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Abstract. A variational solution to the transient heat flow measure above a closed conductive region of
arbitrary perimeter aspect, held at constant temperature, and which is embedded in an otherwise insulating
boundary plane, is presented. Upon developing the general variational formulation, a full range solution for
the circular disk conductor is considered as an example when implementing a two term trial function that
comprises a general form based on known physical solutions to the problem at long and short times. The
particular combination of the Lagrange density for the total transient diffusive flux and of the form of the trial
functions are evidently effective in dealing with the difficulties often experienced when dealing with mixed
boundary value heat transfer problems of the parabolic type which have a non-periodic time variable.

Résumé. Une solution variationnelle à la mesure du flux thermique transitoire au-dessus d’une région
conductrice fermée d’aspect de périmètre arbitraire, maintenue à température constante, et qui est encastrée
dans un plan limite autrement isolant, est présentée. Après avoir développé la formulation variationnelle
générale, une solution complète pour le conducteur en forme de disque circulaire est considérée comme un
exemple lors de la mise en œuvre d’une fonction d’essai à deux termes qui comprend une forme générale
basée sur des solutions physiques connues du problème à des temps longs et courts. La combinaison
particulière de la densité de Lagrange pour le flux diffusif transitoire total et de la forme des fonctions d’essai
est évidemment efficace pour traiter les difficultés souvent rencontrées lors du traitement des problèmes de
transfert de chaleur à valeur limite mixte de type parabolique qui ont une variable temporelle non périodique.
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1. Introduction

This work concerns the development of a variational solution e.g. see [1] to a mixed boundary
value heat transfer equation problem, in terms of a single monotonic expression across the
full range of the system dimensionless time and distance variable. The result, in terms of the
total transient diffusive heat flux, is appropriate to describe a smooth, two dimensional thermal
conductor of arbitrary perimeter aspect, that is embedded in an otherwise insulating plane, e.g.
z = 0. The inhomogeneous boundary value specification considered comprises a zero thermal
flux condition over the insulated portion of the plane, and a constant temperature condition
on the surface of the conductor, which are maintained at times t > 0. Initially, a constant
temperature measure is specified throughout the entire half-space domain above the z = 0
plane. Diagrams of the Cartesian and circular coordinate systems used herein for analysis of the
problem are shown in Figure 1.

At the outset, it is pointed out that generally, variational methods are most valuable in evalu-
ating the relative efficacy of different physical models that describe conservative processes (and
many conditioned dissipative processes) as they progress along specified system coordinates be-
tween two defined states. On the other hand, when no full analytic solution is known, the method
may often be used effectively to obtain very accurate estimations (and sometimes analytic [2]
solutions) to the problem.

Attention here is paid to the implementation and evaluation of a variational framework for
solving mixed boundary heat transfer value problems (i.e. Zaremba type [3] comprising arbitrary
shaped planar thermal sources. The variational solution for the present mixed boundary problem
evidently has heretofore not been amenable to resolution to a single solution across the full
range of a dimensionless system variable. To do so requires finding a symmetric operator on the
trial function comprising the surface sources specified by the mixed boundary conditions, and
a representation of same that can be made stationary with respect to first order changes in the
path variables. The framework described uses a Fourier representation of the thermal source as a
symmetric operator. Operationally, the mixed boundary parabolic heat transfer equation system
is Laplace transformed, effectively moving the time dependency to a frequency one, exposing
an elliptic modified Helmholtz equation system. A stationary form of a functional describing the
transformed surface flux can be written as an integral equation solution of the new system. Using
a symmetric Fourier representation of the boundary source functions, the equation system then
contains a linear variational principle needed to assure a stationary form leading to the relevant
solution. After integration of the result in Laplace space, the transient components of the inverse
transform are assembled to obtain the total transient heat flux measure over the conductor.

The framework may be used to test trial functions for the total transient heat flow over any
planar, arbitrary perimeter thermal source. The efficacy of the framework is demonstrated in this
work by analysis of various example trial functions pertaining to flow over the inlaid circular disk
source; this example is chosen since in this rare case, the analytical result is known (vide infra).
Good estimates for the flux may be obtained for the flux at either short, or long, or all times with
selected single term trial functions. Herein, a considered but simple two term trial function gives
an accurate interpolation for the full range variable space.

As regards the specific example of the embedded circular disk thermal source conductor
being applied to the present problem, only recently has the analytic solution been resolved.
Bieniasz [4] has provided the analytic solution to the parabolic diffusion equation applied to elec-
trochemical mass transport for the subject circular disk problem. It is usually found that mixed,
non-harmonic time dependent flux and constant temperature boundary conditions on the same
plane often complicate matters; e.g. the structure of several discontinuous integrals normally
effective in the solution of many parabolic non-linear homogeneous heat transport problems
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is destroyed. The approach taken by Bieniasz avoids these difficulties. After Laplace transforma-
tion of the parabolic equation system for the circular disk problem in cylindrical coordinates,
conversion of the transformed differential equations to oblate spherical coordinates, which rep-
resent orthogonal profiles of constant temperature and flux profiles over the circular disk, the so-
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Figure 1. (I) A standard system of Cartesian coordinates for a general heat transfer problem
posed in the half space above an infinite plane A′ at z = 0. The system is referenced
to O(0,0,0) ∈ A, which represents a conducting, closed region embedded in A′, which
is otherwise everywhere insulating. A thermal point source S(x ′, y ′, z ′) and an arbitrary
diffusion field point P (x, y, z) lie in the half space z ≥ 0. (II) The present problem requires
that all thermal sources S(x ′, y ′, z ′) are present only on the surface of A, i.e., S(x ′, y ′,0) =
S(x ′, y ′). (III) Variational functionals that arise for the surface flux under the conditions of
(II) after Fourier transformation of the system of equations, are more conveniently reduced
if the system is also expressed in terms of circular coordinates. Here are shown the 3
characteristic vectors required to specify the spatial aspect of the distances between the
sources and field points for a conductive region of arbitrary perimeter aspect, and in (IV)
the circular disk conductor that is discussed as an example in this work. In (III) and (IV),
ρ = ρ(x ′, y ′) is a two dimensional vector locating surface heat sources S(x ′y ′) ∈ A at t ≥ 0.
The vector r = r (x, y, z) locates arbitrary points P (x, y, z) in the half-space so specifying the
magnitude of the difference vector r −ρ as the distance between arbitrary field points and
surface sources.
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lution for the circular disk problem, after inverse transformation to the time domain, follows in
terms of infinite series of spheroidal wave functions. Numerical evaluation of these series is not
trivial, and requires significant computational resources. In subsequent work, Bieniasz [5] pro-
vides several selected approximation techniques to reduce the computational overhead, but at
the cost of some reduction of accuracy, especially at short time scales. In any case, for research
work, the full analytical solution is available for very high accuracies across the entire time range.
Analytic solutions to other arbitrary perimeter planar sources under mixed boundary conditions
of this type are rare.

2. Formulation of the variational inequality

Consider diffusive heat transport in the semi-infinite space region A′ (the z = 0 plane); except for
a finite section A thereon, which is conductive, the plane has an insulating boundary condition. If
the temperature u(x, y, z,0) =U0 is constant throughout the domain z > 0 at the initial instant of
time t = 0, and a value u(x, y,0, t ) =U1 is maintained over the section A for all subsequent times,
the relevant equations for u(x, y, z, t )) are

∇2u − 1

k

∂u

∂t
= 0, z > 0

u(x, y, z,0) =U0, z > 0

u(x, y,0, t ) =U1, (x, y) ∈ A

∂

∂z
u|z=0 = 0, (x, y) ∈ A′,

(1)

wherein the region is characterized by isotropic constant thermal diffusivity k = κ/ρcp (with den-
sity ρ, thermal conductivity κ, and specific heat cp ). A modified Helmholtz equation representa-
tion for the problem is evident after a Laplace integral transform of the system i.e.

ū(x, y, z, p) =
∫ ∞

0
exp

(−pt
)
u(x, y, z, t )d t

∇2ū −λ2ū =− U0

k
,λ2 = p

k

ū =U0

p
+Ū (x, y, z, p)

∇2Ū −λ2Ū = 0

Ū (x, y, z, p) = 1

2π

∫
A

exp
(−λ ∣∣⃗r − ρ⃗ ′∣∣)∣∣⃗r − ρ⃗ ′∣∣

(
−∂Ū

∂z ′

)
z ′=0

d ρ⃗ ′,

(2)

wherein the Fourier integral equation for Ū (x, y, z, p) in the last line of Equation (2) is admitted
by Fourier transform of the modified Helmholtz equation.

An integral equation for the transformed normal magnitude of Ū over surface of the bounding
(x, y) plane,

−∂Ū

∂z ′

∣∣∣∣
z ′=0

= F̄
(
ρ⃗
)

, ρ⃗ ∈ A (3)

then is

U1 −U0

p
= 1

2π

∫
A

exp
(−λ ∣∣ρ⃗− ρ⃗ ′∣∣)∣∣ρ⃗− ρ⃗ ′∣∣ F̄ (ρ⃗ ′)d ρ⃗ ′, ρ⃗ ∈ A, (4)

From Equation (3) a total thermal “Laplace flux” auxiliary function over the surface of A, may
be denoted as

Q̄(p) = κ
∫

A
F̄ (ρ⃗)d ρ⃗, κ= ρck (5)
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and it is desired to write a variational form considering a stationary value of the functional. Note
that if ∆U =U1 −U0 then with Equations (4) and (5)

∆U

p
κ

∫
A

F̄ (ρ⃗)d ρ⃗ = κ

2π

∫
A

F̄ (ρ⃗)
exp

(−λ ∣∣ρ⃗− ρ⃗ ′∣∣)∣∣ρ⃗− ρ⃗ ′∣∣ F̄
(
ρ⃗ ′)d ρ⃗d ρ⃗ ′. (6)

Furthermore

2
∆U

p
κ

∫
A

F̄ (ρ⃗)d ρ⃗− κ

2π

∫
A

F̄ (ρ⃗)
exp

(−λ ∣∣ρ⃗− ρ⃗ ′∣∣)∣∣ρ⃗− ρ⃗ ′∣∣ F̄ (ρ⃗ ′)d ρ⃗d ρ⃗ ′ = ∆U

p
Q̄(p) (7)

constitutes a stationary variational representation for Q̄(p). Let ̂̄F = F̄ + δF̄ , where F̄ satisfies
the integral equation Equation (4). Substituting into Equation (7) and employing the coordinate
symmetry of the function

K̄
(
ρ⃗,ρ⃗ ′)= 1

2π

exp
(−λ ∣∣ρ⃗− ρ⃗ ′∣∣)∣∣ρ⃗− ρ⃗ ′∣∣ , (8)

it follows that
∆U

p
Q̄(p) = ∆U

p
κ

∫
A

F̄ (ρ⃗)d ρ⃗−κ
∫

A
δF̄ (ρ⃗)K̄

(
ρ⃗,ρ⃗ ′)δF̄

(
ρ⃗ ′)d ρ⃗d ρ⃗ ′

= ∆U

p
κ

∫
A

F̄ (ρ⃗)d ρ⃗− 1

(2π)2

∫ ∞

−∞
dξdη√

ξ2 +η2 +λ2

∣∣∣∣∫
A
δF̄ exp

(
iξx + iηy

)
d xd y

∣∣∣∣2

< ∆U

p
κ

∫
A

F̄ (ρ⃗)d ρ⃗,

(9)

in as much as

exp
(−λ ∣∣⃗r − r⃗ ′∣∣)

2π |⃗r − r⃗ ′|
= 2

(2π)3

∫ ∞

−∞
exp

(
iξ(x −x ′)+ iη(y − y ′)+ iζ(z − z ′)

)
ξ2 +η2 +ζ2 +λ2 dξdηdζ

= 1

(2π)2

∫ ∞

−∞
exp

(
iξ

(
x −x ′)+ iη

(
y − y ′))√

ξ2 +η2 +λ2
exp

(
−

√
ξ2 +η2 +λ2

∣∣z − z ′∣∣)dξdη

= 1

(2π)2

∫ ∞

0

σdσp
σ2 +λ2

exp
(
−

√
σ2 +λ2

∣∣z − z ′∣∣)∫ Θ+2π

Θ
exp(iσR cos(Ψ−Θ))dΨ

= 1

2π

∫ ∞

0

σJ0(σR)p
σ2 +λ2

exp
(
−

√
σ2 +λ2

∣∣z − z ′∣∣)dσ

(10)

using
R2 = (

x −x ′)2 + (
y − y ′)2 , cosΘ= (

x −x ′)/R, sinΘ= (
y − y ′)/R , (11)

see Figure 1. Thus
Q̄

∣∣
variational estimate < Q̄

∣∣
true value (12)

establishes that the use of increasingly accurate trial functions for F̄ (ρ⃗) in Equation (7) result in
variational solutions to the total flux values that approach the true value from below.

3. Formulation and analysis using a two-term trial function

Write, using Equations (7) and (8),

Q̄(p) = 2κ
∫

A
F̄ (ρ⃗)d ρ⃗− κp

∆U

∫
A

F̄ (ρ⃗)K̄
(
ρ⃗,ρ⃗ ′) F̄

(
ρ̄ ′)d ρ⃗d ρ⃗ ,′ (13)

and adopt the two term trial function

F̄ (ρ⃗) = α

λ
+ β f (ρ⃗)

λ2 (14)
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with ∫
A

f (ρ⃗) K
(
ρ⃗,ρ⃗ ′)∣∣

λ=0 d ρ⃗ ′ = 1, ρ ∈ A, (15)

whose respective parts are suggested by approximate solutions of the integral equation Equa-
tion (4) in the limits λ→∞, λ→ 0.

Now

Q̄(p) = 2κα

λ
A+ 2κβ

λ2

∫
A

f (ρ⃗)d ρ⃗− kκα2

∆U

∫
A

K̄
(
ρ⃗,ρ⃗ ′)d ρ⃗d ρ⃗ ′

−2κ
kαβ

λ∆U

∫
A

K̄
(
ρ⃗,ρ⃗ ′) f

(
ρ⃗ ′)d ρ⃗d ρ⃗ ′

− kκβ2

λ2∆U

∫
A

f (ρ⃗)K̄
(
ρ⃗,ρ⃗ ′) f

(
ρ⃗ ′)d ρ⃗d ρ⃗ ′

(16)

and inverse Laplace transformation is now appropriate:

arg
p

p =−π/2↓

↑ →
arg

p
p =π/2

← i p��
P1 = 1

2πi

∫
exp

(
pt

)
exp

(−ppµ
)
d p, µ> 0

= 1

2πi

[∫ 0

∞
exp(−νt )exp

(
iµ

p
ν
)
(−dν)+

∫ ∞

0
exp(−νt )exp

(−iµ
p
ν
)
(−dν)

]
= 1

π

∫ ∞

0
exp(−νt )sinµ

p
νdν= 2

π

∫ ∞

0
exp

(−x2t
)

sinµx d x

= 1

π

∫ ∞

0
sinµx d

(
exp

(−x2t
)

t

)
= µ

πt

∫ ∞

0
exp

(−x2t
)

cosµx d x

= µ

πt
.
1

2

√
κ

t
exp

(
−µ

2

4t

)
= µ

2
p
π

.
1

t 3/2
exp

(
−µ

2

4t

)
(17)

P2 = 1

2πi

∫
exp

(
pt

)exp
(−ppµ

)
p

p
d p

= 1

2πi

[∫ 0

∞
exp(−νt )exp

(
iµ

p
ν
) (−dν)

−i
p
ν
+

∫ ∞

0
exp(−νt )exp

(−iµ
p
ν
) (−dν)

i
p
ν

]
= 1

π

∫ ∞

0
exp(−νt )

cosµ
p
νp

ν
dν= 2

π

∫ ∞

0
exp

(−x2t
)

cosµx d x

= 2

π
.
1

2

√
κ

t
exp

(
−µ

2

4t

)
= 1p

πt
exp

(
−µ

2

4t

)
(18)

P3 = 1

2πi

∫
exp

(
pt

)exp
(−ppµ

)
p

d p,
dP3

dµ
=−P2 =− 1p

πt
exp

(−µ2/4t
)

= 1p
πt

∫ µ

0
exp

(−ν2/4t
)

dν+Constant = 2p
π

∫ µ/2
p

t

0
exp

(−ξ2)dξ+1

= 1+erf

(
µ

2
p

t

) (19)
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With the identification µ= R/
p

k, it follows from Equation (16) that

Q(t ) = 2καAkp
πkt

+2κkβ
∫

A
f (ρ⃗)d ρ⃗

− k2κα2

∆U

1

4(πkt )3/2

∫
A

d ρ⃗d ρ⃗ ′ exp
(−R2/4kt

)
− 2καβk2

p
πt∆U

∫
A

d ρ⃗d ρ⃗ ′

2πR
exp

(−R2/4kt
)

f
(
p⃗ ′)

− κβ2k2

∆U

∫
A

d ρ⃗d ρ⃗ ′

2πR
f (p⃗) f (p⃗ ′)

[
1+erf

(
R

2
p

kt

)]
.

(20)

In the limit R/
p

kt → 0,

Q(t )
.= 2κkβ

∫
A

f (ρ⃗)d ρ⃗− κβ2k2

∆U

∫
A

f (ρ⃗)d ρ⃗, (21)

and the condition ∂Q/∂β= 0 leads to the specification

kβ=∆U . (22)

Given that
1

4πkt
exp

[
−

(
x −x ′)2 + (

y − y ′)2

4kt

]
→ δ

(
x −x ′)δ(

y − y ′) , (23)

the representation Equation (20) implies that

Q(t ) → 2καAkp
πkt

− k2κα2

∆U
p
πkt

+O(1), t → 0 (24)

and the condition ∂Q/∂α= 0 provides the specification

kα=∆U (25)

whence Equation (20) acquires the definite form

Q(t ) = 2A∆Uκp
πkt

+2κ∆U
∫

A
f (ρ⃗)d ρ⃗

− κ∆U

4(πkt )3/2

∫
A

d ρ⃗d ρ⃗ ′ exp
(−R2/4kt

)
− 2κ∆Up

πt

∫
A

d ρ⃗d ρ⃗ ′

2πR
exp

(−R2/4kt
)

f
(
p⃗ ′)

−κ∆U
∫

A

d ρ⃗d ρ⃗ ′

2πR
f (p⃗) f

(
p⃗ ′)[1+erf

(
R

2
p

kt

)]
,

(26)

which assumes the proper limiting values when t → 0 and t →∞.

4. Application of a specific trial function appropriate to the circular disk

Consider now that the domain A has a circular aspect of radius a, and return to Equation (5) with
the above specifications for α,β, i.e.:

Q̄(p) = 2κ∆U A

kλ
+ 2κ∆U

kλ2

∫
A

f (ρ⃗)d ρ⃗− κ∆U

k

∫
A

K̄
(
ρ⃗,ρ⃗ ′)d ρ⃗d ρ⃗ ′

−2κ
∆U

kλ

∫
A

K̄
(
ρ⃗,ρ⃗ ′) f

(
ρ⃗ ′)d ρ⃗d ρ⃗ ′− κ∆U

κλ2

∫
A

f (ρ⃗)K̄
(
ρ⃗,ρ⃗ ′) f

(
ρ⃗ ′)d ρ⃗d ρ⃗ ′ (27)

and

f (p) = 2

π

1√
a2 −ρ2

. (28)
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Thus ∫
A

f (ρ⃗)d ρ⃗ = 2

π
·2π

∫ a

0

ρdρ√
a2 −ρ2

= 4a , (29)

∫
A

K̄
(
ρ⃗,ρ⃗ ′)d ρ⃗d ρ⃗ ′ = 1

2π

∫ ∞

0

dσp
σ2 +λ2

∫
A

J0 (σR)d ρ⃗d ρ⃗ ′ (30)

= 2π
∫ ∞

0

σdσp
σ2 +λ2

(∫ a

0
ρJ0

(
σρ

)
dρ

)2

= 2πa2
∫ ∞

0

J2
1 (σa)

σ
p
σ2 +λ2

dσ , (31)

∫
A

K̄
(
ρ⃗,ρ⃗ ′) f

(
ρ⃗ ′)d ρ⃗d ρ⃗ ′ = 1

2π

∫ ∞

0

σdσp
σ2 +λ2

(2π)2 2

π

∫ a

0
ρJ0

(
σρ

)
dρ

∫ a

0

ρ′J2
0

(
σρ′)√

a2 −ρ′2 dρ′ (32)

= 4a
∫ ∞

0

J1 (σa)p
σ2 +λ2

sinσa

σ
dσ , (33)

∫
A

f (ρ⃗)K̄
(
ρ⃗,ρ⃗ ′) f

(
ρ⃗ ′)d ρ⃗d ρ⃗ ′ = 1

2π

(
2

π

)2

(2π)2
∫ a

0

σdσp
σ2 +λ2

(∫ a

0

ρJ0
(
σρ

)
dρ√

a2 −ρ2

)2

(34)

= 8

π

∫ ∞

0

sin2σap
σ2 +λ2

dσ

σ
. (35)

Accordingly

Q̄(p) = 2κ∆U A

kλ
+ 2κ∆U

kλ2 ·4a − κ∆U

k
·2πa2

∫ ∞

0

J2
1 (σa)

σ
p
σ2 +λ2

dσ

−2κ
∆U

kλ
·4a

∫ ∞

0

J1 (σa)p
σ2 +λ2

sinσa

σ
dσ

− κ∆U

κλ2 · 8

π

∫ ∞

0

sin2σap
σ2 +λ2

dσ

σ
.

(36)

Inverse Laplace transform is now in order, and the appropriate results i.e.

Φ1 = 1

2πi

∫
exp

(
pt

) d p√
σ2 +p/k

=
p

k

2πi

{∫ kσ2

∞
exp(−ξt )

(−dξ)

−i
√
ξ−kσ2

+
∫ ∞

kσ2
exp(−ξt )

(−dξ)

i
√
ξ−kσ2

}

=
p

k

π

∫ ∞

kσ2
exp(−ξt )

dξ√
ξ−kσ2

= 2

p
k

π

∫ ∞

0
exp

(−(
kσ2 +ν2) t

)
dν

= 2

p
k

π
exp

(−kσ2).
1

2

√
π

t
=

√
k

πt
exp

(−kσ2t
)

,

(37)

Φ2 = 1

2πi

∫
exp

(
pt

) d p

p
√
σ2 +p/k

,
dΦ2

d t
=Φ1 =

√
k

πt
exp

(−kσ2t
)

= 1

σ
− 2

π

p
k exp

(−kσ2t
)∫ ∞

0
exp(−νt )

dν

ν2 +kσ2 → 0, t → 0

∴Φ2 =
√

k

π

∫ t

0

1p
τ

exp
(−kσ2τ

)
dτ= 2p

πσ

∫ p
πtσ

0
exp

(−ξ2)dξ= 1

σ
erf

(p
ktσ

)
,

(38)

and the third inverse transform follows, when considering the path
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−pσ2

→
0

←�� �� ,

i.e.

Φ3 = 1

2πi

∫
exp

(
pt

) d p
p

p
√
σ2 +p/k

=
p

k

π

∫ kσ2

0
exp(−ξt )

dξ√
ξ
√

kσ2 −ξ
=

p
k

π

∫ 1

0

exp
(−kσ2tλ

)
p
λ(1−λ)

dλ

=
p

k

π
exp

(−kσ2t/2
)∫ 1

−1

exp
(−kσ2tµ/2

)√(
1−µ2

) dµ=
p

k exp
(−kσ2t/2

)
I0

(
ktσ2

2

)
.

(39)

Assembling the inverse transformsΦ1,Φ2,Φ3 in Equation (36) the result

Q(t )

κ∆U
= 2Ap

πkt
+8a − 2Ap

πkt

∫ ∞

0

J2
1 (x)

x
exp

(−kt x2/a2)d x

−8a
∫ ∞

0
J1(x)exp

(−kt x2/2a2)I0

(
kt x2

2a2

)
sin x

x
d x

− 8a

π

∫ ∞

0

sin2 x

x2 erf

(p
kt

a
x

)
d x

(40)

expresses an unreduced variational calculation of the total transient flux. The first integral therein
can be reduced (see the Appendix) to∫ ∞

0

J2
1 (αx)

x
exp

(−(βx)2)d x = 1

2
− 1

2
exp

(−α2/2β2)(I0

(
α2

2β2

)
+ I1

(
α2

2β2

))
, (41)

and after a change of variables therein (α→ 1 ;β→p
kt/a) and substitution of the resulting form

into Equation (40), and rearrangement, note that

Q(t )

ka∆U
=p

π
ap
kt

[
1+exp

(
− a2

2kt

)(
I0

(
a2

2kt

)
+ I1

(
a2

2kt

))]
d x (42a)

−8
∫ ∞

0
J1(x)exp

(
−kt x2

2a2

)
I0

(
kt x2

2a2

)
sin x

x
d x (42b)

+8

(
1

2
+ 1

π

∫ ∞

0

sin2 x

x2 erfc

(p
kt

a
x

)
d x

)
(42c)

provides a full range dimensionless representation of of the total variational flux measure.
Noting that the calculation asymptotically approaches the known limiting values at long and

short times, i.e.
p

kt ≫ a and
p

kt ≪ a:

Q(t )

κ∆U
.= Ap

πkt
,

p
kt ≪ a

.= 4a,
p

kt ≫ a,
(43)

and provides a continuous, non-patched and strictly monotonic (i.e. with no resonance perturba-
tions, discontinuities, etc.) representation of the integrated flux between the known limits, Equa-
tion (42) must provide an accurate interpolation of the integrated flux over the range of the rele-
vant system variable

p
kt/a.
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Figure 2. The variational solution for the total flux as a function of the dimensionless
variable

p
kt/a in the transition range

p
kt/a ≤ 3 The upper (black) trace is the variational

result for the total flux, as given by Equation (42). The red trace represents values of
Equation (42a), and is the primary short-time contributor to the total flux. The magenta
trace represents values of Equation (42b) and is the primary long-time contributor to the
total flux. The blue trace represents values of Equation (42c), and enters as the interpolation
corrector to the sum of Equation (42a) and Equation (42b) components.

5. Other trial functions

It is instructive to consider other simple trial functions that have properties that might be
considered as components for more sophisticated models for a specified problem. The exercise
also demonstrates the framework’s efficacy in testing the range of applicability as a possible
trial function. It is usually the case that proposed trial functions are first checked for their
applicability in reproducing (or at least approaching) initial and/or final (steady state) conditions
for a problem that are already known (or required).

Below are the evaluations of two trial functions that are known to provide the correct (limiting)
thermal fluxes at at least one of the limits of the dimensionless variable for the mixed boundary
system for the circular disk source.

5.1. A short time trial function

One might consider, for example, using the single term trial function

F̄
(
ρ⃗
)=α

as suggested when a2/kt ≫ 1, so that then Equation (13) becomes

Q̄(p) = 2ακA− κα2p

∆U

∫
A

K̄
(
ρ⃗,ρ⃗ ′)d ρ⃗d ρ⃗ ′, (44)

and the condition
∂Q̄

∂α
= 0 (45)

implies that

α= A∆U

p
∫

A K̄
(
ρ⃗,ρ⃗ ′)d ρ⃗d ρ⃗ ′ (46)
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whence the variational estimate has the form

Q̄(p) = κA2∆U

p
∫

A K̄
(
ρ⃗,ρ⃗ ′)d ρ⃗d ρ⃗ ′ =

κA∆U /2

p
∫ ∞

0

(
J2

1 (σa)/
(
σ
p
σ2 +λ2

))
dσ

. (47)

Thus

Q̄(p) = κA∆U /2√
kp

∫ ∞
0

(
J2

1 (x)/x
)
d x

= κ∆U A√
kp

, p →∞ (48)

and therefore

Q(t ) = κ∆U
Ap
πkt

, a/
p

kt ≫ 1 (49)

which comprises the known short-time limiting value of the total flux in the infinite half space
above a circular conducting region with area A. On the other hand,

Q̄(p) = κA∆U /2

p
∫ ∞

0

(
J2

1 (σa)/σ2
)
dσ

= κA∆U /2

pa
∫ ∞

0

(
J2

1 (x)/x2
)
d x

, p → 0 (50)

which yields

Q(t ) = κ∆U /2 ·πa2

4a/(3π)
= κ∆Ua · 3π2

8
, a/

p
kt → 0

= 3.7 ·κ∆Ua

< 4 ·κ∆Ua,

(51)

i.e. the variational estimate provides a lower bound, as expected, at long times.

5.2. A long time trial function

Next, employing another single term trial function

F̄
(
ρ⃗
)=β f̄

(
ρ⃗
)

, f = 2

π

1√
a2 −ρ2

,
∫

A
f d ρ⃗ = 4a (52)

as is an appropriate form when a2/kt ≪ 1,

Q̄(p) = 2κβ ·4a − κpβ2

∆U

∫
A

f (ρ)K̄
(
ρ⃗,ρ⃗ ′) f (ρ′)d ρ⃗d ρ⃗ ′ (53)

and the condition
∂Q̄

∂β
= 0 (54)

implies that

β= 4a ·∆U

p
∫

A f (ρ)K̄
(
ρ⃗,ρ⃗ ′) f (ρ′)d ρ⃗d ρ⃗ ′ . (55)

Accordingly, the corresponding variational estimate becomes

Q̄(p) = κ(4a)2∆U
1

p
∫

A f (ρ)K̄
(
ρ⃗,ρ⃗ ′) f (ρ′)d ρ⃗d ρ⃗ ′

= 2πκa2∆U

p
∫ ∞

0

(
sin2(σa)

)
/
(
σ

√
σ2 +p/k

)
dσ

= 2πκa2∆U√
kp

∫ ∞
0

(
sin2

(√
p/kax

))
/
(
x
p

x2 +1
)
d x

= 2πκa2∆U

p
∫ ∞

0 sin2(σa)/σ2dσ
= 2πκa∆U

p
∫ ∞

0 sin2(x)/x2d x

= κ∆U ·4a

p
, p → 0

(56)

and
Q(t ) = 4a ·κ ·∆U , a2/kt → 0 , (57)

the anticipated limit.
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(a) Variable / log10(kt/a2) (b) Variable / log10(kt/a2)

Figure 3. (a) The variational solution (red) from Equation (42) and the analytic solution
(black) [4] for the transient heat flux over the circular disk as a function of the dimensionless
variable log10(kt/a2) over a variable range of six orders of magnitude. (b) Examples of
existing long and short time estimations: (black) [4] analytic result; (violet) Mahon [6] short
and long time estimates; (orange) Aoki [7] long time estimate. Information on Shoup [8]
and Rajendran and Sangaranarayanan [9–11] data is given in the text.

(a) Variable / log10(kt/a2) (b) Variable / log10(kt/a2)

Figure 4. (a) Standard error plots of a number of analyses relative to the analytic solu-
tion [4] as a function of the dimensionless variable log10(kt/a2). By color: (red) the varia-
tional solution Equation (42); (blue) Phillips and Jansons [12] three term transient diffusion
analysis; (orange) Jansons four term transient diffusion analysis; (teal) five term transient
diffusion analysis based on [12]. (b) Standard error plots for other heuristic approximations:
(purple) Aoki [7] long time estimate; (magenta) Laraqi [13].
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6. Discussion

Results for the total transient flux measures for the circular disk case provided by the variational
result Equation (42) are shown in Figures 3 and 4, along with prior estimates by other workers
[4, 6–13]. The latter are primarily results derived for the analogous mass transport case. All of
the prior approximations comprise either (a) independently derived series solutions for either
or both of short and long time responses, or, (b) curve fitting estimates based on accepted
phenomenological or simulated results. Most of these results provide good estimations to the
analytic solution, as well as to established simulations, e.g. [14].

The selected two term trial function with terms 1/λ and 1/λ2 (Equation (14)) used for the
circular disk gives a full representation of the total transient flux across the surface and between
the limits of the system dimensionless variable. The solution represents as well a useful lower
bound to the exact representation.

Figure 3a is a plot of the results of the variational solution for the total transient flux over
the circular disk source (Equation (42)) over 6 orders of magnitude of the system dimensionless
variable compared to that given in the recently resolved analytic solution, [4, Equation (44)].

Figure 3b is a similar plot of the results of the analytic solution, [4, Equation (44)], along
with results from Aoki [7], and two plots of the results of Mahon [6] over extended regions.
Approximations of Shoup [8] and three different ordered Pade approximations from Rajendran
and Sangaranarayanan [9–11] are sufficiently accurate so as not to be distinguishable from the
analytic plot at this resolution, and are therefore not shown.

Figure 4a shows the standard relative error plots for Equation (42) and for the three and four
term asymptotic Jansons’ series e.g. Jansons [12] short time transient stochastic model, and a five
term one based on same. The Jansons series was developed in a mathematically rigorous manner,
and consists of elements in increasing powers of

p
t elements.

It is noted that the two term trial function used in the variational framework herein can only
address effects of the first two terms of the Jansons series, which in turn represent the initially
high (surface area dependent) normal flux component at the conductor surface that decays
as 1/

p
t , and the effect of the total source perimeter (time independent) on the total transient

flux. However, for the circular disk example, Equation (42) with this two term trial function, the
interpolation already gives a maximum standard relative error at very short times of 0.03 against
the analytic solution. The comparisons in Figure 4a show that

(a) The region of highest error in the variational solution coincides with the regions of
maximum pertinence of the effect of the various terms of the Jansons series. The two
term variational solution does not contain any component in powers of

p
t or higher.

Stochastic theory reveals that is those specific terms that apply to the transient effects on
the flux due to the edges; specifically, these terms directly relate to the effect of degree of
curvature of the conductor perimeter. Since this is the only region with significant relative
error in the analysis, it is clear that a trial function with reference to at least a first term of
the edge curvature would increase the accuracy of the interpolation.

(b) The relative error of the variational solution falls at very short times. In the region
of a/

p
kt ≫ 1 the transient flux response asymptotically represents the known value

A/
p
πkt , as does the analytic response. This is in line with the observations in Figure 4a

since the lack of trial function reference to the curvature in the transition region is
expected to occur at intermediate times between the known high accuracy regions at
long and short times; more specifically, approximately when the thermal diffusion layer
thickness effects have reached distances on the order of

p
kt/a ≈ 1.

(c) The four term Jansons series markedly increases the zone of high accuracy when com-
pared to the analytic solution, with respect to the three term series. However, it is clear
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from the structure of the Jansons series that the increasing powers of
p

t therein can only
continue to extend the useful variable range a finite amount before it diverges. This is
evident from:

(d) The five term Jansons based series only slightly increases the useful variable range with
respect to the fourth before diverging. Effects of the series is near the short time system
variable limit.

(e) The error in the variational solution decreases monotonically after dimensionless vari-
able values ≈ 0.01. The variational interpolation is becoming more effective in increasing
the accuracy in the region where the effects of the short time Jansons series is less rele-
vant. It is evident that the variational interpolation (always a lower bound solution) now
is depending more on the total efficacy of the complete two term trial function. The so-
lution continues to monotonically approach the correct long term analytic solution from
below with continuous decrease in relative error, for all further increases in the system
dimensionless variable.

Regarding the development of higher accuracy variational interpolations, applicable to all
planar conductor geometries, it is clear from Figure 3a that an inclusion of a third term in

p
t

in the trial solution certainly merits attention. Inspection of the Jansons series indicates that
modification of the present trial function to incorporate a representation of such a term can
be a relatively straightforward exercise. Again, such a term applies to the transient effects on
the flux due to the curvatures of the conductor perimeter, and in fact, is needed to distinguish
between various planar conductors aspects. In the Jansons series, the

p
t term comprises, for a

given conductor geometry, a simple function of the number of disjoint sections and the number
of holes in the aspect of the conductor. In essence, this is a representation of the difference of
the average and total curvatures of the conductor surface aspect. Addition of this term to the trial
function seems to be a logical first step in continued development, e.g. for starting investigations
of models for more fundamental properties of surface heat transfer mechanisms.

7. Summary

The work provides a variational framework for the testing of solutions to heat transfer problems
described by an inhomogeneous differential equation system comprising mixed temperature
and thermal flux boundary conditions. The thermal source is assumed to comprise a planar,
closed, and arbitrary perimeter aspect, that is embedded in an otherwise insulating and infinite
(in terms of the time frame of the experiment) plane.

Use of the framework requires a trial function that represents a model of the system that
can provide a representation of the value of the initial and/or final states of the problem. The
evaluation of the resulting variational integral and inverse Laplace transformation then provides
the full transient interpolation between those states for all times. Any trial function for the
problem e.g. the circular disk case, that provides a solution that everywhere retains Equation (42)
as a lower bound, indicates that the new trial function is a representation closer to the exact
solution than Equation (42), and approaches it from below.
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8. Symbols used

a Circular disk radius
cp Specific heat
erf Error function
F̄ Laplace space local source flux
δF̄ Variation in F̄
Ix Modified Bessel functions of the first kind
Jx Bessel functions of the first kind
k Thermal diffusivity
K̄ Symmetric Fourier space Green’s function definition for the field of a point source
L Laplace transform
p Laplace complex variable
P Arbitrary field point
Q Heat flux
r Radial distance coordinate
r̄ Three dimensional vector locating an arbitrary field point
t Time
P Arbitrary field point
S Source point
u General field variable
U Constant field values for boundaries

x, y, z Cartesian coordinates
Y Plasma dispersion function
α,β Trial function coefficients
λ

√
p/κ

κ Thermal conductivity
ρ Density
ρ̄ Two dimensional vector locating heat sources

α−ω In Appendix, various integration variables.

Conflicts of interest

The authors have no conflict of interest to declare.

Acknowledgements

This paper is dedicated to the memory of Emeritus Professor Harold Levine, Department of
Mathematics, Stanford University.



262 William Pons and Stanley Pons

Appendix A. Reduction of Integrals

A.1. Reduction of the first integral in Equation (40)

Reduction follows from recent work [15] considering

F1 =
∫ ∞

0

J2
1 (αx)

x
exp

(−(βx)2)d x

dF1

bβ
=− 1

β
exp

(
− α2

2β2

)
I1

(
α2

2β2

)
∴ F1 = 1

2

∫ a2/(2β2)

β
exp(−y)I1

(
y
) d y

y

Now
∫ σ

0
exp(−σ)I1

(
y
) d y

y
=

∫ σ

0
exp(−y)I1

(
y
)

y d

(
− 1

y

)
=−I1 (σ)exp(−σ)+

∫ σ

0

1

y
exp(−y)

[
yI0

(
y
)− yI1

(
y
)]

y d y

= 1−exp(−σ) [I0 (σ)− I1 (σ)]

∴ F1 = 1

2
− 1

2
exp

(−α2/2β2)(I0

(
α2

2β2

)
+ I1

(
α2

2β2

))

(58)

A.2. Towards reduction of the third integral in Equation (40)

Consider the last integral in Equation (40) vi z.

I =
∫ ∞

0

sin2 x

x2 erf(αx)d x =
∫ ∞

0

sin2 x

x2 erf(αx)d

(
− 1

x

)
=

∫ ∞

0

1

x

{
sin2x erf(αx)+ sin2 x· 2p

π
αexp

(−α2x2)}d x

=
∫ ∞

0

sin2x

x2 erf(αx)d x + 2p
π
α

∫ ∞

0

sin2 x

x
exp

(−α2x2)d x

= I1 + 2p
π
αI2

(59)

and note that

d I1

dα
= 2p

π

∫ ∞

0
sin2x exp

(−α2x2)d x = 1p
π

∫ ∞

0
sin x exp

(
−α

2x2

4

)
d x (60)

and furthermore that
d I2

dα
=−2α

∫ ∞

0
x sin2 x exp

(−α2x2)d x = 1

α

∫ ∞

0
sin2 x d

(
exp

(−α2x2))
=− 1

α

∫ ∞

0
sin2x exp

(−α2x2)d x =− 1

2α

∫ ∞

0
sin x exp

(
−α

2x2

4

)
d x

(61)

Thus, the same integral appears in the expressions for d I1/dα and d I2/dα; and this can be
specified as follows:∫ ∞

0
sin x exp

(−α2x2

4

)
d x =

p
π

4i ·α/2
exp

(−1

α2

)[
erf

(
i

α

)
−erf

(
− i

α

)]
(62)

In fact,
erf(i x)

i
= 2p

π

∫ x

0
exp

(
ξ2)dξ,

erf(−i x)

−i
= 2p

π

∫ x

0
exp

(
ξ2)dξ (63)
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and so ∫ ∞

0
sin x exp

(−α2x2

4

)
d x = 2

α
F

(
1

α

)
(64)

where

F (ξ) = exp
(−ξ2)∫ ξ

0
exp

(
ξ2)dξ= ξY(ξ) (65)

is related to the plasma dispersion function Y(ξ)

Z(ξ) = i
p
πexp

(−ξ2) [i +erf(iξ)]

i.e., Z (ξ) = i
p
πexp

(−ξ2)−2ξY(ξ), for real argument.
(66)

The known expansions for Y(ξ), i.e. when its argument is either small or large, are [16]

Y(ξ) =
∞∑

n=0

[
(−2)nξ2n

(2n +1)(2n −1) · · ·3 ·1

]
, ξ≪ 1 (67)

and

Y(ξ) = 1

2ξ2

∞∑
n=0

[
(2n −1)!!

(2ξ2)n

]
, ξ≫ 1 (68)
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