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1. Introduction

As new materials, design and optimization tools are constantly being developed, certification
programs in the aerospace industry tends toward an increasing reliance on modelling and simu-
lations for the reduction of physical testing. In the particular case of materials and structures, this
virtual certification process is generally supported by a validation stage which will determine the
ability of a model to fit experimental data. For this, model calibration tests must be performed
where the model parameters are adjusted in order to fit data sets generated for different experi-
mental conditions. In order to widen the range of validity of the given model parameters, these
tests must be performed to cover a wide range of observable quantities such as strains, strain
rates, temperature, etc.

In the case of viscoelastic materials, the properties can be determined using standard tests
such as creep tests [1], dynamic mechanical analysis (DMA) [2] or standard tensile tests [3]. How-
ever, these tests are limited to the characterisation of only one relaxation function at a time.
As stated in [4], the complete characterisation of the viscolastic behaviour for an isotropic
material can be obtained with the determination of two viscoelastic response functions simul-
taneously, this is known as the Standard Protocol. With the recent improvements in imaging,
non-invasive full-field measurement techniques have been developed giving access to maps of
observable quantities. For kinematic field measurements, Digital Images Correlation (DIC) has
been widely used [5]. In particular, it enabled the emergence of new methods to identify isotropic
viscoelastic properties. One set of such methods uses DIC together with data generated from
standard tests, allowing to identify simultaneously the Young’s modulus and Poisson’s ratio by
measuring the longitudinal and lateral strains [6–8]. These techniques take advantages of the
non-contact nature of DIC to avoid experimental difficulties arising from the use of strain gauges
such as alignment, stiffness of the backing (which must be lower than the tested polymer) or
inadequate temperature compensation.

However, these methods use statically determinate test configurations, which strongly limits
test geometry and rely on strong assumptions on boundary conditions. Thus, there is a growing
interest in using statically undetermined approaches for the identification of constitutive param-
eters of materials. These methods take advantage of heterogeneous stress fields for the identi-
fication procedure which gives the potential to widen the range of validity of the identified pa-
rameters using a reduced number of tests [9, 10]. This new testing paradigm has recently been
coined Material Testing 2.0 [11]. The price to pay for using statically indeterminate test configu-
rations however is that there is no direct link between the measured external forces applied to the
specimen and the local strain response. Therefore, an inverse identification methodology needs
to be employed [9]. Among those methods, the Virtual Fields Method (VFM) is a good candidate.
The VFM uses measured observables obtained with full-field measurements, and expresses the
stresses via a model that depends on the nature of the tested material [12, 13]. The stresses are
then used to express the principle of virtual work (PVW). The model parameters are evaluated
based on the stress equilibirium described by the PVW with particular virtual fields. In the case
of elasticity, the linear stress-strain relationship allows for the constitutive parameters to be di-
rectly identified using a matrix inversion [14]. If a non-linear constitutive relationship is consid-
ered, the model parameters are obtained by minimising a cost function built from the difference
between internal and external virtual works. Viscoelastic materials can be formulated with rheo-
logical models, and an iterative minimisation procedure has to be employed [15, 16].

However, constitutive relationships for viscoelastic materials can be represented with an
equivalent elastic formulation in the Laplace domain. This is known as the viscoelastic corre-
spondence principle [17, 18]. This principle is widely used for the analysis of viscoelastic materi-
als. In particular, it has been used for the conversion of viscoelastic functions using a Prony series
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representation (generally from Young’s modulus E(t ) to the creep compliance D(t )) [6,19]. Other
applications invoke this principle for homogenisation problems, where the effective viscoelastic
properties need to be retrieved from the knowledge of the micrsotructure [20, 21]. More recently,
Taguchi et al. [22] used this correspondence principle in order to compute viscoelastic stresses
within a plane stress framework, and considering time-varying Poisson’s ratio.

The present work aims at developing a Laplace formalism for the VFM via the viscoelastic
correspondence principle. Since the VFM leads to a direct inversion for a purely elastic model,
applying the Laplace transform to equilibrium equation allows to identify viscoelastic parameters
without any iterative minimisation procedure. Using the inverse Laplace transform, the temporal
description of the viscoelastic properties can be obtained without the need for an a priori
parameterization. The paper is divided into three sections. Firstly, the theoretical development
of the method is presented (Section 2). The data processing and tools used for the application
of the method and the conversion of the viscoelastic properties are described in Section 3.
The verification and performance of the proposed Laplace Virtual Fields Method (L-VFM) are
addressed in Section 4 where the method is applied to Finite Element generated data with and
without the introduction of noise.

2. Theorical development

This section is devoted to the theoretical development of a Laplace formalism for the VFM.
The constitutive relationships for viscoelastic materials can be written with a time domain
representation and a complex frequency representation via the Laplace transform. The latter
allows to use the theory of elasticity in the Laplace domain. Applying the Laplace transform to
equilibrium equation expressed with the VFM allows to build up a linear system and to identify
the viscoelastic stiffnesses with a direct inversion of the system in the Laplace transform domain.
The temporal description of the stiffnesses can be obtained via inverse Laplace transform.

2.1. Constitutive relationships for linear viscoelastic materials

Constitutive relationships for viscoelastic materials use two descriptions. The first description, in
the time domain, links the stress response to the strain history inputs by means of a convolution
integral between the stiffness and strain components. The second description, in the complex
frequency domain, expresses the convolution operator as a simple algebraic product between
the respective Laplace transforms of the stiffness and strain components.

2.1.1. Time representation

The general linear viscoelastic constitutive relations, in the real time domain, are given by the
Boltzmann superposition principle [23] such that the stress can be expressed as [24]

σij(t ) =
∫ t

0
Cijkl(t −τ)ε̇kl(τ)dτ (1)

where Cijkl is the fourth order viscoelastic stiffness tensor, ε̇kl is the linearized strain rate tensor,
with (i,j,k,l=1,2,3). The dot denotes the local time derivative with respect to τ. In the case of an
isotropic viscoelastic material, Equation (1) can be formulated as [18, 25]

σij(t ) =
∫ t

0
K (t −τ)ε̇V

kk (τ)δijdτ+2
∫ t

0
G(t −τ)ε̇D

ij (τ)dτ (2)

where K (t ) and G(t ) are the bulk and shear moduli respectively, ε̇V
kkδi j and ε̇D

ij are the volumetric
and deviatoric strain rate tensors respectively.
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The operators used in Equations (1) and (2) are known as the hereditary, or convolution,
integrals. The stress components σij at a given time t are a weighted average of the strain
increments, dεij = ε̇ijdτ, by the corresponding modulus history, also called memory kernel, up
to that time t . The principle of convolution is illustrated in Figure 1 for a constant uniaxial strain
rate (i.e. the strain increment∆ε is constant at each time step). The corresponding stress response
is illustrated on the right side of Figure 1. Two cases are presented:

• In Figure 1a, the modulus time dependency is negligible. The stress displays a typical
linear elastic response and all the strain energy caused by the mechanical load is stored
within the material.

• In Figure 1b, the modulus relaxes with time. The stress displays a viscoelastic response
with stress softening as the strain energy is dissipated from the relaxation mechanisms
within the material.
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Figure 1. Convolution operation for, (a), a perfectly linear elastic behaviour, the modulus
(kernel) is constant with time, and the stress response is linear, (b), a viscoelastic behaviour,
the decrease of the modulus with time induces stress softening in the response

2.1.2. Complex frequency representation

The temporal representation of the constitutive relationships given by Equations (1) and (2)
can be reformulated with integral transform methods. In this framework, the most suited trans-
form is the well-known unilateral Laplace transform [26], which maps a time domain function
into the complex frequency domain. It is defined as

F (s) = L
{

f (t )
}

(s) :=
∫ ∞

0
f (t )exp(−st)dt (3)
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where L denotes the Laplace transform symbol, s is the complexed valued variable associated
with the transform such that s = ζ+ iω with ζ, the real part, ω, the imaginary part with i =

p
−1,

the term exp(−st) is the integration kernel. F (s) is the transform of the function f (t ). Functions
defined in the Laplace domain can be converted to the time domain using the inverse Laplace
transform, L −1, generally defined with the Bromwitch contour integral [27] given by

f (t ) = L −1 {F (s)} (t ) = 1

2πi

∫ ζ+i∞

ζ−i∞
F (s)exp(st)ds (4)

The interest of the Laplace transform lies in the fact that some of its properties allow for an
easier manipulation of mathematical operators of the time domain in the complex frequency
domain. A first such property is the convolution theorem, which states that the convolution of two
functions in the time domain is equivalent to the product of their respective Laplace transforms
in the complex frequency domain as expressed in Equation (5)

L

{∫ t

0
f (t −τ)g (τ)dτ

}
= L

{
f ⊛ g

}
(t ) = F (s)G(s) (5)

where ⊛ is the convolution operator, F (s) and G(s) are the Laplace transforms of the functions
f (t ) and g (t ) respectively. Another property of the Laplace transform concerns time derivatives.
A differential equation in the real time domain is equivalent to an algebraic equation in the
transform domain, given g (t ) = dh(t )

dt = ḣ(t ), the Laplace transform of g (t ) is written as

L
{

g (t )
} = L

{
dh(t )

dt

}
= sH(s)−h(0) (6)

where h(0) is the initial condition of the function h(t ) and H(s) is the Laplace transform of h(t ).
Considering these two properties and applying the Laplace transform to Equation (2), with the

assumption that the strains vanish at t ≤ 0, the general relationship becomes

σij(s) = sCijkl(s)εkl(s) (7)

and for an isotropic material,

σij(s) = sK (s)εV
kkδij(s)+2sG(s)εD

ij (s) (8)

The last expressions describes the so-called viscoelastic correspondence principle1 [18,28]. This
principle states that the viscoelastic stress model given by Equations (1) and (2) are equivalent to
an elastic stress model in the Laplace domain (Equations (7) and (8)).

In the case of a harmonic excitation, such as with DMA, the Fourier transform could have
been used. This is because the Fourier transform of a signal is equivalent to its Laplace transform
evaluated for s = iω. Assuming that ζ = 0 is equivalent to assume that no transient effect occurs
during the test. In the case of a transient analysis, the Laplace transform is well suited as it allows
to capture transient as well as steady state behaviours.

2.2. The Virtual Fields Method

The VFM is an identification technique based on the principle of virtual work. The VFM is
used for the identification of constitutive relationships of materials using heterogeneous data
obtained via full-field measurements [12, 13]. The underpinning idea is to generate the largest
stress heterogeneities for a wider validity of the constitutive parameters with a reduced number
of tests. The VFM can be applied to any kind of behaviour. It has been used to identify elastic [14],
plastic [29], viscoplastic [30], anisotropic [31,32] and viscoelastic [15,33] material models, among
others.

1These expressions are more generally known as the Laplace-Carson transform of the constitutive relationships,
however, the Laplace transform denomination will be used here
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2.2.1. General framework

For quasi-static loading conditions, the principle of virtual works is expressed as∫
V
σ

(
X , t ,ε,T, . . .

)
: ε∗dV︸ ︷︷ ︸

W ∗
i nt (X ,t )

−
∫
∂V

T (t ) ·u∗dS︸ ︷︷ ︸
W ∗

ext (t )

= 0 (9)

where V is the volume of the considered solid, ∂V is its smooth, or piecewise-smooth boundary,
σ is the Cauchy stress tensor, T is the traction-vector, u∗ is the virtual displacement vector
and ε∗ is the virtual strain tensor. The two operators : and · denote the double and simple dot
product respectively. Equation (9) expresses the equilibrium between the virtual work of internal
forces W ∗

i nt (X ), depending on the material parameters, and the virtual work of external forces
W ∗

ext , which represents the contribution of external loads. These two quantities are scalar values.
Equation (9) is valid for any continuous (C 0) and piecewise differentiable virtual displacement
field. The stresses in Equation (9) are calculated by applying a constitutive law depending
on observable quantities such as strains, strain rates, temperatures, etc. In practice, full-field
measurements are performed at the surface of the specimen subjected to mechanical loading.
To allow for the volume integrals to be calculated from surface measurements, a 2D plane stress
assumption is made in most applications, which is typical for material testing.

For linear elastic constitutive models, the stress σ is linearly dependant on the strains.
So, Equation (9) can then be expressed in order to allow for a direct matrix inversion for the
identification of elastic properties [13, 14]. This is referred to as the linear VFM. For non-linear
constitutive models, the identification relies on the minimisation of a cost function Φ, deduced
from Equation (9) [15,29–33]. It describes the normalized squared residuals between the internal
virtual works and external virtual works as shown in Equation (10)

Φ(X ) =
Nt∑

t=1

[
W ∗(t )

ext −W ∗(t )
int (X )

W ∗(t )
ext

]2

(10)

where X denotes the constitutive parameters set to be identified, Nt the total number of load
steps and t the actual time step. The constitutive parameters are deduced from the argument
minimising the cost function. This is known as the non-linear VFM. This technique computes
the stress from the constitutive model for each load step, and for each guess of the parameter set.
The cost function should be sufficiently “well-behaved” to allow for the target parameters to be
identified robustly, as local minima can arise from measurement noise.

2.2.2. The Virtual Fields Method for viscoelasticity

The identification of the viscoelastic properties with the non-linear VFM using a time repre-
sentation requires to:

• describe the time dependance of the modulus K (t ) and G(t );
• numerically compute the convolution integrals given by Equation (2) in a plane stress

framework;
• set up the iterative process described in Equation (10) until convergence.

This process has been applied to viscoelasticity by Yoon and Siviour [15] for characterisation
of rubbers. In this case a combination of an Ogden and a Prony series model was used. It was also
used by Hoshino et al. [16], where the minimisation was performed using a Newton–Raphson
method. More recently, Matejunas et al. [33] performed finite element simulations of an Image
Based Intertial Impact test with a generalized Maxwell model. The authors addressed the ability
of the non-linear VFM to identify a Prony series pair and defined a timescale of the test for which
the parameter could be identified.
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The following section describes a different VFM formalism for viscoelasticity. Expressing the
equilibrium principle in the complex frequency domain allows for the use of the viscoelastic cor-
respondance principle. An equivalent linear system is built to express the plane stress viscoelastic
stiffness components directly in the Laplace domain. The identification procedure is reduced to
the inversion of a linear system. The bulk and shear moduli as well as Poisson’s ratio and Young’s
modulus are directly expressed from the knowledge of the plane stress stiffness components in
the Laplace domain. The inverse Laplace transform is then applied to compute the modulus
value at each time step. The major advantage of the proposed formalism is that it does not re-
quires an a priori parameterization of the time-dependence of the stiffness.

2.3. Application of the Laplace transform to equilibrium equations

Equation (9) expresses the principle of virtual work in the time domain. Considering that the
stress components are time dependent, σ = σ(X , t ), applying the Laplace transform to Equa-
tion (9) gives

L

{∫
V
σ(X , t ) : ε∗dV

}
= L

{∫
∂V

T (t ) ·u∗dS

}
(11)

Since the Laplace transform is a linear integral operator, the order of integration in Equation (11)
can be changed such that∫

V
L

{
σ(X , t ) : ε∗

}
dV =

∫
∂V

L
{
T (t ) ·u∗}

dS (12)

To isolate the constitutive relationships, a temporally constant virtual field such that u∗(t ) = u∗

and ε∗(t ) = ε∗ is considered. From the linearity of the transformation, Equation (12) can be
written as ∫

V
L

{
σ(X , t )

}
: ε∗dV =

∫
∂V

L
{
T (t )

} ·u∗dS (13)

which can be expressed using the complex variable s,∫
V
σ(X , s) : ε∗dV︸ ︷︷ ︸

W ∗
i nt (X ,s)

=
∫
∂V

T (s) ·u∗dS︸ ︷︷ ︸
W ∗

ext (s)

(14)

Equation (14) provides the principle of virtual work in the Laplace transform domain, for a
temporally constant virtual field. The quantities σ(X , s) and T (s) are the Laplace transforms of
the stress tensor and the traction vector respectively.

The Laplace transform of the stress σ(X , s) can be expressed using Equation (8), however,
as stated in Section 2.2, the VFM is generally provided with measurements performed over the
surface of the specimen, such that a 2D plane stress assumption is made. Since the theory of
elasticity holds in the Laplace domain, the model given by Equation (8) can be expressed in the
plane stress framework by Equation (15)σ11(s)

σ22(s)
σ12(s)

= s


Q11(s) Q12(s) 0
Q12(s) Q11(s) 0

0 0
Q11(s)−Q12(s)

2


 ε11(s)
ε22(s)

2ε12(s)

 = sQ(s)ε(s) (15)

with Q11(s) and Q12(s) the plane stress stiffness components. One should note that the Voigt
notation is used in this formulation, the second order symmetric stress and strain tensors are
expressed with a one dimensional tensor. The passage from Equation (8) to Equation (15) is given
in Appendix A of this document.
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Substituting Equation (15) into Equation (14), the problem can be expressed as∫
V

sQ(s)ε(s) ·ε∗dV −
∫
∂V

T (s) ·u∗dS = 0 (16)

Since the kinematic fields are considered to be constant through the thickness, and considering
a spatially constant thickness, Equation (16) can be simplified as∫

S
sQ(s)ε(s) ·ε∗dS −

∫
L

T (s) ·u∗dl = 0 (17)

with S the surface of the solid and L its boundary2. Considering that the two in-plane stiffness
components Q11(s) and Q12(s) are the only unknowns, two linearly independent virtual fields
{[u∗(i )

1 u∗(i )
2 ]T ; [ε∗(i )

11 ε∗(i )
22 2ε∗(i )

12 ]T } (i=1,2) must be chosen. Expanding Equation (17) and assuming
Q11 and Q12 are constants over the surface S, the following expression is obtained

s

[
A11(s) A12(s)
A21(s) A22(s)

]
︸ ︷︷ ︸

A

[
Q11(s)
Q12(s)

]
︸ ︷︷ ︸

Q

=
[

B1(s)
B2(s)

]
︸ ︷︷ ︸

B

(18)

with 
Ai 1(s) =

∫
S

(
ε11(s)ε∗(i )

11 +ε22(s)ε22
∗(i ) +2ε12(s)ε∗(i )

12

)
dS

Ai 2(s) =
∫

S

(
ε11(s)ε∗(i )

22 +ε22(s)ε∗(i )
11 −2ε12(s)ε∗(i )

12

)
dS

Bi (s) =
∫

L

(
T1(s)u∗(i )

1 +T2(s)u∗(i )
2 (s)

)
dl

(19)

In practice, full-field measurements generally provide data (displacements, strains) over a grid of
discrete points. Each point is associated with an elementary surface. For each point, the datum is
considered constant over its associated elementary surface. The continuous integral Ai 1(s) and
Ai 2(s) given in Equation (19) can be approximated as a sum of discrete points such that

Ai 1(s) =
Np∑

k=1

(
εk

11(s)ε∗(i ),k
11 +εk

22(s)ε∗(i ),k
22 +2εk

12(s)ε∗(i ),k
12

)
×ak

Ai 2(s) =
Np∑

k=1

(
εk

11(s)ε∗(i ),k
22 +εk

22(s)ε∗(i ),k
11 −2εk

12(s)ε∗(i ),k
12

)
×ak

(20)

where k refers to the data points, Np is the number of points, ak is the area of the elementary
surface associated with each data point. The distribution of the locals traction vectors T is
generally unknown, only the resultant is generally measured with load cells. Therefore, the virtual
fields must be chosen such that the virtual displacements are constant over the boundary where
the load is measured (∂V in Equation (14)). The quantity Bi (s) in Equation (19) can then be
written such that only the resultant load appears in the equation

Bi (s) = u∗(i ) ·
∫

L
T (s)dl = u∗(i ) ·F (s) (21)

2It is important to note that the the virtual displacements acts like a filter on the whole boundary of the solid. In
practice, this allows to either filter out or to determine reaction forces along a given part of the solid.
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One should note that, following the linearity property of the Laplace transform, Equations (20)
and (21) can be expressed as

Ai 1(s) = L {Ai 1(t )} = L

{
Np∑

k=1

(
εk

11(t )ε∗(i ),k
11 +εk

22(t )ε∗(i ),k
22 +2εk

12(t )ε∗(i ),k
12

)
×ak

}

Ai 2(s) = L {Ai 2(t )} = L

{
Np∑

k=1

(
εk

11(t )ε∗(i ),k
22 +εk

22(t )ε∗(i ),k
11 −2εk

12(t )ε∗(i ),k
12

)
×ak

}
Bi (s) = L {Bi (t )} = L

{
u∗(i ) ·F (t )

}
(22)

Assuming that matrix A is invertible by defining linearly independent virtual fields, the solution
of the linear system deriving from Equation (18) can be symbolically expressed in the Laplace
domain, which yields [

Q11(s)
Q12(s)

]
= 1

s

[
A11(s) A12(s)
A21(s) A22(s)

]−1 [
B1(s)
B2(s)

]
(23)

Equation (23) gives the expression of the two independent plane stress stiffness components in
the Laplace domain. They are computed with a direct inversion of the system from the knowledge
of Ai 1(s) Ai 2(s) and Bi (s). Since the theory of elasticity holds in the Laplace domain, the bulk and
shear moduli K (s) and G(s) as well as the Poisson’s ratio ν(s) can be expressed with Q11(s) and
Q12(s) by [4], 

ν(s) =
Q12(s)

sQ11(s)

E(s) = Q11(s)
[
1− (sν(s))2

]
K (s) =

E(s)

3[1−2sν(s)]

G(s) =
E(s)

2[1+ sν(s)]

(24)

The relationships given by Equation (23) and (24) show that the viscoelastic stiffness compo-
nents can be directly expressed using the VFM in the complex frequency domain. The tempo-
ral description for each elastic constant can be obtained with inverse Laplace transform, from
Equation (4), such that, 

ν(t ) = L −1

{
Q12(s)

sQ11(s)

}
E(t ) = L −1

{
Q11(s)

[
1− (sν(s))2

]}
K (t ) = L −1

{
E(s)

3[1−2sν(s)]

}

G(t ) = L −1

{
E(s)

2[1+ sν(s)]

}
(25)

The developments in this section show that the viscoelastic properties can be identified
directly using a Laplace formalism combined with the Virtual Fields Method. The next section
aims at providing different tools for a numerical implementation of this identification method.
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3. Data processing and tools

The different steps established in the theoretical section can be summarised in the flowchart
given by Figure 2. The difference with the standard linear VFM is the processing of the data via
Laplace and inverse Laplace transforms, as shown in the dashed grey box in Figure 2.

2D strain fields
ε11(t ), ε22(t ), ε12(t )

Load
F (t )

Compute Ai 1(t ), Ai 2(t ) and Bi (t )

Ai 1(s), Ai 2(s), Bi (s)

Laplace transform

Compute Q11(s) and Q22(s)
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n
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Express K (s), G(s)
and ν(s)

Inverse Laplace
transform

Q11(t ), Q12(t ),
K (t ), G(t ), ν(t )

T
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e
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n

Virtual fields definition
u∗ =⇒ ε∗

Figure 2. Flowchart of the data processing using the Laplace Virtual Fields Method
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Generally, problems involving Laplace and inverse Laplace transforms can be solved analyt-
ically by using charts [34]. This is not the case here. The different quantities involved in Equa-
tion (23) are not analytically defined, such that no direct solution can be used. This sections aims
at providing the tools for a numerical resolution of the problem.

3.1. Numerical Laplace and inverse Laplace transform methods

Numerical methods can be used to approximate the transform pair given by Equations (3) and (4).
One set of methods approximate those integrals with a finite sum, as in [22, 35]. Another set of
methods, known as the Abate–Whitt framework [36], use analytically defined Laplace transforms,
and compute their inverse approximating the Bromwich formula given in Equation (4). Amongst
these methods, Euler [37], Gaver [38] and Concentrated Matrix Exponential (CME) [27] methods
show great potential for numerical inversion. The CME method will be considered in this paper,
as it has been shown to provide greater accuracy on the numerical inversion process [27].

3.2. Processing of discrete data

In order to use a numerical inversion within the Abate–Whitt framework, an analytical expression
of the Laplace transform F (s) of f (t ) has to be defined. The expressions Ai 1(s) Ai 2(s) and Bi (s) in
Equation (22) are the transforms of the discrete valued data set Ai 1(t ), Ai 2(t ) and Bi (t ).

In practice, the data set could be fitted with polynomial functions, or any function which can
be analytically defined in the Laplace domain [34]. Here, a linear piecewise approximation has
been chosen from the work of Gómez and Uribe [39]. The method described in that paper has
been modified such that the support of the piecewise function is extended to infinity to avoid
computational inaccuracy (see Appendix B). This piecewise approximation can then easily be
Laplace-transformed using the Laplace transform of linear and Heaviside functions [34].

3.3. Laplace inversion at time t = 0

Since the inverse Laplace transform is computed using the Abate–Whitt framework method, the
values of the elastic constants at time t = 0 cannot be obtained directly (see [36]). To do so, the
initial value theorem (IVT) will be used. This theorem states that the initial value of a function
f (t ) can be obtained from its Laplace transform with

f
(
t = 0+

)= lim
s→∞ sF (s) (26)

The values at time t = 0 can be obtained by applying this theorem to the built functional from
Equation (24) for the different viscoelastic functions.

3.4. Interconversion using discrete data

The moduli K (s) and G(s) and Poisson’s ratio ν(s) are expressed from the plane stress stiffness
component Q11(s) and Q12(s). This means that the conversion is directly processed in the
Laplace domain from their discrete representation. The time representation of these viscoelastic
functions is then obtained with the inverse Laplace transform. In order to assess the feasibility
of this conversion method, it was applied to discrete data retrieved from the work of Schapery
and Park [19]. The creep compliance D(t ) has been computed from the discrete valued source
function E(t ). The verification process can be found in Appendix C.
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4. Application to Finite Element generated data

Since the present work focuses on the verification of the methodology, no experimental data was
processed. The identification procedure with the Laplace Virtual Fields Method was applied to
data generated via Finite Element (FE) simulations. The implicit solver Z-set developed at ONERA
and Mines Paris Tech was used [40]. An uniaxial tensile test was simulated on a double notched
specimen geometry to generate heterogeneous kinematic fields. The isotropic linear viscoelastic
constitutive relationship given by Equation (2) was used within a 2D plane stress hypothesis. The
integration of this constitutive relationship was performed using a temporal implicit scheme.
The time dependant moduli K (t ) and G(t ) were described with a Prony series implementation
available in the Z-mat material library. The method was first applied on FE data to verify the
proposed protocol. Then, random noise was applied to the FE data in order to evaluate the
sensitivity to noise. The identified viscoelastic functions via the L-VFM have been compared with
their analytical expressions from the Prony series.

4.1. Finite Element data generation

4.1.1. Reference constitutive model

The moduli K (t ) and G(t ) were defined with a generalized Maxwell model, which is mathe-
matically defined in form of Prony series. This model expresses the time dependence of the mod-
uli as

R(t ) = R0 −
N∑

n=1
Rn

(
1−exp

(−t/ρn
))

(27)

with R = {K ,G} the moduli, the first term R0 is the instantaneous elastic stiffness, the second
term describes the delayed behaviour. The latter represents the temporal decay of the moduli as
a sum of N terms describing the relaxation mechanisms (Figure 1b). Each relaxation mechanism
is associated with a characteristic relaxation time ρn . Note that for a purely elastic material,
the second term is zero, and the instantaneous elastic stiffness stays constant over time. Since
the number and the values of the Prony series terms is not of matter here, a number of 4
arbitrary Prony series terms were used from the Z-mat manual. The characteristic relaxation
times associated with the bulk and shear moduli are independent from one another. They are
summarised in Table 1.

Table 1. Prony series parameters used for the simulations

K0 [MPa] G0 [MPa]

42261.90 29098.36

n Kn [MPa] ρK
n [s] Gn [MPa] ρG

n [s]

1 8628.57 0.01 6692.62 0.43
2 2444.76 0.31 5528.69 9.07
3 1294.29 0.27 7856.56 27.62
4 16394.3 6.52 9020.49 102.86

4.1.2. Specimen geometry and simulation boundaries conditions

A double notched specimen was selected for the simulations (Figure 3a). The presence
of the notches allows to generate heterogeneous strain fields from an uniaxial tensile test.
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This geometry was meshed with linear 2D triangular elements using full integration within the
plane stress framework, for a total of 4192 elements. An element size of 1 mm was chosen after
a convergence study. The degrees of freedom of the bottom edge were blocked in the x2 direc-
tion. For the upper edge, a displacement of 1 mm was imposed in the x2 direction (Figure 3b).
Concerning the x1 direction, only the central nodes were blocked at the lower and upper edges.

In order to mimic real test conditions, the simulation was performed with a number of 200
evenly spaced time steps for a 20 seconds test. Thus, the simulation generated a database of 200
heterogeneous strain fields (Figure 3c). The force resultant from the upper boundary was also
extracted. The viscous mechanisms due to the presence of the second term in Equation (27) can
be observed as the load relaxes with time (Figure 3d). It should be noted that the time steps and
the duration of the test have been arbitrarily chosen because significant viscoelasticity happens
for this time scale and the considered Prony series coefficients. More generally, the time step and
the duration of the test define the lower and upper limit of the observable time scale and would
be defined accordingly to the test set-up and loading conditions.

4.1.3. Data interpolation

Images with 1024×1024 data points were created to represent a full-field measurement format.
The strain components on that regular grid were computed based on the nodal displacements
using the FE basis functions with Equation (28)

εdata = Bunodes (28)

with εdata the strain matrix on the regular grid, unodes the nodal FE displacements matrix, and B
the matrix containing the derivatives of the element basis functions at the data points.

4.1.4. Noise application

Two data sets were generated. Firstly, in order to validate the methodology, no noise was added
to the data. Then, zero mean Gaussian noise was added to the strains in order to have a first idea
of the method sensitivity to noise. A standard deviation of λ = 150 µε was considered. The ratio
between the maximum value and the standard deviation for each strain components are given in
Table 2. These coefficients have been computed with

cm = 100
λ

max
(
εi j

) (29)

where cm is the ratio between the maximum value and the standard deviation expressed in
percentage of the maximum value, λ the standard deviation and max(εi j ) the maximum strain
value.

Table 2. Ratio between the maximum value and the standard deviation computed for each
strain component. This ratio is expressed in percentage of the maximum value.

cm ε11 [%] ε22 [%] ε12 [%]

2.5 0.31 1

The sensitivity study to noisy data is essential to assess the performance of the method for a
real application. However, here, the noise was artificially added directly to the interpolated strain
components. A study using a digital twin should be performed in a future work for a more realistic
simulation [41].
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Figure 3. (a) Double notched specimen geometry used for the simulations, dimensions
in mm. The degrees of freedom in the x2 direction at the bottom edge were blocked.
A displacement of 1 mm in the x2 direction was imposed at the upper edge. For the x1

direction, the displacements were blocked in the central node at the upper and lower edge.
(b) Imposed displacement at the upper edge of the specimen. (c) strain map ε22 at time
t = 10 s. The presence of the two notches generates a symmetrical heterogeneity. (d) Load
evolution with time. The load relaxes with time as viscous mechanisms take place within
the material.

4.2. Construction of the linear system in the Laplace domain

4.2.1. Virtual fields definition

Recalling the theoretical development made in Section 2, two virtual fields must be chosen to
solve the problem. The virtual fields selection must fulfil three conditions for the method to be
applied. In particular, the virtual fields must be :

• linearly independent,
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• constant on the edges where the loading is applied, such that only the force resultant
appears in the equations,

• constant in time.

In order to match these conditions, an arbitrary set of two fields were chosen for the present work

Field n°1

{
u∗(1)

1 = (x2 −L) x2x1

u∗(1)
2 = 0

=⇒


ε∗(1)

11 = (x2 −L) x2

ε∗(1)
22 = 0

ε∗(1)
12 =

x1 (2x2 −L)

2

Field n°2

{
u∗(2)

1 = 0

u∗(2)
2 = x2

=⇒


ε∗(2)

11 = 0

ε∗(2)
22 = 1

ε∗(2)
12 = 0

(30)

The origin of the orthonormal basis was set to the lower left corner of the specimen (see Figure 3).
As an example, the virtual normal strain field ε∗(1)

11 obtained from the virtual field n°1 is
presented in Figure 4. A greater weight is imposed at the center of the specimen where most
of the heterogeneous information is concentrated (see Figure 3c).
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[]

Figure 4. Virtual normal strain field ε∗(1)
11 obtained from the virtual field n°1.

4.2.2. Linear system construction

From the defined set of virtual fields, the discrete time description of the coefficients Ai 1(t ),
Ai 2(t ), obtained from the virtual strains, and Bi (t ), obtained from the virtual displacements, were
computed for each of the 200 time steps (Figure 5). The coefficients A11(t ) and A12(t ) obtained
with the virtual field n°1 shows higher amplitude since a greater weight is imposed by the virtual
strain on the real strains (see Figure 4). For the virtual field n°2, the virtual strain is constant so the
coefficients A21(t ) and A22(t ) are the sum of the axial and lateral strains respectively (Figure 5a).
For the loads, the virtual displacement n°1 cancels out the load imposed at the upper edge of the
specimen such that B(t ) is 0. The virtual displacement n°2 is constant on the upper edge such
that B2(t ) = LF (t ), with F (t ) the force resultant (Figure 5b).

The piecewise linear approximation and the Laplace transforms were applied to the different
quantities using the formulation given in Appendix B. The linear system was built in the Laplace
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Figure 5. (a) Time evolution of the coefficients computed from the virtual strains. The coef-
ficients A11(t ) and A12(t ) obtained from the first virtual strains are higher in amplitude be-
cause of the higher imposed weight by the virtual strains. The coefficients A21(t ) and A22(t )
obtained for the second virtual strain field are the sum of the respective axial and lateral
strains. (b) Time evolution of the coefficients computed from the virtual displacements.
Since the load is applied to the upper boundary of the specimen, the coefficient B1(t ) and
B2(t ) are 0 and LF (t ) respectively, with F (t ) the force resultant.

domain and the matrix inversion was performed symbolically using Equation (23) such that the
two following functions were obtained

Q11(s) =
1

s

− A12(s)B2(s)

A11(s)A22(s)− A21(s)A12(s)

Q12(s) =
1

s

A11(s)B2(s)

A11(s)A22(s)− A21(s)A12(s)

(31)

The moduli K(s), G(s) and Poisson’s ratio ν(s) were then expressed from Equation (31) in the
Laplace domain following the relationships given by Equation (24). The values in the time domain
were obtained through the inverse Laplace transform which evaluates the symbolical expressions
of the built piecewise linear functions at each time step (see [27, 37]).

4.3. Results and discussion

The analytical values for Poisson’s ratio and Young’s modulus were obtained by conversion of the
bulk and shear moduli using the Laplace and inverse Laplace transforms from their analytical
expressions.

For the two cases the CME inversion algorithm was used with an order of 1003, since no signif-
icant improvement in the accuracy was obtained for higher order evaluations. The computation
was performed on a laptop running with 8 Go RAM and an Intel Core i5-10210U CPU with a clock
rate of 1.60 GHz. The results were obtained after 15 minutes4.

3The order is refered to as the number of evaluations of the function F (s) for the computation of f (t ). More
informations are available in [27, 37].

4Computational times may vary depending on the chosen order.
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4.3.1. Results without noise

The identified and analytical moduli as well as Poisson’s ratio over the time interval [0.1 s,20 s]
are provided in Figure 6. The results at time t = 0 s using the initial value theorem are given in
Table 3.
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Figure 6. Comparison between the analytical and identified values using exact data for :
(a), the shear modulus, (b), the bulk modulus, (c), Poisson’s ratio, (d), Young’s modulus.
A good correspondence is observed between the identified and analytical viscoelastic
functions. Nevertheless, the chosen time resolution of 0.1 s did not allow to capture the
viscoelastic properties below 0.2 s.

Table 3. Identified vs reference values, exact data. The chosen time resolution was not
sufficient to capture the relaxation mechanisms occurring during the first time step. The
error is lower on G since slower relaxation mechanisms are used for the description of this
parameter resulting in a lower sensitivity to the time resolution.

Parameter K0 [MPa] G0 [MPa] ν0 [ ] E0 [MPa]

Analytical 42261.9 29098.36 0.22 71000
Identified (IVT) 33804.12 28332.21 0.17 66436
Error [%] 20 3 23 7

Globally, an excellent correspondence between the analytical and identified viscoelastic func-
tions is observed. However, the identified values at time t = 0 s and t = 0.1 s are not consistent
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with the analytical values. This is because the considered time resolution (∆t = 0.1 s), also known
as the lower limit of the time scale [15], or sampling rate, was not sufficient to capture the relax-
ation mechanisms that takes place during the first time interval. From an another perspective,
the time step ∆t = 0.1 s acts like an upper cut-off frequency of 10 Hz. Considering the Nyquist
theorem, the signal above 5 Hz can not be properly reconstructed (∆t = 0.2 s). Thus, the upper
limits of the given Prony series model were not reached for this test (K0,G0). The effective modu-
lus for the considered temporal resolution is the tangent modulus between the stresses and the
strains, which is identified by the proposed method. In order for the tangent modulus to converge
to the analytical values given by Equation (27), the time step∆t should be chosen such that only a
purely elastic behavior happens within the first time interval. An illustrative example using a one-
dimensional analytical model is given in Appendix D. In practice, this problem is well-known and
one must define a time scale for which the viscoelastic behavior can be accurately observed. This
time scale is impacted by two factors: the full-field measurement system framerate, and the tem-
perature considered for the test since the time-temperature equivalence states that increasing or
lowering the temperature of the sample is equivalent to respectively increase and decrease the
lower limit of the timescale [15, 33].

If a large dataset was considered (i.e. a fine time step and/or a large time period), the compu-
tational cost of the method would increase as it would imply a larger number of pieces for the
piecewise linear approximation of the Ai j and Bi coefficients (see Appendix B). This is because
each pieces of the function is a local representation built at each time interval with independant
heaviside and ramp functions. Thus, increasing the number of pieces is equivalent to increase
the number of function evaluations in the inverse Laplace transform process. In order to reduce
the computational cost, other functions could be used to approximate the coefficient Ai j and Bi ,
such as high order polynomials.

In order to assess the accuracy of the method, the mean absolute percentage error (MAPE) was
computed with the following equation

100

Nt

Nt∑
t=0

∣∣∣∣∣R −Ri d

R

∣∣∣∣∣ (32)

where Nt is the number of temporal data points, R is the analytical value and Ri d is the identified
value. It was first computed for the time interval [0 s,20 s] then considering the time interval
[0.2 s,20 s].

Table 4. Mean Absolute Percentage Error computed for the time interval [0 s,20 s] and
[0.2 s,20 s] respectively. Due to the sampling rate of 0.1 s, the moduli and Poisson’s ratio
values below 0.2 s can not be accurately identified resulting in an increase of one order of
magnitude in the error for K and ν due the fast relaxation mechanisms happening during
the first time interval for these parameters. The impact is lower on the parameter G and E
because of the slower relaxation mechanisms during the first time interval.

MAPE K [%] G [%] ν [%] E [%]

[0 s,20 s] 0.15 0.028 0.18 0.045
[0.2 s,20 s] 0.023 0.014 0.067 0.01

The results given in Table 4 shows that the error is an order of magnitude higher for K and ν

for the [0 s,20 s] time interval. This difference is lower for G since slower relaxations mechanisms
are used for the description of this parameter (Table 1). The same observation is made for E .
For the time interval of [0.2 s,20 s] the MAPE displays an error with an order of ±0.01% for each
viscoelastic function.
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These results validate the proposed methodology, and show that the viscoelastic properties
can be directly identified without any a priori parametrization of their time-dependance. Never-
theless, care must be taken for the timescale definition. If fast relaxation mechanisms happen for
the considered material, the time resolution should be high enough to capture the viscoelastic
properties with high accuracy. It should however be noted that this limitation is not specific to
the L-VFM. It is just that the information is not present in the dataset.

4.3.2. Results with noise

The results with the introduction of noise are presented in Figure 7. From the discussion in
Section 4.3.1, only the values over the time interval [0.2 s,20 s] are considered. The MAPE was
computed for each parameter. The results are given in Table 5.
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Figure 7. Comparison between the analytical and the identified values on the time interval
[0.2 s,20 s] considering a zero mean Gaussian noise with a 150 µε standard deviation: (a),
the shear modulus, (b), the bulk modulus, (c), Poisson’s ratio and (d), Young’s modulus. The
noise sensivity of the method is impacted by the convolution operations and the choice of
the virtual fields. The impact of noise is higher at low time values because of the lower signal
to noise ratio.

As usual, Poisson’s ratio exhibits a higher sensitivity to noise as its impact on the mechanical
fields is lower. The bulk modulus shows a higher noise sensitivity than the shear modulus and
Young’s modulus. This is because strains have been noised rather than displacements. The bulk
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Table 5. Mean Absolute Percentage Error computed for the parameters identified from
noisy strains. The error is an order of magnitude higher compared to the case where no
noise was introduced, but still within 1% for all components, showing the stability of the
L-VFM.

MAPE K [%] G [%] ν [%] E [%]

[0.2 s,20 s] 0.73 0.23 0.8 0.13

modulus depends on two strain components while the shear modulus and Young’s modulus only
on one. If displacements had been noised, or even better, grey level images using the virtual twin
described in [41], it is likely that this effect would have been less obvious.

The MAPE displays an error on the order of ±0.1% for each parameter. This is an order of
magnitude higher compared to the case where no noise was introduced. The impact of noise is
particularly important for the low time values. The low amplitude of the strain maps for these
times leads to a lower signal-to-noise ratio (see Figure 8). However, the errors are still much lower
than practical experimental uncertainties.

The noise sensitivity of the method is driven by two factors, the convolution operation and
the choice of the virtual fields. Looking back at Equations (23) and (31), the matrix inversion is
computed in the Laplace domain using the product of its components. Therefore, the frequency
contents of the different signals are multiplied. This multiplicative operations in the complex
frequency domain are equivalent to a convolution between the different noisy signals. For a
deeper understanding of the impact of the convolution operation on the identified properties,
future work considering a linear elastic model could be attempted. The elastic properties are
constant in time. They can be identified via the linear Virtual Field Method and the Laplace
Virtual Field Method. Therefore, the difference between the identified elastic properties using
the two methods would only be due to the noise transmission through the Laplace and inverse
Laplace transforms.
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Figure 8. Error over time for the identified bulk modulus K, the impact of the noise is more
important for low time values because of the lower signal to noise ratio
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5. Conclusions and future works

A novel method based on the Virtual Fields Method and the Laplace transform has been de-
veloped. The Laplace formalism allows for a direct extraction of the viscoelastic properties of
materials without any parametric modelling of their time-dependent behaviour. For a given
temporally constant virtual field, the Laplace transform is applied to equilibrium equations
through the principle of virtual work allowing to build up a linear system in the Laplace domain.
This linear system is inverted, and a direct expression of the viscoelastic properties in the Laplace
domain is obtained. The time representation of these viscoelastic properties is computed from
their Laplace representation through the inverse Laplace transform. At first, the method has been
validated by applying it to exact Finite Element generated data. Then, Gaussian noise was applied
to the strains to simulate experimental data. This allowed for a first analysis of the noise sensiv-
ity of the proposed methodology. The results showed that the viscoelastic properties can be di-
rectly identified using the proposed method. However, emphasis must be made on the different
hypotheses and test conditions considered for the method implementation.

(1) An isothermal test is considered in order for the viscoelastic functions to remain spatially
homogeneous.

(2) The temporal resolution is of important matter. If fast relaxation mechanisms happen
for the considered material, a sufficiently fine time resolution is required to capture the
viscous effect that could take place at low time values.

(3) The virtual fields have been selected to be temporally constant, in order to express
the constitutive model with its Laplace transform. This is probably not very restrictive
in quasi-static as the viscoelasticity will not strongly affect the spatial distributions of
strains. However, in inertial tests like the IBII test [33, 42] where spatial shapes follow
wave propagation, this is likely to be a major limitation.

Future work will focus on experimental validation in static and at high strain rate, as well as
the extension of the optimized virtual fields as defined in [43, 44] to this particular situation. A
next step will also be to extend the method to orthotropic composites, particularly thermoplastic
composites which exhibit significant viscoelasticity.
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Appendix A. Equivalent elastic model in the Laplace domain

For a viscoelastic and isotropic material, the stress in the linear domain can be calculated using
Equation (33)

σij(t ) =
∫ t

0
K (t −τ)ε̇V

kk (τ)δijdτ+2
∫ t

0
G(t −τ)ε̇D

ij (τ)dτ (33)

where K (t ) and G(t ) are the bulk and shear moduli respectively, ε̇V
kkδij and ε̇D

ij are the volumetric
and deviatoric strain rates respectively. Equation (33) uses two convolution operators, which can
be written as

σij(t ) = K (t )⊛ ε̇V
kkδij(t )+2G(t )⊛ ε̇D

ij (t ) (34)

where ⊛ is the convolution operator. Applying the Laplace transform to Equation (34), the
following expression is obtained

L
{
σij(t )

}=L
{

K (t )⊛ ε̇V
kkδi j (t )+2G(t )⊛ ε̇D

ij (t )
}

(35)

where L is the Laplace transform. Since the Laplace transform is a linear operator, the expression
given by Equation (35) can be written as

L
{
σij(t )

}=L
{
K (t )⊛ ε̇V

kkδij(t )
}+L

{
2G(t )⊛ ε̇D

ij (t )
}

(36)

Using the convolution theorem, the expression given by Equation (36) becomes

σij(s) = sK (s)εV
kkδij(s)+2sG(s)εD

i j (s) (37)

where s denotes the complex number associated with the Laplace transform. The expression
given by Equation (37) can be written in a matrix formulation as given in Equation (38)

σ(s) = sK (s)Tr (ε(s))I+2sG(s)

(
ε(s)− 1

3
Tr (ε(s))I

)
(38)

Equation (38) can be reformulated as

σ(s) = Tr (ε(s))

(
sK (s)− 2

3
sG(s)

)
I+2sG(s)ε(s) (39)

The bulk and shear moduli K (s) and G(s) are then expressed as functions of the Young’s modulus
E(s) Poisson’s ratio ν(s) [4] with

K (s) = E(s)

3[1−2sν(s)]
; G(s) = E(s)

2[1+ sν(s)]
(40)

Equation (39) can be rewritten as

σ(s) = Tr (ε(s))

(
sE(s)

3[1−2sν(s)]
− sE(s)

3[1+ sν(s)]

)
I+ sE(s)

[1+ sν(s)]
ε(s) (41)

https://gitlab.com/escale_team/escale
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Taking the 2D plane stress hypothesis, such that

σ33(s) = 0 ; σ13(s) = 0 ; σ23(s) = 0 (42)

provides

ε33(s) =− sν(s)

1− sν(s)
(ε11(s)+ε22(s)) ; ε13(s) = 0 ; ε23(s) = 0 (43)

Substituting the expression of ε33(s) from Equation (43) in the trace of the strain tensor Tr (ε(s))
in Equation (41) such that

Tr (ε(s)) = ε11(s)+ε22(s)+ε33(s) = (ε11(s)+ε22(s))

(
1−2sν(s)

1− sν(s)

)
(44)

the following expression is obtained

σ(s) =
(

sν(s)
sE(s)[

1− (sν(s))2
] )

(ε11(s)+ε22(s)) I+ sE(s)

[1+ sν(s)]
ε(s) (45)

Equation (45) can be written as

σ(s) =
(

sν(s)
sE(s)[

1− (sν(s))2
] )(

ε11(s)+ε22(s)
)
I+ sE(s) [1− sν(s)][

1− (sν(s))2
] ε(s) (46)

Equation (46) can be expressed using in-plane stiffness coefficients Q11(s) and Q12(s). In case of
an isotropic material, these two coefficients are defined as

sQ11(s) = sE(s)[
1− (sν(s))2

] ; sQ12(s) = sν(s)
sE(s)[

1− (sν(s))2
] = sν(s)Q11(s) (47)

Substituting the expressions from Equation (47) into Equation (46), the following expression is
obtained

σ(s) = sQ12(s)
(
ε11(s)+ε22(s)

)
I+ s

(
Q11(s)−Q12(s)

)
ε(s) (48)

Due to the symmetry of the stress and strain tensors, the expression given by Equation (48) can
be written in the Voigt formulation with

σ(s) =



σ11(s)
σ22(s)
σ33(s)
σ23(s)
σ13(s)
σ12(s)

 ; ε(s) =



ε11(s)
ε22(s)
ε33(s)

2ε23(s)
2ε13(s)
2ε12(s)

 (49)

In the framework of 2D plane stress, and decomposing the strain tensor between its diagonal and
non-diagonal values, Equation (48) can be written as

σ11(s)
σ22(s)

0
0
0

σ12(s)

= sQ12(s)



ε11(s)+ε22(s)
ε11(s)+ε22(s)
ε11(s)+ε22(s)

0
0
0

+ s (Q11(s)−Q12(s))



ε11(s)
ε22(s)
ε33(s)

0
0
0



+ s
(Q11(s)−Q12(s))

2



0
0
0
0
0

2ε12(s)



(50)
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Using the relationships ε33(s) = − sν(s)
1−sν(s) (ε11(s) + ε22(s)) and sQ12(s) = sν(s)Q11(s) from Equa-

tion (43) and (47) respectively, the third component from Equation (50) cancels out, and it can
be rewritten as σ11(s)

σ22(s)
σ12(s)

= sQ12(s)

ε11(s)+ε22(s)
ε11(s)+ε22(s)

0

+ s (Q11(s)−Q12(s))

ε11(s)
ε22(s)

0


+ s

(Q11(s)−Q12(s))

2

 0
0

2ε12(s)


(51)

which givesσ11(s)
σ22(s)
σ12(s)

= sQ11(s)

ε11(s)
ε22(s)

0

+ sQ12(s)

ε22(s)
ε11(s)

0

+ s
(Q11(s)−Q12(s))

2

 0
0

2ε12(s)

 (52)

and σ11(s)
σ22(s)
σ12(s)

= s


Q11(s) Q12(s) 0
Q12(s) Q11(s) 0

0 0
Q11(s)−Q12(s)

2


 ε11(s)
ε22(s)

2ε12(s)

 (53)

Appendix B. Piecewise-linear Laplace transform for discrete data

Let us assume that a function f(t) can be represented by a piecewise-linear approximation. The
interval [0,T ] is divided into Nt − 1 time intervals, where Nt is the number of time points. For
each time segment ∆ti (i = 0, . . . , Nt ), the piecewise linear approximation pi (t ) of function fi (t )
is expressed as a sum of step and ramp functions for ti ≤ t ≤ ti+1 and is zero for t < ti and
t > ti+1 [39].

pi (t ) =


0, if t < ti

f (ti )H(t − ti )− f (ti+1)H(t − ti+1)+ ∆ fi
∆ti

t H(t − ti )− ∆ fi
∆ti

t H(t − ti+1), if ti ≤ t ≤ ti+1

0, if t > ti+1

(54)

where H(t) is the Heavisde step function,∆ fi = fi+1− fi and∆ti = ti+1−ti . The Laplace transform
of the Heaviside and ramp functions can be defined analytically from [34], such that

pi (s) =


0, if t < ti
f (ti )

s exp(−sti )− f (ti+1)
s exp(−sti+1)+ ∆ fi

s2∆ti

[
exp(−sti )−exp(−sti+1)

]
, if ti ≤ t ≤ ti+1

0, if t > ti+1

(55)

Equation (55) gives an analytical formulation for a piecewise linear approximation of discrete
data over a time interval in the Laplace domain. The function p(s) is expressed as the summation
of the functions pi (s) over all Nt −1 time intervals.

p(s) =
Nt−1∑
i=0

pi (s) (56)

From a numerical perspective, the evaluation of the input function f (t ) on a truncated
segment [0,T ] is regarded as one period from the computation process, the function is only
defined on the segment [0,T ]. In order to avoid errors that could arise from this process, the
ramp in the last time segment of the function p(t ) is extrapolated to +∞, as shown in Figure 9a.
If the function f (t ) is not initialised at time t = 0, its value a time t = t0 ̸= 0 is considered to be
constant on between t = 0 and t0, as shown in Figure 9b.
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The expression of the piecewise linear approximation p(s) in the Laplace domain is given as

p(s) = f (t0)

s

[
1−exp(−st0)

]+Nt−2∑
i=0

pi (s)+ f (tNt−1)

s
exp

(−stNt−1
)+ ∆ fN t−1

s2∆tNt−1
exp

(−stNt−1
)

(57)

tT

+∞

p(t )

t1 t2 tNt−1t0

(a) Extrapolation of the last segment of the piece-
wise linear approximation p(t ) of function f (t )

tT

+∞

p(t )

t0 t1 tNt−1

(b) Extrapolation between the time segment [0, t0]
of the piecewise linear approximation p(t ) for a
function f (t ) that is not initialised at time t = 0 s

Figure 9. (a) Extrapolation of the last segment of the piecewise linear approximation p(t )
of function f (t ). (b) Extrapolation of the first time segment for a function f (t ) not initialized
at time t = 0 s

Appendix C. Modulus interconversion using discrete data with the Laplace and in-
verse Laplace transforms

In order to validate the interconversion using a discrete approximation of the modulus function,
it has been applied to raw data extracted from Schapery and Park [19]. In this paper, the authors
introduce a method of interconversion using Prony series. With the proposed method, they
are able to compute the creep compliance function D(t ) from the knowledge of the source
relaxation modulus E(t ). Here the source function discrete data set was extracted and the creep
compliance was computed using the Laplace transform of the discrete data set using the discrete
approximation given in Appendix B. The creep compliance is related to the relaxation modulus
in the Laplace domain through

D(s) = 1

s2E(s)
(58)

The inverse Laplace transform was performed with the CME method for an order of 300 on the
build function.

The results are given in Figure 10. A good correspondence is observed between the two meth-
ods, thus validating the applicability of this interconversion technique for the elastic constants
from Equation (25).

Appendix D. Time step dependancy of the tangent modulus

Let us assume a one dimensionnal linear visocelastic problem. The activated stress component
can be computed using the one-dimensional convolution integral given by Equation (59).

σ(t ) =
∫ t

0
R(t −τ)ε̇(τ)dτ (59)
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Figure 10. Comparison between the interconversion technique used by Schapery and
Park [19] and the method using the Laplace and inverse Laplace transforms directly on the
discrete data

with R(t ) the modulus and ε̇ the strain rate. Substituting R(t ) with a Prony series formulation (see
equation (27)), the following equation is obtained

σ(t ) =
∫ t

0

(
R0 −

N∑
n=1

Rn
(
1−exp

(−(t −τ)/ρn
)))

ε̇(τ)dτ (60)

Considering a contant strain rate, the following analytical expression is obtained (see [45])

σ(t ) = ε(t )

(
R0 −

N∑
n=1

Rn

)
+ ε̇

N∑
n=1

ρnRn
(
1−exp

(−t/ρn
))

(61)

From Equation (61) the tangent modulus can be computed using the following

R t an(t ) = dσ(t )

dε(t )
(62)

As an illustrative example, the Prony series terms in Equation (61) have been substituted with
the bulk modulus values given in Table 1. The stress in Equation (61) has been computed for
an arbitrary constant strain rate and a time of 20 seconds. Four time step values have been
considered: ∆t = 0.001 s and ∆t = 0.01 s to simulate fast sampling rates, ∆t = 0.1 s, which
correspond the the time step chosen for the simulations and ∆t = 1 s, to simulate a slow
sampling rate. The tangent modulus has been computed numerically using a first order central
finite difference scheme.

The results are given in Figure 11, the modulus values at time t = 0 s are given in Table 6.
It is observed that increasing the sampling rate leads to the convergence of the tangent modulus
to the analytical values, as stated in Section 4. In this case, for each sampling rate, the analytical
values are reached for t ≥ 2∆t . However, it should be noted that the frequency response of
one order central finite differences does not reach a perfect response at the Nyquist frequency.
Instead, such responses are generally reached at f /4 (4∆t ) (see [46]).
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Figure 11. Analytical vs tangent modulus computed with a first order finite differences
method for three time step values. Increasing the sampling rate induces a convergence
of the tangent modulus to the analytical values as it allows to capture fast relaxation
mechanisms. For each time step, the tangent modulus converges to the analytical values
for t ≥ 2∆t

Table 6. Analytical vs Tangent modulus at time t = 0 s.

R0 [MPa] 42261.90

∆t [s] 1 0.1 0.01 0.001

Rt an
0 [MPa] 29852.22 33802.64 39012.29 41836.90
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