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Abstract. This note is concerned with the dynamics of 1D temperature waves generated by time modulation
of a boundary heat flux. It demonstrates how a certain temporal transfer function of both parabolic and low
frequency hyperbolic interfacial temperature waves happens to be frequency semi-invariant with a vibrating
boundary heat flux. It is proved that only high frequency hyperbolic interfacial temperature waves can have
a fully frequency-invariant temporal transfer function relative to such a vibrating boundary. The frequency
response of an associated complex transfer function is also studied and demonstrated to behave, at low
frequencies, as fixed lag compensator. Only according to hyperbolic theory of heat conduct, this compensator
converts, at high frequencies, to a fixed gain amplifier.
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1. Introduction

A transfer function (TF) is a compact description of the output/input relation for a linear dy-
namical system governed by time-invariant ordinary differential equations (ODEs). Its key ad-
vantage is that it allows engineers to use simple complex-variable algebraic equations instead of
ODEs to analyze, design and control a dynamical technical process in block diagram form, see
e.g. [1–4] and references therein. A temperature wave can be conceived as the cosinusoidal re-
sponse of a linear heat conducting medium. Temperature waves (TWs) have widely been in use,
[5–9], during the 20th century for determination of thermophysical properties of solids, especially
at low temperatures. More recent additional applications of them have been found in areas like
nondestructive testing [10] and medicare [11, 12]. In particular, based on a phase-shift principle,
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an improved sinusoidal heating method has been developed in [13] to estimate the tissue blood
perfusion to replace an original non-oscilliatory heating technique. In this respect, like diffu-
sional neutron density waves which are transverse [14], TWs experience strong spatial attenua-
tion and significant dispersion during propagation [14–17].

The concept of a TF can also be generalized, in a variety of different ways [18–20], to time-
invariant dynamical systems governed by partial differential equations (PDEs). This work is a
contribution to these generalizations by development of a new temperature wave/boundary heat
flux temporal transfer function (TTF) and its analysis (in the next section) as a new duplexed si-
multaneous hierarchy. The paper is further structured as follows: in the Section 3, the frequency
invariance of this TTF is studied for the case of dynamical parabolic heat conduction. Here, the
concept of frequency semi-invariance is introduced. The Section 4 extends this analysis to hy-
perbolic dynamical heat conduction. The complex TF associated with this TTF is demonstrated
in Section 5 to behave, at low frequency, like a fixed lag compensation block in a thermal control
engineering cascade. Only according to hyperbolic theory of heat conduction, this compensator
converts, at high frequencies, to a fixed gain amplifier. The last Section 6 summarizes the TTF
frequency-invariance results for both theories of heat conduction.

2. Duplexed hierarchal analysis

We consider in this work the generation of temperature waves, as an output signal O(x, t ), in a
linear heat conducting medium by time modulation of a boundary condition, as an input signal
J(x, t ;ω). In such a setting, it is always possible to conceive a frequency-dependent transfer
function

Z(x, t ;ω) =O(x, t ;ω)/J(x, t ;ω)

where the common frequency ω represents a synchronization guaranteed by the linearity of this
system, while x and t represent respectively spatial and temporal variables.

Frequency-invariance of this transfer function occurs when

Z(x, t ;ω) =⇒Z(x, t ),

i.e. when the terms containing ω in O(x, t ;ω) and J(x, t ;ω) happen to cancel out.
In a similar fashion a t− or x−invariant transfer function can also be conceived.
It is our purpose in this note to reveal the tenuously existing constraints on this frequency-

invariance and its possibly accompanying t−invariance. The analysis is reported for the 1D case
and compares both Fourier and non-Fourier heat conduction theories.

The temperature wave we address here is a conventional parabolic (or hyperbolic) temper-
ature oscillation generated by a time-dependent boundary condition [7, 15–21]; with a consti-
tutive law, temporal relaxation time γ, excitation frequency ω, thermal conductivity k, thermal
diffusivity α and temperature fluctuation spatial relaxation length λ. It does not cover tempera-
ture waves in ballistic heat conduction of thermo-mechanical phenomena. Furthermore, it is well
known that a parabolic heat conduction equation (PHCE) is characterized by γ= 0,which leads to
an infinite heat disturbance propagation speed ς =

√
α
γ . Accordingly, boundary value problems

(BVPs) based on it can generate TWs that travel with a phase speed Vp =p
2αω which can unrel-

ativistically reach ∞ when ω→∞. Despite that, the expression for a hyperbolic TW turns out to
be qualitatively identical, and quantitatively quite similar, to that of a parabolic TW. This should
not be a surprise since in all common materials, at ambient temperatures, γ is quite short (of the
order of 10−14-10−10 sec) [21, 22], i.e. ≈ 0. Such a satisfactory performance of the PHCE happens
to hold for almost all heat engineering applications.
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The practical setup for generating a 1D temperature wave θ(x, t ), [6,7,15–17,21,23], in a semi-
infinite heat conducting wedgeℜ= [0.∞), assumes that the infinite surface x = 0 ofℜ is uniformly
illuminated by a laser heating beam of periodically time-modulated intensity,

E (0, t ) = (E0 /2)+ (E0 /2)cos ωt ,

and that E0 is proportional to an amplitude J0 of an associated similar heat flux E(0, t ). The
constant level (E0/2) ∼ J0

2 is anticipated to support near x = 0 a steady state temperature T (0, t ) =
Ts ,while an interfacial temperature fluctuation θ(0, t ) = T (0, t )−Ts is supported, via Fourier’s Law
I (0, t ) =−k ∇x θ(0, t ), by an oscillating boundary heat flux

I (0, t ) = Re

[
J0

2
eiωt

]
; I (0,0) = J0

2
, (1)

as sketched in Figure 1.
In a control dynamical system governed by a partial differential equation (PDE), like that of

heat conduction, the output is obviously the solution to the associated boundary value problem
(BVP). The basic problem with defining a t-domain (or s−domain; s =σ+iω) TF for such a system
lies in the versatility of possible input functions in its associated BVP. The input could happen
to be a source term, any of the active boundary conditions (BCs), or even one of their several
parameters. A considerable relaxation of this problem occurs, however, when

(i) The PDE is of minimal order
(ii) The x−domain is singular (of infinite dimension); which reduces the number of effec-

tively active BC’s.
(iii) Time-invariance of the PDE and its BCs.
(iv) Partial linearity of the PDE and its BCs when the x−variable is fixed.

For an output temperature wave θ(x, t ), taking into consideration the principal role played by the
constitutive law for the boundary heat flux I (0, t ), as an input ([18, Neumann actuation]), and the
validity of the preceding four aspects, motivate the definition for the TTF that follows.

Definition 1. A temporal transfer function for a temperature wave could be

Z (x, t ;ω) = φ(x, t )

I (0, t )
. (2)

Z (x, t ;ω), for any fixed xo , can be paired to a conventional complex transfer function

Wxo (s;ω) =Φ(xo , s)/I(0, s) ̸=L [Z (xo , t ;ω)] , (3)

where Φ(xo , s) =L [θ(xo , t )] and I(0, s) =L [I (0, t )] are individual Laplace transforms.

Our dynamical analysis of the previous θ(x, t ) shall follow a novel duplexed simultaneous hi-
erarchy. In one phase of this hierarchy, which is of first-order nature, I (0, t ) acts on the insti-
tutional law [21], alone to yield a “rudimentary” temperature wave φ(x, t ). The other, second-
order, phase witnesses an additional action of I (0, t ) on the dynamical heat conduction equa-
tion [7,15–17,21], in a complete BVP. This should transformφ(x, t ) to θ(x, t ). Simultaneity of these
hierarchal phases, i.e. of the φ(x, t ) → θ(x, t ) transition, turns out to facilitate the decomposition
of θ(x, t ) into its basic components, for both parabolic and hyperbolic situations [7].

Definition 2. Frequency-invariance of the TTF Z (x, t ;ω) = φ(x,t )
I (0,t ) for the rudimentary temperature

wave φ(x, t ) occurs if Z (x, t ;ω) =⇒ Z (x, t ), i.e. is independent of ω,while possibly depending on t.
Furthermore, time-invariance of this transfer function can occur only when Z (x, t ;ω) ≡ Z (x), i.e.
independent of t .

Obviously frequency-invariance has little to do with time-invariance of Z (x, t ;ω). Accordingly,
analysis of Z (x, t ;ω) for frequency-invariance, or for its time-invariance, can rely heavily on
possible separability of variables of φ(x, t ),in the BVP, whenever that is possible. Incidentally, the
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novel hierarchal structure of θ(x, t ) is probably the reason for the lack of any previously published
literature on φ(x, t ).

Table 1. Selected subset of used symbols

Symbol Meaning Symbol Meaning
1D One-dimensional Z (xo , t ;ω) TTF
θ(x, t ) Temperature wave α Thermal diffusivity
φ(x, t ) Rudimentary TW γ Relaxation time
I (0, t ) Boundary heat flux λ Relaxation length
k Thermal conductivity µ,ε,β Coefficients
J0 Constant ω Frequency
t Time variable Λ Constant
U (t ) Quotient factor Ω Function
x Spatial variable Φ(ω),Ψ(Ω) Functions
s complex variable Wxo (s; ω) Complex TF

The vast literature on theory of isotropic and anisotropic heat transport contains many mod-
els. It has evolved from the classical (Fourier) parabolic model, through the model based on
the Maxwell–Cattaneo–Vernotte (MCV) hyperbolic equation [21]. Then to a model based on the
Guyer–Krumnhansl equation [24], which is outside the scope of the present note, that has found
application in anisotropic heat transport. Each of these models incorporates a specific constitu-
tive law.

3. Parabolic temperature wave

Despite the importance of temperature modulation in the field of micro-thermal analysis [25,26],
it was only in 2014 when transfer functions were first addressed in this area by Hong & Chou [27],
but not in the present context.

Principle 3. By Fourier’s constitutive law, if the rudimentary temperature wave φ(x, t ) is mul-
tiplicatively separable in variables, φ(x, t ) = Y (x) y(t ), then its transfer function Z (x, t ) is not
only frequency-invariant, but also time-invariant, and has a ω-independent Y (x), despite its λ-
dependence, viz

Y (x) = Y (x;λ) =−Y ′(0)λe−
x
λ . (4)

Proof. Invoke Fourier’s [6], constitutive law

I (x, t ) =−k∇xφ(x, t ) = −kY ′(x)y(t ). (5)

Then Re[ J0
2 eiωt ] =−kY ′(0)y(t ) implies that

y(t ) =− J0

2kY ′(0)
Re

[
e iωt

]
,

which demonstrates that, for any x ∈ ℜ, the wave φ(x, t ) has a transfer function, relative to
I (0, t ),that is time-invariant with a real scaling factor of

− 1

kY ′(0)
.

Moreover

Z (x, t ) =− Y (x)

kY ′(0)
= Z (x) (6)
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Figure 1. Sketch to illustrate the boundary heat flux I (0, t ) and rudimentary temperature
wave φ(x, t ).

is not only independent of ω but also independent of t ,which asserts both claimed frequency-
invariance and time-invariance of Z (x, t ).

Integration of Y ′(x) near x = 0 leads to

Y (x) = Y ′(0)x +Λ. (7)

Then Y (λ) = 0 means thatΛ=−Y ′(0)λ. Therefore

Y (x) = Y ′(0)(x −λ) =−Y ′(0)λ
(
1− x

λ

)
, (8)

which is the same as (4) when x
λ → 0.

Finally, extrapolation of this Y (x) away from x = 0 yields (4), for which

Y (0) =Λ=−Y ′(0)λ. (9)

To fully determine Z (x), substitute (4) in (6) to obtain

Z (x) = λ

k
e−

x
λ . (10)

□

Remark 4. Independence of the Y (x) in (4) on ω is a further verification of the validity, in
Fourier’s theory, of the assumption on separation of variables of the temperature wave φ(x, t )
near its x = 0 generating boundary.

Corollary 5. An oscillatory boundary heat flux I (0, t ) = J0
2 cos ωt has inside the ℜ wedge a

frequency-invariant and time-invariant transfer function for the diffusional rudimentary Fourier
temperature wave

φ(x, t ) = J0

2

λ

k
e−

x
λ cos ωt . (11)

At this instance, it is possible to make use of (9) in (11) to write

Y ′(0) =− 1

k
&Y (0) = λ

k
, (12)
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then to transform (4) to

Y (x) = λ

k
e−

x
λ . (13)

To complete the present hierarchal analysis, we consider now the, generated by I (0, t ), diffu-
sional temperature wave θ(x, t ). This should satisfy the BVP of (5) coupled with the parabolic heat
conduction equation

1

α
∇tθ−△xθ = 0. (14)

The analytical expression for θ(x, t ), is well-known, see e.g. [5–9], as

θ(x, t ) = J0

2ε
p
ω

e
− x
µ cos

(
x

µ
−ωt + π

4

)
, (15)

with

µ=µ(ω;α) =
√

2α

ω
,ε= kp

α
. (16)

A comparison of φ(x, t ), of (11), and θ(x, t ), of (15), indicates that they differ essentially by
an ( x

µ + π
4 ) phase shift and by a 1p

ω
multiplicative factor. Accordingly, the transfer function of

θ(x, t ), relative to I (0, t ), cannot be frequency-invariant. Moreover, it is clear that while ε does not
influence Z (x, t ), µ is decisive in it. At the x = 0 interface, however, Z (0, t ) is not impacted by µ.
Here it is clear [7], that λ=µ.

Definition 6. Frequency semi-invariance of the TTF for the wave θ(0, t ) (of period P), relative to
the boundary heat flux I (0, t ) = J0

2 cos ωt (of period T = 2π
ω ), occurs if, when cos ωt =Ω, ∃ single-

variable functionsΦ(ω) andΨ(Ω) such that

U (t ) = θ(0, t )

I (0, t )
= Φ(ω)Ψ(Ω). (17)

Since
∫ P

0 U (t )d t = Ψ0Φ(ω), where Ψ0 = Ψ0(ω) = ∫ P
0 Ψ(Ω)d t , then U (t ) = θ(0, t )/I (0, t ) is

necessarily time-invariant, on a zoomed out (when T > P) time scale of T
P units, as sketched in

Figure 2(b), for a possible realization of this situation.

Principle 7. The TTF of the parabolic interfacial temperature wave θ(0, t ) is frequency-semi-
invariant despite its frequency-non-invariance.

Proof. Consider (15) for x = 0, in (17), to write

U (t ) = 1

ε
p
ω

cos
(
ωt − π

4

)
cosωt

= 1

ε
p

2ω

[
1+

p
1−Ω2

Ω

]
=Φ(ω)Ψ(Ω). (18)

The presence of ω in U (t ) is a verification of the claimed frequency-non-invariance. Also∫ P
0 U (t )d t = Ψ0Φ(ω), where Ψ0 = Ψ0(ω) = ∫ P

0 (1 + tanωt )d t = P + 1
ω ln |secωP | and Φ(ω) =

1
ε
p

2ω
. □

4. Hyperbolic temperature wave

Regardless of the insignificant general difference between hyperbolic and parabolic TWs, there
are specific heat conduction applications where the hyperbolic TW is expected to perform better
than the parabolic TW. This should particularly be true when γ can be significant [28, 29], and in
periodic heat fluxes of laser heating [30, 31], or other phenomena on the nanoscale.

By a result that follows, Principle 3 turns out not to hold in case of MCV heat transport [17, 32,
33]. This non-Fourier conduction is characterized by a temporal relaxation time, γ, for a heat flux
fluctuation, i.e. time between ∇x θ and I .
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Principle 8. According to the MCV non-Fourier constitutive law, if the rudimentary temperature
wave φ(x, t ) is multiplicatively separable in variables, then its transfer function can neither be
frequency-invariant, nor be time-invariant, while having the sameω-independent Y (x) as in (13).

Proof. Invoke the MCV non- Fourier’s constitutive law [32, 33],

γ∇t I (x, t )+ I (x, t ) =−k∇xφ(x, t ) = −kY ′(x)y(t ) (19)

This, on one hand, can be conceived as an initial-value problem (IVP),

Solve :
d

d t
I (0, t )+ 1

γ
I (0, t ) =−k

γ
Y ′(0)y(t ),

Subject to I (0,0) = J0

2
.

(20)

Alternatively, on the other hand, Re[iγω J0
2 e iωt + J0

2 e iωt ] =−k Y ′(0)y(t ) implies that

y(t ) = Re

[
− J0

2kY ′(0)
(1+ iγω)e iωt

]
=− J0

2kY ′(0)

√
γ2ω2 +1cos

(
ωt + tan−1γω

)
=− J0

2kY ′(0)

[
cosωt −γωsinωt

]
.

(21)

This demonstrates that, for any x ∈ ℜ, the wave φ(x, t ) follows I (0, t ) with the effectively
complex scaling factor of

− 1

kY ′ (0)
√
γ2ω2 +1

[
cos

(
tan−1γω

)− (tan ωt ) sin
(
tan−1 γω

)]
=− 1

kY ′(0)

[
cos ωt − γω sin ωt

]
. (22)

In view of (6) and (21), the structure of (22) suggests, moreover, that

Z (x, t ) = Re

[
− Y (x)

kY ′(0)
(1+ iγω)

]
= Z (x;γω)

= λ

k
e−

x
λ

√
γ2ω2 +1

[
cos

(
tan−1γω

)− (tanωt )sin
(
tan−1γω

)]
= λ

k
e−

x
λ

[
cosωt −γωsinωt

]
,

(23)

is dependent on both ω and t , which negates both frequency-invariance and time-invariance.
Integration of Y ′(x) near x = 0, as in the proof of Principle 3, leads nevertheless again to (4).

Finally substitute (4) in (22) to obtain

Z (x, t ) = Z (x;γω) = λ

k
(1+ iγω)e−

x
λ (24)

which is a complex multiple of Z (x),in (10), of the earlier Fourier’s heat conduction theory. □

Incidentally, the same y(t ) of Principle 8 can be obtained by solving an inverse problem of the
IVP (20): given I (0, t ) = J0

2 cos ωt , what is the the corresponding y(t )? Indeed, this happens to be
equivalent to the first-kind convolution-type Volterra integral equation∫ t

0
e
− (t−τ)

γ y(τ)dτ= γJ0

2kY ′(0)

(
e
− t
γ − cos ωt

)
,

which represents the analytic general solution to the first-order IVP (20). This integral equation
is solvable for y(t ) by Laplace transformation as (21).

Within the framework of the Principle 7, combination of (21) with (2) can be restated as follows.
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Corollary 9. The boundary heat flux I (0, t ) = J0
2 cos ωt generates in ℜ the non-Fourier transport

temperature wave

φ(x, t ) = J0

2

λ

k
e−

x
λ

[
cosωt −γωsinωt

]
(25)

with a transfer function that is neither frequency-invariant nor time-invariant.

Moreover, when γ = 0, relation (25) coincides with (11) and both Principles 3 & 8 become
identical.

Remark 10. The transport temperature wave (25) can be conceived as a sum of two terms viz

φ(x, t ) = [Y1(x)+Y2(x)]
J0

2
cosωt

where Y1(x) = Y (x) = λ
k e−

x
λ of (13) is a diffusional component and

Y2(x) =−λ
k
γω e−

x
λ tan ωt ,

is a transport component.

This is an indication that in MCV theory, separation of variables is intrinsically additive [34],
and not multiplicative, as anticipated. The dependence of Y2(x) on both ω and t is a further
manifestation of the contradiction with our assumed multiplicative separation of variables for
this theory.

Finally we consider the, generated by I (0, t ), hyperbolic temperature wave θ(x, t ).This should
satisfy the BVP of (20) coupled with the hyperbolic heat conduction equation [15, 17, 32],

1

ς2 △t θ+ 1

α
∇tθ =△xθ, (26)

in which ς =
√

α
γ . The solution to this BVP is usually approximated [15, 16], over two distinct

domains for ω, viz

(i) when γω<< 1,

θ(x, t ) = J0

2ε
p
ω

1√
γ2ω2 +1

e
− x
µ cos

(
x

µ
−ωt + π

4

)
. (27)

Its associated U (t ) is

U (t ) = 1

ε
p
ω

1√
γ2ω2 +1

cos
(
ωt − π

4

)
cosωt

= 1

ε
p

2ω

1√
γ2ω2 +1

[
1+

p
1−Ω2

Ω

]
=Φ(ω)Ψ(Ω). (28)

(ii) when γω>> 1 [15, 17],

θ(x, t ) = J0
p
γ

2ε
e
− 1

2
p
αγ

x
cos

(
ω

ς
x −ωt

)
, (29)

with a remarkable
U (t ) =p

γ/ε, (30)

for whichΦ(ω) = 1,Ψ(Ω) =p
γ/ε and U is independent of both ω and t .

Principle 11. The low ω hyperbolic interfacial temperature wave θ(0, t ) (like the parabolic wave)
has a TTF that is frequency-semi-invariant despite its having a TTF that is frequency-invariant
and time-invariant. Distinctively, the high ω hyperbolic interfacial temperature wave θ(0, t ) has a
transfer function that is neither frequency-invariant nor time-invariant.

A summary of results stated by Principles 7 & 11 on frequency-invariance of the transfer
function for I (0, t ) of parabolic and hyperbolic interfacial temperature waves θ(0, t ), is provided
in Figure 2.
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Figure 2. Sketch to represent the oscillating boundary heat flux (a), the parabolic (or low-ω
hyperbolic) interfacial temperature waves (b), and high-ω hyperbolic θ(0, t ) (c).

5. The complex transfer function

This section starts with recalling that for a control system governed by ODEs, the TF, P(s), is
universal in representing the system impulse response when all its initial conditions are zeroes.
This universality may not be valid, however, for the presentWo(s; ω), of (3), whose

L −1 [
Wxo (s;ω)

]= 1

2πi

∫ σ+i∞

σ−i∞
[Θ(xo , s)/I(0, s)]e st d s ̸= Z (xo , t ;ω),

despite the fact that

L −1[Wxo (s;ω)] ≈ Z (xo , t ;ω),

within reason.
Indeed, any t−variant and ω−variant Z (xo , t ;ω) generates a ω-variant Wxo (s; ω). Moreover,

for any thermal flux transform I(0, s), we can always hypothesize that, as with P(s), the pole-zero
configuration of Wxo (s; ω) is decisive for the stability of the heat conductin block supporting its
outputΘ(xo , s) transform. Namely, if all the poles of Wxo (s;ω) have negative real parts, the block
should be stable.

Motivated by [35, 36] or [37], let us explore the applicability of Wxo (s; ω) for some realistic
situation. Consider therefore a network of dynamical heat conducting blocks with a TW block at
its end, as illustrated in Figure 3.
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Figure 3. Block diagram for a control system with a generated interfacial temperature
wave.

The block diagram of this figure is for a standard negative unit feedback control system
containing a modulated lazar heater with a P(s) for its TF. C is the Laplace transform of the lazar
power supply, while

Wo(s;ω) =Θ(0, s)/I(0, s), (31)

is for xo = 0.

5.1. Parabolic system

Taking the Laplace transforms for the parabolic interfacial θ(0, t ), based on (15), and for I (0, t )
of (1), in (31) leads to

Wo(s;ω) = A(ω)
s +ω

s
= A(ω)Q(s), (32)

in which the amplitude

A(ω) =
p

2

2ε

1p
ω

, (33)

blows-up to ∞ when ω→ 0.
This Wo(s;ω) turns out to be a TF for a lag compensator, having a zero at s = −ω and a pole

at s = 0. Moreover, by the Routh stability criterion [1–3], this block is only marginally stable.
Furthermore, the block reads, algebraically, as (C−Θ)P(s)Wo(s;ω) =Θ. Then the closed-loop TF
of this system,

Θ/C= AP(s)Q(s)/[1+ AP(s)Q(s)] = AP(s)(s +ω)/[s + AP(s)(s +ω)] , (34)

has the characteristic equation

s + AP(s)(s +ω) = 0. (35)

Clearly, the magnitude of the amplitude A = A(ω), with its effects on location of the system
poles, becomes decisive in the stability of the closed-loop control system. Hence the amplitude
(i.e. ω) is remarkably usable for the entire system stabilization via a root-locus or Nyquist
design [1, 2].

Replace now s by iω in (31), see e.g. [2] or [3], to obtain

Wo(iω) = A(ω)
i +1

i
=p

2A(ω)e−i π4 . (36)

This means that the amplitude |Wo(iω)| falls monotonically as A(ω) with increasing ω, while
arg(Wo(iω)) is a constant lag of π

4 . Moreover, at ω = 0 the compensator turns out to loose its
lagging property. For that reason, this compensator is practically employable only for ω> 0.

Alternatively, for a block supporting a hyperbolic temperature wave, the properties ofWo(s;ω)
tun out to exhibit a different variability, with a varying ω, over two distinct domains as follows.



Nassar Haidar 11

Table 2. Highlights of frequency-invariance of the TTF Z (0, t ;ω) and associated complex
TFWo(s; ω) for interfacial temperature waves by the two theories of heat conduction.

Theory φ(0, t ) / I (0, t ) θ(0, t ) / I (0, t ) Self-organ. Wo(s; ω)
Parabolic Perfect ω-invar. Semi- ω-invariance ↙ Complex; A(ω); π4 lag
Hyperbolic: low ω No ω-invar. Semi- ω-invariance ↗ Complex; Ã(ω); π4 lag
Hyperbolic: high ω No ω-invar. Perfect ω-invariance ⇈ Real; β−gain

5.2. Low-frequency hyperbolic system

Here the hyperbolic interfacial θ(0, t ) is defind by (27) when γω<< 1, andWo(s;ω) is given by the
same complex (32) but with a differnt amplitude of

Ã(ω) =
p

2

2ε

1p
ω

1√
γ2ω2 +1

= 1√
γ2ω2 +1

A(ω), (37)

which also blows-up to ∞ when ω→ 0.
ThisWo(s; ω) is also TF for a lag compensator but with a differnt A(ω) and

Wo(iω) =p
2A(ω)e−i π4 . (38)

Again here the amplitude |Wo(iω)| falls monotonically as A(ω) with increasing ω, while
arg(Wo(iω)) is a constant lag of π

4 , and this compensator is practically employable only for ω> 0,
when γω<< 1.

5.3. High-frequency hyperbolic system

The situation for high frequencies, i.e. when γω >> 1, happens to be entirely different. To
demonstrate this fact, we substitute θ(0, t ) of (29) in (31) to obtain

Wo(s) =Wo =p
γ/ε =β, (39)

a fixed constant, independent of both s andω. Here the block supporting the hyperbolic TW, with
thisWo(s) =Wo , behaves simply like a fixed gain amplifier for which (34) converts to

Θ/C=βP(s)/
[
1+βP(s)

]
.

The characteristic equation for this TF is

1+βP(s) = 0,

and β in it can make the closed-loop control system of Figure 3 either stable or unstable, pending
to the nature of P(s). Clearly then the block with Wo is not usable for compensation control of
this closed-loop system when γω>> 1.

6. Summary

The results of the reported hierarchal analysis on frequency-invariance of the TTF for temper-
ature waves with I (0, t ) of (1) are summarized in Table 2 for both Fourier and non-Fourier heat
conduction.

The table indicates that, in the realm of parabolic heat conduction, the φ(x, t ) → θ(x, t ) transi-
tion is accompanied by deteriorated (-)ω-invariance of the TTF at x = 0, or “self-disorganization”,
perhaps. A reversed (+) behavior, ↗, takes place, however, with low-ω hyperbolic theory; and
complete “self-organization” can only be reached in the high−ω limit of this theory. The symbols
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↙,↗ and ⇈ refer to probably different mechanisms. The underlying hierarchal analysis can sug-
gest therefore an existence of some correlation between this self-organization and consistency of
the employed theory.

Due to the strong spatial attenuation of θ(x, t ), this ω-invariance of the TTF behavior at the
x = 0 boundary is not expected to hold deep inside the wedge. It is expected to vary though both
with frequency and theory for heat conduction.

The nature of the Wo(s; ω) complex TFs, analyzed in the preceding section and summarized
in Table 2, seems to reflect, in some consistent sense, the above results for their associated real
Z (0, t ;ω) TTFs. Indeed, at low frequencies (γω << 1) there is little difference between the fixed
lag compensator Wo(s; ω) of parabolic and hyperbolic theories. The difference is restricted only
to their A(ω) and Ã(ω) amplitudes of (33) and (37), respectively. At high frequencies (γω >> 1),
however, only hyperbolic heat conduction predicts a transition Wo(s; ω) =⇒ Wo , from a lag
compensator to aWo =β fixed gain amplifier.

Finally it should be noted that similar techniques have also been used in thermoelasticity [37,
38], using time harmonic heating sources. This fact supports the hope that the present results
may become in the future possibly valuable for microwave heating systems, especially in the
manufacture and design of their actuators and/or dynamical temperature sensors.
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