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Abstract. The self-consistent (SC) theory is the most commonly used mean-field homogenization method
to estimate the mechanical response behavior of polycrystals based on the knowledge of the properties and
orientation distribution of constituent single-crystal grains. The original elastic SC method can be extended
to thermo-elasticity by adding a stress-free strain to an elastic constitutive relation that expresses stress
as a linear function of strain. With the addition of this independent term, the problem remains linear.
Although the thermo-elastic self-consistent (TESC) model has important theoretical implications for the
development of self-consistent homogenization of non-linear polycrystals, in this paper, we focus on TESC
applications to actual thermo-elastic problems involving non-cubic (i.e. thermally anisotropic) materials.
To achieve this aim, we provide a thorough description of the TESC theory, which is followed by illustrative
examples involving cooling of polycrystalline non-cubic metals. The TESC model allows studying the effect
of crystallographic texture and single-crystal elastic and thermal anisotropy on the effective thermo-elastic
response of the aggregate and on the internal stresses that develop at the local level.
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1. Introduction

The self-consistent (SC) theory is the most commonly used mean-field homogenization method
for estimating the mechanical response behavior of polycrystals based on the knowledge of the
properties and orientation distribution of constituent single-crystal grains. The SC method was
proposed independently by Hershey [1] and Kröner [2] for linear elastic polycrystals, and it was
subsequently expanded for this constitutive regime by Hill [3] and Zeller and Dederichs [4].
Although in the early days of the formulation, computational restrictions limited the applications
of SC models to relatively simple cases, a general implementation of the elastic SC model is now
part of homogenization-based polycrystal mechanics codes such as the VPSC code [5].

Consideration of thermo-elasticity adds a stress-free strain to the elastic constitutive relation
that expresses stress as a linear function of strain. With the addition of this independent term,
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the problem remains linear. The solution of a thermo-elastic self-consistent (TESC) problem for
composites, consisting of a phase made of inclusions embedded in a matrix phase with different
mechanical properties, was introduced by Walpole [6] and further reformulated and extended
by, for example, Willis [7], Buryachenko [8], and Milton [9]. These works identified and, in some
cases, also tackled the case of polycrystals as a special composite made of many mechanical
phases, with distinct properties associated with different single-crystal orientations, with no
matrix phase. Tomé et al. [10] presented the TESC formulation specialized for polycrystals to
predict the thermo-mechanical response of hexagonal close packed (hcp) Zr aggregates, which,
as almost every non-cubic material, has anisotropic thermal properties at the single-crystal level.
The TESC formulation also has important theoretical implications for the development of SC
homogenization of non-linear polycrystals. Indeed, for aggregates of grains deforming in the
viscoplastic regime, the different available SC theories vary in the procedure used to linearize
the non-linear mechanical behavior at the grain level, but eventually all of them make use of
the TESC theory applied to the linearized behavior of an iteratively adjusted generalized thermo-
elastic polycrystalline material.

Despite its relevance, a thorough exposition of the TESC theory with applications to actual
thermo-elastic polycrystal problems is lacking in the literature. Only a brief description can be
found in [10] as one among several applications of different SC models to different deforma-
tion regimes (TESC being one of them) for the interpretation of experimental data on Zr alloys.
The present contribution intends to fill this gap by presenting the polycrystal TESC theory in a
comprehensive manner, which is followed by illustrative examples involving cooling of polycrys-
talline non-cubic metals to study the effect of crystallographic texture and single-crystal elastic
and thermal anisotropy on the effective and local thermo-elastic responses of the aggregate.

2. Model

In the context of the SC theory, a polycrystal is represented by a set of weighted crystal orien-
tations. The orientations represent mechanical phases (i.e. set of single-crystal grains with the
same orientation and morphology surrounded by different neighborhoods) or statistically repre-
sentative “grains” (in what follows, “grains” and mechanical phases will be used interchangeably),
and the weights represent volume fractions. The set of orientations and weights is chosen to re-
produce the initial crystallographic texture of the material. Each grain is treated as an ellipsoidal
elastic inhomogeneous inclusion embedded in an effective homogenized thermo-elastic medium.
The ellipsoidal shape (or distribution of ellipsoidal shapes) represents the morphologic texture
of the polycrystal. The inhomogeneity character derives from the difference in elastic proper-
ties between each individual grain and the effective homogenized medium when expressed in
the same reference system. The inclusion character derives from the possible presence of eigen-
strains such as thermal strains. The inhomogeneous inclusions and the medium generally have
fully anisotropic properties, deriving from the intrinsic single-crystal anisotropy, crystallographic
texture, and/or non-equiaxed morphology. The effective medium represents the average envi-
ronment surrounding each orientation. Deformation is based on anisotropic crystal elasticity
and thermal expansion, which in the case of non-cubic crystals is also anisotropic.

2.1. Local constitutive behavior and homogenization

The local thermo-elastic constitutive behavior in a material point x of the polycrystal, relating the
local strain ε(x) and stress σ(x) is described by the linear relation

εi j (x) =C−1
i j kl (x)σkl (x)+αi j (x)δT (x) = εel

i j (x)+εth
i j (x), (1)

σi j (x) =Ci j kl (x)(εkl (x)−εth
kl (x)), (2)
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where the moduli C(x) and α(x) are the elastic stiffness and the thermal expansion tensors of
the single crystal containing the material point x, which, in general, can be considered to be
piecewise constant within the domain of each grain (g ) and thus can be denoted by C(g ) and
α(g ), respectively; δT (x) is the change in local temperature from the temperature at which the
aggregate is free of thermal stresses; and εel(x) and εth(x) are the elastic and thermal strains,
respectively. The thermal strain can be regarded as a stress-independent eigenstrain induced by
temperature change.

Assuming uniform temperature distribution, the following relation holds within the domain
of grain (g ):

σ(x) = C(g ) : ε(x)−C(g ) : α(g )δT, (3)

ε(x) = C(g )−1
: σ(x)+α(g )δT, (4)

where δT is the uniform change in temperature from the temperature at which the aggregate
is free of thermal stresses. At the aggregate level, a similar constitutive law holds, involving the
effective elastic and thermal moduli:

σ= C : ε−C : αδT, (5)

ε= C
−1

: σ+αδT. (6)

The bars on top indicate the polycrystal’s effective tensors. The effective elastic stiffness C
and effective thermal expansion α are a priori unknown and need to be determined. From
Hill’s lemma [11], the volume averages of the local stress and strain tensors, denoted here as 〈 〉,
correspond to the effective magnitudes ε= 〈ε(x)〉 and σ= 〈σ(x)〉, respectively. Taking volumetric
average of (3) and (4), and using (5) and (6), respectively, leads to the following relations:

C : ε−C : αδT = 〈C(g ) : ε(x)〉−〈C(g ) : α(g )〉δT, (7)

C
−1

: σ+αδT = 〈C(g )−1
: σ(x)〉+〈α(g )〉δT. (8)

These relations couple the elastic and thermal tensors of the grain with those of the aggregate,
and they are completely general. In this work, we provide the algorithm to solve for C andαwithin
the framework of the TESC formulation. However, before describing the latter, it is instructive
to present the also commonly used upper-bound (UB) and lower-bound (LB) approaches. The
simplest expressions for C and α obtained from (7) or (8) follow from assuming uniform strain
ε(x) = ε or uniform stress σ(x) = σ in the aggregate, respectively. In the former case (known as
Voigt assumption in elasticity) and if (7) has to be valid for an arbitrary strain and an arbitrary
temperature increment, the overall moduli are given by

C
UB = 〈C(g )〉 and αUB = C

U B−1

: 〈C(g ) : α(g )〉. (9)

Conversely, if the stress is assumed to be uniform in the aggregate (Reuss assumption in
elasticity) and (8) holds for an arbitrary stress and an arbitrary temperature increment, the overall
moduli are given by the average of the crystal compliances and thermal tensors:

C
LB = 〈C(g )−1〉−1 and αLB = 〈α(g )〉. (10)

The uniform strain approach fulfills compatibility (but not necessarily equilibrium) within the
polycrystal and represents an upper bound for the elastic energy of the aggregate. The uniform
stress approach fulfills equilibrium (but not necessarily compatibility) in the aggregate and
represents a lower bound for the energy. Neither approach fulfills the two conditions given by (7)
and (8) simultaneously. In addition, the elastic constants and thermal expansion coefficients
given by (9) and (10) are different because the average of the inverses does not coincide with
the inverse of the average. Only for the trivial case of elastically and thermally isotropic crystals
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are the tensors independent of grain orientation and both averaging procedures give the same
results.

The estimation of the effective elastic stiffness C and the effective thermal expansion α by
means of the SC approach is described in Section 2.5. For this purpose, we first solve the problem
of an elastic inclusion embedded in a homogeneous medium. Invoking Mura’s [12] concept of
equivalent inclusion, the constitutive behavior at the grain level can be rewritten in terms of the
homogeneous macroscopic moduli by adding and subtracting C : ε(x)−C : αδT to (3) to obtain

σ(x) = C : (ε(x)−ε∗(x))−C : αδT, (11)

where

ε∗(x) = C
−1

: [(C(g ) −C) : ε(x)− (C(g ) : α(g ) −C : α)δT ]. (12)

In this way, the inhomogeneous inclusion is replaced by an equivalent homogeneous inclusion
with elastic stiffness C and eigenstrain field ε∗(x). Subtracting (5) from (11) gives

σ̃(x) = C : (ε̃(x)−ε∗(x)), (13)

where the symbol “˜” denotes local deviations of the corresponding tensor from macroscopic
values: σ̃(x) =σ(x)−σ and ε̃(x) = ε(x)−ε.

In the absence of external body forces, the equilibrium equation is

σi j , j (x) = (σi j + σ̃i j (x)), j = σ̃i j , j (x) = 0. (14)

Replacing (13) in (14), using the relation ε̃i j (x) = (1/2)(ũi , j (x)+ ũ j ,i (x)), and accounting for the
symmetry C i j kl =C i j lk , we get a set of partial differential equations for the local deviation of the
displacement gradient field:

C i j kl ũk,l j (x)+ f ext
i (x) = 0, (15)

where the artificial body force field associated with the heterogeneity of elastic and thermal
constants is defined as

f ext
i (x) =−C i j klε

∗
kl , j (x) =σ∗

i j , j (x). (16)

The field σ∗(x) =−C : ε∗(x) is an eigenstress field, which is also known as polarization field.

2.2. Green function method

The system defined by (15) consists of three differential equations with three unknowns, namely,
the components of the local deviation of the displacement vector field ũi (x). A system of N linear
differential equations with N unknown functions and an inhomogeneity term, such as (15), can
be solved using the Green function method. Let us call Gkm(x−x′) the Green function associated
with ui (x) of a homogeneous infinite medium with elastic stiffness C that gives, in the absence
of any other sources of strain, the displacement at position x along direction k induced by a unit
external body force, with a single non-vanishing component m, applied at x:

C i j kl Gkm,l j (x−x′)+δi mδ(x−x′) = 0, (17)

where δ(x − x′) is the Dirac delta function and δi m is the Kronecker delta function. Once the
solution of (17) is obtained, the solution of (15) is given by the convolution integral, that is, a
linear superposition of elementary contributions to the displacement field given by the Green
function:

uk (x) =
∫

R3
Gkm(x−x′) f ext

m (x′)dx′. (18)

Assuming zero macroscopic strain, the same expression holds for ũi (x):

ũk (x) =
∫

R3
Gkm(x−x′) f ext

m (x′)dx′. (19)
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Taking the Fourier transform of (17),

C i j kl F T [Gkm,l j (x−x′)]+δi mF T [δ(x−x′)] = 0, (20)

and applying the properties of the Fourier transform of the derivative and of the Dirac delta
function,

C i j kl i2kl k j Ĝkm(k)+δi m = 0 (21)

where k is a point/vector of the 3D Fourier space of angular frequencies and i = p−1 is the
imaginary unit. Denoting k = kα, where the scalar k and the vector α (this notation is only used
here and in the next section, and it should not be confused with the thermal expansion tensors
αi j used elsewhere) are the modulus and the unit vector associated with k, respectively, we obtain

C i j klαlα j [k2Ĝkm(k)] = δi m . (22)

Defining
Ai k (α) =α jαl C i j kl (23)

allows us to obtain the algorithmic expression to calculate the Fourier transform of the Green
function:

k2Ĝi j (α) = A−1
i j (α). (24)

Since the matrix Ai j is a real function ofα, so is k2Ĝi j . This property leads to real integrals in the
derivation that follows.

2.3. Elastic inclusion and Eshelby tensor

Replacing the eigenstress given by (16) in (19) and taking derivatives yield for the local deviation
of the displacement gradient field

ũk,l (x) =
∫

R3
Gki ,l (x−x′)σ∗

i j , j (x′)dx′. (25)

Using the relation ∂Gi j (x − x′)/∂x = −∂Gi j (x − x′)/∂x′, we can rewrite the integrand of (25) as
Gki ,l (x− x′)σ∗

i j , j (x′) = (Gki ,l (x− x′)σ∗
i j (x′)), j +Gki ,l j (x− x′)σ∗

i j (x′) for integration by parts. Using
the Gauss theorem and the vanishing character of the Green function at infinity, we obtain [12]

ũk,l (x) =
∫

R3
Gki , j l (x−x′)σ∗

i j (x′)dx′. (26)

Equation (26) provides an exact implicit solution to the problem of a general eigenstrain field
ε∗(x) being accommodated elastically and inducing an eigenstress field σ∗(x). Such a solution
requires knowing the local dependence of the eigenstrain or the eigenstress tensor. Here, we
are interested in the specific application to thermo-elastic aggregates, where the elastic stiffness
C(g ), the thermal expansion tensor α(g ), and the thermal dilatation α(g )δT are constant over
the domain of each grain. This leads to the eigenstrain ε∗(g ) adopting a constant value in the
domain of the inclusion and being zero in the domain of the effective medium. Under these
conditions, Eshelby [13] and Mura [12] demonstrated that for a single inclusion of ellipsoidal
shape embedded in an infinite medium, the elastic strain field is uniform in the domain of the
inclusion. Here, however, we follow the more general approach of Berveiller et al. [14], expressing
the average of the local deviation of the displacement gradient field given by (25) over the domain
Ωg of the grain:

ũ(g )
k,l =

(
− 1

Ωg

∫
Ωg

∫
Ωg

Gki , j l (x−x′)dxdx′
)

C i j mnε
∗(g )
mn . (27)

Equation (27) can be interpreted in two ways. If the effective elastic modulus C is assumed to be
the stiffness of an infinite homogeneous matrix in which an ellipsoidal inclusion with constant
eigenstrain ε∗(g ) is embedded, ũ(g )

k,l is the constant value inside domain Ωg obtained from the
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solution of Eshelby’s inclusion problem. On the other hand, in the actual case of a polycrystal, ũ(g )
k,l

should be interpreted as the average value (first moment) of the corresponding field in grain (g ).
Expressing the second derivative of the Green tensor in terms of its Fourier transform, we

obtain

ũ(g )
k,l =

(
1

8π3Ωg

∫
Ωg

∫
Ωg

∫
K 3

(αlα j k2Ĝki (k))exp[−ik · (x−x′)]dkdxdx′
)

C i j mnε
∗(g )
mn

= Tkl i j C i j mnε
∗(g )
mn . (28)

Transforming the integral over the reciprocal space to spherical coordinates such that dk =
sinθdθdφk2 dk and using (22), the tensor Tkl i j can be rewritten as

Tkl i j =
1

8π3Ωg

∫ 2π

0

∫ π

0
αlα j A−1

ki (α)Λ(α)sinθdθdϕ, (29)

where θ and φ are the spherical coordinates of the Fourier unit vectorα and

Λ(α) =
∫ ∞

0

(∫
Ωg

∫
Ωg

exp[−ik(x−x′)]dxdx′
)

k2 dk. (30)

Integration of (30) inside an ellipsoidal domainΩg with main axes (a,b,c) gives [14]

Λ(α) = 8π3

3

(abc)2

[ρ(α)]3 , (31)

where

ρ(α) =
√

(aα1)2 + (bα2)2 + (cα3)2. (32)

Replacing (31) in (29), and recalling thatΩg = (4/3)π(abc), provides an expression of Tkl i j for an
ellipsoidal grain:

Tkl i j =
(abc)

4π

∫ 2π

0

∫ π

0

α jαl A−1
ki (α)

[ρ(α)]3 sinθdθdϕ. (33)

For arbitrary elastic anisotropy, the double integral in (33) has to be solved numerically using, for
instance, a Gauss–Legendre technique [5]. For the purpose of calculating the symmetric strain
tensor, the following symmetric Eshelby tensor is defined:

Si j kl = 1
4 (Ti j mn +T j i mn +Ti j nm +T j i nm)C mnkl . (34)

2.4. Interaction and localization equations

Taking the symmetric part of (28), and using the Eshelby tensor defined in (34), we obtain the
average deviation of strain in grain (g ) with respect to the macroscopic strain:

ε̃(g ) = S : ε∗(g ). (35)

An expression equivalent to (13), relating local deviations in stress, strain, and eigenstrain fields,
also holds for the deviations of average stress, average strain, and average eigenstrain in the grains
with respect to the effective medium. It is straightforward to demonstrate this by integrating (13)
over the grain domain:

σ̃(g ) = C : (ε̃(g ) −ε∗(g )). (36)

Replacing the eigenstrain given by (35) in (36), the following interaction equation is obtained:

σ̃(g ) =−C̃ : ε̃(g ), (37)

where the interaction tensor is defined as

C̃ = C : (I−S) : S−1. (38)
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Using the polycrystal constitutive relation (5) and the grain-averaged constitutive relation ob-
tained from averaging (3) in the domain of grain (g ),

σ(g ) = C(g ) : ε(g ) −C(g ) : α(g )δT, (39)

the interaction equation (37) can be rewritten in terms of total strain tensors. After some algebraic
manipulation, the following strain localization equation is obtained:

ε(g ) = A(g ) : ε+D(g )δT, (40)

where the strain localization tensors are defined as

A(g ) = (C(g ) + C̃)−1 : (C+ C̃), (41)

D(g ) = (C(g ) + C̃)−1 : (C(g ) : α(g ) −C : α). (42)

2.5. Self-consistent equations

The derivation presented in the previous sections solves the problem of a thermo-elastic inclu-
sion embedded in a thermo-elastic effective medium being subject to external loading condi-
tions. In this section, we use the previous result to construct a polycrystal model, consisting in
regarding each grain as an ellipsoidal inclusion embedded in a homogeneous medium with the
same properties as those of the homogenized polycrystal. The properties of such a medium are
not known a priori, and they will be obtained following an iterative SC procedure. The corre-
sponding equations are derived in this section.

The homogenized medium assumption is central to our derivation and needs some discus-
sion. Even if the solution for each individual ellipsoid representing a grain embedded in a homo-
geneous medium is exact, in a real aggregate, grains are not ellipsoidal and are not surrounded by
a homogeneous continuum. Rather, the surrounding neighbors have different orientations and
induce stress gradients inside the grains and across grain boundaries. In addition, grains with the
same orientation in the aggregate are surrounded by different neighbors, and as a consequence,
their associated average stress is not the same. As a result, the grain stress and strain given by
the effective medium approximation have to be regarded as representing the average state of all
grains having the same orientation in the aggregate.

We use the localization equation for the strain (40) to derive two equations. The first equation
follows from replacing (40) in (39):

σ(g ) = C(g ) : ε(g ) −C(g ) : α(g )δT = C(g ) : A(g ) : ε+ (C(g ) : D(g ) −C(g ) : α(g ))δT. (43)

The second equation follows from taking the average of (40) over all grains:

〈ε(g )〉 = 〈A(g )〉 : ε+〈D(g )〉δT. (44)

We recall that 〈 〉 denotes the average over the representative grains weighted by the associated
grain volume fraction. Extracting the effective strain of the medium ε= 〈ε(g )〉 from (44), replacing
it in (43), and averaging the grain stresses give

〈σ(g )〉 = 〈C(g ) : A(g )〉 : (〈A(g )〉−1 : 〈ε(g )〉−〈A(g )〉−1 : 〈D(g )〉δT )

+〈C(g )D(g ) −C(g ) : α(g )〉δT. (45)

Enforcing the condition that the effective stress is equal to the average of the grain stresses
σ= 〈σ(g )〉,

σ= C : ε−C : αδT = 〈σ(g )〉, (46)

leads to

C : ε−C : αδT = 〈C(g ) : A(g )〉 : 〈A(g )〉−1 : ε

− {〈C(g ) : A(g )〉 : 〈A(g )〉−1 : 〈D(g )〉−C(g ) : D(g ) +C(g ) : α(g )}δT. (47)
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For this identity to hold, the strain and temperature factors on the right-hand side have to
coincide with those on the left-hand side. This condition leads to

C = 〈C(g ) : A(g )〉 : 〈A(g )〉−1, (48)

which is an implicit equation for the stiffness because the localization tensor A(g ) is a function of
the interaction tensor C̃(g ) (38), which in turn is a function of C and the Eshelby tensor S, which
is also a function of C. As a consequence, Equation (48) is a fixed-point equation for the effective
polycrystal’s elastic stiffness.

The condition on the term associated with a temperature change is

C : α= 〈A†(g ) : D(g )〉+〈C(g ) : α(g )〉, (49)

where
A†(g ) = (C+ C̃(g )) : (C(g ) + C̃(g ))−1. (50)

Using (42) for D(g ) leads, after some algebraic manipulation, to a direct equation giving the
effective thermal coefficients of the aggregate:

C : α= 〈A†(g )〉−1 : 〈A†(g ) : C(g ) : α(g )〉. (51)

The iterative solution of (48) gives the polycrystal’s elastic stiffness, and the subsequent use of
(51) gives the polycrystal’s thermal coefficients once the effective stiffness is known.

We end this section mentioning that by taking derivatives with respect to the local moduli of
the effective properties given by (48) and (51), it is possible to access information on intragranular
heterogeneity in the form of second moments of the stress field distribution in each mechanical
phase (g ). The algorithms to calculate these second moments from the SC theory for thermo-
elastic polycrystals (based on the original TESC expressions for composites [15,16]) can be found
in [17–19].

3. Applications

The applications discussed in this section include the calculation of effective elastic and thermal
moduli of zirconium, beryllium, and uranium and the evolution of macroscopic strain and
internal stresses during cooling processes.

3.1. Cooling of zirconium

The purpose of this example is to show how texture affects the effective elastic and thermal
constants and also the evolution of internal stress during cooling. We simulate cooling of Zr
from 900 to 300 K for two different crystal orientation distributions: a non-textured aggregate
(see discussion in the next paragraph) and an aggregate with axisymmetric texture, typical
of an extruded bar. The axisymmetric texture is displayed in Figure 1, and the single-crystal
elastic and thermal constants (or coefficients of thermal expansion) are given in Tables 1 [20]
and 2 [21], respectively. In this simulation, the boundary condition is that the macroscopic stress
components are zero, and at 900 K, the grains in the aggregate are assumed to be stress-free.

The UB, LB, and TESC elastic constants calculated using 1000 orientations from a Sobol
sequence [22], obtained by maximizing the separation (in Euler space) of the next orientation
in the sequence from all the previous orientations, are given in Table 1. The effective thermal
moduli are given in Table 2. Observe that the effective properties may deviate slightly from the
exact isotropic conditions (C 11 = C 22 = C 33 and α1 = α2 = α3); for example, note some small
fluctuations in the least significant digits in the predicted values for non-textured aggregates.
The reason is that despite the aforementioned Sobol sequence optimizing the generation of a
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Table 1. Zr single-crystal elastic constants [20] and polycrystal elastic constants predicted
using UB, LB, and TESC models for non-textured and extrusion-texture aggregates (Voigt
notation; units of [GPa])

C11 C22 C33 C23 C13 C12 C44 C55 C66

Crystal 143.5 143.5 164.9 65.4 65.4 72.5 32.1 32.1 35.5

Non-textured aggregate
UB 144.1 144.1 144.1 71.1 71.0 71.1 36.5 36.5 36.5

TESC 143.5 143.5 143.5 71.2 71.2 71.2 36.1 36.1 36.1
LB 142.9 142.9 142.9 71.4 71.4 71.4 35.8 35.8 35.8

Textured aggregate
UB 146.9 146.5 142.4 70.0 69.9 71.3 35.0 34.9 37.8

TESC 145.9 145.7 142.2 70.2 70.1 71.6 34.8 34.7 37.2
LB 145.1 144.8 142.0 70.4 70.3 71.9 34.6 34.6 36.7

Table 2. Zr single-crystal thermal constants [21] and polycrystal thermal constants pre-
dicted using UB, LB, and TESC models for non-textured and extrusion-texture aggregates
(Voigt notation; units of [10−6 K−1])

α1 α2 α3 α1 α2 α3

Crystal 5.7 5.7 10.5 5.7 5.7 10.5
Non-textured Textured

UB 7.28 7.29 7.28 8.09 8.02 5.71
TESC 7.23 7.23 7.23 7.98 7.91 5.87

LB 7.23 7.23 7.23 7.87 7.82 6.00

discrete set of orientations to a uniform distribution, which should produce the same effective
response as that for a very large set of random orientations, the set of 1000 orientations used here
for representing the aggregate is not strictly uniform. In what follows, the polycrystal represented
by these 1000 orientations is referred to as “non-textured aggregate.”

Since Zr is mildly anisotropic elastically, the stiffness components of the textured aggregate
are not very different from those of the non-textured aggregate, but they display a clear axial
symmetry, that is, C11

∼= C22 6= C33, C13
∼= C23 6= C12, and C44

∼= C55 6= C66. On the other hand, the
large thermal anisotropy of the single-crystal thermal coefficients makes the effective properties
strongly dependent on texture. As we show next, it also has an important effect on the internal
stress evolution during cooling.

Figure 2 displays the evolution of overall diagonal strain components as a function of decreas-
ing temperature predicted using TESC. As is to be expected, for the non-textured aggregate, all
three directions contract by the same amount; but for the textured aggregate, this is not the case.
A concentration of basal poles perpendicular to the axial direction of the bar, combined with a
larger thermal coefficient along the c-axis, leads to a larger contraction perpendicular to the bar
axis. This is consistent with the effective thermal coefficients of the aggregate reported in Table 2.

Figure 2 also shows the evolution with temperature of the strain normal to basal (0002) and
prismatic (10–10) planes either perpendicular to axis 1 (radial direction) or axis 3 (axial direction)
of the texture. In the case of the non-textured aggregate, both directions are equivalent, and
the result reflects the fact that the tendency of the crystal is to contract more than the effective
medium along the c-axis and less than the effective medium along the a-axis. The interaction of
the grain (inclusion) with the effective medium partially prevents such behavior, and this leaves
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Figure 1. Basal pole figure of extruded Zr bar.

Figure 2. Microstrain evolution in (10–10) and (0002) planes and macroscopic strain evo-
lution with temperature in non-textured Zr and extruded Zr bar when cooling from 900 K
to 300 K, predicted using TESC.

the c-axis in tension and the a-axis in compression. The same mechanism applies to internal
stress evolution in the textured polycrystal except that now the average contraction is different
along the axial and radial directions and so is the interaction with grains oriented in either of
these directions. The TESC model captures well such a directional interaction. Observe that the
final elastic strains are large (∼1×10−3) and correspond to normal stresses of order 100 MPa. The
larger thermal coefficient perpendicular to the basal plane induces a larger thermal contraction,
which is counteracted by the interaction with the surrounding medium. As a consequence, the
strain along the c-axis is always positive. The opposite is true for the direction normal to the
prismatic planes of the crystal. Texture changes the properties of the effective medium and affects
the result quantitatively. These predictions are consistent with measurements in a Zrly-2 bar
reported by MacEwen et al. [21].

3.2. Cooling of beryllium

To show the relevance of the single-crystal anisotropic moduli, here we perform the same
calculations for another hcp material, beryllium, and compare the results against those for
zirconium. For this purpose, we simulate cooling of Be from 900 to 300 K for a non-textured
aggregate. The single-crystal elastic and thermal constants are given in Tables 3 [20] and 4 [23],
respectively. As before, the boundary condition is zero macroscopic stress components and an
internal stress-free aggregate at 900 K. The latter is in reasonable agreement with the internal
stresses measured by Brown et al. [24] as a function of temperature in a non-textured aggregate.
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Table 3. Be single-crystal elastic constants [20] and polycrystal elastic constants predicted
using UB, LB, and TESC models for a non-textured aggregate (Voigt notation; units of [GPa])

C11 C22 C33 C23 C13 C12 C44 C55 C66

Crystal 292.3 292.3 336.4 14.0 14.0 26.7 162.5 162.5 132.8

Non-textured aggregate
UB 313.6 313.6 313.6 14.9 15.9 14.9 149.3 149.3 149.3

TESC 312.5 312.6 312.5 15.3 15.3 15.3 148.6 148.6 148.6
LB 311.5 311.3 311.5 15.6 15.6 15.6 148.0 148.0 148.0

Table 4. Be single-crystal thermal constants at 450 K [23] and polycrystal thermal constants
predicted using UB, LB, and TESC models for a non-textured aggregate (Voigt notation;
units of [10−6 K−1])

α1 α2 α3

Crystal 13.9 13.9 10.4

Non-textured
UB 12.7 12.7 12.7

TESC 12.7 12.7 12.7
LB 12.7 12.7 12.7

Beryllium is a peculiar hcp material in two aspects: it exhibits an unusually low Poisson modulus
(ν∼ 0.045; varies depending on the crystal direction) and its thermal expansion coefficients have
been reported to increase two-fold from 300 to 900 K [23]. For the purpose of this demonstration,
we have made no attempt at accounting for the variation in thermal coefficients with temperature
and have adopted the coefficients corresponding to 450 K. Another difference from Zr is that
thermal contraction along the c-axis is smaller than perpendicular to it since α33 <α11.

The UB, LB, and TESC polycrystal elastic constants are given in Table 3 and the corresponding
polycrystal thermal moduli are given in Table 4.

Figure 3 displays the evolution of overall diagonal strain components as a function of decreas-
ing temperature predicted using TESC. As is to be expected for a non-textured aggregate, all three
directions contract by the same amount, about 0.8% at room temperature. Figure 3 also shows
the evolution with temperature of the strain normal to basal (0002) and prismatic (10–10) planes,
and the result reflects the tendency of the crystal to contract less than the effective medium along
the c-axis and more than the effective medium along the a-axis. The interaction of the grain (in-
clusion) with the effective medium opposes such a trend, and this leaves the c-axis in compres-
sion and the a-axis in tension, which is opposite to what happens in Zr. The TESC model captures
such a directional interaction and predicts the final crystallographic elastic strains of ∼0.5×10−3,
which correspond to large normal stresses of order ∼100 MPa in prism planes and of ∼−200 MPa
in basal planes (Figure 3). These values are in good agreement with the measurements reported
by Brown et al. [24]. Although the internal stresses are somewhat smaller in a textured aggregate,
they are expected to play an important role in early yielding, stress differential, and elastoplastic
transition when a Be aggregate is subjected to mechanical loading.

3.3. Cooling of uranium

As in the previous cases, the purpose of this example is to show how texture affects the effective
elastic and thermal constants, and the evolution of internal stress, during cooling ofα-U. Inα-U,
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Figure 3. Microstrain evolution in (10–10) and (0002) planes and macroscopic strain evo-
lution with temperature predicted using TESC for non-textured Be when cooling from 900
to 300 K (left); evolution of stress normal to (10–10) and (0002) planes (right).

Figure 4. (100), (010), and (001) poles of rolled α-uranium.

the elastic and thermal constants are more anisotropic than those of Zr, and the single-crystal
symmetry is orthotropic instead of hexagonal.

As before, to evidence texture effects, we simulate the cooling of α-U from 900 to 300 K for
two different crystal orientation distributions: a non-textured aggregate and an aggregate with
rolling texture, see Figure 4. The single-crystal elastic and thermal coefficients are reported in
Tables 5 and 6, respectively. The evolution of internal strains on {100}, {010}, and {001} planes
along directions x1 (rolling), x2 (transverse), and x3 (normal) is also reported. The simulation
imposes all the macroscopic stress components to be zero while cooling from 900 to 300 K.

The UB, LB, and TESC elastic constants calculated for the non-textured and textured ag-
gregates are given in Table 5 and the effective thermal moduli are given in Table 6. The large
anisotropy of the α-U single-crystal thermal coefficients makes the effective properties strongly
dependent on texture. In addition, as shown in Figure 5 (and also in Figure 2 for Zr), the macro-
scopic strains induced by cooling under the condition of zero macroscopic stress are contrac-
tive. The grains, however, develop increasingly compressive and tensile components of stress and
elastic strain that average to zero.

The larger thermal coefficients along the [100] and [001] crystal directions, compared with
[010], induce a larger thermal contraction perpendicular to those planes, which is counteracted
by the interaction with the surrounding medium. As a consequence, the associated internal
strains are always positive. The opposite is true for the [010] crystal direction, which has a nearly
zero thermal coefficient. Texture changes the properties of the effective medium and affects the
results quantitatively but not qualitatively.
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Figure 5. Evolution of microstrains in {100}, {010}, and {001} planes and evolution of
macroscopic strain components in non-textured and rolling-texture α-U when cooling
from 900 to 300 K.

Table 5. α-uranium single-crystal elastic constants [25] and polycrystal elastic constants
predicted using UB, LB, and TESC models for a non-textured and a rolling-texture aggregate
(Voigt notation; units of [GPa])

C11 C22 C33 C23 C13 C12 C44 C55 C66

Crystal 214.8 198.6 267.1 107.6 21.8 46.5 124.4 73.4 74.3

Non-textured aggregate
UB 232.2 232.3 232.1 55.9 56.1 55.9 88.0 88.1 87.9
SC 225.1 225.2 225.1 56.7 56.7 56.6 84.1 84.2 84.1
LB 219.0 219.1 219.0 57.6 57.7 57.5 80.6 80.7 80.6

Textured aggregate
UB 214.0 224.3 241.3 52.3 65.4 58.6 92.3 94.5 85.8
SC 208.5 219.0 233.7 52.8 65.7 59.2 88.7 90.2 81.9
LB 203.8 214.5 227.0 53.5 66.1 59.9 85.5 86.3 78.5

Table 6. α-uranium single-crystal thermal constants [26]. Polycrystal thermal constants
predicted using UB, LB, and TESC models for a non-textured and a rolling-texture aggregate
(Voigt notation; units of [10−6 K−1])

α1 α2 α3 α1 α2 α3

Single crystal 25.41 0.65 20.65 25.41 0.65 20.65

Non-textured Textured
UB 15.11 15.15 15.11 10.64 17.17 17.44
SC 15.38 15.41 15.37 10.01 17.46 18.61
LB 15.56 15.60 15.55 9.21 17.64 19.86

4. Conclusions

In this paper, the TESC formulation is presented in detail and applied to the cooling of polycrys-
talline single-phase non-cubic metals. The TESC model captures the effect of crystallographic
texture and single-crystal elastic and thermal anisotropy on effective and local thermo-elastic
responses.
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Although not shown here, the TESC model can be applied to multiphase polycrystalline
aggregates. In such cases, the heterogeneity in the local thermal response captured by the model
arises from single-crystal thermal anisotropy (i.e. for non-cubic phases) and/or the difference in
thermal properties between phases (including cubic phases).

The results presented here show that depending on temperature change, texture of the aggre-
gate, and level of single-crystal elastic and thermal anisotropy, internal stresses at the grain level
can be significant even in the absence of applied stress, for example, cooling under zero exter-
nal stresses, as in all the cases presented. These internal stresses may play an important role in
promoting plastic yield during cooling or during loading after annealing as well as in determin-
ing subsequent stress differential, for example, different yield in tension versus compression. In
other words, these thermal stresses can significantly affect yielding and the elastoplastic transi-
tion compared with the case of aggregates with stress-free grains. Evidently, the TESC formula-
tion presented here is not able to capture this effect by itself, but it needs to be combined with
model extensions that include crystal plasticity mechanisms such as elastoplastic [27] and elas-
toviscoplastic [28, 29] formulations.
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