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1. The whole picture

At the beginning was science. The so-called modern science, for some historians of science
Galileo’s heritage, would have to wait a bit more. From the very beginning, the human being
created technology to master the natural environment and take profit of it for constructing tools
that facilitated the everyday life. Later, was the time to surpass the status quo, to break limits, to
make non-natural things—like flying for instance—and engineering became a major protagonist,
looking for improving performances. Thus, the dream of Leonardo was flying, the wings were
there for making flying possible, or simpler. In many cases the application preceded the scientific
understanding.

As Theodore Von Karman said, scientists study the world as it is, engineers create the world
that never has been. The first industrial revolution arose from steam engines and transformed
industry. Later on, electricity gave rise to the second revolution, the one enabling producing more
and faster, and this one not only transformed industry but also the society.

Alessandro Volta was invited two centuries ago at the French academy of sciences in Paris to
present his battery. He exhibited the action of applying the electrodes of his battery to a frog. All
the attendants were very impressed by the frog jumps. After that exciting session, the legend says
that Napoleon asked: Alessandro, do you think that one day, this thing that you call electricity,
could serve to something else that making jumps to the frogs? Few generations later, can you
imagine one single day of your everyday life without electricity?

Later, electronics entered the scene and, with it, automation. Welcome to the third industrial
revolution that enabled not only making faster, but making better. Despite all these advances, en-
gineering remained product-based, despite of the fact that the society is looking for performance.
The product is a simple way to access to this performance. When we buy an electric drill, we are
in fact trying to buy a good quality hole. However, engineering remained product-oriented. Why?

Certainty, due to the fact that even if physics-based models are very rich (in terms of physics), it
was difficult to both (i) address the product in its environment, usually too large, too complex, too
uncertain, too fluctuating. . . ; and (ii) solve them under stringent real-time constraints, needed for
optimal decision in operation, the ultimate goal of engineers and engineering.

2. The three arts of the engineering

The just referred challenges were addressed by empowering three arts of engineering.

2.1. The art of modeling

Science begun by empirical observation, something that is often called the first paradigm of
science. This is science in the times of Tycho Brahe. But science soon embraced—in fact, with
Brahe’s disciple, Kepler—a new paradigm: that of scientific theory. The art of modeling concerned
all the physics throughout all the description scales of materials, processes and structures, a rich
and holistic physics-based approach. This art allowed us to make accurate predictions concern-
ing materials, manufacturing processes and structural analysis, even in extreme conditions and
with the computational facilities available 45 years ago. These were in some cases smaller than
the one we have in the smartphone placed in our pocket.

Despite of the encountered computing limitations it was possible for instance, in 1985, to
simulate a crash test (involving fast-dynamics, multi-contact, plastic deformation, damage and
rupture, the worst among all the imaginable behaviors), as sketched in Figure 1. This was a major
accomplishment in computer simulation that can be found in the Computer History Museum at
San Jose (California) [1].
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Figure 1. Pioneering crash analyses. Picture courtesy of ESI Group.

However, these accomplishments remained limited by the available computational resources
as well as by the characteristic time of calculation and response. Replacing product management
by the management of performance needs for faster predictions, for faster and more optimal
designs, for faster and better decisions.

2.2. The art of simulation

Thus, the art of modeling was enriched with a second art, the art of simulation—the third
paradigm of science—that can be summarized in a single sentence: the ability of applying the
best numerical technique to a given problem, ensuring the best accuracy and efficiency. The
art of simulation is also a long history, more than 50 years old, that began when computers
irrupted and replaced the human analogical calculation by its radically new, and much faster,
digital counterpart. But the new engineering based on performance, at the beginning of the third
millennium, needs to proceed faster, in real-time. Sometimes even faster.

It was at the end of the XX century, that new technologies were proposed and implemented,
that without breaking down its physics-based rich descriptions, allowed to speed-up their predic-
tive capacities, i.e., the solution of the complex models that such rich engineering descriptions
imply. New capabilities were possible by involving the use of Model Order Reduction (MOR).

To introduce the main idea behind MOR, we consider the picture of a very touristic monument
on Paris, the one depicted in Figure 2. When showing this image to our Parisian colleagues, asking
them about what monument it is, the response is immediate: it is the Pantheon. Even if we are
very happy with that response, our next question is, after removing the picture from their eyes:
how many columns are placed in its front? There, the responses are quite diverse, 5 for some of the
interrogated people, 6 for others, some indicate seven. . . The surprise arrives when our colleagues
are informed on the exact number of columns: just 22. Every response was very far from the exact
value.

What does this experiment prove? It proves the fact that we can be sure on something
even when we absolutely ignore the details. Thus, MOR could be defined as the mathematical
technique able to extract essential features while ignoring accessorial details. Obviously, this
definition entails the dependence on the definition of essential and accessorial. For a tourist or a
computational algorithm for recognizing monuments from pictures, the essential is recognizing
the monument, whereas for the enterprise in charge of the columns maintenance the number
of columns seems crucial! Thus, models can and should be reduced with respect to a given goal,
and the validity of reduced models depend on the circumstances in which they were learned.

For describing MOR in a more proper way, we consider a field of interest u(x, t ), with the
quantity u(•) being a scalar, a vector or a tensor field, that depends on the physical space,
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Figure 2. A highly visited monument in Paris.

represented by the space coordinates x ∈Ω⊂RD (D= 3 when operating in the three-dimensional
space) and time t ∈T ⊂R.

For computing numerically such a rich field, the first step consists in reducing the number
of unknowns—a step called discretization—that approximates the solution from the value of the
field at different locations xi , i = 1, . . . , N, (the so-called nodes in finite elements notation) and at
different time instants tm , m = 1, . . . , M, according to the general form

u(x, tm) ≈
N∑

i=1
U m

i Ni (x), (1)

where when considering an interpolative approximation, i.e., Ni (x j ) = δi j , with δ the Kronecker
delta, U m

i = u(xi , tm). The previous expression represents the usual approximation employed in
the Finite Elements Method (FEM), where the approximation functions Ni (x) are called shape
functions.

For computing the N unknown values of the field at each time instant tm , an equivalent
number of equations is required. For that, physics offers in general the model to which the
evolution (in space and time) of the field under consideration is subjected, represented in its
most general form as

L (u(x, t );µ) = F (x, t ;µ), in Ωµ, (2)

where L (•) represents a generic linear or nonlinear differential operator, F (•) is the so-called
forcing term, and µ a set of parameters. Some of these parameters could affect the domain in
which the problem is defined Ωµ (the so-called geometrical parameters), some of them could
affect the physical model itself and others the forcing term. Thus, it is expected that the solution
will depend on the choice made for the different parameters grouped in vector µ, i.e., u(x, t ;µ).

In general, time derivatives involved in the differential operator are approximated by using
adequate finite difference schemes, taking profit of the causality that allows computing the
present from the past. Thus, the general physics-based model, at time tm , reads

L̃ (u(x, tm);µ) = F̃ (x, tm ;µ), in Ωµ, t = tm , (3)

that involves the solution at the present time, i.e. u(x, tm ;µ) that by using the approximation (1)
consists of N unknowns, the N nodal values of the field at the present time tm and for the
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considered set of parameters µ, i.e. U m
i (µ), i = 1, . . . , N. In the previous equation, •̃ represents

the semi-discretized differential form.
Now, if we define the model residual at present time tm and for the given choice of the

parameters µ, as
Rµ(u(x, tm)) = L̃ (u(x, tm);µ)− F̃ (x, tm ;µ), (4)

to enforce its nullity, the weighted residual formulation proceeds by enforcing, for any test
function u∗(x, tm) in an appropriate functional space, a vanishing integral∫

Ωµ

u∗(x, tm) Rµ(u(x, tm)) d x = 0. (5)

Within the Galerkin setting, the test functions are approximated from

u∗(x, tm) ≈
N∑

i=1
U∗

i Ni (x), (6)

that introduced into the weighted residual formulation Eq. (5) and taking into account the
arbitrariness of the N coefficients U∗

i allows (after some technical manipulations: integration by
parts, domain partition into elements, numerical integration, enforcement of essential boundary
conditions. . . ) to the algebraic system

KUm = F, (7)

where matrix K could depend on the solution itself Um , in the case of nonlinear modes, on time,
and also on the parameters choice µ. The forcing term F will depend, in turn, on present and/or
past time instants, as well as on the parameters choice. All these dependences are not explicitly
indicated for the sake of notational simplicity.

Even if the reduction accomplished is unimaginable, a double infinity of points and time in-
stants, condensed into N×M discrete values (nodes and time instants), sometimes the complexity
of the involved physics and the associated problem solutions, needs for several millions of nodes
where then solution must be computed every mili-second, or even micro-second, as it is the case
when analyzing the crash test before referred.

Solving too many algebraic systems, each one containing millions of rows and columns, is
feasible with the nowadays computational resources. However, fulfilling the stringent real-time
constraints while keeping reasonable the computational resources (if simulation is expected be
used in small and medium enterprises, as a consequence of democratizing simulation) is far
to be obvious. Despite of the impressive reduction just mentioned, that leaded to the algebraic
system (7), its repeated solution continues being, very often, too expensive. MOR could alleviate
these difficulties.

Imagine for a while, and without loss of generality, a steady-state linear problem, whose
discretized form reads

KU = F. (8)

This discrete model is able to compute the response U for any choice of the forcing term F,
that is, U1 results from the forcing F1 = (1,0, . . . , 0)T , U2 from F2 = (0,1,0, . . . , 0)T and so on,
until the response UN related to FN = (0,0, . . . , 1)T . Because of the linearity, superposition applies
and the response calculation to any forcing spanned into the canonical basis just considered, is
straightforward.

However, in general, only a region of this impressively large domain RN of all the possible
responses is, and will be, explored by a system during its life. Even the human being, each one
of us, and despite the impressive freedom that we have, we explore only a small region of the
domain containing all the possibilities open to us.

Thus, one could expect the response U expressible in a smaller approximation basis, instead
of the one of dimension N just considered. If a reduced approximation basis exists, i.e., all



6 Francisco Chinesta and Elias Cueto

the expected solutions U could be approximated by using a reduced basis of size R, i.e., U =
span{R1, . . . , RR}, with R ≪ N, then by putting the different vectors composing the reduced basis
into the columns of matrix B, i.e. B = (R1 . . . RR), one can write U = BV, where V is a R × 1
vector, which component Vk represents the contribution of the approximation function Rk for
representing U.

Thus, the algebraic system (9) can be rewritten in its reduced form

KBV = F, (9)

that,projected into the reduced basis (Galerkin projection), becomes

BTKBV =BT F, (10)

which defines an algebraic system of size R×R.
The only remaining issue is the procedure to be employed for discovering that reduced ba-

sis able to span the problem solution. The construction of this basis is based on an appropriate
learning procedure. For that purpose, manifold learning can be successfully applied for extract-
ing the so-called slow manifold where the problem solution lives. Principal Component Analysis
(PCA) performs well in the case of linear manifolds, whereas nonlinear manifold learning per-
forms very well when the solution manifold exhibits a noticeable nonlinearity [2–4].

When the reduced basis is extracted by using PCA, the projected algebraic system, Eq. (10)
represents the so-called Proper Orthogonal Decomposition (POD) based model order reduction,
widely employed in many domains of science and engineering [5]. The main issues remain the
ones related to the reduced basis generality and adaptation, the error quantification, the sam-
pling strategy for extracting the reduced basis (some improvements were proposed in the context
of the so-called Reduced Basis method [5–9]), addressing multi-parametric models and the effi-
cient treatment of nonlinear models that needs advanced techniques (hyper-reduction [10, 11],
Empirical Interpolation Methods (EIM) [12] and its discrete counterpart [13], cross approxima-
tions [14], among many other alternatives).

Until now, and despite of the fact of grouping all these techniques under the denomination of
model order reduction, the subjacent physical models were never reduced. All them come from
the considered physics, with all their richness encapsulated into the matrix K, resulting from a
standard discretization. The only thing that was reduced was the basis in which the response U is
expressed, as a consequence of the reduced nature of the forcing that remains constrained into a
certain manifold ω (with intrinsic dimension R in the discussed case) of the whole space RN.

An alternative procedure, more aligned with the model order reduction rationale, consists of
calculating action/reaction pairs, i.e.,

(
Uk ,Fk

)
, k = 1, . . . ,K, and looking for the lowest rank matrix

KLR, i.e., the most reduced model, minimizing, by using a certain p-norm, the cost C (KLR) [15]:

C
(
KLR)= K∑

k=1

∥∥∥KLRUk −Fk
∥∥∥

p
, (11)

as employed for discovering dynamical systems within the so-called Dynamic Mode Decompo-
sition (DMD) [16, 17].

In [15] the just reduced model extractor was extended for addressing nonlinear models, in [18]
for operating within a reduced basis and also for extracting the reduced transfer function that
approximates the inverse of model. Moreover, in [19], the procedure was adapted for constructing
stable time integrators. We will come back later to the construction of models from data by using
machine learning (ML) techniques. Before that, we will address the parametric dimension.

In the parametric case, POD-based techniques continues to perform well, as soon as the
reduced basis is extracted from a training that covers as much as possible the parametric domain.
Then, the solution can be projected into the reduced basis and model parameters inferred online
by using performant data assimilation techniques, for instance Bayesian or Kalman filters.
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Proper Orthogonal Decomposition with Interpolation, PODI, [20] has been largely employed.
When using the PODI, the coefficients affecting each of the vectors composing the reduced basis,
are assumed to depend on the parameters, whose quantification is performed by using standard
regressions. As a main limitation of this technique we can cite the number of parameters that
complexities the construction of the regression.

For improving efficiency, several reduced bases are calculated at different locations of the
parametric space, instead of a unique reduced basis in the whole parametric space. When
different reduced bases are computed for different choices of the parameters, they must be
interpolated for covering the whole parametric space before using it for approximating the
solution and proceeding from the weighted residual form. Interpolation is a tricky issue and some
efficient procedures were proposed for performing that interpolation, as for example the employ
of Grassmannian manifolds [21].

Another way of computing parametric solutions of parametrized partial differential equa-
tions consists in applying the so-called Proper Generalized Decomposition, PGD, based on
the separated representation of the solution. This was originally proposed for defining non-
incremental transient solutions [22]. In the parametric setting, the PGD proceeds by assuming
a fully separated representation of the problem solution, where parameters are assumed extra-
coordinates [23]. Thus, if for the sake of simplicity we assume a model depending on a single
parameter µ, the parametric solution approximation uQ(x, t ,µ) reads

uQ(x, t ,µ) =
Q∑

i=1
Xi (x)Ti (t )Mi (µ), (12)

with x ∈Ω, t ∈T and µ ∈I .
To compute the different unknown functions involved in the separated representation,

Eq. (12), the usual weighted residual form is extended according to∫
Ω×T ×I

u∗(x, t ,µ)R(u(x, t ,µ)) d x d t dµ= 0. (13)

Within a Galerkin framework, when looking to the q th functional product, the trial and test
functions to be employed within the integral form, Eq. (13), read respectively

uq (x, t ,µ) =
q−1∑
i=1

Xi (x)Ti (t )Mi (µ)+Xq (x)Tq (t )Mq (µ) ≡ uq−1(x, t ,µ)+Xq (x)Tq (t )Mq (µ), (14)

and

u∗(x, t ,µ) = X ∗(x)Tq (t )Mq (µ)+Xq (x)T ∗(t )Mq (µ)+Xq (x)Tq (t )M∗(µ). (15)

The separated representation constructor, deeply described in [24], proceeds by using an al-
ternate directions, fixed point algorithm that computes the unknown function at the enrichment
iteration q : Xq (x) from Tq (t ) and Mq (µ) taken at the previous iteration, Tq (t ) from Xq (x) and
Mq (µ), and finally Mq (µ) from Xq (x) and Tq (t ). The iteration continues until reaching the fixed
point, and then the next function product, q +1 is considered.

The main difficulties in applying the just described procedure are the necessity of performing
an affine decomposition of the problem residual involved in Eq. (13) for ensuring the efficiency of
the sequential calculation of each function that involves the corresponding problem coordinate.
Such affine decomposition is not direct, mainly in the case of nonlinear models [14,23]. The other
difficulty is related to the procedure intrusiveness that makes difficult its use in tandem with
usual commercial software.

The main interest of computing such parametric solutions u(x, t ,µ) is the ability of deriving
real-time engineering, by computing any solution related to any parameters choice in almost
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real-time, fact that makes possible simulation, optimization, inverse analysis, simulation-based
control and uncertainty propagation, all them under the stringent real-time constraints.

To overcome the difficulties related to the complex nonlinear problems and the proce-
dure intrusiveness, one option consists in constructing metamodels (also known as surrogates,
response surfaces, virtual charts or vademecums). The construction of these metamodels can be
performed by considering a simple workflow: (i) defining a sampling of the parametric space;
(ii) computing a high fidelity solution for each parameter choice; (iii) using an adequate regres-
sion for extending the solution known at the points in the sampling everywhere in the parametric
space.

There are many alternatives for performing the first and third tasks, trying to conciliate:
(i) active learning; making use of a sparse and very reduced data set, considering the best goal-
oriented sampling, aimed at roughly linearly scaling with the dimension of the parameters space;
(ii) the high fidelity solutions post-compression by extracting first and using then (by projection)
reduced bases; (iii) rich enough approximation bases while avoiding overfitting, based on the
use of sparse regularizations for enforcing parsimony (elastic-net, ridge, lasso, . . . ) [25]; (iv) using
orthogonal basis for evaluating sensibilities in a direct manner; and (v) efficiently addressing the
high-dimensional spaces induced by the multi-parametric models, where the use of separated
representations are specially suitable [26–29].

Other alternatives for performing regressions consist of using state-of-the-art techniques, like
Support Vector Regression, SVR, [30], Decision Trees [31] or their Random Forest counterpart [32],
Deep Neural Networks [33, 34]. These last are very efficient when a large enough amount of data
is available.

The use of those parametric solutions (or their parametric transfer functions counterpart)
makes it possible to link system components and connect components with their environment,
to constitute the so-called Augmented Virtual Prototype, AVP, a nominal virtual replica of a
real system. AVP allowed to address rich descriptions of physical systems in almost real-time.
But are those descriptions and the associated predictions in agreement with observations and
measurements on the physical system?

In some cases, it is. In many others, however, this is not the case and significant deviations
appear, limiting predictive capabilities. An epistemic ignorance seems to persist in our conceptu-
alization and subsequent description of the physical reality. Models are models, but sometimes
reality seems to contain something else, the so-called ignorance (the part of the reality that our
models ignore), and that, as discussed below, constitutes an immense source of opportunities.
As Stephen Hawking once said: The greatest obstacle is not ignorance—it is the illusion of knowl-
edge.

2.3. Towards the art of decision making in complex systems of systems

Advanced procedures are urgently needed, not only for performing faster, but for performing
well. The art of decision making irrupted almost everywhere, facilitated by our nowadays global
interconnected word, where the Internet of Things, IoT, is fully deployed. This is at the heart of
the fourth industrial revolution, with data as one of its protagonists, but not the only one. Smart
cities and nations, with the human in the loop, are attracting interest of scientists, engineers,
politicians and decision makers. This fourth industrial revolution has its counterpart in science:
we speak of the fourth paradigm of science, where large scientific infrastructures produce huge
volumes of data that are readily incorporated into the scientific pipeline.

Complex systems of systems, containing many interconnected components, are concerned
by uncertainty and variability that limit the performances of physics-based models. On the other
hand, data, even when available, rarely cover the system extension (and scales) in space and time,
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and then, diagnosis and prognosis based exclusively on data encounter their own limitations.
The hybrid paradigm, combining both, the existing knowledge and the collected data represent-
ing the considered reality, seems a valuable route for conciliating accuracy and efficiency.

As commented, data becomes a major protagonist. However, the word data, simple at a first
view, encompass a rich essence. First, there is a vast typology: list, images, time series, fields,
graphs. . . Second, extracting the intrinsic data dimensionality is also a tricky issue, needing for
efficient linear and nonlinear dimensionality reduction procedures [2], also known as manifold
learning techniques, able to discriminate useless and useful. In recent times, some authors speak
even of the fifth paradigm of science, in which data are produced by simulation in order to feed
scientific discovery and theories.

But, how to realize that a model is not accurate enough? The simplest way: by making
measurements (collecting data) and comparing these measurements with the predictions based
on the existing knowledge, provided by the state-of-the-art models, that can be very efficiently
solved as discussed above.

When these measurements, even adequately assimilated into the models (model calibration),
does not result in a calibrated model able to describe with high fidelity the observed reality,
something seems missing in the reality representation. This should be modeled to improve
designs and decisions.

One possibility is offered by Artificial Intelligence, AI. Machine Learning, a major protagonist
of AI, is able to create predictive models from available or collected data, with an additional added
value, the fact of providing that prediction in almost real-time.

However, creating models from scratch, simply because the existing models based on physics
were not accurate enough, is not the best choice. Creating a model based on data from scratch
needs a lot of data, and in engineering and technology, data is synonym of cost. Sometimes data
collection also implies to consider an ethical dimension, to fulfill existing regulations, or must
address technical difficulties, related for example to the sensors placement, data transfer. . .

In our works we advocated by the alliance between both (i) the analogical world of knowl-
edge and physics-based models, and (ii) the more recent digital world of data, manipulated by
more and more powerful (accurate, frugal and explainable—certifiable—) techniques of Artificial
Intelligence.

This new alliance is materialized in the so-called Digital or Hybrid Twins, in which physics-
based models are enriched to decrease their intrinsic ignorance, in a pragmatic way, from data
representing the deviation between predictions and measurements. The hybrid paradigm not
only allows reducing the amount of needed data (now it is only expected to describe the gap
between the reality and the physics-based predictions), but also the ability of explaining the
part of the model based on the existing physics or knowledge, and then facilitating the design
or decision certification.

In order to reduce the amount of data to model the observable phenomena (when models
do not exist or are too inaccurate) or for enriching the existing physics-based models within the
hybrid paradigm previous introduced, physics-aware (also known as physics-informed) Artificial
Intelligence seems to be the most appealing route.

The so-called Physics Informed Neural Networks, PINN, [35, 36] consider the approximation
of the unknown function u(x, t ) as a regression problem defined on an adapted neural network.
Then, as soon as the physics is assumed fully known and adequately described by a partial
differential equation, the derivatives involved in the differential operator can be applied on the
NN and the residual nullity is enforced from the NN loss function.

Sometimes, not everything concerning the physics is fully known. If we consider a hyper-
elastic material, the best option consists in learning the free energy by constructing a regression
linked to the state variables, in such a way that its derivatives leads to the constitutive equation.
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Then, the free energy is learned to be consistent with the collected data on the structural
component, under the equilibrium constraints.

Similar procedures apply in the so-called Structure Preserving NN (also known as Thermody-
namic Informed NN) where the free energy and the dissipation potential are computed in such a
way that energy balance and entropy production are ensured [37–42].

In those works, inspired from the GENERIC framework [43], the state Z evolution, Ż, reads

Ż = L∇Z H +M∇Z S , (16)

where the first term of the right-hand member represents the reversible evolution (Hamiltonian
contribution) whereas the second one represents the dissipative contribution, with H and S the
energy and the entropy respectively.

Learning matrices L (known to be skew-symmetric) and M, symmetric and positive semi-
definite, as well as both potentials H and S (subjected to some constraints: the Jacobi identities
as well as the consistency conditions L∇Z S = 0 and M∇Z H = 0) is performed from the existing
data concerning the state time evolution Z(ti ), i = 1,2, . . . The learnt model has very interesting
properties, as are the ones related to energy conservation and positive dissipation, giving rise to
stable and accurate time integrators.

The main issue found when learning such thermodynamic-aware models is not the regression
implementation, but the choice of the variables in the state vector, an issue discussed in [44].
In very small systems the state variables are easily identified, however in large (continuous)
systems such a choice is far of being trivial. In that case, many options exist. One among
them consists of performing a dimensionality reduction. The use of most of manifold learning
dimensionality reduction has as main drawback the unavailability of performing the inverse
mapping for coming back from the reduced space to the departure one.

In the general nonlinear case, an appealing alternative consists in the use of NN-based (sparse)
autoencoders [45], where encoding and decoding is learned, while models operate (and are
learnt) in a transparent way in the internal layer of reduced dimension where active reduced
coordinates (the so-called latent variables or latent space) act. Autoencoders allow to learn the
best model representation, that in many cases, other than reducing the dimension of the model,
makes possible reducing the model complexity (and therefore its nonlinearity), enabling the use
of simpler and cheaper regression techniques operating at the level of the latent space, where
sometimes linear regressions suffice.

In the same way that data allows enriching the existing knowledge (i.e., models based on
physics), the existing knowledge and physics-based models allow to replace the big data by
a smart data paradigm, by simply responding three main questions: (i) what data to collect,
(ii) when and (iii) where. For instance, for having an idea on the temperature in Paris we can
use two thermometers, one placed inside our apartment, the other in the balcony, and take the
temperatures at mid-night, early in the morning and at noon. Two thermometers and 3 measures,
to have a reasonable approximation of the temperature evolution each day in Paris. However, for
taking that decision about the measurements we used our knowledge. We thus avoid using one
million thermometers distributed all along Paris and collecting the temperature at each one, each
millisecond. This is expensive and useless. This example illustrates the difference between big-
data and smart-data. Smarter seems definitively better!

Reconciliation and alliance between physics-based and data-driven models, leads to the so-
called Hybrid Twin, HT [46]. It constitutes a digital replica of a material, process, structure, com-
ponent, systems or systems of systems, able to replace or substitute the real system for antic-
ipating future responses, to access to its intimate state, while retaining the following features,
qualities and functionalities: (i) accuracy guaranteed by the hybrid approach; (ii) frugal, being
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based on the smart-data paradigm; (iii) holistic throughout all the involved physics and descrip-
tion scales; (iv) providing real-time responses by invoking advanced model order reduction tech-
niques; (v) explicable and certifiable; (vi) adaptable; (vii) reliable; (viii) resilient; (ix) informed -
IoT; (x) systemic to address the system within its environment; and (xi) usable.

The HT of a component, of a system, or of a system of systems can and must interact with the
human being. The last continues to be, even today, the main contributor in many domains where
imagination, intuition, complex abstraction and interpretability are needed, as well as qualitative
reasoning, including the emotional dimension.

It is well known that people remember very differently what they learnt after two weeks: 10% to
20% of what they heard or read, 90% of what they did (acted upon) in a real or virtual experience.
Thus, we must experience physics, we must be protagonists and not only observers.

Data produced by the HT must be contextualized to be profitable, interpretable and ex-
ploitable by humans. New human-centric facilities irrupted and were combined with the hybrid
paradigm. Among them the immersive virtual reality, VR, augmented reality, AR, [47] in multi-
physics evolving settings, and hybrid reality, HR, in which the human interacts with the virtual
world (a digital replica of the reality) in the form of holograms that can be experienced visu-
ally, from the touch, and even by integrating other sensorial sensations: smell or taste. Recording
emotions could lead to better adapt a product to each specific final user, e.g. adapt the car to the
driver, adapt the text-book to the reader, adapt a cosmetic cream to the customer. . .

This human-centric HT constitutes the major protagonist of an incipient Augmented Intelli-
gence, that does not aim at replacing the human, but enriching him to face the ultimate art, the
art of decision-making. The one that is not based on a simple reptilian pattern recognition: I am
hungry, I eat. . . necessary, but primitive. Here we are speaking about the art of decision making,
that has another more elaborated dimension making use of the two sides of the brain, the rational
and the creative.

3. Final remarks

We recently experienced the impact of COVID-19 pandemic, everywhere, and adapted to it in
an active and constructive manner. The world is definitively changing, evolving, and things will
be definitively different even when pandemic will definitively disappear. During this pandemic,
many people worked at home, some activities seems being nowadays resilient enough, but other
remain much less, as for example production machines and chains.

Without any doubt, a resilient, human centric world, allying real and virtual, cold digital data
and warmer emotions, all them harmoniously entangled, will constitute the new revolution. It
will be not only an industrial one. This time, more than ever, it will have a huge human and
societal dimension.

Engineering is succeeding in this new framework, sculpting a new world, with major protag-
onists: HT (combining real-time physics and real-time physics-informed AI), blockchain, quan-
tum computing, multi-sensorial and emotional human-centric. . . empowering human creativity
and imagination, enabling moving further, better and faster. . . It is not a far dream, it is becoming
a reality, that results from an intimate combination of the three just revisited arts of engineering:
the art of modeling, the art of simulation and the art of decision making.
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