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Abstract. Linear model reduction techniques design offline low-dimensional subspaces that are tailored to
the approximation of solutions to a parameterized partial differential equation, for the purpose of fast online
numerical simulations. These methods, such as the Proper Orthogonal Decomposition (POD) or Reduced
Basis (RB) methods, are very effective when the family of solutions has fast-decaying Karhunen–Loève
eigenvalues or Kolmogorov widths, reflecting the approximability by finite-dimensional linear spaces. On
the other hand, they become ineffective when these quantities have a slow decay, in particular for families
of solutions to hyperbolic transport equations with parameter-dependent shock positions. The objective of
this work is to explore the ability of nonlinear model reduction to circumvent this particular situation. To
this end, we first describe particular notions of nonlinear widths that have a substantially faster decay for
the aforementioned families. Then, we discuss a systematic approach for achieving better performance via a
nonlinear reconstruction from the first coordinates of a linear reduced model approximation, thus allowing
us to stay in the same “classical” framework of projection-based model reduction. We analyze the approach
and report on its performance for a simple and yet instructive univariate test case.

Résumé. Les techniques linéaires de réduction de modèles proposent, hors ligne, des sous-espaces de faible
dimension adaptés à l’approximation des solutions d’une équation aux dérivées partielles paramétrée, dans
le but d’effectuer des simulations numériques rapides en ligne. Ces méthodes, telles que la décomposition
orthogonale appropriée (POD) ou les méthodes de base réduite (RB), sont très efficaces lorsque la famille
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de solutions a des valeurs propres de Karhunen–Loève ou des épaisseurs de Kolmogorov à décroissance
rapide, reflétant la possibilité d’approximation par des espaces linéaires de dimension finie. D’autre part,
elles deviennent inefficaces lorsque ces quantités ont une décroissance lente, en particulier pour les familles
de solutions aux équations de transport hyperboliques avec des positions de choc dépendant des paramètres.
L’objectif de ce travail est d’explorer la capacité de la réduction de modèle non linéaire à contourner
cette situation particulière. À cette fin, nous décrivons d’abord des notions particulières d’épaisseurs non
linéaires qui ont une décroissance substantiellement plus rapide pour les familles susmentionnées. Ensuite,
nous discutons d’une approche systématique permettant d’obtenir de meilleures performances via une
reconstruction non linéaire à partir des premières coordonnées d’une approximation de modèle réduit
linéaire, ce qui nous permet de rester dans le même cadre “classique” de la réduction de modèle basée sur
la projection. Nous analysons l’approche et rendons compte de ses performances pour un cas test univarié
simple mais instructif.

Keywords. non linear reduced basis, compressed sensing, solution manifold, machine learning, m-width.

Mots-clés. base réduite non linéaire, acquisition comprimée, variété des solutions, apprentissage automa-
tique, m-épaisseur.
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1. Introduction

The approximation of the solution of a parameterized partial differential equation (PDE) : given
µ, find u solution to

D(u;µ) = 0

can benefit from the a priori analysis of the set of all generated solutions when the parameter µ
is varied, that is,

K := {
uµ : µ ∈P

}
,

where uµ is the solution for the given value µ= (µ1, . . . , µd ) of the parameter vector that ranges in
some set P ⊂ Rd . The set K is also referred to as the solution manifold, since it may be thought
of as a parameterized d-dimensional manifold typically immersed in a Hilbert space X , where
the solution to the PDE is well defined. In what follows, the norm in X and the scalar product are
respectively denoted by ∥.∥X and 〈., .〉X .

Assuming K to be compact in X , its Kolmogorov m-width defined as

dm(K )X = inf
dim(Xm )≤m

max
v ∈K

min
w ∈Xm

∥v −w∥X , (1)

describes how well the set can be approximated by an ideally selected (and usually out of reach)
m-dimensional space. If dm has a certain rate of decay as m → ∞, it is possible to practically
construct low-dimensional spaces Xm that perform with the same approximation rate, by pre-
computing offline a reduced basis consisting of m solutions associated with a well-chosen set of
parameters. If dm has a fast rate of decay, the RB method yields an approximation of the solution
for any parameter based on an algebraic system involving very few unknowns. We refer to [1], [2]
or [3] for a presentation of RB methods.

If the parameters µi are considered as random variables and thus uµ is an X -valued random
variable, a stochastic counterpart to these concepts is described by the principal component
analysis in the Hilbert space X , that is, the spectral analysis of the covariance operator

v 7→ E
(〈

v,uµ
〉

X uµ
)

,

once uµ has been recentered so that E(uµ) = 0. Denoting by σ1 ≥ σ2 ≥ ·· · the sequence of
positive eigenvalues of this compact self-adjoint operator, and by e1,e2, . . . the Karhunen–Loève
orthonormal basis of eigenfunctions, it is well known that

κ2
m := min

dim(Xm )≤m
E

(
min

w ∈Xm
∥uµ−w∥2

X

)
= ∑

n>m
σn ,
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and that the minimizing space is spanned by e1, . . . , em . This is the starting point to the Proper Or-
thogonal Decomposition (POD) method which amounts to replacing the aforementioned eigen-
functions by approximations computed offline, based on a sufficiently large set of training solu-
tions.

These linear reduced modeling methods have penetrated industrial applications, a guarantee
of their success. However, there are still cases where these approaches have difficulties to over-
come, namely, when the Kolmogorov width dm or eigenvalues σm do not decay fast.

This is in particular what happens for transport type problems. Even in the conceptually
simple case of constant speed translation of an initial condition given by a step function, where
the only parameter is the position of the discontinuity, it is well known that with X = L2, the
numbers dm and κm decay slowly like O (m−1/2). In other words, for a target precision of ε, the
basis is of prohibitive size O (ε−2).

For families of such functions, substantial gain can be expected when searching for nonlin-
ear reduced models. Prominent examples of nonlinear approximation include rational fractions,
finite elements on adaptive grids of fixed cardinality, n-term approximations in a basis or dictio-
nary, and neural networks, see [4, 5] for a general treatment. In these methods, the “coordinates”
describing the approximation to a function u are typically nonlinear functionals applied to u, and
the reconstruction map from such parameters is also nonlinear. In the frame of model reduction,
we refer to [6–8] that considers libraries of affine reduced models, [9] that uses quadratic mani-
folds, and [10–15] for neural network based approaches, see also [16–19], and [20] for an overview
on these nonlinear approaches.

Interestingly, it appears that an efficient approach to nonlinear model reduction is to main-
tain linear functionals for computing the coordinates while performing reconstruction in a well-
chosen nonlinear way. This state of affair is in particular illustrated by the development of com-
pressed sensing in the last two decades, where signals are reconstructed from linear measure-
ments by nonlinear methods promoting sparsity, such as ℓ1 minimization.

In this note, we begin by substantiating this idea more precisely in § 2, by recalling and com-
paring certain notions of linear and nonlinear m-widths. We present in § 3 a general approach
that consists in taking as linear functionals the first components in a linear reduced model (RB
or POD) that has been learned offline; and also use the offline stage to learn a computationally
tractable nonlinear map that reconstructs the missing components from these first ones to reach
a better accuracy. One key aspect lies in the type of nonlinear maps that is allowed. This approach
is analyzed in § 4, in the case of a simple univariate model of step functions; it is illustrated by nu-
merical tests for this model in § 5.

2. Linear and nonlinear notions of m-widths

Generally speaking, the process of dimensionality reduction can be described by a pair of con-
tinuous mappings, the encoder

E : X →Rm ,

and the decoder
D :Rm → X .

The maximum distorsion of the encoding procedure over K is given by the quantity

max
v ∈K

∥v −D(E(v))∥X .

Then, for a general Banach space X and a compact set K ⊂ X , we can define various notion of
widths

inf
D,E

max
v ∈K

∥v −D(E(v))∥X ,
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by optimizing the choice of E and D , under specific restrictions:

• If D and E are both assumed to be linear, one obtains the approximation numbers

am(K )X := inf
L

max
v ∈K

∥v −Lv∥X ,

where the infimum is taken over operators L of rank at most m.
• If only D is assumed to be linear, one obtains the already mentionned Kolmogorov width

dm(K )X . When X is a general Banach space, the inequality

dm(K )X ≤ am(K )X ,

can be strict. Equality obviously holds in the case when X is a Hilbert space since best
approximation in a subspace of X of dimension m is achieved by linear orthogonal
projection.

• The sensing numbers sm(K )X correspond to the reciprocal situation, where E is assumed
to be linear and D is assumed to be nonlinear. In other words, they can be defined as

sm(K )X := inf
D,λ1, ...,λm

max
v ∈K

∥v −D(λ1(v), . . . , λm(v))∥X ,

where the infimum is taken over all choice of linear functionals λ1, . . . , λm ∈ X ′ and
decoding map D . These number are closely related to the Gelfand width classically
defined as

d m(K )X := inf
λ1, ...,λm

max{∥v∥X : v ∈K , λ1(v) = ·· · =λm(v) = 0}.

It is easily checked that sm(K )X = d m(K )X in the case where K is convex and centrally
symmetric; and that

sm(K )X ≤ d m(K −K )X ≤ 2sm(K )X ,

for a general compact set K and K −K is a notation for the set {u : u = v−w, v ∈K , w ∈
K }.

• Finally, the nonlinear width or manifold width δm(K )X is defined when no other as-
sumption but continuity is made on the operators E and D . For numerical stability pur-
pose, it is interesting to tame this notion by imposing that D and E are both Lipschitz
continuous, that is

∥D(a)−D(b)∥X ≤ γ∥a −b∥m and ∥E(v)−E(w)∥m ≤ γ∥v −w∥X , a,b ∈Rm , v, w ∈ X ,

for some fixed γ> 1, with ∥·∥m an arbitrary norm onRm . The resulting infimized quantity
δ
γ
m(K )X is referred to as the stable width.

The last two notions of width sm and δm (or δγm) are natural to describe the expected per-
formance of optimal nonlinear model reduction, since the manifold is approximated by the set
D(Rm) – which is no longer a linear space. However, the sensing numbers take the view that en-
coding can be restricted to simple linear measurements.

As already mentionned, the quantities dm and am typically decay slowly for families of piece-
wise smooth functions, which reflects the fact that they cannot be well approximated efficiently
by linear spaces. A substantial gain in the rate of decay can be expected however when consider-
ing the nonlinear widths δm and δγm . Interestingly, it appears that this substantial optimal gain is
already present when considering the sensing numbers sm .

As a basic example, consider the two-parameter family of univariate step functions

K := {
u :=χ[a,a+ℓ] : a ∈R, ℓ> 0

}
.
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Clearly, the parameters (a,ℓ) are not linear functionals of u. However, any u ∈ K can be exactly
reconstructed from two linear functionals, namely, the first moments

λk (u) =
∫

xk u(x)d x, k = 0,1.

Indeed, λ0 = ℓ and λ1 = 1
2ℓ(2a + ℓ), so that a and ℓ can be exactly recovered from such data.

Therefore, one has sm(K )X = 0 for any m > 2 and for any Banach space X .
At a more general level, it was proved in [21] that when X is a Hilbert space, then both sm(K )X

and δγm(K )X are tied to the so-called entropy numbers εm(K )X defined as the smallest value of
ε > 0 such that K can be covered by 2m balls of radius ε. More precisely, it was shown that, on
the one hand, for any s > 0, one has a Carl-type inequality

sup
m>0

msεm(K )X ≤Cs sup
m>0

msδ
γ
m(K )X ,

where Cs depends on (s,γ), and that on the other hand, there exists c > 0 depending on γ> 1 such
that

δ
γ
cm(K )X ≤ 3εm(K )X , m ≥ 1.

In the proof of this last inequality, the γ-stable encoding-decoding pair (E ,D) which is con-
structed has actually a linear E . In turn, one also has

scm(K )X ≤ 3εm(K )X , m ≥ 1.

One consequence of these results is that sm(K )X , δγm(K )X and εm(K )X share the same alge-
braic rates of decay.

Remark 1. An additional aspect of nonlinear dimensionality reduction is the notion of adaptiv-
ity, which means that the measurements E(u) = (E1(u), . . . , Em(u)) are chosen incrementally, that
is, the functional Em is picked depending on the value of E1(u), . . . , Em−1(u). This allows the def-
inition of similar notions of adaptive sensing numbers and nonlinear widths. Our next described
approach is not of this form, since we use linear functionals that are pre-defined through the
standard POD or RB analysis.

3. Nonlinear compressive Reduced Basis approximation

In this contribution, we thus intend to deal with situations where:

• The Kolmogorov widths dm(K )X , or the singular values σn , decay slowly.
• The sensing numbers sm(K )X , and stable nonlinear widths δγm(K )X , decay much faster.

In other words, a target accuracy ε > 0 can be reached by dN (K )X or κN , however with a
dimension N = N (ε) much larger than the value of n = n(ε), such that sn(K )X reaches the same
accuracy.

Since the optimal linear functionals in the definition of sn(K )X are usually out of reach and
could be computationally unpractical to apply, we take the view of fixing these measurements to
be a small number n of components in the offline computed (orthonormalized) RB or POD basis
(e j ) j=1, ..., N for some N >> n. Typically, we choose the n first ones, that is,

λ j (v) = 〈
v,e j

〉
X , j = 1, . . . , n.

Intuitively, it is expected that in the situation where sn(K )X is very small, then the unknown
component (λ j (v)) j=n+1, ..., N should be somehow dependent, up to a small error, of the n first
ones that carry most of the relevant information. This idea was at first presented in [15]. Here, we
formalize it and study its validity in detail on a simple step function model, and propose a general
numerical strategy that we test on this model.
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Our objective is thus to predict from these first components the extra components λk (v) for
k = n +1, . . . , N that are needed to approximate the functions v ∈ K with target accuracy ε. We
are thus interested to construct N −n functions ψk :Rn →R so that

λ̃k (v) :=ψk
(
λ1(v), . . . , λn(v)

)
,

is a very accurate approximation to λk (v) for k = n +1, . . . , N and can be fastly computed.
Let us stress that ψk should typically be a nonlinear function. Indeed consider the ideal case

of the PCA basis computed after having recentered the variable uµ. Then the variables

z j =λ j (uµ),

are uncorrelated and centered, such that, for any k > n,

min
α1, ...,αn

E

(∣∣∣∣∣zk −
n∑

j=1
α j z j

∣∣∣∣∣
2)

= E(|zk |2
)

.

Thus, the best choice of a linear function would be the null one that does not deliver any
information.

On the other hand, the best choice of a nonlinear function in this mean square sense, that is,
minimizing E(|zk −ψ(z1, . . . , zn)|2) over all functions ψ, is given by the conditional expectation

ψ∗
k (z1, . . . , zn) = E (zk |z1, . . . , zn) ,

which is out of reach and should be approximated by a computationally tractable function.
Our practical approach to the construction ofψk is by learning it in a second step of the offline

stage, after the basis (e j ) j=1, ..., N has been identified. Having in mind the above mean square loss,
one typical approach is to select ψk within a sufficiently rich class F of nonlinear functions by
empirical risk minimization : with (ui )i=1, ..., M a training set of random snapshots ui = uµi , we
define

ψk := argmin

{
m∑

i=1

∣∣∣λk

(
ui

)
−ψ

(
λ1

(
ui

)
, . . . , λn

(
ui

))∣∣∣2
: ψ ∈F

}
.

A critical aspect in this approach lies in the choice of the class F , which could be, for example,
the set of:

• Quadratic functions, as in [9] or [22].
• Polynomials of some higher degree d > 2.
• Neural networks with a given architecture, as proposed in [15] (see also [10] where an

autoencoder-based approximation was proposed, which was in a way a pioneering idea
but unfortunately not computationally tractable one).

This class should be able to approximate correctly the ideal but out of reach ψ∗
k by a computa-

tionally tractable function ψk ∈F . Another difficulty with this approach is the fact that when the
number n of informative components is chosen to be not very small, one faces a regressing prob-
lem in large dimension, for which classical methods such as splines or polynomials are known to
suffer from the curse of dimensionality.

For these reasons, we have also considered in our numerical tests regression methods based
on trees (CART) and random forests, that are both universally consistent and able to tackle
large-dimensional problems. These methods seem to deliver the best numerical results for the
considered problems.

4. Analysis of a model framework: periodic step functions

In order to investigate the aforementioned questions, we place ourselves in a framework where
the Karhunen–Loève basis is explicitely known. Specifically, we work in the Hilbert space

X = L2(0,1),
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and consider a randomly parameterized family such that

E
(
uµ(x)

)= ū,

independently of x ∈ [0,1] and such that

E
((

uµ(x)− ū
)(

uµ(y)− ū
))= R(x − y),

where R is an even and 1-periodic function. In other words, uµ is a periodic stationary process, its
covariance operator coincides with the convolution operator by R, and therefore its Karhunen-
Loève basis is exactly given by the basis of the Fourier series on [0,1] (see e.g. [23]).

More specifically, we consider a simple model of periodic stationary step functions by intro-
ducing the three-parameter family

uµ(x) :=
{

b for x ∈ (a, a +ℓ)(mod1)

0 for x ∈ (a +ℓ, a)(mod1)
, µ= (a,ℓ,b), (2)

that is, uµ = bχ[a,a+ℓ] in a 1-periodic sense.
Here a, ℓ, and b are assumed to have independent uniform distributions. Taking the base

point a to be uniformly distributed over [0,1], it is easily checked that the process is periodic
stationnary. In addition, we take the height b to be uniformly distributed in [0,1] and the length
ℓ to be uniformly distributed in [ℓmin,1−ℓmin] for some 0 < ℓmin < 1

2 .
The best linear approximation of dimension m = 2n +1 is thus given by the truncation up to

k ≤ n of the Fourier expansion

uµ =
∑

k ∈N
αk cos(2πkx)+ ∑

k ∈N∗
βk sin(2πkx) (3)

where 
α0 =α0(a,ℓ,b) = bℓ

αk =αk (a,ℓ,b) = b sin(2πk(a+ℓ))−sin(2πka)
2πk = b sin(πkℓ))cos(πk(2a+ℓ))

πk

βk =βk (a,ℓ,b) = b cos(2πk(a+ℓ))−cos(2πka)
2πk =−b sin(πkℓ))sin(πk(2a+ℓ))

πk

v (4)

Clearly σ0 = E(|α0|2) = E(ℓ2)E(b2) = 1
9 ((1 − ℓmin)3 − ℓ3

min). It is also easily checked that the
eigenvalues associated to the functions x 7→ cos(2πkx) and x 7→ sin(2πkx) are the same and are
given by

σk = E(|αk |2
)= E(|βk |2

)= c

k2 ,

for some c = c(ℓmin) > 0. It follows that the best linear approximation has a mean-square error
κ2

m behaving like m−1. Note that, for the corresponding manifold

K := {
uµ : a ∈ [0,1], ℓ ∈ [ℓmin,1−ℓmin] , b ∈ [0,1]

}
,

one obviously has dm(K )X ≥ κm , since a worst case error dominates the average error. On the
other hand, it is also readily seen that the worst case approximation by Fourier series behaves like
m−1/2, and therefore

dm(K )X ∼ κm ∼ m−1/2.

We also consider the two-parameter family Kℓ0 obtained by freezing the value ℓ = ℓ0 and the
one-parameter family Kb0,ℓ0 obtained by freezing in addition the value b = b0. It is easily checked
that one has the same behaviour m−1/2 for κm and dm after such restrictions.

The one-parameter family Kb0,ℓ0 can be encoded by the data of a, so that its nonlinear width
satifies

δm
(
Kb0,ℓ0

)
X = 0, m > 1.

It is easily seen that the data of only one Fourier coefficient is not sufficient to characterize the
elements of this family. Indeed, α0(a,ℓ,b) is independent of a, αk (a,ℓ,b) = αk (1/2− a −ℓ,ℓ,b),
and βk (a,ℓ,b) =βk (1/4−a −ℓ,ℓ,b) for k ̸= 0.
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On the other hand, the recovery of a can be done through the data of the two coefficients α1

and β1 since

a =−ℓ
2
− 1

2π
arctan

(
β1

α1

)
(mod1) (5)

Similarly, any element in the two-parameter family Kℓ0 , parametrized by a and b, can be
recovered from the data of these two coefficients, since one also has

b = π

sin(πℓ0)

(
α2

1 +β2
1

)1/2
. (6)

When more coefficients are available, we note that there is not a unique reconstruction map :
for example from the three coefficients α0, α1, and β1, we can also recover b according to

b = α0

ℓ0
.

Finally, in the case of the three parameter family K , exact recovery of (a,b,ℓ) can be obtained
by solving the nonlinear system 

a + ℓ
2 =− 1

π arctan
(
β1
α1

)
πb sin(πℓ) = (

α2
1 +β2

1

)1/2

bℓ =α0

(7)

however the exact recovery map does not anymore have an explicit form.
These exact recovery procedures induce for all k > 1 an exact recovery map ψ∗

k such that

αk =ψ∗
k (α0,α1,β1).

and similarly an exact recovery map ψ̃∗
k such that

βk = ψ̃∗
k (α0,α1,β1),

In this very simple case, the success of the learning strategy outlined in the previous section
therefore depends on how these maps can be approximated by the family F .

A simple intuition can be given when looking at the particular case of ψ̃∗
k for the one-

parameter family Kb0,ℓ0 , when b0 = 1 and ℓ0 = 1
2 . Then, we find that

βk = b
sin(πk/2)cos(2πka)

πk
,

which is null for even values of k, and for odd values k = 2 j +1 satisfies

βk = b

kπ
(−1) j Tk

(π
b
β1

)
,

where Tk is the Chebychev polynomial of degree k. Therefore for such values, the optimal
reconstruction is exact and given by

ψ̃∗
k (x, y, z) = b

kπ
(−1) j Tk

(π
b

z
)

.

Clearly, the function ψ̃∗
k cannot be well approximated by polynomials of moderate dimensions

for large values of k. On the other hand, it is well known that the derivative of Tk has maximal
norm of order k over [−1,1], and this implies that the functions ψ̃∗

k are Lipschitz continuous with
Lipschitz constant bounded independently of k > 0.

This property holds in more generality from the following argument: the derivative of the
arctan function being upper bounded by 1, the recovery of a from α1(a,ℓ0,b0) and β1(a,ℓ0,b0),
still in the case of the one-parameter family Kb0,ℓ0 , is stable as

d a

dα1
= 1

2π

1

1+
[
β1
α1

]2

β1

α2
1

=− 1

2π

β1

α2
1 +β2

1

(8)
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and

d a

dβ1
=− 1

2π

1

1+
[
β1
α1

]2

1

α1
=− 1

2π

α1

α2
1 +β2

1

(9)

are both bounded since, by construction (see (6), with b = b0 fixed),

[α1]2 + [β1]2 = b2
0

sin2(πℓ0)

π2 .

Hence, an error in the values of α1 or β1 will induce an error of comparable size on a. The same
holds for the determination of b in the case of Kℓ0 .

On the other hand, it is readily seen from the definition of Fourier coefficients that the two
maps

µ 7→αk (uµ) and µ 7→βk (uµ),

are Lipschitz continuous with Lipschitz constants bounded independently of k > 0. In turn, the
stable recovery of a and b from α0, α1 and β1, induces recovery maps(

α1(a,ℓ0,b0),β1(a,ℓ0,b0)
) 7−→ (

αk (a,ℓ0,b0),βk (a,ℓ0,b0)
)

(10)

and

(
α0(a,ℓ0,b),α1(a,ℓ0,b),β1(a,ℓ0,b)

) 7−→ (
αk (a,ℓ0,b),βk (a,ℓ0,b)

)
(11)

that are Lipschitz continuous with Lipschitz constants bounded independently of k > 0.
This state of affairs explains that universally consistent methods such as random forests are

well adapted for the joint approximation of ψ∗
k and ψ̃∗

k , while approaches based on low order
polynomials are doomed to fail. This is confirmed by the numerical tests presented in the next
section.

In the perspective of recovering more general piecewise smooth functions, we expect that the
low-order components are affected by the smooth pieces in addition to the jumps, while the high-
order components are only affected by the jumps. Thus it is interesting to adress the question of
the recovery of the parameters of the step function from a few components αk and βk for larger
values of k.

This task appears to be more involved and requiring more coefficients. For example, when
recovering a as in (5), we find

a =−ℓ
2
− 1

2π
arctan

[
βk

αk

]
(mod1/k). (12)

One possiblity to lift the indeterminacy (mod 1/k) is to combine the information coming
from (12) and

a =−ℓ
2
− 1

2π
arctan

[
βk+1

αk+1

]
(mod1/(k +1)) (13)

since a = a′, (mod1/k), a = a′, (mod1/(k +1)), and a, a′ ∈ (0,1) imply a = a′.
Thus we can in principle recover the parameters a and b out of 4 coefficients of arbitrary high

frequencies (k,k +1). However we also observe that the stability of this recovery is deteriorated
since d a

dαk
and d a

dβk
increase linearly with k. We may hope to improve the stability by using a larger

number of coefficient values with indexes (k,k +1, . . . , k +d) for some d > 1.
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5. Numerical illustrations

In this section, we investigate the ability of different methods to learn mappings that use different
amount m of components, namely

m = 2, (α1,β1) 7−→ (αk ,βk )
m = 3, (α0,α1,β1) 7−→ (αk ,βk )
m = 5, (α0,α1,β1,α2,β2) 7−→ (αk ,βk )

for each of the three families Kb0,ℓ0 (Figures 1 and 2), Kℓ0 (Figures 3 and 4), K (Figures 5 and 6),
for all 2 ≤ k ≤ 500. In these Figures, the average recovery error for the αk and βk are presented in
a symmetric manner, on the left and right side of the x-axis respectively.

The learning methods are

• linear regression: F is the set of linear functions,
• quadratic regression: F is the set of polynomials of total degree 2,
• quartic regression: F is the set of polynomials of total degree 4,
• decision tree [24],
• random forest [25] [26].

For all the numerical illustrations we used Python 3.8 and scikit-learn 1.2.2 [27] for the
implementation of each of the regression methods described above. For more information, the
code can be found at https://github.com/agussomacal/NonLinearRBA4PDEs.

As can be expected, linear regression give the same results as the null forecast, and quadratic
and quartic regression give the same (bad) result here, with some improvement over the null
forecast only for very small value of k in certain cases (see Figures 3 and 4).

In contrast, decision tree and random forest are well suited as can be seen for the one
parameter family on Figure 1, with improved results on Figure 2 obtained from a larger training
samples (10 000 rather than 1 000). This reflects the universal consistency of these methods that
are guaranteed to converge towards the regression function as the number of samples tends to
+∞.

The same also holds for the two parameter family, as seen on Figures 3 and 4 : the problem
is slightly more involved but nevetheless decison tree and random forest manage to obtain a fair
(resp. good) approximation after a learning phase of 1 000 (resp. 10 000) training samples.

The numerical results for the three parameter family are displayed on Figure 5 for the range
ℓ ∈ [0.4,0.6], and on Figure 6 for the range ℓ ∈ [0.01,0.99], that is ℓmin = 0.4 and 0.01 respectively.
One first observation is that all methods fail in the case of m = 2 known component since they
are insufficient to characterize an element of K . Secondly we observe that the performance
deteriorates as ℓ is allowed to be very small in which case the exact recovery becomes less stable
in view of the multiplicative coupling between b and ℓ in the last two equations of the system (7).
These last results reveal difficulties for these too simple nonlinear recovery methods to achieve
a satisfactory recovery. We expect that more involved approaches such as deep neural networks
can improve this state of affair.

Finally, in the case of the two parameter family (ℓ fixed), we study the recovery error of
(αk ,βk ) for k > 10 + d when using information from high frequency coefficients (α j ,β j ) for
j = 10,11, . . . , 10+ d . As explained in the end of the last section, the exact recovery is feasible
for d = 1, yet less stable and thus more difficult to learn. This is confirmed by Figure 7, where we
see an improvement when using a larger value of d and a larger training sample.
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Figure 1. In this figure we plot the error obtained from different recovery methods for the
family Kb=1,ℓ=.5 where we recover all coefficients αk and βk in (3) for 2 ≤ k ≤ 500 from
2 (left) 3 (center) and 5 (right) Fourier coefficients with different approaches: linear, qua-
dratic, quartic, tree and random forests. Note that linear, quadratic, quartic are superposed
and do not improve over the trivial recovery of the missing modes by value 0. The learning
phase is based on 1 000 training samples. The x-axis represents (in a log scale) the index k
of αk and the index k of βk and the y-axis the mean-square reconstruction error on the
mode.
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Figure 2. Sames test as Figure 1 with 10 000 training samples.
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Figure 3. Same test as Figure 1 for the two parameter family Kℓ=.5, using 1 000 training
samples.
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Figure 4. Same test as Figure 3 for the two parameter family Kℓ=.5, using 10 000 training
samples.
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Figure 5. Same test as Figure 1 for the three parameter family K , using 10 000 training and
ℓmin = 0.4.
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Figure 6. Same test as Figure 1 for the three parameter family K , using 10 000 samples and
ℓmin = 0.01.



Albert Cohen, Charbel Farhat, Yvon Maday and Agustin Somacal 17

Figure 7. Recovery of components k for k > 10+d for the two parameter family Kℓ=.5 using
random forest and components j for j = 10,11, . . . ,10+d with d = 4 (left) and d = 9 (right),
and various numbers of training samples.
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