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Abstract. Fatigue crack propagation can considerably reduce the life of components, leading to sudden fail-
ures. This paper provides a method for fatigue life prediction based on ultrasonic non-destructive inspection
applied on Al 2024 T3 material.

A new crack quantification model based on ultrasonic waves features is developed. To analyse the per-
formance and efficacity of the model, the probability of detection is determined using the “signal response”
technique.

The Paris model is used to predict the fatigue life taking into consideration the initial crack distributions,
the dispersion of the parameters underlined by the Least-squares method and Monte-Carlo simulations.

Reliability evaluation is discussed later for two cases: Detection and No-detection case.
If no indication is presented, an inspection detection threshold is determined and optimized. This

proposed indicator will be helpful for industrial environments whenever the inspection machine does not
have any indication.

Considering the ultrasonic inspection data, an updating reliability via the Bayesian approach is suggested.
The results of this approach can lead to a gain in the life span or a gain of the costs generated by the failure of
the part.

Keywords. Ultrasonic inspection, POD, Reliability, Bayesian approach, Detection threshold.
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1. Introduction

Fatigue crack growth (FCG) is a dangerous phenomenon that cause unexpected failure of struc-
tures and mechanical components. To guarantee the survival of the mechanical components, it
is necessary to predict their lifetimes using reliability-based approaches and to control the crack
evolution with structural health monitoring (SHM) methods [1–4].

Health monitoring or conditional maintenance can be used to anticipate the failure, evaluate
a residual duration and inspection frequency, optimize maintenance and find the most suitable
solutions.
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The SHM has the same role as the non-destructive evaluation (NDE) but in addition, it uses
in-situ monitoring integrating sensors and actuators inside the structure.

Non-destructive evaluation (NDE) techniques include testing methods that are exploited to
test material without damaging it. These techniques are commonly used to inspect material for
defects or flaws without destroying the sample.

The management of fatigue-affected components requires the use of NDT methods in the
right way. Each NDT method has limits concerning its application and level of accuracy which
depends on the evaluation procedure, the personal qualification, the evaluated materials, the
environment etc. . .

Many techniques for NDT are accessible, such as magnetic particle inspection (MT), ra-
diographic inspection (RT), ultrasonic inspection (UT), acoustic emission techniques (AE)
etc. . . [5–8].

The SHM has been an effective measure to guarantee the safety and evaluate the reliability
of these structural systems. The uncertainties associated to modelling and predicting the per-
formance of the structures can be handled and reduced by including the information collected
during inspections and monitoring.

Particularly, ultrasonic inspection technique has shown great capacities for crack detection,
analysis and prediction in SHM [9–15]. This method provides an opportunity to detect material
discontinuities and obtain information allowing the fatigue life prediction and risk management.
The fundamental idea behind Lamb ultrasonic wave technique consists as those discontinuities
such as cracks will modify characteristics of the signal such as amplitude, phase, velocity. . .

Ultrasonic inspection technique has been widely investigated as a non-destructive method for
detecting fatigue cracks and contributing to fatigue life prediction.

Wang et al. [10] developed multiple Lamb wave models depending on damage-sensitive
features. In their work, the model assessment and the impact of model choice on fatigue life
prediction are performed using the data of coupon testing with artificial cracks and realistic
lap joint testing with naturally developed cracks [10]. Lamb wave limited experimental data
was reported by He et al. [11]. The precision of this model will directly impact the structural
life prediction. Lee and Staszewski [13] studied fatigue crack detection with Lamb waves using
the local interaction simulation approach. Lamb wave method of crack identification using
Ansys ADPL software and finite element simulation is approved in Mishra et al. work [14].
Guan et al. [15] studied fatigue reliability assessment integrating automated ultrasonic non-
destructive inspections on a steam turbine rotor. They have emphasized the advantage when
using a probabilistic POD model in which the uncertainty will affect the POF results.

All these studies have dealt with fatigue life prediction and reliability determination without
recourse to information and results derived from inspections, however other authors have arrived
at a model of fatigue crack growth prediction where updating reliability was considered. Based on
this concept, data from inspections are very essential to update reliability in real time.

The most interesting approach to this issue has been proposed by Eltaief et al. [16] who has
determined an updating inspection time for random fatigue crack growth.

Zhang and Mahadevan [17] have also suggested a Bayesian procedure updating in reliability-
based inspection for a fatigue reliability problem. The used Bayesian approach is a combina-
tion of multiple mechanical and statistical models. Moreover, Zareei and Iranmanesh [18] have
used the Bayesian updating concept along with Markov Chain Monte Carlo (MCMC) method
and Metropolis–Hasting algorithm to update material parameters and enhance fatigue life
prediction.

These outcomes will be helpful in order to determine optimal inspection schedule and main-
tenance operations, that’s what several researchers are working on these years [19–22].
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In this paper, we explore all these studies and recommend the possibility of using ultrasonic
non-destructive inspection data to update reliability using the Bayesian approach and taking into
consideration uncertainty of parameters and probability of detection.

The advantage of this work is to use the ultrasonic inspection within a probabilistic framework
to predict the remaining life of components and update reliability via the Bayesian approach,
taking into account the value of the crack detection limit.

Considering the ultrasonic inspection output, a model that relates the growth of the crack with
the characteristics of the inspection method is suggested.

Indeed, the crack can be modeled as a function of the amplitude and phase of the signal
from the ultrasonic wave. This model will lead us to a probabilistic approach used to estimate
the fatigue life. To evaluate the reliability of the method, we treat the case of detection and
non-detection of the crack. If no indication is shown, we will determine an optimal detection
threshold. The optimization of this indicator is proposed based on the convergence and safety
of the model, and it will serve as an important initial parameter when no indication is available
from the inspection machine. Consequently, it can help industries to have an idea of when the
machine can detect the crack without any indication. Therefore, they can use different types of
machines and may have the same results. Finally, taking into account the information from the
inspection itself and for both cases, an update of the reliability is proposed using the Bayesian
approach.

The remainder of the paper is arranged as follows:
First, the experimental procedure is presented. Coupon testing data are extracted to recognize

damage-sensitive features. Using these data, a new Lamb wave-based crack quantification model
is developed. Afterward, the probability of detection (POD) is determined and probability density
functions (PDF) of the initial crack are reached. Then, fatigue life of the plate is evaluated via
the Paris model using the least-squares method and Monte-Carlo simulations to estimate the
statistical crack growth parameters in the two cases: No crack detection (without indication) and
crack detection (with indication). After that, a comparison between the two cases and through
experimental data is done to validate results and investigate the difference. Next, optimization
of the crack detection limit is performed in case of unavailability of an indication based on
safety evaluation. Finally, a fatigue crack growth reliability assessment is presented in which
failure probability is determined in the two cases using MCS, inspection time is estimated, and
updated failure probability considering ultrasonic inspection information is performed using the
Bayesian approach.

2. Experimental procedure

In the experiment, 2024-T3 aluminum alloy plates were used with an artificial central crack
introduced by electric discharge machining (EDM) and two piezoelectric transducers (PZT) were
located on each side of the crack for the emission and the reception of ultrasonic waves.

The PZT elements are SM412 Ceramic discs which are arranged regarding to their pitch catch
configuration. The plate thickness is 2 mm and the exciting frequency is 0.16 MHz. It should be
limited to a small value, to avoid mode superposition.

The propagation modes are the symmetrical mode S0 which are more sensitive to cracks than
the A0 mode.

The geometry information of the specimen can be shown in Figure 1 and the mechanical
properties are presented in Table 1.

The baseline signal data of six specimens are acquired before applying EDM. The crack size
is measured by optical microscopy techniques. The crack size varies from 0 to 20 mm with an
increment of 3 mm. After that, the size varies from 20 to 30 mm with 5 mm incrementation.
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Figure 1. Coupon test geometry and data acquisition system.

Table 1. Mechanical properties of Al alloy 2024-T351

E (GPa) σ0.2 (MPa) Tensile strength (MPa) A (%)
74 363 363 12.5

For each crack increment, the fatigue test is paused and the ultrasonic wave data acquisition
is performed. The signals from damaged specimens for different crack lengths can be collected
using a digital oscilloscope connected to a computer. To extract useful data, the signal was filtered
with a band-pass filter. The critical problem is to select appropriate damage features from the
corresponding time window. For more details, see [10, 11, 15].

To quantify crack size, two damage characteristics were selected: normalized amplitude and
phase change. Figure 2 presents a systematic flowchart for the inspection method coupled with
the fatigue cycling system.

3. Adopted methodology

In our approach, we developed a crack quantification model based on damage characteristics
issued from ultrasonic non-destructive inspection.

Because of the multiple uncertainty factors affecting NDE methods, such as the capability of
the machine, the variability of material properties, the environment, personnel, etc. we can’t have
precise results. That’s why we used a probabilistic analysis in which uncertainties are taken into
consideration to produce reliable results.

The random nature of the material system has grave consequences on the material properties
caused by undesirable and unpredicted cracks. It can lead to an unreliable analysis in case of
uncertainty element will not be taken into consideration. Then, current life estimation needs to
be improved, where the dispersion and the uncertainty of the parameters are considered. Also,
this probabilistic approach is useful to minimize the number and the time of experimental tests,
therefore we speak about cost reduction.

The accuracy and the reliability of the developed model are verified by the POD concept. The
probability of detection “POD” gives the aptitude of the inspection method to detect flaws.

The initial crack is responsible for severe accidents when it reaches a catastrophic failure. It is
primordial to analyze this subject with more attention to the variability in the flaws and fatigue
material properties. The probability density functions PDF of the initial crack size are derived
from results of the probability of detection POD. The initial flaw size distribution serves as an
essential element in risk investigation for damage-tolerance analysis.
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Figure 2. Systematic flowchart for SHM for test coupon.

This initial analysis was accomplished in order to predict the remaining fatigue life. Com-
parison between detection and no-detection cases was performed. The validity of the proposed
model is ensured by the comparison with experimental results. The prediction of the remaining
fatigue life serves as an important factor to prepare a maintenance plan and prevent structures
from dangerous accidents. A reliability assessment is followed in order to determine the differ-
ence between detection and non-detection cases and underline the relationship between relia-
bility and inspections. The results will be helpful in order to develop a decision tool and mainte-
nance strategy connecting reliability, inspection, repair, and replacement notions.

This described methodology can be easy to perceive in the following flowchart in Figure 3.

4. Model construction

Figure 4 represents the measurement data for six simple plates. We notice that the phase change
increases as the crack length increases, however, the normalized amplitude decreases with the
increasing crack length. Using previous data, a regression model was introduced.

This model expresses the relationship between the signal features and the crack length, and it
is written as:

a = a1 +a2x +a3 y +a4x y (1)

where a is the crack length, a1, a2, a3 and a4 are the regression parameters, x is the normalized
amplitude which is the ratio between the damage signal and the reference signal and y is the
phase change.

We have used a bilinear model because of its simplicity and easy interpretation. Also, to
quantify the crack length, we need to develop a model using the damage sensitive features as
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Figure 3. Flowchart adopted for the planned methodology.

Figure 4. Crack length vs. phase change/normalized amplitude for all six specimens.

independent variables. It is about a response surface model including the normalized amplitude,
phase change and the interaction between them.

A regression analysis allows us to estimate the model parameters using 8 observations (see
Table 2) which present the relation between the experimental results of selected features and the
crack length.

The model established is expressed as:

a = 104.13−103.33x −16.21y +13.14x y (2)
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Figure 5. The predicted crack size vs. the actual crack size.

Table 2. Values of selected features in relation with the crack size change (Specimen T1)

a x y
0 1 0
5 0.96 0.1
8 0.9 0.67

11 0.91 0.2
14 0.84 0.3
20 0.8 0.39
25 0.73 0.47
30 0.68 0.59

Table 3. Statistical characteristics of the crack size

Log(â) Log(a) α β σε σd R
1.14 1.13 −0.05 1.04 0.25 0.18 0.98

5. Results and discussions

5.1. Probability of detection

The knowledge of reliably detected crack size using NDT techniques can facilitate the prediction
of the remaining fatigue life that the component can survive. The Probability of Detection is a
statistical parameter that consists of the ability to detect defects by NDT techniques [23–25]. The
POD is determined in our study, by the “â vs. a” method or “signal response”, and it is used to
analyse the performance of the model as per MIL-HDBK 1823A [26] standard. The predicted crack
size and the actual crack size can be correlated according to [27] as follows:

Log(â) =α+β log(a)+ε (3)

whereα andβ are fitting parameters, ε is a normal random variable with zero mean and standard
deviation σε and R is the correlation coefficient.

Statistical characteristics of a (mean, standard deviation) are determined using least squares
and the overall results are summarized in Table 3.

Figure 5 shows the relationship between the actual size and the predicted one on a logarithmic
scale. A predefined threshold âth is assumed according to the inspection tool parameters, the
measurement noise, and other dispersion sources.

The POD model is presented as the probability that the crack predicted size â exceeds the
detection threshold value âth and it is expressed in this way:

POD(a) = Pr(log â > log âth) =Φ
(
β log(a)+α− log(âth)

σe

)
(4)
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Figure 6. POD curves with threshold values of 1 mm, 1.5 mm, 2 mm and 2.5 mm.

where âth is the detection threshold, σe =
√
σ2
ε+σ2

th is the standard deviation and Φ() corre-
spond to the standard normal cumulative distribution function.

The resulting POD curves for different âth are shown in Figure 6 where the values of a50 (crack
size with 50% probability of detection) for different thresholds are mentioned.

According to [14], the verification of the validity of the plotted POD curve can be checked by
the comparison between the observed a50 value and the threshold value âth. In fact, when we
have the same results as what we see in this study, it can be concluded that the plotted POD
curve is correct.

5.2. Initial crack size distribution

The initial flaw size distribution helps to predict the fatigue life and serves in the damage-
tolerance analysis. It ensures a better assessment of crack growth propagation and better support
for the decision-making process. The probability density function PDF of the initial crack size
derivates from the results of the probability of detection POD.

Initial flaw size distributions are developed according to the following equations and shown
in Figures 7 and 8.

During inspections, two cases can be reported: the crack is either detected or not detected.
When the crack is detected, the inspection tool or machine has an indication about the exact
crack size that can be detected. The other case is non-detection, where we do not have any
indication about the crack size. Therefore, many people think that no indication means the
absence of a crack or a defect in the structure, but it is not true. In fact, this can be due to
uncertainties coming from the machine, the materials or the environment. Our following results
will be processed for these two cases.

• No indication case:
A non-destructive inspection without any indication does not mean that the structure is

empty from defects due to uncertainties coming from the machine, environment, materials,
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Figure 7. PDF of actual crack sizes with no indication.

Figure 8. PDF of actual crack size with crack indication ad = 1.76.
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operation, etc. The distribution of crack length a, in this case, depends on the inspection thresh-
old âth and can be expressed using Bayes’ theorem [28] as:

P (A|D) = P (D|A)P (A)

P (D)
(5)

P (A|D) = P (a < âth|A)P (A)

P (a < âth)
(6)

Otherwise; POD(a) = P (a ≥ âth)

Then, the probability distribution of a crack without any indication from NDE inspection is
determined via Equation (7) and represented in Figure 7.

fa\D (a) = P (A|D) = (1−POD(a)) · f0(a)∫ ∞
0 (1−POD(a)) · f0(a) ·da

(7)

• Indication case:
D represents the event that a flaw is detected (a > ad ), and based on Equation (4), we obtained

the following equations, which determine the PDF of a crack in the detection case. Figure 8 shows
the shape of the normal distribution in this case.

P (log A ≤ log a|D) =Φ
(

log(a)− (β log(â)−α)

σe

)
(8)

fa\D (a) = P (a|D) = ∂

∂ log a
(P (log A ≤ log a|D)) (9)

fa\D (a) = 1

aσe
Ø

(
β log(a)+α− log(ad )

σe

)
(10)

where Ø (·) is the standard normal PDF and ad is flaw indication (ad = 1.76 mm in our case).

5.3. Fatigue life evaluation

The evaluation of fatigue life using fracture mechanics implicates the knowledge of various
information, such as the material properties, the initial crack size, and fatigue loads.

The PDF of the initial crack size from ultrasonic testing is examined in previous section.
The Paris’ equation as described in Equation (11) is employed as the fatigue crack propagation

model with considering uncertainties of material parameters due to the stochastic nature of the
fatigue crack propagation process.

da

dN
=C (∆K )m (11)

The stress intensity K is reported from [29] as:

K = P

B
p

W
f
( a

W

)
(12)

where P is the applied load and f (a/W ) is a dimensionless geometry function. The dimensions,
B , W , and a are defined according to the specimen configuration. The model parameters (log C ,
m) are normally distributed and estimated using MCS and the least square method which are
identified from fatigue testing data. Mean and standard deviations are expressed respectively, as
m = (4.48,0.26) and logC = (−8.78,0.53).

Then, the fatigue life is computed using Equation (13), and results are drawn in Figures 9
and 10.

N =
∫ ac

a0

1

C (∆σ
p
πaY )m

da (13)
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Figure 9. Iso-probabilistic a–N curves in case of indication.

Figure 10. a–N curves in case of no-indication, for different detection thresholds âth = 1,
1.5, 2 and 2.5 mm.

• Indication case:
When an indication is available (in this situation ad = 1.76), there is a good match between

the obtained results and the experimental data. This is illustrated in Figure 9 where the fatigue
life with 50% reliability and the experimental points are in good agreement (see Table 4).

This result allows us to deduce that the 95% confidence level can provide a good safety margin
for decision-making, thus our model is conservative.
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Table 4. Fatigue life in detection case for different confidence levels

ad (mm) N5% N50% N95% Nexp

1.76 32,170 26,640 22,060 30,000

Table 5. Fatigue life in non-detection case for different detection thresholds

âth (mm) 1 1.5 2 2.5
N95% (cycles) 48,570 29,630 20,540 15,550

• No indication case:
When no crack is detected, we used a detection threshold concept. The crucial element in

the POD analysis of the signal response data is the definition of the decision limit. Usually,
this indicator influences both the minimum detected size and the probability of false-positive
detections. When the flaw size is the parameter used for a signal-response based POD analysis,
the selection of a decision threshold requires a criterion [30] based on the precision of the
inspection. We have simulated the fatigue life results for different proposed detection limits (see
Figure 10 and Table 5).

For ath = 1 mm, the performance of the probabilistic fatigue life prediction is not suitable and
represents a big danger for the component even using the lower 95% confidence level.

For ath = 1.5 mm, the model has the best convergence results and can provide conservative
results from 29,000 cycles. When using ath = 2 mm, the model ensures more safe results for 95%
reliability with acceptable convergence to the experience.

On the contrary, for ath = 2.5 mm, we have total security but the model diverges from the
real results. Compared with the detection case, the fatigue life increases when no indication is
accessible. A poor inspection quality in this situation that is represented by the unavailability of
crack indication leads to uncertain results. The fact that a chosen or estimated decision limit can
considerably affect the final results forces us to pay special attention to the determination of the
threshold value.

5.4. Detection threshold optimization

Analysing the possibility that there is no indication about the size of the detectable crack on the
inspection machines, an optimal detection threshold has been determined, which can serve as
a very important initial parameter in the fatigue study. The idea here is to determine an optimal
detection threshold that ensures safe outcomes despite the absence of an indication.

For this, the research interval was minimized between 1.5 mm and 2 mm since this is where
the results converge better and the model is more conservative (see Figure 11).

As shown in Figure 11, for ath = 1.6 mm, the number of cycles before the fracture is about
NC = 30,500 cycles, which corresponds to the experimental results; but we are not in the safe
zone. For ath = 1.7 mm, it is obvious that we are in safety from 26,000 cycles, and the critical
fatigue life is NC = 27,300 cycles. Figure 11 illustrates the fact that for ath = 1.8 mm we have
security from 25,000 cycles and a fatigue life equal to 26,400 cycles. Considering ath = 1.9 mm,
we have total security from 22,000 cycles, but the plate can live only about 24,600 cycles.

The optimization problem, in this case, contains two major parameters: the safety of the
component and the convergence of the model to experimental results.

The safety indicator corresponds to the fact that the model is conservative and has no risks
of component failure. It is computed by the experimental points on the right of the model.
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Figure 11. Optimization of the detection threshold.

Figure 12. Percentage of safety and convergence of the model for different detection limit.

The more the model tends to the left of the experimental results, the more we can say that our
model is conservative and the safety indicator is high.

The convergence is the adherence of the model to the experience. It is calculated by the
number of experimental points closer to the model. For each experimental result, we determine
the fatigue life Nexp and Nmodel and compute the difference (|Nexp−Nmodel|). Certainly, the model
that have the slightest deviation has the best convergence percentage.

To find the best detection limit that guarantees the safety of the component and the adherence
to the experience simultaneously, we have created this histogram (see Figure 12). Based on
Figure 11, the safety indicator is modeled by the number of experimental points to the right of
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the model. Furthermore, the adherence or convergence with the experiment is manifested by the
number of experimental points closer to the model linked to the corresponding detection limit,
compared with the other models.

We notice then that the desired results are corresponding to ath = 1.9 mm, so we can assume
that the optimal value of ath that guarantees the safety of the part and the coincidence with the
experimental results is equal to 1.9 mm.

The method is an effective way to find the detection limit of the crack in case of unavailability
of indication. It helps industrials know the first detectable crack size that can ensure their
inspection machine without having any indication.

5.5. Fatigue reliability assessment

Specific attention is paid to the reliability assessment of the plate during its service life. In
this section, we will try to determine the relationship between inspections and reliability, and
examine the difference between the fact that a crack is detected or not.

Moreover, this analysis helps to determine the best time to inspect, repair and replace the
component if needed, so a maintenance plan can be proposed.

5.5.1. Probability of failure and inspection time determination

In the first step, we calculated the failure probability P f using Monte-Carlo simulation (MCS).
This method is used to evaluate the probability of different results due to the existence of

random variables. It is applied when the performance function G is defined over a vector of more
than two random variables and when it is hard to determine the joint probability density function
of X .

This procedure is simple but it requires a large number of runs to obtain an accurate result
[31, 32]. In this case, the probability failure is given by the following relationship:

P f = lim
N→∞

N f (G(xi ) < 0)

N
(14)

where N f (G(xi ) < 0) is the number of failure events and N is the number of cycles. For a cycle’s
number N less than 2000, P f is equal to zero, we can explain this by the reality that the crack
length is always much lower than the critical length. For a cycle’s number N higher than 2000
cycles, P f increase significatively (Figure 13).

Figure 14 presents the probability of failure with the confidence intervals 5% and 95%.
Consequently, the inspections operations have to be planned to control (repair, replacement)

the evolution of the crack length and avoid the sudden failure of the element. In general,
inspection time is based on the target level for reliability or probability of failure. Numerous
methods may be applied to establish the target level. The following approaches will be discussed
herein [33]:

• The implicit safety or risk level.
• The experienced likelihood of fatalities, environmental damage, or property loss.
• Cost-benefit criteria

In our case, we used a target design P f equal to 10−3 which correspond to an inspection time
ti = 8750 cycles (see Figure 12).

5.5.2. Updating failure probability considering inspection data

In the previous sections, we have been able to show the influence of dispersions of the param-
eters affecting the crack propagation process. A reliability analysis is necessary to determine the
failure probability P f .
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Figure 13. Increase in failure probability according to the number of cycles.

Figure 14. The probability of failure with the confidence intervals.

As a result of this analysis, we have shown, on the one hand, the need for inspections to control
the evolution and the propagation speed of the crack to avoid an unexpected failure. On the other
hand, we determined the inspection time ti for a threshold failure probability. As a result of the
inspection events performed at ti , we will then need to update the reliability parameters and
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Figure 15. Updated failure probability—Detection case.

do so based on the inspection outcome. In the following, a re-evaluation calculation of P f is
performed for the different cases of crack detection.

The failure probability P f can be updated by considering the additional data obtained from an
inspection. It is based on Bayes’ Theorem which describes the probability of an event occurrence
using the previous conditions related to this event.

The Bayesian updating algorithm has been exposed to make use of condition monitoring data
to improve the models of predictions and integrate the effects of different types of uncertainties.
The uncertainty limits for life prediction are controlled by updating the parameter distribution
using the detected crack length through periodic measurements [34]. In this paper, the Bayesian
updating method has been used for updating failure probability in cases of detection or non-
detection of a crack under uncertainties for a coupon test. Equations (15) and (16) define the
updated failure probability P f ,up in each case: [20–22]

• Indication case:

P f ,upd = P (G(X ≤ 0)|D ≤ 0) = P (G(X ) ≤ 0∩D ≤ 0)

P (D ≤ 0)
(15)

• No indication case:

P f ,upnd = P (G(X ≤ 0)|D ≤ 0) = P (G(X ) ≤ 0)−P (G(X ≤ 0)|D ≤ 0) ·P (D ≤ 0)

1−P (D ≤ 0)
(16)

Figure 15 shows the growth of P f ,up depending on the cycle’s number after an inspection in the
case of crack detection. From this figure, it can be seen that the crack detection accelerates the
increase in P f . Therefore, the model is profitable here because it can predict the cost of a disaster
that would have happened due to that failure. Figure 16 illustrates how no crack detection can
delay the increase in P f , so an extra operational life cycle (about 104 cycles) is gained.

As it can be seen in Figures 15 and 16, we have shown that the variation between the probabil-
ity of failure in the design phase (i.e., without inspection) and the updated probability of failure
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Figure 16. Updated failure probability—No Crack detection case.

after the integration of the inspection results is significant and can thus improve the decisions
taken concerning the planning of maintenance operations. We wonder whether when we should
perform inspection operations to guarantee a good functioning of the component, thus avoiding
an unpredictable failure.

6. Conclusions

In this paper, a fatigue-reliability-SHM coupling is presented. A crack quantification model based
on ultrasonic wave features is proposed. The performance of the model is evaluated from a relia-
bility point of view using POD modeling. The PDF of the actual crack size is derived considering
two typical cases of inspection data: With no detected crack and with detected crack. The fatigue
life of the coupon test is predicted taking into consideration the uncertainty of geometrical and
material parameters. Reliability assessment is realized via Monte-Carlo simulation and reliability
updating is performed using the Bayesian approach.

From the outcome of our investigation, it is possible to draw the following highlights:

• Method and quality of inspection have an important effect on fatigue life prediction. In
fact, a poor inspection quality represented by non-detection of the crack produces unsafe
results. However, the availability of an indication can lead to the convergence of results.

• The determination of an optimal detection limit is very helpful in case of the absence of
an indication from the inspection system.

• The Bayesian approach is very useful for reliability updating. Two cases are engendered:
– In a detection case, the updated failure probability P f ,up increases. Consequently, a

gain of the cost of a catastrophe can be obtained due to the failure.
– The no-crack detection case postpones the increase in P f , so a gain of the opera-

tional life cycle is acquired.
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6.1. Perspectives

• The development of a maintenance plan based on cost optimization in which we deter-
mine the optimal time to realize an inspection, repair the structure or replace it if needed.

• The application of this plan on different structures in order to design a general strategy.

Nomenclature

NDE Non-Destructive Evaluation
SHM Structural Health Monitoring
POD Probability of Detection
PDF Probability Density Function
MCS Monte-Carlo Simulation
E Modulus of elasticity
σ0.2 Yield strength
A (%) Percent elongation
r Correlation coefficient
ti Inspection time
â Predicted crack size
ad Crack indication
a0 Initial crack size
ac Critical crack size
A Crack size random variable
C , m material parameters of Paris model
P applied load
B Thickness of the plate
W Width of the plate
N Number of cycles
Nmodel The theoretical fatigue life
Nexp The experimental fatigue life
∆K Stress intensity factor range
f ( a

W ) Geometry factor
âth Detection threshold
σth Standard deviation of the detection threshold
Φ (·) Standard normal cumulative distribution function
Ø (·) Standard normal probability density function
D Event of detection of a crack
D Event of non-detection
P (A) Prior probability distribution of crack a, P (A) = f0(a)
fa\D (a) Probability distribution of crack with detection case
fa\D (a) Probability distribution of crack without indication
P f ,upd Updated failure probability in case of detection
P f ,upnd Updated failure probability in non-detection case
P f ,up Updated failure probability
P f Failure probability
G(X ) Performance function
L({X }) load function
S({X }) Strength function
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