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1. Introduction

Poromechanical models describe the mechanical response of saturated porous media in which
fluid flow interacts with a deformable structure through the definition of a multiphase continuum
framework. Such models were originally developed by the geosciences community [1–3], but
have reached new application areas such as biomechanics to model perfused living tissues [4–14].
In these biomedical applications, physical phenomena such as the fluid inertia and solid quasi-
incompressibility may not be neglected, as it was the case in soil engineering, leading to more
general formulations. In this spirit, [15] has proposed a rather general formulation, valid for large
strains and adapted to soft tissue perfusion. In a recent paper [16], we analyze the linearization
of this model in the context of small deformations, small velocities and around a given state
of perfusion. Our analysis generalizes previous existence results explored in [17] and [18] by
extending the existence to the incompressible case and in the absence of solid viscosity where we
face a hyperbolic-parabolic problem under a global incompressibility constraint. In particular,
the results obtained in [16] are based on the use of energy estimates and T-coercivity. This notion
was originally introduced for sign-changing coefficients problems [19] but we took advantage of
it in our mixed hyperbolic-parabolic setting. In fact, T-coercivity was moreover recently explored
for general mixed formulations in [20]. In this case, the T-coercivity approach is an alternative to
the classical inf-sup condition. It allows us to elegantly combine several transformations defined
from the inf-sup condition of subsystems into a general inf-sup condition for the globally coupled
problem. This provides a powerful tool to integrate in a unique framework (a) the hyperbolic
structure of the solid – in the absence of solid viscosity – and (b) the parabolic structure of
the fluid, as well as (c) the divergence constraint on the mixture velocity, which combines the
velocities of fluid and solid, without being restricted by porosity.

In this work, we propose to use T-coercivity in the context of numerical analysis by proving
the convergence of space and time discretization schemes of the linearized version of the model
proposed in [15]. Again, T-coercivity provides a general framework for the study of such coupled
and constrained systems and facilitates the numerical analysis. Firstly, it allows us to easily
handle the hyperbolic-parabolic coupling at the discrete level when the solid has no viscosity,
in which case the model rewritten in first order form is no longer associated with a coercive form.
Secondly, it allows us to find a global inf-sup condition for the coupled problem directly from an
inf-sup condition applied to a subsystem that is exactly the Stokes problem. Therefore, we can
benefit from all the results of the numerical analysis for the Stokes problem [21–24] and show
that any pair of finite elements adapted to the Stokes problem provides a way to define a set of
finite elements fitted to this general poromechanical model, independently of the porosity that
originally appears in the divergence condition. This leads to a generalization of the convergence
results obtained in [17] and [18], in particular without any restriction on the model parameters
and in the incompressible limit case that was not considered in these studies. Furthermore, our
analysis takes into account an additional fluid mass input entering the porous medium, which
was not included in [17] and was assumed to be small enough in [18]. In the case where no
restriction is imposed on the fluid mass input, we prove the stability and convergence of the
proposed schemes under a smallness condition on the time step.

The paper is organized as follows. In the next section we recall the model formulation, the
energy estimates, the existence results and the key properties of T-coercivity. In the third section,
we present the time schemes under consideration and in Section 4, we proceed to the space-time
convergence analysis. The last section is devoted to numerical illustrations.
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2. Problem setting

2.1. Presentation of the model

In this work, we consider a poromechanics model describing the motion of an elastic medium
filled by an incompressible viscous fluid. This model arises from the linearization of the
non-linear poromechanics model introduced in [15] in the context of soft-tissue perfusion.
The porous medium is modeled as a mixture of a solid phase and a fluid phase that cohabit and
interact at each point of the domainΩ. For all x ∈Ω⊂Rd (d = 2,3), a porosity 0 ≤φ(x) ≤ 1 is given,
which corresponds to the fraction of fluid within the porous mixture, whereas 1−φ(x) represents
the fraction of elastic medium. The macroscopic state variables are the solid displacement us,
the fluid velocity vf and the interstitial pressure p, namely the fluid pressure in the pores. The
governing equations derived in [16, 17] by linearizing the model from [15] read:

ρs(1−φ)∂t t us −div
(
σs(us)

)−div
(
σvis

s (∂t us)
)

−φ2 K −1
f (vf −∂t us)+ (b −φ)∇p = ρs(1−φ) f , in Ω× (0,T ), (1a)

ρfφ∂t vf −div
(
φσf(vf)

)+φ2 K −1
f (vf −∂t us)−θ vf +φ∇p = ρfφ f , in Ω× (0,T ), (1b)

b−φ
κs

∂t p +div
(
(b −φ)∂t us +φvf

)= ρ−1
f θ, in Ω× (0,T ). (1c)

In the above system, the first equation (1a) is the solid mass momentum balance, the second
one (1b) is the fluid mass momentum balance equation, and the third one (1c) corresponds to
the mass balance equation for the global mixture incorporating both the solid and fluid phases.

The solid and fluid densities are denoted by ρs and ρf, so that ρs(1 −φ)∂t t us and ρfφ∂t vf

represent respectively the accelerations of solid and fluid particles within the mixture. We assume
that the structure stress tensor σs(us) follows Hooke’s law

σs(us) =λTr(ε(us))I +2µε(us),

where λ and µ are two Lamé constants characterizing the macroscopic behavior of the solid
perforated part, and ε(u) = 1

2 (∇u+∇uT ) is the linearized Green–Lagrange strain tensor. Similarly,
we suppose that the fluid stress tensor is given by

σf(vf) =λf Tr(ε(vf))I +2µf ε(vf),

and that the solid additional viscosity reads σvis
s (∂t us) = 2µs ε(∂t us), with µf and µs denoting the

fluid and solid viscosities. The solid and fluid equations are coupled by a term φ2K −1
f (vf −∂t us)

translating the friction between the two phases. This friction term is proportional to the filtration
velocity φ(vf − ∂t us) through a coefficient φK −1

f , where Kf denotes the hydraulic conductivity
tensor, namely the ratio between the intrinsic permeability and the fluid viscosity. Moreover,
the solid and fluid dynamics are coupled by the gradient of pressure ∇p, which is splitted into
a contribution (b −φ)∇p in (1a) and φ∇p in (1b), where b is the Biot–Willis coefficient that
takes into account the pressure-deformation coupling at the pore scale. The interstitial pressure
dynamics is governed by the mass balance equation (1c) involving the solid grain bulk modulus
κs, or more precisely the storage coefficient b−φ

κs
. Finally, in addition to the porosity and the

Biot–Willis coefficient, the input data are the applied exterior body force f , distributed with a
coefficient ρs(1−φ) among the solid and ρfφ among the fluid, and a volumic fluid mass source
term described by a scalar function θ which is assumed to depend only on space.

As shown in [16, Section 1.1], this model can be seen as a generalization of Darcy, Brinkman
and Biot equations. As a matter of fact, (1) includes inertial and viscous effects both for the solid
and fluid phases, while most of standard poromechanics models – see for instance [1,25,26] – do
not consider the fluid velocity as a primary state variable.

In what follows, we will focus on the case where the solid is non-viscous and incompressible,
so that we may assume that µs = 0, b = 1 and κs = ∞. The last hypothesis is motivated by the
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targeted physiological applications, since most of biological tissues are nearly incompressible.
Under such assumptions, system (1) becomes: find (us, vf, p) such that

ρs(1−φ)∂t t us −div
(
σs(us)

)
−φ2 K −1

f (vf −∂t us)+ (1−φ)∇p = ρs(1−φ) f , in Ω× (0,T ), (2a)

ρfφ∂t vf −div
(
φσf(vf)

)+φ2 K −1
f (vf −∂t us)−θ vf +φ∇p = ρfφ f , in Ω× (0,T ), (2b)

div
(
(1−φ)∂t us +φvf

)= ρ−1
f θ, in Ω× (0,T ). (2c)

Note that in this case, the interstitial pressure is no longer a state variable since the term b−φ
κs

∂t p
vanishes, but rather a Lagrange multiplier associated with the incompressibility constraint

div
(
(1−φ)∂t us +φvf

)= ρ−1
f θ.

The model (2) has to be complemented with initial and boundary conditions. For the sake of
simplicity, we will restrict our study to the case of homogeneous Dirichlet boundary conditions

us = 0, on ∂Ω,

vf = 0, on ∂Ω,
(3)

where the motion of the porous medium is fixed on the boundary. For other types of boundary
conditions such as Neumann or total stress boundary conditions, we refer the reader to [17].
Furthermore, we assume that an initial condition (us0, vs0, vf0) is given, so that

us(0) = us0, in Ω,

∂t us(0) = vs0, in Ω,

vf(0) = vf0, in Ω.

Through the rest of the paper, we will suppose that (us0, vs0, vf0) is sufficiently regular.

2.2. Energy balance

One of the specificities of the model (1) – and also of the original non-linear model proposed
in [15] – compared to other poromechanics models is that it satisfies a natural energy balance.
Before deriving this balance, we observe that we may assume without loss of generality that the
right-hand side of the constraint equation is equal to zero. As a matter of fact, if it is not the case,
we can build a divergence lifting vθ such that div vθ = ρ−1

f θ and perform the change of variable
(us, vf) 7→ (us −

∫ t
0 vθ ds, vf − vθ). The existence of such a lifting requires that θ is regular enough

and that ∫
Ω
θdx = 0,

where the last assumption is a compatibility condition coming from the Dirichlet boundary
condition. Indeed, if us and vf satisfy (2c) and (3), then Stokes formula implies that∫

Ω
θdx = ρf

∫
Ω

div
(
(1−φ)∂t us +φvf

)
dx = ρf

∫
∂Ω

(
(1−φ)∂t us +φvf

) ·n ds = 0.

For all these reasons, we will suppose from now on that the right-hand side of (2c) is equal to zero.
Note that the fluid mass input term θ also appears in (2b) through the term −θvf. We will keep
this term in (2b) since it is not affected by the above lifting, leading to a more general result than
in [17] where it is assumed that θ = 0.



Mathieu Barré, Céline Grandmont and Philippe Moireau 5

Formally, multiplying (2a) by ∂t us, (2b) by vf and integrating by parts in space, we then obtain
the energy identity

ρs

2

d

dt

∫
Ω

(1−φ)|∂t us|2 dx︸ ︷︷ ︸
Structure kinetic energy

+ 1

2

d

dt

∫
Ω
σs(us) : ε(us)dx︸ ︷︷ ︸

Structure mechanical energy

+ ρf

2

d

dt

∫
Ω
φ|vf|2 dx︸ ︷︷ ︸

Fluid kinetic energy

+
∫
Ω
φσf(vf) : ε(vf)dx︸ ︷︷ ︸

Viscous dissipation within the fluid

+
∫
Ω
φ2K −1

f (vf −∂t us) · (vf −∂t us)dx︸ ︷︷ ︸
Friction dissipation between solid and fluid phases

=
∫
Ω
θ|vf|2 dx︸ ︷︷ ︸

Incoming rate of fluid kinetic energy

+
∫
Ω
ρs(1−φ) f ·∂t us dx +

∫
Ω
ρfφ f · vf dx︸ ︷︷ ︸

Power of external forces

, (4)

where the physical meaning of each of the terms is indicated below them.
Guided by the above identity, we make the following hypotheses on the data:

(h1) The constants ρs, ρf, µf, λ, µ are assumed to be strictly positive;
(h2) The porosity φ ∈ Hd/2+r (Ω) with r > 0, and is such that there exists (φ−,φ+) satisfying

0 <φ− ≤φ(x) ≤φ+ < 1, ∀ x ∈Ω;

(h3) The hydraulic conductivity tensor Kf is invertible and there exists K −1
0 > 0 such that

K −1
f v · v ≥ K −1

0 |v |2, ∀ v ∈Rd ;

(h4) θ ∈ L∞(Ω) in addition to
∫
Ωθdx = 0;

(h5) f ∈ L2(0,T ; [L2(Ω)]d ).

Remark 1. In (h4), we assume for the sake of simplicity that the fluid mass input term is
independent of time. It simplifies the analysis, but the time-dependent case could be handled
by supposing that θ is regular enough, in particular θ ∈ C0

(
[0,T ]×Ω)

, see [16].

Remark 2. If the right-hand side of (2c) is not assumed to be equal to zero, an extra term∫
Ω

p
ρf
θdx appears in the right-hand side of (4), which corresponds to an incoming rate of Gibbs

free energy, see [15].

Under assumptions (h1)-(h5), the application of Grönwall Lemma to the energy balance (4)
allows us to control the growth of the total energy defined by

E (t ) = ρs

2

∫
Ω

(1−φ)|∂t us(t )|2 dx + 1

2

∫
Ω
σs

(
us(t )

)
: ε

(
us(t )

)
dx + ρf

2

∫
Ω
φ|vf(t )|2 dx,

and of the total dissipation defined by

D(t ) =
∫
Ω
φσf

(
vf(t )

)
: ε

(
vf(t )

)
dx +

∫
Ω
φ2K −1

f

(
vf(t )−∂t us(t )

) · (vf(t )−∂t us(t )
)

dx.

As a matter of fact, with these notations, (4) reads: for each t ∈ (0,T ),

d

dt
E (t )+D(t ) =

∫
Ω
θ |vf(t )|2 dx +F (t ),

with

F (t ) =
∫
Ω
ρs(1−φ) f (t ) ·∂t us(t )dx +

∫
Ω
ρfφ f (t ) · vf(t )dx.

Then, three different situations occur depending on the fluid mass input term θ: either (a) θ is
negative, or (b) θ is possibly positive but remains small – in a sense specified below, or finally (c)
θ is possibly positive and large.
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(a) If θ is negative, namely if fluid mass is removed from the system, then

d

dt
E (t )+D(t )+

∫
Ω
|θ| |vf(t )|2 dx = F (t )

≤ ∥∥ f (t )
∥∥
ρs(1−φ) ∥∂t us(t )∥ρs(1−φ) +

∥∥ f (t )
∥∥
ρfφ

∥vf(t )∥ρfφ

≤p
2
(∥∥ f (t )

∥∥
ρs(1−φ) +

∥∥ f (t )
∥∥
ρfφ

)
E (t )1/2,

where we used the notation ∥v∥α for the [L2(Ω)]d norm scaled by a functionα(x), namely
∥v∥2

α = ∫
Ωα |v |2 dx. Therefore, Grönwall Lemma yields: for each t ∈ (0,T ),

E (t )+
∫ t

0
D(s)ds +

∫ t

0

∫
Ω
|θ| |vf(s)|2 dx ds ≤

(
E (0)+

p
2

2

∫ t

0

(∥∥ f (s)
∥∥
ρs(1−φ) +

∥∥ f (s)
∥∥
ρfφ

)
ds

)2

.

(b) When θ can be positive but small enough, the incoming rate of fluid kinetic energy can be
compensated by the fluid viscous dissipation. To do so, let us recall Korn inequality [27],
which states that there exists C > 0 such that∫

Ω
ε(v) : ε(v)dx ≥C∥v∥2[

H1
0(Ω)

]d , ∀ v ∈ [
H1

0(Ω)
]d

. (5)

Combining (5) with Poincaré inequality, we know that there exists a constant Cd > 0 such
that ∫

Ω
|v |2 dx ≤Cd

∫
Ω
ε(v) : ε(v)dx, ∀ v ∈ [

H1
0(Ω)

]d
.

Hence ∫
Ω
θ |vf(t )|2 dx ≤ Cd ∥θ∥L∞(Ω)

2µfφ−

∫
Ω
φσf

(
vf(t )

)
: ε

(
vf(t )

)
dx,

so that

d

dt
E (t )+

(
1− Cd ∥θ∥L∞(Ω)

2µfφ−

)∫
Ω
φσf

(
vf(t )

)
: ε

(
vf(t )

)
dx

+
∫
Ω
φ2K −1

f

(
vf(t )−∂t us(t )

) · (vf(t )−∂t us(t )
)

dx ≤p
2
(∥∥ f (t )

∥∥
ρs(1−φ) +

∥∥ f (t )
∥∥
ρfφ

)
E (t )1/2,

provided that

Cd ∥θ∥L∞(Ω)

2µfφ−
≤ 1. (6)

As a consequence, if (6) is satisfied, then for each t ∈ (0,T ) we have

E (t )+
(
1− Cd ∥θ∥L∞(Ω)

2µfφ−

)∫ t

0

∫
Ω
φσf

(
vf(s)

)
: ε

(
vf(s)

)
dx ds

+
∫ t

0

∫
Ω
φ2K −1

f

(
vf(s)−∂t us(s)

) · (vf(s)−∂t us(s)
)

dx ds

≤
(
E (0)+

p
2

2

∫ t

0

(∥∥ f (s)
∥∥
ρs(1−φ) +

∥∥ f (s)
∥∥
ρfφ

)
ds

)2

.
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(c) In the general case where θ can be positive and taking possibly large values, we use Young
inequality to obtain

d

dt
E (t )+D(t ) =

∫
Ω
θ |vf(t )|2 dx +F (t ) ≤ 2∥θ∥L∞(Ω)

ρfφ−
· 1

2

∫
Ω
ρfφ− |vf(t )|2 dx

+ 1

2

∥∥ f (t )
∥∥2
ρs(1−φ) +

1

2
∥∂t us(t )∥2

ρs(1−φ) +
1

2

∥∥ f (t )
∥∥2
ρfφ

+ 1

2
∥vf(t )∥2

ρfφ

≤
(
1+ 2∥θ∥L∞(Ω)

ρfφ−

)
E (t )+ 1

2

∥∥ f (t )
∥∥2
ρs(1−φ) +

1

2

∥∥ f (t )
∥∥2
ρfφ

,

leading to

E (t )+
∫ t

0
D(s)ds ≤ exp

((
1+ 2∥θ∥L∞(Ω)

ρfφ−

)
t

)(
E (0)+ 1

2

∫ t

0

(∥∥ f (s)
∥∥2
ρs(1−φ) +

∥∥ f (s)
∥∥2
ρfφ

)
ds

)
. (7)

In this article, to remain as general as possible, we will focus on the case c) where θ may
take large values and for which the solution possibly shows an exponential growth as in (7).
Indeed, this general case was not covered in the litterature, in particular [17, 18]. Note however
that in the case where θ satisfies (6) as it is assumed in [18], our analysis also provides error
estimates with no exponential growth, see Remarks 11, 18 and 22. The energy estimate (7),
which has been theoretically proven in [16], is a fundamental property of the system and its
discrete counterpart will be the cornerstone of the numerical analysis. But before proposing a
discretization of Problem (2) in the next section, let us briefly recall existence and uniqueness
results at the continuous level and introduce a few notations.

2.3. Existence results

From the theoretical point of view, Problem (2) combines two major difficulties. The first one is
that the solid equation (2a) is hyperbolic, whereas the fluid equation (2b) is parabolic. The second
one is the incompressibility constraint (2c) coupling the solid and fluid velocities. Therefore,
system (2) is a strongly coupled problem with a hyperbolic-parabolic coupling that also involves
a saddle-point structure associated with a non-standard divergence constraint.

The existence of strong, mild and weak solutions of Problem (2) has been studied and justified
in detail in [16] using a semigroup approach and the notion of T -coercivity [19]. The first step is
to formulate our problem as a first-order evolution system. Introducing the solid velocity variable
vs = ∂t us, Problem (2) can be rewritten as: find (us, vs, vf, p) such that

∂t us − vs = 0, (8a)

ρs(1−φ)∂t vs −div
(
σs(us)

)− φ2 K −1
f (vf − vs)+ (1−φ)∇p = ρs(1−φ) f , (8b)

ρfφ∂t vf −div
(
φσf(vf)

)+φ2 K −1
f (vf − vs)−θ vf +φ∇p = ρfφ f , (8c)

div
(
(1−φ) vs +φvf

)= 0. (8d)

Then, denoting by z = (us, vs, vf) the state variable, we seek for a solution z in the energy space

H = [
H1

0(Ω)
]d × [

L2(Ω)
]d × [

L2(Ω)
]d

,

endowed with the scalar product

(z, y)H =
∫
Ω
σs(us) : ε(ds)+

∫
Ω
ρs(1−φ) vs ·ws dx +

∫
Ω
ρfφvf ·wf dx,

for any y = (ds, ws, wf) belonging to H , and with the corresponding norm

∥z∥2
H =

∫
Ω
σs(us) : ε(us)dx +

∫
Ω
ρs(1−φ) |vs|2 dx +

∫
Ω
ρfφ |vf|2 dx,
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associated with the energy balance (4). Note that this norm is equivalent to the canonical norm
on H thanks to Korn inequality (5). Setting

V = [
H1

0(Ω)
]d × [

H1
0(Ω)

]d × [
H1

0(Ω)
]d

and Q = L2
0(Ω),

we define the all-in-one mixed bilinear form incorporating the constraint

A
(
(z, p), (y, q)

)=−
∫
Ω
σs(vs) : ε(ds)dx +

∫
Ω
σs(us) : ε(ws)dx

+
∫
Ω
φ2 K −1

f (vf − vs) · (wf −ws)dx +
∫
Ω
φσf(vf) : ε(wf)dx −

∫
Ω
θvf ·wf dx

−
∫
Ω

p div
(
(1−φ) ws +φwf

)
dx +

∫
Ω

div
(
(1−φ) vs +φvf

)
q dx,

for all z = (us, vs, vf), y = (ds, ws, wf) in V and p, q in Q. Within this functional framework, the
mixed formulation of Problem (8) reads{

Find z = (us, vs, vf) ∈C 1
(
[0,T ]; H

)∩C 0
(
[0,T ];V

)
and p ∈C 0

(
[0,T ];Q

)
such that(

ż(t ), y
)

H +A
(
(z(t ), p(t )), (y, q)

)= (g (t ), y)H , ∀ y ∈V ,∀ q ∈Q,
(9)

with ż = d
dt z and g (t ) = (0, f (t ), f (t )). From [16, Theorem 3.14], we know that this formulation

is well-posed. The solution of Problem (9) satisfies (8b), (8c) and (8d) in [L2(Ω)]d , whereas the
identity (8a) is fulfilled in the space [H1

0(Ω)]d , endowed with the specific scalar product (u, v) 7→∫
Ωσs(u) : ε(v) adapted to the elasticity operator − div

(
σs(·)).

The proof of well-posedness in [16] hinges on showing that the evolution operator associated
with (8) is maximal-accretive. This property is achieved thanks to the notion of T-coercivity, that
will also be a central tool for the numerical analysis of the discrete problem and that we present
below.

2.4. The T-coercivity approach

The T-coercivity approach is an alternative to Banach-Nečas-Babuška theory for the study
of well-posedness and numerical approximation of non-coercive problems. T-coercivity was
originally introduced for problems involving an invertible operator perturbed by a compact
term [28, 29] and problems with sign-changing coefficients, see for instance [19, 30–33]. More
recently, it was applied to saddle-point problems [16, 20]. This approach is particularly appropri-
ate here as it allows us to handle the two difficulties of the problem – the incompressibility con-
straint and the non-coercivity of the underlying operator coming from the hyperbolic-parabolic
coupling – in a monolithic way by analyzing the all-in-one bilinear form (9).

For the sake of completeness, the definition and main property of T-coercivity are recalled
below at the continuous level.

Definition 3. Let W be a Hilbert space and let A (·, ·) be a continuous bilinear form over W ×W .
We say that A is T-coercive if there exists a bijective operator T ∈L (W ) and α> 0 such that

|A (u,Tu)| ≥α∥u∥2
W , ∀ u ∈W.

Proposition 4. Let W be a Hilbert space. Let ℓ(·) be a continuous linear form over W and A (·, ·)
be a continuous bilinear form over W ×W . The problem{

Find u ∈W such that

∀ v ∈W, A (u, v) = ℓ(v)

is well-posed if and only if A is T-coercive.
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The all-in-one bilinear form A is not coercive, but it was shown in [16, Proposition 3.15] that
the bilinear form Aλ0 defined by

Aλ0

(
(z, p), (y, q)

)=A
(
(z, p), (y, q)

)+λ0(z, y)H , (10)

is T-coercive provided that the parameter λ0 is large enough. More precisely, we have the follow-
ing result.

Proposition 5. If λ0 > (ρfφ−)−1 ∥θ∥L∞(Ω), then the bilinear form Aλ0 is T-coercive for the mapping

T : (us, vs, vf, p) 7−→
(
βus +γvs,αvs − vp ,αvf − vp ,αp

)
, (11)

where vp ∈ [H1
0(Ω)]d is a divergence lifting defined by

div vp = p and
∥∥∇vp

∥∥≤Cdiv
∥∥p

∥∥ , (12)

with Cdiv > 0, and α, β and γ are constants depending on λ0 and the various physical parameters.

As can be seen in Definition 3 and Proposition 5, the T-coercivity framework relies on the
explicit building of an operator T such that the bilinear form under study is T-coercive. This
explicit realization provides insights on how to design a suitable approximation of the continuous
problem when going at the discrete level. Indeed, the following results [19] indicate that if one is
able to reproduce the continuous mapping T in the discrete setting, then the convergence of the
associated discrete solution is ensured.

Definition 6. Let W be a Hilbert space, A (·, ·) be a continuous bilinear form over W ×W and
(Wh)h be conforming approximations of W . We say that A is uniformly Th-coercive if

∃α∗,β∗ > 0, ∀ h > 0, ∃ Th ∈L (Wh), |A (uh ,Thuh)| ≥α∗ ∥uh∥2
W , ∀ uh ∈Wh , and |||Th ||| ≤β∗.

Proposition 7. Assume that the hypotheses of Proposition 4 hold and that the bilinear form A

is T-coercive. Let (Wh)h be conforming approximations of W , and denote by AAAh ∈ L (Wh ,W ′
h) the

discrete operator associated with A|Wh . The problem{
Find uh ∈Wh such that

∀ vh ∈Wh , A (uh , vh) = ℓ(vh)

is well-posed and (AAA−1
h )h is uniformly bounded if and only if A is uniformly Th-coercive. In that

case, denoting by CA the continuity constant of the bilinear form A , it holds that

∥u −uh∥W ≤C inf
vh ∈Wh

∥u − vh∥W , (13)

with C = 1+ CA β∗
α∗ independent of h.

The approximation property (13) is a key feature of the T-coercivity approach. It will enable us
to build a discrete projection operator on the finite dimension space considered that is adapted
to the specific structure of Problem (8).

3. Two discretization schemes

3.1. Semi-discrete time discretization

We propose two monolithic time schemes to discretize Problem (8). The first one is a Crank–
Nicolson scheme [34], in which both the solid and fluid quantities are discretized using a mid-
point rule. In the second one, the solid part is still discretized with a midpoint rule but the
fluid and pressure parts are approximated with an implicit backward Euler method. This sec-
ond scheme is motivated by the fact of reproducing in a linearized setting the splitting scheme
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introduced in [35] for the non-linear model from [15], in which the solid and fluid parts are dis-
cretized respectively with Newmark and backward Euler schemes following [36]. These schemes
are close to those studied in [17] and [18] but include the additional fluid mass term θ and cover
the incompressible regime.

The interval (0,T ) is divided into nT time intervals. Let us denote by ∆t = T
nT

the time step
of the method, and by t n = n∆t the discrete times, with initial time t 0 = 0 and final time
t nT = nT∆t = T . The continuous solution (us, vs, vf, p) at time t n will be approximated by the
semi-discrete solution (un

s , vn
s , vn

f , pn), which is initialized by(
un

s , vn
s , vn

f , pn)= (
us0, vs0, vf0,0

)
.

Moreover, we will denote by u
n+ 1

2
s , v

n+ 1
2

s , v
n+ 1

2
f and pn+ 1

2 the midpoint quantities

u
n+ 1

2
s = un+1

s +un
s

2
, v

n+ 1
2

s = vn+1
s + vn

s

2
, v

n+ 1
2

f = vn+1
f + vn

f

2
, pn+ 1

2 = pn+1 +pn

2
,

which correspond to an approximation of the solution at time t n+ 1
2 = (

n + 1
2

)
∆t .

Under these notations, the proposed semi-discrete Crank-Nicolson scheme reads:

un+1
s −un

s

∆t
− v

n+ 1
2

s = 0, (14a)

ρs(1−φ)
vn+1

s − vn
s

∆t
−div

(
σs

(
u

n+ 1
2

s

))
−φ2 K −1

f

(
v

n+ 1
2

f − v
n+ 1

2
s

)
+ (1−φ)∇pn+ 1

2 = ρs(1−φ) f n+ 1
2 , (14b)

ρfφ
vn+1

f − vn
f

∆t
−div

(
φσf

(
v

n+ 1
2

f

))
+φ2 K −1

f

(
v

n+ 1
2

f − v
n+ 1

2
s

)
−θ v

n+ 1
2

f +φ∇pn+ 1
2 = ρfφ f n+ 1

2 , (14c)

div

(
(1−φ) v

n+ 1
2

s +φv
n+ 1

2
f

)
= 0, (14d)

where the discrete external body force f n+ 1
2 is defined by

f n+ 1
2 = f

(
t n+1

)+ f (t n)

2
.

The second proposed scheme, which will be referred to as backward Euler scheme, then consists
in 

un+1
s −un

s

∆t
− v

n+ 1
2

s = 0, (15a)

ρs(1−φ)
vn+1

s − vn
s

∆t
−div

(
σs

(
u

n+ 1
2

s

))
−φ2 K −1

f

(
vn+1

f − v
n+ 1

2
s

)
+ (1−φ)∇pn+1 = ρs(1−φ) f n+ 1

2 , (15b)

ρfφ
vn+1

f − vn
f

∆t
−div

(
φσf

(
vn+1

f

))
+φ2 K −1

f

(
vn+1

f − v
n+ 1

2
s

)
−θ vn+1

f +φ∇pn+1 = ρfφ f n+ 1
2 , (15c)

div

(
(1−φ) v

n+ 1
2

s +φvn+1
f

)
= 0. (15d)

Note that a similar scheme was proposed in [17] to discretize the viscous and compressible
system (1) with θ = 0. However, the convergence estimates in [17] depend on κs and hence are
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not valid for the limit case κs =∞. Here, we consider the non-viscous and incompressible case
with θ ̸= 0, which leads to additional difficulties since we have to deal with a hyperbolic-parabolic
coupled system with a constraint on the mixture velocity and with possible unstabilities arising
from the fluid additional mass input.

Remark 8. The two schemes (14) and (15) are written as a four-field formulation to benefit from
the existence results obtained at the continuous level. However, it is more efficient in practice to
eliminate the solid velocity variable thanks to the relations

v
n+ 1

2
s = un+1

s −un
s

∆t
, vn+1

s = 2v
n+ 1

2
s − vn

s = 2
un+1

s −un
s

∆t
− vn

s ,

vn+1
s − vn

s

∆t
= 2

∆t

(
v

n+ 1
2

s − vn
s

)
= 2

∆t 2

(
un+1

s −un
s −∆t vn

s

)
,

(16)

and solve a three-field formulation.

3.2. Fully discrete schemes

For the space discretization, we consider two finite dimensional spaces Xh ⊂ [H1
0(Ω)]d and

Qh ⊂ L2
0(Ω) constituting a conforming approximation of [H1

0(Ω)]d and L2
0(Ω). We seek for the

vectorial quantities – both solid and fluid – in the discrete space Xh and for the pressure in the
discrete space Qh . Moreover, in order to take into account the incompressibility constraint (8d),
we assume that (Xh ,Qh) are selected in order to satisfy the uniform discrete inf-sup condition

∃β> 0,∀ ph ∈Qh , sup
vh ∈Xh

∫
Ω

div vh ph dx

∥vh∥[
H1

0(Ω)
]d

≥β∥∥ph
∥∥ . (17)

Note that this is the inf-sup condition associated with the standard divergence constraint that
has been widely studied in the scope of Stokes equation. This condition does not depend on the
porosity, as opposed to the hypotheses made in [17]. Therefore, to choose the pair (Xh ,Qh), we
can use the large literature existing on this topic for Stokes equations [22,23,37]: possible choices
include for instance Taylor-Hood elements or the MINI element. All these choices rely on the
design of a Fortin operator Πh : [H1

0(Ω)]d 7→ Xh satisfying, for each v ∈ [H1
0(Ω)]d ,

• For all qh ∈Qh , ∫
Ω

div
(
Πh(v)

)
qh dx =

∫
Ω

div v qh dx, (18)

• There exists a constant Cπ > 0 independent of h such that∥∥∇(
Πh(v)

)∥∥≤Cπ ∥∇v∥ . (19)

The existence of such an operator is ensured by the inf-sup condition (17) by virtue of the Closed
Range Theorem. Following [20], we will use this Fortin operator rather than the inf-sup condi-
tion (17) to build a Th-coercivity mapping adapted to the mixture’s divergence constraint (8d)
and to the specific structure of Problem (8).

After selecting the spaces Xh and Qh , the fully-discrete versions of the Crank-
Nicolson scheme (14) and the backward Euler scheme (15) respectively amount to finding
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un+1
s,h , vn+1

s,h , vn+1
f,h , pn+1

h ∈ Xh ×Xh ×Xh ×Qh at each time step such that for all (ds,h , ws,h , wf,h , qh) ∈
Xh ×Xh ×Xh ×Qh ,∫

Ω
σs

(
un+1

s,h −un
s,h

∆t

)
: ε(ds,h)dx +

∫
Ω
ρs(1−φ)

vn+1
s,h − vn

s,h

∆t
·ws,h dx +

∫
Ω
ρfφ

vn+1
f,h − vn

f,h

∆t
·wf,h dx

−
∫
Ω
σs

(
v

n+ 1
2

s,h

)
: ε(ds,h)dx +

∫
Ω
σs

(
u

n+ 1
2

s,h

)
: ε(ws,h)dx

+
∫
Ω
φσf

(
v

n+ 1
2

f,h

)
: ε(wf,h)dx −

∫
Ω
θv

n+ 1
2

f,h ·wf,h dx +
∫
Ω
φ2 K −1

f

(
v

n+ 1
2

f,h − v
n+ 1

2
s,h

)
· (wf,h −ws,h)dx

−
∫
Ω

p
n+ 1

2
h div

(
(1−φ) ws,h +φwf,h

)
dx +

∫
Ω

div

(
(1−φ) v

n+ 1
2

s,h +φv
n+ 1

2
f,h

)
qh dx

=
∫
Ω
ρs(1−φ) f n+ 1

2 ·ws,h dx +
∫
Ω
ρfφ f n+ 1

2 ·wf,h dx, (20)

or∫
Ω
σs

(
un+1

s,h −un
s,h

∆t

)
: ε(ds,h)dx +

∫
Ω
ρs(1−φ)

vn+1
s,h − vn

s,h

∆t
·ws,h dx +

∫
Ω
ρfφ

vn+1
f,h − vn

f,h

∆t
·wf,h dx

−
∫
Ω
σs

(
v

n+ 1
2

s,h

)
: ε(ds,h)dx +

∫
Ω
σs

(
u

n+ 1
2

s,h

)
: ε(ws,h)dx

+
∫
Ω
φσf

(
vn+1

f,h

)
: ε(wf,h)dx −

∫
Ω
θvn+1

f,h ·wf,h dx +
∫
Ω
φ2 K −1

f

(
vn+1

f,h − v
n+ 1

2
s,h

)
· (wf,h −ws,h)dx

−
∫
Ω

pn+1
h div

(
(1−φ) ws,h +φwf,h

)
dx +

∫
Ω

div

(
(1−φ) v

n+ 1
2

s,h +φvn+1
f,h

)
qh dx

=
∫
Ω
ρs(1−φ) f n+ 1

2 ·ws,h dx +
∫
Ω
ρfφ f n+ 1

2 ·wf,h dx. (21)

Moreover, both schemes are initialized by(
u0

s,h , v0
s,h , v0

f,h

)= Ih
(
us0, vs0, vf0

)
,

where Ih is the interpolation operator from [H1
0(Ω)]d × [H1

0(Ω)]d × [H1
0(Ω)]d to Xh ×Xh ×Xh .

Setting Vh = Xh ×Xh ×Xh , introducing the notations

zn+1
h =

(
un+1

s,h , vn+1
s,h , vn+1

f,h

)
, z

n+ 1
2

h =
(
u

n+ 1
2

s,h , v
n+ 1

2
s,h , v

n+ 1
2

f,h

)
, yh = (ds,h , ws,h , wf,h),

and recalling the definition of the bilinear form A , the weak formulations (20) and (21) can be
condensed into

Find zn+1
h ∈Vh and pn+1

h ∈Qh such that for all (yh , qh) ∈Vh ×Qh ,(
zn+1

h −zn
h

∆t , yh

)
H
+A

((
z

n+ 1
2

h , p
n+ 1

2
h

)
, (yh , qh)

)
=

(
g n+ 1

2 , yh

)
H

,
(22)

for the Crank–Nicolson scheme and
Find zn+1

h ∈Vh and pn+1
h ∈Qh such that for all (yh , qh) ∈Vh ×Qh ,(

zn+1
h −zn

h
∆t , yh

)
H
+A

((
u

n+ 1
2

s,h , v
n+ 1

2
s,h , vn+1

f,h , pn+1
h

)
, (yh , qh)

)
=

(
g n+ 1

2 , yh

)
H

,
(23)

for the backward Euler scheme, with g n+ 1
2 = (0, f n+ 1

2 , f n+ 1
2 ).

Remark 9. As already noticed in Remark 8, the four-field formulations (22) and (23) are con-
venient for the theoretical and numerical analysis of the problem but are not optimal when
it comes to numerical efficiency. For example, to implement (20) in practice, it is preferable
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to remove the solid velocity variable using (16) and to solve the three-field formulation: find
un+1

s,h , vn+1
f,h , pn+1

h ∈ Xh ×Xh ×Qh such that for all (ws,h , wf,h , qh) ∈ Xh ×Xh ×Qh ,∫
Ω
ρs(1−φ)

2

∆t 2

(
un+1

s,h −un
s,h −∆t vn

s,h

)
·ws,h dx +

∫
Ω
ρfφ

vn+1
f,h − vn

f,h

∆t
·wf,h dx

+
∫
Ω
σs

(
u

n+ 1
2

s,h

)
: ε(ws,h)dx +

∫
Ω
φσf

(
v

n+ 1
2

f,h

)
: ε(wf,h)dx −

∫
Ω
θv

n+ 1
2

f,h ·wf,h dx

+
∫
Ω
φ2 K −1

f

(
v

n+ 1
2

f,h −
un+1

s,h −un
s,h

∆t

)
· (wf,h −ws,h)dx −

∫
Ω

p
n+ 1

2
h div

(
(1−φ) ws,h +φwf,h

)
dx

+
∫
Ω

div

(
(1−φ)

un+1
s,h −un

s,h

∆t
+φv

n+ 1
2

f,h

)
qh dx =

∫
Ω
ρs(1−φ) f n+ 1

2 ·ws,h dx+
∫
Ω
ρfφ f n+ 1

2 ·wf,h dx,

and then to post-process the solid displacement node by node with the formula

vn+1
s,h = 2

un+1
s,h −un

s,h

∆t
− vn

s,h .

We are now going to use the T-coercivity approach presented in Section 2.4 to see under which
conditions the discrete problems (22) and (23) are well-posed. We will see that the two bilinear
forms involved in (22) and (23) are closely related to the family of bilinear forms

Aλ0

(
(z, p), (y, q)

)=A
(
(z, p), (y, q)

)+λ0(z, y)H

introduced in (10). Therefore, we start with the more general result below.

Lemma 10. Assume that (h1)− (h4) hold and that the discrete inf-sup condition (17) is satisfied.
Let ℓ be a continuous linear form on V ×Q. If λ0 > (ρfφ−)−1 ∥θ∥L∞(Ω), then the bilinear form Aλ0

is uniformly Th-coercive. In particular, the problem{
Find (zh , ph) ∈Vh ×Qh such that

Aλ0

(
(zh , ph), (yh , qh)

)= ℓ((yh , qh)
)
, ∀ yh ∈Vh ,∀ qh ∈Qh ,

is well-posed and admits a solution that is uniformly bounded with respect to h. Moreover, there
exists a constant C > 0 independent of h such that∥∥(z, p)− (zh , ph)

∥∥
V ×Q ≤C inf

(yh ,qh )∈Vh×Qh

∥∥(z, p)− (yh , qh)
∥∥

V ×Q , (24)

where (z, p) is the solution of the continuous problem{
Find (z, p) ∈V ×Q such that

Aλ0

(
(z, p), (y, q)

)= ℓ((y, q)
)
, ∀ y ∈V ,∀ q ∈Q.

Proof. Letλ0 > (ρfφ−)−1 ∥θ∥L∞(Ω). We are going to reproduce the T-coercive mapping (11) used at
the continuous level in the discrete setting. To do so, mimicking (12), for all ph ∈Qh , we introduce
vph ∈ [H1

0(Ω)]d such that

div vph = ph and
∥∥∇vph

∥∥≤Cdiv
∥∥ph

∥∥ . (25)

Since vph does not necessarily belong to the discrete space Xh , we project it on Xh using the
Fortin operatorΠh and consider a mapping of the form

Th : (us,h , vs,h , vf,h , ph) 7−→
(
βus,h +γvs,h ,αvs,h −Πh vph ,αvf,h −Πh vph ,αph

)
, (26)

where α, β and γ are some constants to be adjusted.
First, we observe that |||Th ||| is bounded uniformly with respect to h since∥∥∇(

Πh vph

)∥∥≤Cπ

∥∥∇vph

∥∥≤CπCdiv
∥∥ph

∥∥ (27)

by virtue of (25)-right and (19).
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Thanks to the divergence-compatibility property of the operator Πh , the proof then follows
the same lines as in the continuous level, see [16, Proposition 3.15]. Indeed, we compute

Aλ0

(
(zh , ph),Th(zh , ph)

)=λ0

∫
Ω
βσs(us,h) : ε(us,h)dx +λ0

∫
Ω
γσs(us,h) : ε(vs,h)dx

−
∫
Ω
βσs(vs,h) : ε(us,h)dx −

∫
Ω
γσs(vs,h) : ε(vs,h)dx −

∫
Ω
σs(us,h) : ε

(
Πh vph

)
dx

+λ0

∫
Ω
ρs(1−φ)

(
α

∣∣vs,h
∣∣2 − vs,h ·Πh vph

)
dx +

∫
Ω
ασs(us,h) : ε(vs,h)dx

+
∫
Ω
αφ2 K −1

f (vf,h − vs,h) · (vf,h − vs,h)dx +
∫
Ω

(
λ0ρfφ−θ)(

α
∣∣vf,h

∣∣2 − vf,h ·Πh vph

)
dx

+
∫
Ω
φ

(
ασf(vf,h) : ε(vf,h)−σf(vf,h) : ε(Πh vph )

)
dx −

∫
Ω

ph div
(
(1−φ)αvs,h +φαvf,h

)
dx

+
∫
Ω

ph div
(
(1−φ)Πh vph +φΠh vph

)
dx +

∫
Ω

div
(
(1−φ) vs,h +φvf,h

)
αph dx.

Note that the term −∫
Ω ph div

(
(1 −φ)αvs,h +φαvf,h

)
dx and

∫
Ωdiv

(
(1 −φ) vs,h +φvf,h

)
αph dx

cancel out, and that∫
Ω

ph div
(
(1−φ)Πh vph +φΠh vph

)
dx =

∫
Ω

ph div
(
Πh vph

)
dx =

∫
Ω

ph div vph dx =
∫
Ω

p2
h dx

thanks to (18) and (25)-left. Now, we set β = α
2 and γ = − α

2λ0
in order to remove the terms of the

form
∫
Ωσs(us,h) : ε(vs,h)dx. Consequently, we have

Aλ0

(
(zh , ph),Th(zh , ph)

)≥ λ0α

2

∫
Ω
σs(us,h) : ε(us,h)dx −

∫
Ω
σs(us,h) : ε

(
Πh vph

)
dx

+ α

2λ0

∫
Ω
σs(vs,h) : ε(vs,h)dx +λ0ρs(1−φ+)

∫
Ω

(
α

∣∣vs,h
∣∣2 − vs,h ·Πh vph

)
dx

+(
λ0ρfφ−−∥θ∥L∞(Ω)

)∫
Ω

(
α

∣∣vf,h
∣∣2 − vf,h ·Πh vph

)
dx

+φ−
∫
Ω

(
ασf(vf,h) : ε(vf,h)−σf(vf,h) : ε

(
Πh vph

))
dx +

∫
Ω

p2
h dx. (28)

Next, for all δ> 0, Young inequality yields

−
∫
Ω
σs(us,h) : ε

(
Πh vph

)
dx ≥−δ

2

∫
Ω
σs(us,h) : ε(us,h)dx − 1

2δ

∫
Ω
σs

(
Πh vph

)
: ε

(
Πh vph

)
dx,

−
∫
Ω
σf(vf,h) : ε

(
Πh vph

)
dx ≥−δ

2

∫
Ω
σf(vf,h) : ε(vf,h)dx − 1

2δ

∫
Ω
σf

(
Πh vph

)
: ε

(
Πh vph

)
dx,

−
∫
Ω

vs,h ·Πh vph dx ≥−δ
2

∫
Ω

∣∣vs,h
∣∣2 dx − 1

2δ

∫
Ω

∣∣Πh vph

∣∣2 dx,

−
∫
Ω

vf,h ·Πh vph dx ≥−δ
2

∫
Ω

∣∣vf,h
∣∣2 dx − 1

2δ

∫
Ω

∣∣Πh vph

∣∣2 dx.

(29)

To control the new terms appearing in (29), we use the inequalities

∥div v∥2 ≤ d ∥∇v∥2 and ∥ε(v)∥ ≤ ∥∇v∥ , ∀ v ∈ [
H1

0(Ω)
]d

,

together with (27) to retrieve∫
Ω
σf

(
Πh vph

)
: ε

(
Πh vph

)
dx =λ f

∥∥div
(
Πh vph

)∥∥2 +2µf
∥∥ε(Πh vph

)∥∥2 ≤C 2
πC 2

div

(
λ f d +2µf

)∥∥ph
∥∥2 ,∫

Ω
σs

(
Πh vph

)
: ε

(
Πh vph

)
dx =λ∥∥div

(
Πh vph

)∥∥2 +2µ
∥∥ε(Πh vph

)∥∥2 ≤C 2
πC 2

div(λd +2µ)
∥∥ph

∥∥2 . (30)

Furthermore, denoting by Cp the constant of Poincaré inequality, it holds that∥∥Πh vph

∥∥2 ≤Cp
∥∥∇(Πh vph )

∥∥2 ≤CpC 2
πC 2

div

∥∥ph
∥∥2 . (31)
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Using (29), (30) and (31) to bound from below the right-hand side of (28) and rearranging
terms, we obtain

Aλ0

(
(zh , ph),Th(zh , ph)

)≥ (
λ0α

2
− δ

2

)
∥us,h∥2

s +
α

2λ0
∥vs,h∥2

s +λ0ρs(1−φ+)

(
α− δ

2

)∥∥vs,h
∥∥2

+ (
λ0ρfφ−−∥θ∥L∞(Ω)

)(
α− δ

2

)∥∥vf,h
∥∥2 +2µfφ−

(
α− δ

2

)∥∥ε(vf,h)
∥∥2 +

(
1− δ∗

2δ

)∥∥ph
∥∥2 ,

where

δ∗ =C 2
πC 2

div

(
λd +2µ+λ0ρs(1−φ+)Cp + (

λ0ρfφ−−∥θ∥L∞(Ω)
)
Cp +φ−

(
λ f d +2µf

))
.

Thanks to the assumption λ0 > (ρfφ−)−1 ∥θ∥L∞(Ω), we have δ∗ > 0.
Hence, setting δ= δ∗ and α=α∗ = max

(
δ∗, 2δ∗

λ0

)
, we get

Aλ0

(
(zh , ph),Th(zh , ph)

)≥ δ∗

2
∥us,h∥2

s +
α∗

2λ0
∥vs,h∥2

s +µfφ−δ∗
∥∥ε(vf,h)

∥∥2 + 1

2

∥∥ph
∥∥2 . (32)

Finally, we infer that Aλ0 is Th-coercive for the mapping

Th : (us,h , vs,h , vf,h , ph) 7−→
(
α∗

2
us,h − α∗

2λ0
vs,h ,α∗vs,h −Πh vph ,α∗vf,h −Πh vph ,α∗ph

)
. □

Remark 11. If θ is small, namely if it satisfies (6), then the condition λ0 > (ρfφ−)−1 ∥θ∥L∞(Ω) can
be dropped.

Coming back to the weak formulation of the Crank–Nicolson scheme, we get the following
well-posedness result.

Theorem 12. Assume that (h1)-(h4) hold and that the discrete inf-sup condition (17) is satisfied.
If we have in addition

∆t < 2ρfφ−
∥θ∥L∞(Ω)

, (33)

then Problem (22) is well-posed.

Proof. Isolating the unknown zn+1
h , the formulation (22) is equivalent to

Find zn+1
h ∈Vh and pn+1

h ∈Qh such that for all (yh , qh) ∈Vh ×Qh ,

2(∆t )−1
(
zn+1

h , yh
)

H
+A

((
zn+1

h , pn+1
h

)
, (yh , qh)

)
= 2(∆t )−1

(
zn

h , yh
)

H
−A

((
zn

h , pn
h

)
, (yh , qh)

)+2
(
g n+ 1

2 , yh

)
H

.

Here, we see that the bilinear form involved for solving the discrete problem at time t n+1 is a
perturbation of the bilinear form A . Moreover, the perturbed form is exactly the same than the
one studied at the continuous level in Proposition 5. Indeed, recalling the notation (10), we get
the formulation

Find zn+1
h ∈Vh and pn+1

h ∈Qh such that for all (yh , qh) ∈Vh ×Qh ,

A2(∆t )−1

((
zn+1

h , pn+1
h

)
, (yh , qh)

)
= 2(∆t )−1

(
zn

h , yh
)

H
−A

((
zn

h , pn
h

)
, (yh , qh)

)+2
(
g n+ 1

2 , yh

)
H

.

(34)

To ensure well-posedness, we know from Proposition 7 that it is sufficient to prove that the
bilinear form A2(∆t )−1 is Th-coercive. Applying Lemma 10, we find that this problem is well-
posed provided that 2(∆t )−1 > (ρfφ−)−1 ∥θ∥L∞(Ω), which corresponds exactly to the time step
restriction (33). □
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Remark 13. Here, we propose a stable space discretization that is indepedent of the porosity φ.
This is motivated by the fact that in the original non-linear model derived in [15], the porosity is
an unknown state variable depending on time, so that any space discretization must be robust
with respect to this parameter. If we allow the choice of the pair (Xh ,Qh) to depend on φ, one has
to study the influence of the porosity on the constant β involved in the discrete inf-sup condition

∃β> 0,∀ ph ∈Qh , sup
(vs,h ,vf,h)∈Xh ×Xh

∫
Ω

div
(
(1−φ) vs,h +φvf,h

)
ph dx∥∥(vs,h , vf,h)

∥∥[
H1

0(Ω)
]d×[

H1
0(Ω)

]d

≥β∥∥ph
∥∥ ,

see [18] for a discussion on this topic.

Remark 14. If we chose different discretization spaces for the solid and the fluid, namely if
Vh = Xs,h × Xs,h × X f ,h with Xs,h ̸= X f ,h , the proof of Lemma 10 can be extended provided that
there exists a Fortin operator Πh : [H1

0(Ω)]d 7→ Xs,h ∩X f ,h verifying (18) and (19). Hence, the well-
posedness of the discrete problem is guaranteed under the inf-sup condition

∃β> 0,∀ ph ∈Qh , sup
vh ∈Xs,h ∩X f ,h

∫
Ω

div vh ph dx

∥vh∥[
H1

0(Ω)
]d

≥β∥∥ph
∥∥ .

Remark 15. Note that the result of Theorem 12 does not require any assumption on the size of
the permeability tensor Kf, contrary to the assumptions made in [18] for the compressible case.

Remark 16. If θ depends on time, the bilinear form Aλ0 also depends on time. Nevertheless, the
result of Lemma 10 could be extended as long as

θ ∈C 0([0,T ]×Ω)
and λ0 > (ρfφ−)−1 ∥θ∥

C 0
(

[0,T ]×Ω
) .

For the backward Euler scheme, we obtain well-posedness under a time step condition that is
slightly more restrictive than (33).

Theorem 17. Assume that (h1)−(h4) hold and that the discrete inf-sup condition (17) is satisfied.
If we have in addition

∆t < ρfφ−
∥θ∥L∞(Ω)

, (35)

then Problem (23) is well-posed.

Proof. Let us rewrite (23) by isolating the unknown(
u

n+ 1
2

s,h , v
n+ 1

2
s,h , vn+1

f,h , pn+1
h

)
.

Writing

un+1
s −un

s = 2

(
u

n+ 1
2

s −un
s

)
and vn+1

s − vn
s = 2

(
v

n+ 1
2

s − vn
s

)
,

we obtain the discrete problem: find(
u

n+ 1
2

s,h , v
n+ 1

2
s,h , vn+1

f,h , pn+1
h

)
∈Vh ×Qh

such that for all yh = (ds,h , ws,h , wf,h) ∈Vh and qh ∈Qh ,

2(∆t )−1
∫
Ω
σs

(
u

n+ 1
2

s,h

)
: ε(ds,h)dx +2(∆t )−1

∫
Ω
ρs(1−φ)v

n+ 1
2

s,h ·ws,h dx

+ (∆t )−1
∫
Ω
ρfφvn+1

f,h ·wf,h dx +A

((
u

n+ 1
2

s,h , v
n+ 1

2
s,h , vn+1

f,h , pn+1
h

)
, (yh , qh)

)
= ℓ(yh), (36)
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where ℓ is a continuous linear form depending only on the prescribed body force f n+ 1
2 and

the solution at time t n . As for the Crank-Nicolson scheme, the bilinear form appearing in the
left-hand side of (36) is a perturbation of the bilinear form A . However, this perturbation does
not exactly correspond to the scalar product (·, ·)H because the coefficients in front of the solid
and fluid terms – namely 2(∆t )−1 and (∆t )−1 – are different, so that we can not directly apply
Lemma 10.

Nevertheless, we can reproduce its proof with this modified perturbation, which amounts to
replacing (λ,µ,ρs) by (2λ,2µ,2ρs) and adapting the choice of the constants α, β and γ. But the
restriction on the parameter λ0 comes from the coefficient (λ0ρfφ−−∥θ∥L∞(Ω)) arising in front of
the fluid term, which is not affected by this modification. Therefore, we conclude that the discrete
problem is well-posed for (∆t )−1 > (ρfφ−)−1 ∥θ∥L∞(Ω), which corresponds to (35). □

Remark 18. If θ satisfies the smallness condition (6), then the assumptions made on the time
step in Theorems 12 and 17 are not necessary. Indeed, if (6) holds true, then the discrete
problems (22) and (23) are well-posed irrespectively of the time step ∆t .

3.3. Discrete energy balances

The two schemes (14) and (15) satisfy fundamental energy balances at the discrete level. As a
matter of fact, choosing

(ds,h , ws,h , wf,h , qh) =
(
∆t u

n+ 1
2

s,h ,∆t v
n+ 1

2
s,h ,∆t v

n+ 1
2

f,h ,∆t p
n+ 1

2
h

)
in (20), we obtain∫
Ω
σs

(
un+1

s,h −un
s,h

)
: ε

(
u

n+ 1
2

s,h

)
dx+

∫
Ω
ρs(1−φ)

(
vn+1

s,h − vn
s,h

)
·vn+ 1

2
s,h dx+

∫
Ω
ρfφ

(
vn+1

f,h − vn
f,h

)
·vn+ 1

2
f,h dx

−∆t
∫
Ω
σs

(
v

n+ 1
2

s,h

)
: ε

(
u

n+ 1
2

s,h

)
dx +∆t

∫
Ω
σs

(
u

n+ 1
2

s,h

)
: ε

(
v

n+ 1
2

s,h

)
dx

+∆t
∫
Ω
φσf

(
v

n+ 1
2

f,h

)
: ε

(
v

n+ 1
2

f,h

)
dx −∆t

∫
Ω
θv

n+ 1
2

f,h · v
n+ 1

2
f,h dx +∆t

∫
Ω
φ2 K −1

f

(
v

n+ 1
2

f,h − v
n+ 1

2
s,h

)2

dx

−∆t
∫
Ω

p
n+ 1

2
h div

(
(1−φ) v

n+ 1
2

s,h +φv
n+ 1

2
f,h

)
dx +∆t

∫
Ω

div

(
(1−φ) v

n+ 1
2

s,h +φv
n+ 1

2
f,h

)
p

n+ 1
2

h dx

=∆t
∫
Ω
ρs(1−φ) f n+ 1

2 · v
n+ 1

2
s,h dx +∆t

∫
Ω
ρfφ f n+ 1

2 · v
n+ 1

2
f,h dx,

where

φ2K −1
f

(
v

n+ 1
2

f,h − v
n+ 1

2
s,h

)2

is a shortcut notation for

φ2K −1
f

(
v

n+ 1
2

f,h − v
n+ 1

2
s,h

)
·
(

v
n+ 1

2
f,h − v

n+ 1
2

s,h

)
.

Therefore, using that (vn+1 − vn) · vn+ 1
2 = 1

2 (
∣∣vn+1

∣∣2 −|vn |2) and introducing the discrete energy

E n
h = 1

2

∫
Ω
σs

(
un

s,h

)
: ε

(
un

s,h

)
dx︸ ︷︷ ︸

Structure discrete mechanical energy

+ 1

2

∫
Ω
ρs(1−φ)

∣∣∣vn
s,h

∣∣∣2
dx︸ ︷︷ ︸

Structure discrete kinetic energy

+ 1

2

∫
Ω
ρfφ

∣∣∣vn
f,h

∣∣∣2
dx︸ ︷︷ ︸

Fluid discrete kinetic energy

,

we find(
E n+1

h −E n
h

)+∆t
∫
Ω
φσf

(
v

n+ 1
2

f,h

)
: ε

(
v

n+ 1
2

f,h

)
dx +∆t

∫
Ω
φ2K −1

f

(
v

n+ 1
2

f,h − v
n+ 1

2
s,h

)2

dx

=∆t

(∫
Ω
θ

∣∣∣∣vn+ 1
2

f,h

∣∣∣∣2

dx +
∫
Ω
ρs(1−φ) f n+ 1

2 · v
n+ 1

2
s,h dx +

∫
Ω
ρfφ f n+ 1

2 · v
n+ 1

2
f,h dx

)
, (37)
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which corresponds to the discrete counterpart of the energy balance (4). Note that in absence of
external forces and if the mass input term θ is negative, namely if this term removes fluid mass
from the system, (37) directly implies the stability of the system since we then have

E n+1
h +∆t

∫
Ω
φσf

(
v

n+ 1
2

f,h

)
: ε

(
v

n+ 1
2

f,h

)
dx+∆t

∫
Ω
φ2K −1

f

(
v

n+ 1
2

f,h − v
n+ 1

2
s,h

)2

dx+∆t
∫
Ω
|θ|

∣∣∣∣vn+ 1
2

f,h

∣∣∣∣2

dx ≤ E n
h .

The general case requires an application of a discrete version of Grönwall Lemma, as it will be
detailed in the next section.

Proceeding similarly for the backward Euler scheme, namely taking(
ds,h , ws,h , wf,h , qh

)= (
∆t u

n+ 1
2

s,h ,∆t v
n+ 1

2
s,h ,∆t vn+1

f,h ,∆t pn+1
h

)
in (21) and using the identity(

vn+1 − vn) · vn+1 = 1

2

(∣∣vn+1∣∣2 − ∣∣vn∣∣2 + ∣∣vn+1 − vn∣∣2
)
,

we get the discrete energy balance(
E n+1

h −E n
h

)+ 1

2

∫
Ω
ρfφ

∣∣∣vn+1
f,h − vn

f,h

∣∣∣2
dx

+∆t
∫
Ω
φσf

(
vn+1

f,h

)
: ε

(
vn+1

f,h

)
dx +∆t

∫
Ω
φ2K −1

f

(
vn+1

f,h − v
n+ 1

2
s,h

)2

dx

=∆t

(∫
Ω
θ

∣∣∣vn+1
f,h

∣∣∣2
dx +

∫
Ω
ρs(1−φ) f n+ 1

2 · v
n+ 1

2
s,h dx +

∫
Ω
ρfφ f n+ 1

2 · vn+1
f,h dx

)
. (38)

This is almost the same energy balance as for the Crank–Nicolson scheme, the principal differ-
ence being the presence of an additional fluid term 1

2

∫
Ωρfφ|vn+1

f,h − vn
f,h |2 dx inducing numerical

dissipation.

4. Convergence analysis

The goal of this section is to compare the solution of the continuous problem to the solution of
the fully-discrete schemes (20) or (21). To do so, we are first going to build a projector from the
continuous to the discrete space that is adapated to the bilinear form appearing in our problem.

4.1. Choosing the finite element spaces

Let us assume that the discrete inf-sup condition (17) is fulfilled, and choose a parameter λ0 >
(ρfφ−)−1 ∥θ∥L∞(Ω). Then, Lemma 10 implies that for any (z, p) ∈ V ×Q, there exists a unique
Ph(z, p) ∈Vh ×Qh such that

Aλ0

(
Ph(z, p), (yh , qh)

)=Aλ0

(
(z, p), (yh , qh)

)
, ∀ (yh , qh) ∈Vh ×Qh . (39)

This defines a projector Ph from [H1
0(Ω)]d × [H1

0(Ω)]d × [H1
0(Ω)]d ×L2

0(Ω) to Xh ×Xh ×Xh ×Qh . Let

us denote by P u
h , P s

h , P f
h and P p

h the solid displacement, solid velocity, fluid velocity and pressure
components of Ph . The four corresponding projectors act on an element of [H1

0(Ω)]d ×[H1
0(Ω)]d ×

[H1
0(Ω)]d ×L2

0(Ω), but when z = (us, vs, vf) we will use the notation

Ph(z, p) =
(
P u

h us,P s
h vs,P f

h vf,P p
h p

)
.

Similarly, we will condense the three vectorial components of Ph in an operator P z
h and make the

abuse of notation Ph(z, p) = (P z
h z,P p

h p), so that (39) is equivalent to

A
(
Ph(z, p), (yh , qh)

)+λ0(P z
h z, yh)H =A

(
(z, p), (yh , qh)

)+λ0(z, yh)H , ∀ (yh , qh) ∈Vh ×Qh . (40)
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Moreover, in view of property (24), it holds∥∥(z, p)−Ph(z, p)
∥∥

V ×Q ≤C inf
(yh ,qh )∈Vh ×qh

∥∥(z, p)− (yh , qh)
∥∥

Vh×Qh
, (41)

with C > 0 a constant independent of h. If z and p are regular enough, the right-hand side of the
previous estimate behaves as a power of the mesh size h. More precisely, denoting by Hℓ+1(Ω)
the space [Hℓ+1(Ω)]d × [Hℓ+1(Ω)]d × [Hℓ+1(Ω)]d , we have

inf
yh ∈Vh

∥∥z − yh
∥∥

V ≤C hℓ ∥z∥Hℓ+1(Ω) , ∀ z ∈ Hℓ+1(Ω)∩V ,

and

inf
qh ∈Qh

∥∥p −qh
∥∥≤C hr ∥∥p

∥∥
H r (Ω) , ∀ p ∈ H r (Ω)∩Q,

where the convergence orders ℓ and r ≤ ℓ depend on the choice of Xh and Qh . For instance, if
(Xh ,Qh) correspond to the so-called Taylor-Hood elements, then ℓ= r = 2.

Since
∥∥z −P z

h z
∥∥

H
≤C

∥∥z −P z
h z

∥∥
V

owing to Korn inequality (5), we deduce that∥∥z −P z
h z

∥∥
H ≤C

(
hℓ ∥z∥Hℓ+1(Ω) +hr ∥∥p

∥∥
H r (Ω)

)
, (42)

and ∥∥p −P p
h p

∥∥≤C
(
hℓ ∥z∥Hℓ+1(Ω) +hr ∥∥p

∥∥
H r (Ω)

)
. (43)

These two estimates will play a central role to control the space consistency terms arising in the
error analysis.

4.2. Error analysis for the Crank-Nicolson scheme

We recall that the continuous solution (z, p) = (us, vs, vf, p) from (9) satisfies(
ż(t ), y

)
H +A

(
(z(t ), p(t )), (y, q)

)= (g (t ), y)H , ∀ y ∈V ,∀ q ∈Q.

In particular, since we consider conforming finite element approximations Vh ⊂ V and Qh ⊂ Q,
we have (

ż(t ), yh
)

H +A
(
(z(t ), p(t )), (yh , qh)

)= (g (t ), yh)H , ∀ yh ∈Vh ,∀ qh ∈Qh . (44)

In what follows, we assume that (z, p) is regular enough. In order to quantify the convergence of
the fully discrete solution towards the solution of the continuous problem above, for k an integer
or a half-integer, we introduce the error ϵk

h = z(t k )− zk
h = (ϵk

u,h ,ϵk
s,h ,ϵk

f,h) with

ϵk
u,h = us

(
t k

)
−uk

s,h ,

ϵk
s,h = vs

(
t k

)
− vk

s,h ,

ϵk
f,h = vf

(
t k

)
− vk

f,h .

We are now ready to state the following error estimate for the Crank–Nicolson scheme, which is
the main result of this paper.

Theorem 19. Assume that (h1)− (h5) hold, and that the solution of the continuous problem (9)
has the additional regularity

(us, vs, vf) ∈C 1
(
[0,T ]; Hℓ+1(Ω)

)
, p ∈C 1 (

[0,T ]; H r (Ω)
)

,(
∂t t us,∂t t vs,∂t t vf

) ∈C 1([0,T ]; H
)
, ∂t t vf ∈ L2

(
0,T ;

[
H1

0(Ω)
]d

)
.

(45)
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If we have in addition

∆t < ρfφ−
4∥θ∥L∞(Ω)

, (46)

then for all 0 ≤ N ≤ nT , it holds that

1

2

∫
Ω
σs

(
ϵN

u,h

)
: ε

(
ϵN

u,h

)
dx + 1

2

∫
Ω
ρs(1−φ)

∣∣∣ϵN
s,h

∣∣∣2
dx + 1

2

∫
Ω
ρfφ

∣∣∣ϵN
f,h

∣∣∣2
dx

+∆t
N−1∑
n=0

∫
Ω
φσf

(
ϵ

n+ 1
2

f,h

)
: ε(ϵ

n+ 1
2

f,h )dx +∆t
N−1∑
n=0

∫
Ω
φ2K −1

f

(
ϵ

n+ 1
2

f,h −ϵn+ 1
2

s,h

)2

dx

≤C exp

(
4(ρfφ−)−1 ∥θ∥L∞(Ω) T

1−4∆t (ρfφ−)−1 ∥θ∥L∞(Ω)

)(
∆t 2 +hℓ+hr

)2
, (47)

with C a constant independent of h and ∆t .

Proof. The proof is divided into four steps. First, we derive a suitable error equation by using
the definition of the specific projector Ph introduced earlier and by gathering time and space
consistency terms. Then, after exploiting the stability of the scheme, these terms are estimated
and the conclusion is obtained by an application of a discrete version of Grönwall Lemma.
Step 1: derivation of the error equation. First, we want to inject the continuous solution into the
semi-discretized in time scheme (14), namely compute(

z
(
t n+1

)− z (t n)

∆t
, yh

)
H

+A

((
z
(
t n+1

)+ z (t n)

2
,

p
(
t n+1

)+p (t n)

2

)
, (yh , qh)

)
,

for all (yh , qh) ∈Vh ×Qh . To do so, we observe that averaging (44) at times t n and t n+1 leads to(
ż
(
t n+1

)+ ż (t n)

2
, yh

)
H

+A

((
z
(
t n+1

)+ z (t n)

2
,

p
(
t n+1

)+p (t n)

2

)
, (yh , qh)

)

=
(

g
(
t n+1

)+ g (t n)

2
, yh

)
H

.

Therefore, writing

ż
(
t n+1

)+ ż (t n)

2
= ż

(
t n+1

)+ ż (t n)

2
− z

(
t n+1

)− z (t n)

∆t
+ z

(
t n+1

)− z (t n)

∆t
,

we obtain(
z
(
t n+1

)− z (t n)

∆t
, yh

)
H

+A

((
z
(
t n+1

)+ z (t n)

2
,

p
(
t n+1

)+p (t n)

2

)
, (yh , qh)

)

=
(

g
(
t n+1

)+ g (t n)

2
, yh

)
H

+
(
Rn+ 1

2 , yh

)
H

, (48)

where Rn+ 1
2 gathers the time consistency error defined by

Rn+ 1
2 = z

(
t n+1

)− z (t n)

∆t
− ż

(
t n+1

)+ ż (t n)

2
,

which will hereafter be controled using a Taylor expansion.
Next, for a given λ0 > (ρfφ−)−1 ∥θ∥L∞(Ω), we are going to approximate the continuous solution

by means of the discrete projector Ph defined in (40). We recall that Ph satisfies, for any (z, p) ∈
V ×Q,

A
(
(z, p), (yh , qh)

)=A
(
Ph(z, p), (yh , qh)

)+λ0
(
P z

h z − z, yh
)

H , ∀ yh ∈Vh ,∀ qh ×Qh .
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Averaging this relation for the choices (z, p) = (z(t n), p(t n)) and (z, p) = (z(t n+1), p(t n+1)), we get

A

((
z
(
t n+1

)+ z (t n)

2
,

p
(
t n+1

)+p (t n)

2

)
, (yh , qh)

)

=A

((
P z

h z
(
t n+1

)+P z
h z (t n)

2
,

P p
h p

(
t n+1

)+P p
h p (t n)

2

)
, (yh , qh)

)

+λ0

(
P z

h z
(
t n+1

)+P z
h z (t n)

2
− z

(
t n+1

)+ z (t n)

2
, yh

)
H

.

Plugging this result into (48), it follows that(
z
(
t n+1

)− z(t n)

∆t
, yh

)
H

+A

((
P z

h z
(
t n+1

)+P z
h z (t n)

2
,

P p
h p

(
t n+1

)+P p
h p (t n)

2

)
, (yh , qh)

)

=
(

g
(
t n+1

)+ g (t n)

2
, yh

)
H

+
(
Rn+ 1

2 , yh

)
H
+λ0

(
S

n+ 1
2

h , yh

)
H

, (49)

where S
n+ 1

2
h is a space consistency term given by

S
n+ 1

2
h = z

(
t n+1

)+ z (t n)

2
− P z

h z
(
t n+1

)+P z
h z (t n)

2
,

that will further be estimated using the approximability properties of the operator Ph . Decom-
posing the first term of (49) as

z
(
t n+1

)− z (t n)

∆t
= z

(
t n+1

)− z (t n)

∆t
−P z

h

(
z
(
t n+1

)− z (t n)

∆t

)
+P z

h

(
z
(
t n+1

)− z (t n)

∆t

)
,

and using the linearity of Ph , we end up with(
P z

h z
(
t n+1

)−P z
h z (t n)

∆t
, yh

)
H

+A

((
P z

h z
(
t n+1

)+P z
h z (t n)

2
,

P p
h p

(
t n+1

)+P p
h p (t n)

2

)
, (yh , qh)

)

=
(

g
(
t n+1

)+ g (t n)

2
, yh

)
H

+
(
Rn+ 1

2 , yh

)
H
+λ0

(
S

n+ 1
2

h , yh

)
H
+

(
T

n+ 1
2

h , yh

)
H

, (50)

where

T
n+ 1

2
h = P z

h

(
z
(
t n+1

)− z (t n)

∆t

)
− z

(
t n+1

)− z (t n)

∆t
,

is another space consistency term coming from the spatial approximation of the discrete deriva-
tive of the solution.

Now, let us denote by (en
h ,δn

h ) the error between the projection of the continuous solution and
the discrete solution at time t n , namely en

h = P z
h z(t n)− zn

h = (en
u,h ,en

s,h ,en
f ,h) with

en
u,h = P u

h us(t n)−un
s,h ,

en
s,h = P s

h vs(t n)− vn
s,h ,

en
f ,h = P f

h vf(t n)− vn
f,h ,

and

δn
h = P p

h p(t n)−pn
h .

From (22), we know that the fully-discrete solution(
z

n+ 1
2

h , p
n+ 1

2
h

)
=

(
u

n+ 1
2

s,h , v
n+ 1

2
s,h , v

n+ 1
2

f,h , p
n+ 1

2
h

)
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satisfies(
zn+1

h − zn
h

∆t
, yh

)
H

+A

((
z

n+ 1
2

h , p
n+ 1

2
h

)
, (yh , qh)

)

=
(

g (t n)+ g
(
t n+1

)
2

, yh

)
H

, ∀ yh ∈Vh ,∀ qh ∈Qh . (51)

Substracting (51) from (50), we obtain(
en+1

h −en
h

∆t
, yh

)
H

+A

((
e

n+ 1
2

h ,δ
n+ 1

2
h

)
, (yh , qh)

)
=

(
Rn+ 1

2 , yh

)
H
+λ0

(
S

n+ 1
2

h , yh

)
H
+

(
T

n+ 1
2

h , yh

)
H

, ∀ yh ∈Vh ,∀ qh ∈Qh . (52)

where we have adopted the notations

e
n+ 1

2
h = P z

h z
(
t n+1

)+P z
h z(t n)

2
− z

n+ 1
2

h = en+1
h +en

h

2
,

and

δ
n+ 1

2
h =

P p
h p

(
t n+1

)+P p
h p(t n)

2
−p

n+ 1
2

h = δn+1
h +δn

h

2
.

Step 2: stability estimate in the discrete energy norm. Choosing (yh , qh) = (e
n+ 1

2
h ,δ

n+ 1
2

h ) as test
function in (52) yields(

en+1
h −en

h

∆t
,e

n+ 1
2

h

)
H

+A

((
e

n+ 1
2

h ,δ
n+ 1

2
h

)
,

(
e

n+ 1
2

h ,δ
n+ 1

2
h

))
=

(
Rn+ 1

2 ,e
n+ 1

2
h

)
H
+λ0

(
S

n+ 1
2

h ,e
n+ 1

2
h

)
H
+

(
T

n+ 1
2

h ,e
n+ 1

2
h

)
H

.

With the stability identity (37), this implies

1

2

∥∥en+1
h

∥∥2
H − 1

2

∥∥en
h

∥∥2
H +∆t

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx +∆t

∫
Ω
φ2K −1

f

(
e

n+ 1
2

f ,h −e
n+ 1

2
s,h

)2

dx

=∆t
∫
Ω
θ

∣∣∣∣en+ 1
2

f ,h

∣∣∣∣2

dx +∆t

(
Rn+ 1

2 +λ0S
n+ 1

2
h +T

n+ 1
2

h ,e
n+ 1

2
h

)
H

.

Applying Young inequality ab ≤ ξ
2 a2 + 1

2ξb2 for a generic parameter ξ> 0, we get

1

2

∥∥en+1
h

∥∥2
H − 1

2

∥∥en
h

∥∥2
H +∆t

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx +∆t

∫
Ω
φ2K −1

f

(
e

n+ 1
2

f ,h −e
n+ 1

2
s,h

)2

dx

≤ ∆t ∥θ∥L∞(Ω)

ρfφ−

∥∥∥∥e
n+ 1

2
h

∥∥∥∥2

H
+ ξ∆t

2

∥∥∥∥Rn+ 1
2 +λ0S

n+ 1
2

h +T
n+ 1

2
h

∥∥∥∥2

H
+ ∆t

2ξ

∥∥∥∥e
n+ 1

2
h

∥∥∥∥2

H
. (53)

Step 3: estimation of the consistency terms. Let us now estimate the consistency terms Rn+ 1
2 ,

S n+ 1
2 and T n+ 1

2 appearing in the right-hand side of the previous inequality.
The time consistency error Rn+ 1

2 is controled using a Taylor expansion. As a matter of fact, we
easily verify that∥∥∥Rn+ 1

2

∥∥∥
H
=

∥∥∥∥∥ z
(
t n+1

)− z(t n)

∆t
− ż

(
t n+1

)+ ż(t n)

2

∥∥∥∥∥
H

≤C∆t 2 ∥z∥C 3([0,T ];H) . (54)
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The space consistency term S
n+ 1

2
h and T

n+ 1
2

h can be handled with the approximability prop-
erty (41) under suitable regularity assumptions. Indeed, as z ∈ C 0([0,T ]; Hℓ+1(Ω)) and p ∈
C 0([0,T ]; H r (Ω)), we infer from (42) that∥∥∥∥S

n+ 1
2

h

∥∥∥∥
H
=

∥∥∥∥∥ z
(
t n+1

)+ z(t n)

2
−P z

h

(
z
(
t n+1

)+ z(t n)

2

)∥∥∥∥∥
H

≤C
(
hℓ+hr

)
. (55)

For the second term T
n+ 1

2
h , we observe that there exists intermediate times t n,z and t n,p belong-

ing to (t n , t n+1) such that z(t n+1) = z(t n)+∆t ż(t n,z ) and p(t n+1) = p(t n)+∆t ṗ(t n,p ). Thus∥∥∥∥T
n+ 1

2
h

∥∥∥∥
H
=

∥∥∥∥∥ z
(
t n+1

)− z(t n)

∆t
−P z

h

(
z
(
t n+1

)− z(t n)

∆t

)∥∥∥∥∥
H

≤C

(
hℓ

∥∥∥∥∥ z
(
t n+1

)− z(t n)

∆t

∥∥∥∥∥
Hℓ+1(Ω)

+hr

∥∥∥∥∥ p
(
t n+1

)−p(t n)

∆t

∥∥∥∥∥
H r (Ω)

)
=C

(
hℓ

∥∥ż
(
t n,z)∥∥

Hℓ+1(Ω) +hr ∥∥ṗ
(
t n,p)∥∥

H r (Ω)

)
,

and hence ∥∥∥∥T
n+ 1

2
h

∥∥∥∥
H
≤C (hℓ+hr ), (56)

by virtue of (45), with C a constant depending on z and p.
Step 4: final error analysis. Putting the consistency errors (54), (55) and (56) together with (53),
we deduce

1

2

∥∥en+1
h

∥∥2
H − 1

2

∥∥en
h

∥∥2
H +∆t

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx +∆t

∫
Ω
φ2K −1

f

(
e

n+ 1
2

f ,h −e
n+ 1

2
s,h

)2

dx

≤∆t

(∥θ∥L∞(Ω)

ρfφ−
+ 1

2ξ

)∥∥∥∥e
n+ 1

2
h

∥∥∥∥2

H
+ ξ∆t

2
C

(
∆t 2 +hℓ+hr

)2
.

Multiplying by two and choosing for instance ξ= ρfφ−
2∥θ∥L∞(Ω)

, we get

∥∥en+1
h

∥∥2
H −∥∥en

h

∥∥2
H +2∆t

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx +2∆t

∫
Ω
φ2K −1

f

(
e

n+ 1
2

f ,h −e
n+ 1

2
s,h

)2

dx

≤ 4∆t ∥θ∥L∞(Ω)

ρfφ−

∥∥∥∥e
n+ 1

2
h

∥∥∥∥2

H
+C

(
∆t 2 +hℓ+hr

)2
,

where the constant C now also depends on θ.
Let N ≤ nT be an arbitrary integer. Summing from 0 to N −1 and noting that N∆t ≤ T yields

∥∥eN
h

∥∥2
H +2∆t

N−1∑
n=0

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx +2∆t

N−1∑
n=0

∫
Ω
φ2K −1

f

(
e

n+ 1
2

f ,h −e
n+ 1

2
s,h

)2

dx

≤ ∥∥e0
h

∥∥2
H + 4∆t ∥θ∥L∞(Ω)

ρfφ−

N−1∑
n=0

∥∥∥∥e
n+ 1

2
h

∥∥∥∥2

H
+C

(
∆t 2 +hℓ+hr

)2
,

with C another constant, which also depends on T . Thanks to the chosen initial conditions we
have ∥∥e0

h

∥∥
H = ∥∥P z

h z(0)− Ih z(0)
∥∥

H ≤ ∥∥P z
h z(0)− z(0)

∥∥
H +∥z(0)− Ih z(0)∥H ≤C

(
hℓ+hr

)
.

Moreover, since

N−1∑
n=0

∥∥∥∥e
n+ 1

2
h

∥∥∥∥2

H
=

N−1∑
n=0

∥∥∥∥∥en+1
h +en

h

2

∥∥∥∥∥
2

H

≤ 1

2

N−1∑
n=0

(∥∥en+1
h

∥∥2
H +∥∥en

h

∥∥2
H

)
≤

N∑
n=0

∥∥en
h

∥∥2
H ,
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we find

∥∥eN
h

∥∥2
H +2∆t

N−1∑
n=0

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx +2∆t

N−1∑
n=0

∫
Ω
φ2K −1

f

(
e

n+ 1
2

f ,h −e
n+ 1

2
s,h

)2

dx

≤C
(
∆t 2 +hℓ+hr

)2 + 4∆t ∥θ∥L∞(Ω)

ρfφ−

N∑
n=0

∥∥en
h

∥∥2
H . (57)

To conclude, we use a discrete version of Grönwall Lemma, recalled below for the sake of
completeness. For a proof of this result, we refer the reader to [38, Lemma 5.1].

Lemma 20. Let C > 0 and δ> 0. Let (an), (bn) and (γn) be sequences of positive numbers such that

aN +δ
N∑

n=0
bn ≤C +δ

N∑
n=0

γn an .

Assume that δγn < 1 for all n, and set σn = (1−δγn)−1. Then, for all N ≥ 0, it holds that

aN +δ
N∑

n=0
bn ≤C exp

(
δ

N∑
n=0

σnγn

)
.

Let us define γ= 4∥θ∥L∞(Ω)
ρfφ− . Recalling (46), we have γ∆t < 1. Therefore, Lemma 20 implies that

∥∥eN
h

∥∥2
H +2∆t

N−1∑
n=0

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx +2∆t

N−1∑
n=0

∫
Ω
φ2K −1

f

(
e

n+ 1
2

f ,h −e
n+ 1

2
s,h

)2

dx

≤C
(
∆t 2 +hℓ+hr

)2
exp

(
(N +1)∆t

γ

1−γ∆t

)
≤C

(
∆t 2 +hℓ+hr

)2
exp

(
γT

1−γ∆t

)
since N∆t ≤ T.

Finally, writing

ϵN
h = z

(
t N )−P z

h z
(
t N )+P z

h z
(
t N )− zN

h = z
(
t N )−P z

h z
(
t N )+eN

h ,

and using (42), we obtain

1

2

∥∥ϵN
h

∥∥2
H +∆t

N−1∑
n=0

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx +∆t

N−1∑
n=0

∫
Ω
φ2K −1

f

(
e

n+ 1
2

f ,h −e
n+ 1

2
s,h

)2

dx

≤C
(
∆t 2 +hℓ+hr

)2
exp

(
γT

1−γ∆t

)
.

In order to derive (47), we rewrite the viscous part as

vf

(
t n+ 1

2

)
− v

n+ 1
2

f,h = vf

(
t n+ 1

2

)
− vf

(
t n+1

)+ vf(t n)

2

+ vf
(
t n+1

)+ vf(t n)

2
−P f

h

(
vf

(
t n+1

)+ vf(t n)

2

)
+P f

h

(
vf

(
t n+1

)+ vf(t n)

2

)
− v

n+ 1
2

f,h ,

namely

ϵ
n+ 1

2
f,h = vf

(
t n+ 1

2

)
− vf

(
t n+1

)+ vf(t n)

2
+S

n+ 1
2

f ,h +e
n+ 1

2
f ,h .

The second term of the above expression is controled thanks to (55), and the first one can be
estimated as follows
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∆t
N−1∑
n=0

∫
Ω
φσf

(
vf

(
t n+ 1

2

)
− vf

(
t n+1

)+ vf(t n)

2

)
: ε

(
vf

(
t n+ 1

2

)
− vf

(
t n+1

)+ vf(t n)

2

)
dx

≤C∆t 4 ∥∂t t vf∥2

L2
(
0,T ;

[
H1

0(Ω)
]d

)
using a Taylor expansion. □

Remark 21. Here, we prove convergence under the time step restriction (46), which is slightly
more restrictive than the condition found for the well-posedness of the discrete problem, see (33).
Note however that it may not be optimal.

Remark 22. If the smallness condition (6) is fulfilled, namely if

Cd ∥θ∥L∞(Ω)

2µfφ−
≤ 1,

another strategy would be to absorb the additional fluid mass term by the viscous fluid dissipa-
tion. Indeed, we then have

∆t
∫
Ω
θ

∣∣∣∣en+ 1
2

f ,h

∣∣∣∣2

dx ≤∆t
Cd ∥θ∥L∞(Ω)

2µfφ−

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx ≤∆t

∫
Ω
φσf

(
e

n+ 1
2

f ,h

)
: ε

(
e

n+ 1
2

f ,h

)
dx,

which indicates that the condition (46) may be dropped if the fluid mass input is small enough or
if the fluid viscosity is large enough.

4.3. Error analysis for the backward Euler scheme

Now, we move to the analysis of the backward Euler scheme, for which we establish a similar
result than the one found in [17] for a compressible material (case κs <+∞).

Theorem 23. Assume that (h1)− (h5) hold, and that the solution of the continuous problem (9)
has the additional regularity

(us, vs, vf) ∈C 1
(
[0,T ]; Hℓ+1(Ω)

)
, p ∈C 1([0,T ]; H r (Ω)

)
,(

∂t t us,∂t t vs,∂t t vf
) ∈C 1([0,T ]; H

)
, ∂t vf ∈ L2(0,T ; [H1

0(Ω)]d )
.

If we have in addition

∆t < ρfφ−
4∥θ∥L∞(Ω)

,

then for all 0 ≤ N ≤ nT , it holds that

1

2

∫
Ω
σs

(
ϵN

u,h

)
: ε

(
ϵN

u,h

)
dx + 1

2

∫
Ω
ρs(1−φ)

∣∣∣ϵN
s,h

∣∣∣2
dx + 1

2

∫
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ρfφ

∣∣∣ϵN
f,h

∣∣∣2
dx

+∆t
N−1∑
n=0

∫
Ω
φσf

(
ϵn+1

f,h

)
: ε

(
ϵn+1

f,h

)
dx +∆t

N−1∑
n=0

∫
Ω
φ2K −1

f

(
ϵn+1

f,h −ϵn+ 1
2

s,h

)2

dx

+ 1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣ϵn+1
f,h −ϵn

f,h

∣∣∣2
dx ≤C exp

(
4(ρfφ−)−1 ∥θ∥L∞(Ω) T

1−4∆t (ρfφ−)−1 ∥θ∥L∞(Ω)

)(
∆t +hℓ+hr

)2
, (58)

with C a constant independent of h and ∆t .

Proof. The difficulty of the backward Euler scheme is that it includes a shift between the solid
quantities, which are approximated at time t n+ 1

2 , and the fluid and pressure quantities, which
are approximated at time t n+1. Therefore, we can not project the continuous solution on the
discrete space at the same time as we did for the Crank-Nicolson scheme, since our projector Ph

acts simultaneously on solid, fluid and pressure quantities. To overcome this issue, our strategy is
to be as close as possible to the analysis performed for the Crank-Nicolson scheme by changing
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the definitions of the errors to take into account the time shifting rather than handling this shift
at the projection level.

To do so, we start the proof from equation (49), that reads(
z
(
t n+1

)− z(t n)

∆t
, yh

)
H

+A

((
P z

h z
(
t n+1

)+P z
h z(t n)

2
,

P p
h p

(
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)+P p
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2

)
, (yh , qh)

)

=
(

g
(
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)+ g (t n)

2
, yh

)
H

+
(
Rn+ 1

2 , yh

)
H
+λ0

(
S

n+ 1
2

h , yh

)
H

.

From (23), the fully-discrete solution (zn+1
h , pn+1

h ) = (un+1
s,h , vn+1

s,h , vn+1
f,h , pn+1
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h

∆t
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)
H
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u

n+ 1
2
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2
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f,h , pn+1
h

)
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)
=

(
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(
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2
, yh

)
H

.

Substracting these two relations, we obtain(
z
(
t n+1

)− z(t n)

∆t
− zn+1

h − zn
h

∆t
, yh

)
H

+A

((
e

n+ 1
2
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)
=
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)
H
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(
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H

, ∀ yh ∈Vh ,∀ qh ∈Qh , (59)

where the solid quantities errors

e
n+ 1

2
u,h = P u
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(
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s,h and e
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2
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s,h ,

are defined as in the Crank–Nicolson scheme, whereas for the fluid and pressure quantities we
consider the new errors

ẽn+1
f ,h =

P f
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h vf(t n)
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In order to derive a system satisfied by the error (e
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2
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∆t
.

Plugging these results into (59), it follows that for any yh = (ds,h , ws,h , wf,h) ∈ Vh and qh ∈Qh , we
have∫
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(
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u,h −en
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)
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with

T
n+ 1

2
u,h = P u
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(
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)−P u
h us(t n)
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Note that the two first terms T
n+ 1

2
u,h and T

n+ 1
2

s,h correspond exactly to the solid components of the

term T
n+ 1

2
h that have already been studied for the Crank–Nicolson scheme, while the third term

T n+1
f ,h is different.
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2
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2

s,h , ẽn+1
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h ) as test function in (60) and exploiting the stability
identity (38), it follows
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f ,h · ẽn+1
f ,h . (61)

The rest of the proof is almost similar to the one of Theorem 19.

The terms Rn+ 1
2 , S

n+ 1
2

h , T
n+ 1

2
u,h and T

n+ 1
2

s,h have already been estimated during the analysis of

the Crank–Nicolson scheme, see (54), (55) and (56). We only need to deal with the term T n+1
f ,h ,

that we decompose as
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)
2∆t

)
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)
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(
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∆t

The first part of the above expression is a space error term that can be estimated as in (56), namely∥∥∥∥∥P f
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.

The second part is a time error term coming from the shift between the fluid and solid quantities.
Using a Taylor expansion, we easily check that∥∥∥∥∥ vf

(
t n+1

)− vf
(
t n−1

)
2∆t

− vf
(
t n+1
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Hence, we deduce that ∥∥∥T n+1
f ,h

∥∥∥≤C
(
∆t +hℓ+hr

)
.

and it is at this point that we lose the O (∆t 2) accuracy in time.
The rest of the proof is similar to the Step 4 of the proof of Theorem 19. In particular, the

viscous part of (58) is recovered by decomposing the fluid error as

ϵn+1
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and using that ∂t vf ∈ L2(0,T ; [H1
0(Ω)]d ). □
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Remark 24. Note that our strategy of proof requires strong regularity assumptions on the
continuous solution, since it is based on a comparison with the error analysis for the Crank–
Nicolson scheme. Handling the temporal shift between the fluid and the solid at the projection
level would lead to weaker regularity assumptions, in particular on ∂t t us, ∂t t vs and ∂t t vf.

5. Numerical results

In this section, we present numerical results to illustrate the theoretical statements established
previously. All the simulations have been obtained with the finite element software FEniCS
[39,40] using a direct LU solver. First, we validate numerically the discrete energy balances for the
two schemes under study, and show the influence of the fluid mass source term θ on the schemes
stability. Then, the error results of Theorems 19 and 23 are discussed by means of convergence
plots. Finally, we illustrate the importance of the choice of the finite element spaces employed
when entering the incompressible regime.

5.1. Discrete energy balance and influence of the additional fluid mass input

To numerically recover the discrete energy balance derived in Section 3.3, we simulate the
evolution of the system starting from a non-zero initial condition, but in absence of external body
forces and fluid mass source term, namely f = 0 and θ = 0. According to (37) and (38), the discrete
energy of the scheme then satisfies
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dx︸ ︷︷ ︸
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h , (62)

for the Crank–Nicolson scheme and
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∫
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(
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2
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+ 1

2
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n=0

∫
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ρfφ

∣∣∣vn+1
f,h − vn

f,h

∣∣∣2
dx︸ ︷︷ ︸

Discrete numerical dissipation

= E 0
h , (63)

for the backward Euler scheme. The different above contributions are represented on Figure 1,
for a test case in the domain Ω = (0,1)2 discretized in space with [P2]d × [P2]d × [P2]d ×P1 finite
elements. Since all the dissipation terms are strictly positive, the discrete energy curve (in blue)
is strictly decreasing. Apart from the dissipation coming from the viscosity within the fluid and
the friction between the two phases, the yellow curve shows an additional numerical dissipation
term for the backward Euler scheme, which is not part of the balance for the Crank–Nicolson
scheme. Moreover, by summing the energy and the total dissipation in the system (black curve),
we see that we recover exactly the initial energy, as predicted by (62) and (63).

In Figure 2, we simulate the same test case as in Figure 1(a), but with a non-zero fluid mass
source term θ. The resulting curves shed light on the influence of the sign of θ on the system
dynamics. If θ is negative, the term −θvf supplies the system with an additional dissipation term,
so that the energy in Figure 2(a) decreases faster than in Figure 1(a). If θ is positive, then the term
−θvf brings fluid kinetic energy to the system. In this case, if this incoming rate of fluid kinetic
energy is not compensated by the viscous and friction dissipation terms, then the total energy
increases, as it is the case in Figure 2(b).
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Figure 1. Time evolution of the dissipation terms involved in the discrete energy balance in
absence of external body forces and additional fluid mass input for the two schemes under
study. Simulations run with ∆t = 0.05, T = 2, ρf = 20, ρs = 1, φ = 0.5, µf = 0.1, λ = µ = 1,
K −1

f = 1.5I and θ = 0.

Figure 2. Time evolution of the dissipation terms involved in the discrete energy balance
in absence of external body forces for the Crank–Nicolson scheme, but with an additional
fluid mass source term. Simulations run with ∆t = 0.05, T = 2, ρf = 20, ρs = 1, φ = 0.5,
µf = 0.1, λ=µ= 1, K −1

f = 1.5I and θ =−10 (left) or θ = 10 (right).

Another implication of the additional fluid mass source term θ – when it does not satisfy
the smallness condition (6) – is that it imposes a restriction on the time step. Indeed, from
Theorems 12 and 17, the existence of the discrete solution associated with the Crank–Nicolson
or backward Euler schemes is respectively ensured under the sufficient condition (33) or (35),
namely

∆t < 2ρfφ−
∥θ∥L∞(Ω)

or ∆t < ρfφ−
∥θ∥L∞(Ω)

.
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Figures 3 and 4 highlight the unstability of the schemes when these conditions are not
respected, that thus appear to be necessary for the considered test case. For the Crank–Nicolson
scheme, Figures (3c) and (3d) show that the computed fluid velocity diverges after a few iterations
in time when (33) is not satisfied, whereas the fluid velocity profile is close to the initial condition
profile when (33) is satisfied, see Figures (3a) and (3b). The same phenomenon occurs for the
backward Euler scheme in Figure 4, but with a time step restriction that is twice more restrictive
than for the Crank–Nicolson scheme, in accordance with (35).

(a)∆t = 0.05 (b)∆t = 0.09 (c)∆t = 0.11 (d)∆t = 0.15

Figure 3. Fluid velocity x-component profile computed with the Crank–Nicolson scheme

after three iterations in time, for different time steps close to the threshold 2ρfφ−
∥θ∥L∞(Ω)

= 0.1.

Simulation run with f = 0, ρf = ρs = 1, φ= 0.5, µf = 0.001, λ=µ= 1, K −1
f = 0 and θ = 10.

(a)∆t = 0.02 (b)∆t = 0.04 (c)∆t = 0.06 (d)∆t = 0.09

Figure 4. Fluid velocity x-component profile computed with the backward Euler scheme

after three iterations in time, for different time steps close to the threshold ρfφ−
∥θ∥L∞(Ω)

= 0.05.

Simulation run with f = 0, ρf = ρs = 1, φ= 0.5, µf = 0.001, λ=µ= 1, K −1
f = 0 and θ = 10.

(a) µf = 0.001 (b) µf = 0.1

Figure 5. Fluid velocity x-component profile computed with the backward Euler scheme
after three iterations in time, for ∆t = 0.06 and two different values of fluid viscosity.

Interestingly, these unstabilities can be removed by increasing the value of the fluid viscosity,
as shown in Figure 5. Indeed, if µf is large enough, then the incoming rate of fluid kinetic energy
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coming from the θ term can be counterbalanced by the fluid viscous dissipation even if the time
step restriction is not fulfilled, as mentioned in Remarks 11, 18 and 22.

Finally, Table 1 illustrates that even when the time step restriction is satisfied, the error
between the discrete and continuous solutions may be large in long time simulations if the time

step is not small enough. This is due to the constant exp(
4(ρfφ−)−1∥θ∥L∞(Ω)T

1−4∆t (ρfφ−)−1∥θ∥L∞(Ω)
) appearing in the

error estimates (47) and (58). In the example of Table 1, we see that ∆t must be less than 0.001 to
get an error that is not polluted by this exponential growth.

Table 1. Relative error ∥zref(T )− znT
h ∥H /∥zref(T )∥H at T = 1 between the discrete solution

computed for different time steps and a reference solution zref computed for ∆t = 0.0001,
obtained with the backward Euler scheme and the same physical parameters as in Figure 4.

∆t Relative error ∆t Relative error
0.0002 0.02 0.005 1.8
0.0005 0.08 0.01 8.8
0.001 0.20 0.02 240

5.2. Convergence rates

Next, we present convergence plots generated using the manufactured solution method in the
unit square domain Ω = (0,1)2. To build an analytical solution, we assume that the porosity φ is
constant and we pick a function v ref such that div v ref = 0 inΩ and v ref = 0 on ∂Ω, for instance

v ref(x, y) =
(
sin(2πy)

(
cos(2πx)−1

)
, sin(2πx)

(
1−cos(2πy)

))
.

Then, we choose the fluid and solid velocities analytical solutions as

v ref
s (x, y, t ) = cos(t )φv ref(x, y) and v ref

f (x, y, t ) = cos(t )(1−φ) v ref(x, y),

in such a way that, since φ is constant, we have

div
(
(1−φ)v ref

s +φv ref
f

)= cos(t )φ(1−φ) div v ref = 0.

The solid displacement analytical solution is then obtained by time integration of the solid
velocity, namely uref

s (x, y, t ) = sin(t )φv ref(x, y). Lastly, for the pressure analytical solution, we
take pref(x, y, t ) = sin(t )sin(2πx)sin(2πy), which satisfies the condition

∫
Ω p dx = 0. To simplify,

we assume that θ = 0. The simulation is then run with the source terms and initial conditions
associated with the analytical solution, for ρs = ρf = µf = λ = µ = 1, Kf = I , φ = 0.5 and T = 1.
By comparing the resulting discrete solution to the previous analytical solution, we investigate
numerically the spatial and temporal convergence rates of the two proposed schemes.

In Figures 6 and 7, the simulation is performed with a very small time step ∆t = 0.005 and
the mesh size is progressively decreased. For the spatial discretization, we use finite element
spaces pairs (Xh ,Qh) that are known to be stable for Stokes problem, namely the MINI ele-
ment or Taylor-Hood elements [22, 23]. Figure 6-left corroborates the statement of Theorem 19:
it shows a spatial convergence rate of 1 in the energy and fluid viscous dissipation norms for the
MINI element, for which ℓ = r = 1. In Figure 6-right, the energy norm is decomposed into the
three contributions of solid displacement, solid velocity and fluid velocity. We observe that the
convergence rate is of order 2 for the velocities, so that the energy norm convergence rate is re-
stricted by the solid displacement term. This extra convergence probably comes from the fact
that estimate (42) is optimal only for the displacement [H1

0(Ω)]d norm, but may be improved for
the velocities [L2(Ω)]d norm using a duality argument. This may be one of the drawbacks of the
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Figure 6. Error curves with respect to the mesh size h for [P1
b]d×[P1

b]d×[P1
b]d×P1 elements.

Simulation run with the Crank-Nicolson scheme for ∆t = 0.005, starting from a mesh size
H that corresponds to a uniform mesh built with 8 subdivisions along each axis direction.

Figure 7. Error curves with respect to the mesh size h for [P2]d ×[P2]d ×[P2]d ×P1 elements.
Simulation run with the Crank–Nicolson scheme for ∆t = 0.005, starting from a mesh size
H that corresponds to a uniform mesh built with 8 subdivisions along each axis direction.

T-coercivity method since it is by essence an all-in-one approach handling all the variables to-
gether. Note that even if this result is not given by Theorem 19, we also recover numerically the
pressure convergence, with a convergence rate of 1.5 as found in other studies on the MINI ele-
ment [41, 42].

For Taylor–Hood elements, we have ℓ = r = 2 and Figure 7 gives a convergence rate of 3 in
the energy norm. This superconvergence is probably due to the C∞ regularity of our analytical
solution. Here again, we find an improved convergence for the velocity variables compared to the
displacement one.



Mathieu Barré, Céline Grandmont and Philippe Moireau 33

Figure 8. Error curves of the two proposed schemes with respect to the time step. Simula-
tion run for a very refined mesh, starting from the time step ∆t = 0.1.

Figures 6 and 7 are obtained for the Crank–Nicolson scheme, but similar results hold for
the backward Euler scheme since this scheme does not change the spatial discretization of
the problem. However, when it comes to temporal convergence, Figure 8 highlights the major
difference between the two proposed schemes: the Crank–Nicolson scheme is of second order in
time, whereas the backward Euler scheme is of first order. Note however that on Figure 8(b), the
solid velocity still shows a second-order convergence in time in the backward Euler scheme, as if
it was not affected by the other variables.

5.3. Choosing the finite element spaces in the incompressible limit

In the previous sections, we have focused on the case where the porous material is fully incom-
pressible, namely κs =∞. Yet, our analysis also provides guidelines to discretize the system (1),
in which the mixture divergence equation is penalized by a term of the form b−φ

κs
∂t p. As a mat-

ter of fact, it was shown in [16, Theorem 4.2] that the solution of the compressible system (1)
converges towards the solution of the incompressible system (2) as the bulk modulus κs goes
to infinity. This suggests to use finite elements satisfying the inf-sup condition (17) to discretize
the system (1) when κs is large, namely for nearly incompressible materials. Theorems 19 and 23
extend the convergence analysis of [17] and [18] up to the incompressible limit, which also sug-
gests a discretization of (1) that is robust with respect to κs provided that the discrete inf-sup
condition (17) is fulfilled.

To illustrate numerically what happens if (17) is not satisfied, we use the same analytical
solution as in the previous section and simulate the solution of (1) for different values of κs with
[P1]d × [P1]d × [P1]d ×P1 finite elements, which do not satisfy the discrete inf-sup condition. To
do so, we use the Crank-Nicolson scheme (14) where the mixture divergence equation (14d) is
replaced by

b −φ
κs

pn+1 −pn

∆t
+div

(
(1−φ) v

n+ 1
2

s +φv
n+ 1

2
f

)
= g n+ 1

2 ,

with g n+ 1
2 a source term corresponding to the pressure analytical solution. The resulting pressure

profile is shown in Figure 9, where pressure oscillations appear when entering the incompressible
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(a) κs = 1 (b) κs = 10 (c) κs = 100

(d) κs = 1000 (e) κs = 1000, MINI element

Figure 9. Pressure profile for different values of bulk modulus. Except for Figure 9e, the
problem is discretized using [P1]d × [P1]d × [P1]d ×P1 finite elements, which do not satisfy
the discrete inf-sup condition.

regime. The size of these oscillations increases with the bulk modulus κs, leading to a completely
incorrect pressure above κs = 100. Finally, Figure 9e shows that these oscillations are removed
when using a Stokes-stable pair, as indicated by our theoretical results.

Conclusion

We have derived error estimates for two monolithic schemes: one based on a Crank-Nicolson
time discretization for both the fluid and structural parts, the other based on an implicit
backward-Euler discretization for the fluid part. For both schemes, the spatial discretization is
a well-chosen finite element discretization that satisfies an inf-sup condition that allows one to
derive a discrete T-coercivity property, independent of the porosity of the mixture, hence ensur-
ing robustness with respect to it. The T-coercivity property approach provides the existence of the
discrete solution, assuming the time step is small enough compared to the additional fluid mass
input but without any permeability condition. Moreover, the T-coercivity allows us to define a
well-adapted projection operator on the finite element space, which is a key argument of the er-
ror derivation. The theoretical results are confirmed by numerical simulations. We believe that
the considered strategy paves the way to propose an asymptotically stable scheme with respect
to the bulk modulus that will not suffer from poroelastic locking, which occurs in Biot-type sys-
tems [43–48]. In future work, we expect to use the proposed time schemes as pivot in order to ob-
tain error estimates for splitting strategies commonly used for poromechanical models [49–52].
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