to the PDE (23)). We recall that Q is the unit cube of Rd .
Now let τε,α = xα +χε,α

K . In view of Lemma 45, τε,α * τ⋆,α as ε → 0 weakly in H 1(K ), with
τ⋆,α(x) = xα. Writing the two-scale expansion (26) of τε,α, we thus have, when ε is small,

τε,α(x) ≈ τ⋆,α(x)+ε
d∑
γ=1

wγ

( x

ε

)
∂γτ

⋆,α(x) = xα+εwα

( x

ε

)
,
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and the difference tends to zero in H 1(K ) as ε→ 0. Inserting this convergence in (68), we deduce
that

lim
ε→0

Aβ,α(ε)
∣∣∣
K
= lim
ε→0

1

|K |
∫

K
eβ · Aper

( x

ε

)(
eα+∇wα

( x

ε

))
dx = A⋆β,α.

The convergence to the mean on the unit cube in the last equality follows from the Q-periodicity
of the function eβ · Aper (eα+∇wα). □

The following lemma studies the convergence of uε,G
H − uε,PG

H towards 0 as ε → 0 for the
MsFEM-lin without oversampling. As was stated in Remark 44, thanks to the periodic setting,
we now obtain a rate for the convergence stated in Lemma 43.

Lemma 50. Let f ∈ L2(Ω). Suppose that the family of meshes (TH )H>0 is quasi-uniform. Consider
the MsFEM-lin without oversampling. For Aε = Aper(·/ε) sufficiently regular, we have∥∥∥uε,G

H −uε,PG
H

∥∥∥
H 1(Ω)

≤Cε∥ f ∥L2(Ω),

where the constant C depends on the dimension d and the constants m, M in (2), but not on ε, H
or f .

Proof. Let eεH = uε,G
H − uε,PG

H . Lemma 47 applies, so we can use (61) and a Cauchy–Schwarz
inequality to find

aε,diff(
eεH , eεH

)≤ ∥ f ∥L2(Ω)

∥∥eosc
H

∥∥
L2(Ω) ≤ ∥ f ∥L2(Ω)

∥∥∥∥∥ ∑
K ∈TH

d∑
α=1

(
∂αeP1

H

)∣∣∣
K
χε,α

K

∥∥∥∥∥
L2(Ω)

. (69)

Next we seek a bound on χε,α
K in L2(K ). Using (11) and (23), we have

div
(

Aper
( ·
ε

)
∇

[
χε,α

K −εwα

( ·
ε

)])
= 0 in K .

Since χε,α
K vanishes on ∂K (recall that we consider the MsFEM-lin without oversampling), the

maximum principle [14, Theorem 8.1] yields∥∥∥χε,α
K −εwα

( ·
ε

)∥∥∥
L2(K )

≤ sup
∂K

∣∣∣χε,α
K −εwα

( ·
ε

)∣∣∣√∫
K

1 = ε |K |1/2 sup
∂K

∣∣∣wα

( ·
ε

)∣∣∣ .

When Aper is sufficiently regular, the corrector functions wα are uniformly bounded. Then the
mesh regularity provides a constant C such that for each K ∈TH and each 1 ≤α≤ d , we have∥∥χε,α

K

∥∥
L2(K ) ≤

∥∥∥χε,α
K −εwα

( ·
ε

)∥∥∥
L2(K )

+ε
∥∥∥wα

( ·
ε

)∥∥∥
L2(K )

≤CεH d/2.

Since all χε,α
K have disjoint supports, we can use the latter estimate to bound∥∥∥∥∥ ∑

K ∈TH

d∑
α=1

(
∂αeP1

H

)∣∣∣
K
χε,α

K

∥∥∥∥∥
2

L2(Ω)

= ∑
K ∈TH

∥∥∥∥∥ d∑
α=1

(
∂αeP1

H

)∣∣∣
K
χε,α

K

∥∥∥∥∥
2

L2(K )

≤Cε2
∑

K ∈TH

d∑
α=1

(
H d/2

(
∂αeP1

H

)∣∣∣
K

)2

≤Cε2
∑

K ∈TH

d∑
α=1

∥∥∥∂αeP1
H

∥∥∥2

L2(K )

=Cε2
∥∥∥∇eP1

H

∥∥∥2

L2(Ω)
.

(70)

The last inequality relies on the quasi-uniformity of the mesh.
We insert (70) combined with (63) into (69) to find

aε,diff(
eεH , eεH

)≤Cε∥ f ∥L2(Ω)

∥∥∇eεH
∥∥

L2(Ω) .
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Applying the coercivity property in (2) on the left-hand side and a Poincaré inequality on Ω, we
obtain the desired result. □

The classical error estimate for the Galerkin MsFEM approach (6) is obtained in the periodic
setting and under some regularity assumption on Aper and on the homogenized limit u⋆. The
bound obtained in [6, Theorem 6.5] reads∥∥∥uε−uε,G

H

∥∥∥
H 1(Ω)

≤C
(
H +ε+

p
ε/H

)
, (71)

for some C independent of ε and H . Lemma 50 shows that the same estimate holds true for uε,PG
H ,

the Petrov-Galerkin MsFEM approximation, under the correct regularity assumptions. We note
that the bound for uε,PG

H can also be inferred from Lemma 48. However, since the MsFEM is
applied in the regime where ε < H , the result of Lemma 50 is more precise, thanks to the extra
structural assumptions made on the diffusion tensor Aε.

7. Numerical comparison

We now compare the Galerkin MsFEM (40), its non-intrusive approximation (54) and the Petrov–
Galerkin MsFEM (41) on a concrete numerical example in 2D (d = 2). The numerical approxima-
tions obtained for these various MsFEMs shall be denoted uε,G

H , uε,G-ni
H and uε,PG

H , respectively.

7.1. Description of the numerical experiments

We consider the pure diffusion equation (1) on the domain Ω = (0,1) × (0,1). Thus, the local
bilinear forms are aεK = aε,diff

K defined in Example 8, where we consider the three diffusion tensors

Aε,per(x) = νε(x) Id, νε(x) = 1+100 cos2 (πx1/ε)sin2 (πx2/ε), (72a)

Aε,lp(x) = (
1+cos2 (2πx1)

)
Aε,per(x), (72b)

Aε,np(x) = νε,np(x) Id, νϵ,np(x) = 1+ (
1+100 cos2 (πx1/ε)sin2 (πx2/ε)

)
cos2

(
x2

1 +x2
2

ε

)
. (72c)

We fix f (x) = sin(x1)sin(x2).
The coefficient Aε,per is ε-periodic with period ε = π/150 ≈ 0.02. The coefficient Aε,lp is

locally periodic and, although a homogenized coefficient exists (see [18]), it is not constant.
Consequently, a certain number of lemmas established in Section 6 are not known to hold true.
Finally, we include the coefficient Aε,np as an example of a multiscale problem for which we are
not aware of any explicit homogenization results. We will see nevertheless that the non-intrusive
MsFEMs that we introduced above provide good approximations compared to their intrusive G-
MsFEM counterparts for all test cases.

A reference solution uε
h is computed on a uniform 1024 × 1024 mesh Th by means of a

standard P1 finite element method using FreeFEM++ [61]. The mesh Th (as well as the coarse
mesh introduced below) consists of squares cut in two along a diagonal that is in the same
direction for all squares, i.e., such as the meshes in Figure 1. The FreeFEM++ scripts to perform
all different MsFEMs can be found at [62].

We compare the reference solution uε
h to MsFEM solutions obtained on a coarse mesh TH

for varying H . The mesh TH is a uniform 1/H × 1/H triangulation of Ω. We test the MsFEM-
lin and the MsFEM-CR using the sampling operator sεK = aε,diff

K . All oversampling methods in
this section use a homothety ratio of 3 for the construction of the oversampling patches in
Definition 13. A precise definition of the associated basis functions can be found in Examples 29
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and 30. The mesh Th is a refinement of TH for all values of H . Therefore, for each K ∈TH , we use
the corresponding submesh of Th (consisting of all triangles included in K ) for the numerical
approximation of the numerical correctors in (31) by P1 Lagrange finite elements.

Remark 51. We provide a few remarks on the computation of the error, which takes place
in the post-processing step of the MsFEM. Evidently, these computations have to be carried
out by integration on the fine scale and one may try to perform these computations on the
global mesh Th . However, the legacy code does not, in general, operate on the global fine
mesh. Moreover, we stress that the approximation uε

H is in general discontinuous across element
edges (for the MsFEM-CR, and for all MsFEMs with oversampling), and can therefore not be
represented globally by e.g. a piecewise P1 function on the fine mesh Th (even if one supposes
that Th is conformal). Thus, one has to compute the error element by element, using the code for
the microscale, according to the sum∥∥uε−uε

H

∥∥2
H 1(TH ) =

∑
K ∈TH

∥∥uε−uε
H

∥∥2
H 1(K ) .

To do so, Equation (49) can be used on each element K to find the correct values of uε
H , and the

global fine mesh Th is never used.

7.2. Results

We first compare the approximations uε,G
H and uε,G-ni

H for varying H in Figure 3 for MsFEMs with-
out oversampling and MsFEMs with DOF-continuous oversampling. Without oversampling (OS),
the approximation uε,G-ni

H equals uε,PG
H due to Lemma 38. We also report the error committed

by the G-MsFEM. We observe that, without oversampling, the difference uε,G
H −uε,G-ni

H is much
smaller than this error. As a result, the errors obtained with the G-MsFEM and its non-intrusive
approximation are of the same size. Indeed, the error of the non-intrusive G-MsFEM-lin devi-
ates from the error of the G-MsFEM-lin by at most 0.05% for all tests that we report here. For the
MsFEM-CR, this is at most 1.2%. In both cases, the two MsFEM variants thus have practically the
same accuracy. This is in agreement with the theoretical result of Lemma 48.

The estimates obtained in Section 6 do not apply to MsFEMs with oversampling. From
Figure 3, we can see that the difference uε,G

H − uε,G-ni
H is still small with respect to the error

committed by the G-MsFEM when DOF-continuous oversampling is applied. The approximation
errors for the non-intrusive G-MsFEMs with DOF-continuous oversampling differ by at most
1.3% from the error of the G-MsFEM. Similar conclusions hold for the MsFEM-lin with DOF-
extended oversampling. The difference between the G-MsFEM and the non-intrusive G-MsFEM
is larger for the MsFEM-CR with DOF-extended oversampling. We do not include these results in
the comparison of Figure 3 because both methods perform particularly badly when compared to
the G-MsFEM without oversampling.

Let us also point out the qualitative and quantitative similarities between the performance
of the MsFEM for the periodic and the non-periodic diffusion coefficients. Although the study
of the homogenized limit of uε becomes increasingly difficult for the various coefficients (72a)
to (72c), the non-intrusive approximation does not deteriorate the accuracy of the MsFEM in
these numerical tests.

Before moving on to a comparison with the Petrov–Galerkin MsFEMs with oversampling, let us
discuss a phenomenon in Figures 3 and 4 known as the “resonance effect” in the literature, pre-
venting convergence of the MsFEM if the coarse scale H is close to ε. Upon further decreasing H ,
convergence is found only when H is sufficiently small with respect to the microscale ε, in which
case we are in the regime of classical FEMs. From a theoretical point of view, this is explained by
the term

p
ε/H in the error estimate (71) (or ε/H for the MsFEM-lin with oversampling; see [40]).
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We note that the same error estimate was obtained in [9] for the MsFEM-CR (without oversam-
pling). Figure 4 shows that the resonance effect is more pronounced for the MsFEM-lin with over-
sampling than for the MsFEM-CR with oversampling.

Figure 3. Solid lines: difference between the Galerkin MsFEM approximation (uε,G
H defined

by (40)) and the non-intrusive Galerkin MsFEM approximation (uε,G-ni
H defined by (54)),

without oversampling (no OS) and with DOF-continuous oversampling (OSc), for the
diffusion coefficients in (72) as the mesh size H varies. Dashed lines: error of the Galerkin
MsFEM with respect to the reference solution. All values are normalized with respect to the
H 1 norm of the reference solution.
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Figure 4. Comparison of the errors of the (intrusive) Galerkin MsFEM (40) and the (non-
intrusive) Petrov-Galerkin MsFEM (41) for the diffusion coefficients in (72) as the mesh
size H varies. Different oversampling strategies are applied: DOF-continuous (OSc, Defi-
nition 22) and DOF-extended (OSe, Definition 17). The Galerkin MsFEM without OS is in-
cluded to illustrate the effect of the OS strategies.

We consider next in Figure 4 MsFEMs with the two different oversampling strategies of
Section 4: DOF-continuous and DOF-extended oversampling. The PG-MsFEM variant, with or
without oversampling, is completely equivalent to its non-intrusive implementation by virtue of
Lemma 36. With oversampling, however, it does not coincide with the (intrusive or non-intrusive)
G-MsFEM.
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With oversampling, the matrices of the linear systems for the G-MsFEM and PG-MsFEM are
different; Lemma 38 does not apply. The result is that the differences uε,G

H −uε,PG
H are larger than

the differences uε,G
H −uε,G-ni

H . This is reflected in the numerical errors of the methods. We show the
errors of the PG-MsFEM and the G-MsFEM with respect to the reference solution uε

h in Figure 4.
(The non-intrusive G-MsFEM is too close to the G-MsFEM to be distinguishable on the scale of
Figure 4 for all MsFEMs except the MsFEM with DOF-extended oversampling.) The G-MsFEM
without oversampling is also shown to highlight the effect of oversampling.

Let us first consider the two different oversampling strategies. For all Galerkin MsFEMs, it is
clear that the DOF-continuous variant performs (much) better than the DOF-extended variant.
For the Petrov–Galerkin MsFEMs, the difference between the two oversampling strategies is
smaller, but the DOF-continuous version of oversampling continues to perform better over all.

Although clear differences in the performance of the Galerkin and Petrov–Galerkin MsFEMs
with DOF-continuous oversampling can be observed, these differences are small and both Ms-
FEM approaches have a comparable accuracy. There is no systematic disadvantage in choos-
ing the non-intrusive PG-MsFEM over the (intrusive or non-intrusive) G-MsFEM. Moreover, the
non-periodic test cases again show the robustness of all MsFEM variants when going beyond the
setting of periodic homogenization. In particular, this demonstrates the robustness of the non-
intrusive approaches for the MsFEM developed in this article.
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