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1. Introduction

In this paper we focus on optimal feedback control for problems of the form{
infy,u J (y,u) := 1

2

∫ T
0

(|Q1(y(t )− yd (t ))|2 +β|u(t )|2) dt + 1
2

∣∣Q2
(
y(T )− yT

d

)∣∣2

s.t . ẏ = f (y)+ g (y)u, y(0) = y0, and u ∈ L2 (0,T ;Rm) ,
(P )

with nonlinear dynamics described by f : [0,T ] ×Rn → Rn . The system can be influenced by
choosing a control input u which enters through a control operator g :Rn →Rn×m . We assess the
perfomance of a given control by its objective functional value which comprises the (weighted)
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distance between the associated state trajectory y and a given desired state yd as well as the norm
of the control for some cost parameter β> 0. The weighting matrices Qi , for i = 1,2, are assumed
to be symmetric positive semi-definite. Searching for an optimal control u∗ in feedback form
requires to find a function F∗ : [0,T ]×Rn →Rm such that

u∗(t ) = F∗ (
t , y∗(t )

)
, for t ∈ (0,T ).

Here (u∗, y∗) denotes an optimal control-trajectory pair associated to (P ). Under appropriate
conditions, see e.g. [1], the feedback mapping can be expressed as

F∗(t , y) =− 1

β
g⊤(t , y)∂y V ∗(t , y), (1)

where V ∗ stands for the value function associate to (P ), i.e. for (T0, y0) ∈ [0,T ]×Rn :

V ∗(T0, y0) = min
y,u

JT0 (y,u), subject to ẏ = f (y)+ g (y)u, y(T0) = y0,

and

JT0 (y,u) = 1

2

∫ T

T0

(∣∣Q1
(
y(t )− yd (t )

)∣∣2 +β|u(t )|2
)

dt + 1

2

∣∣Q2
(
y(T )− yT

d

)∣∣2
.

The value function V ∗ satisfies a Hamilton–Jacobi–Bellman (HJB) equation which is a time-
dependent first order hyperbolic equation of spatial dimension n. Numerical realisations, there-
fore, are plagued by the curse of dimensionality. Indeed a direct solution of the HJB equation
already becomes computationally prohibitive for moderate dimensions n.

Therefore, for practical realization, the interest in alternative techniques arises. In many
situations of practical relevance researches have relied on linear approximations to the nonlinear
dynamical system and have treated the resulting linear-quadratic problem by Riccati techniques.
Much research has concentrated on validating this approach locally around a reference trajectory.
Globally such a strategy may fail, see for instance [2, 3].

In this paper we follow an approach, possibly first proposed in [3], circumventing the con-
struction of the value function on the basis of solving the HJB equation. Rather the feedback
mapping is constructed by an unsupervised self-learning technique. In practice, this requires the
approximation of V ∗ by a family of functions Vθ which are parametrized by a finite dimensional
vector θ and satisfy a uniform approximation property. Possible families of universal approxi-
mators include, e.g., neural networks or piecewise polynomial approximations. Subsequently, in
view of (1), we introduce the corresponding feedback law

Fθ(t , y) =− 1

β
g⊤(y)∂y Vθ(t , y), for (t , y) ∈ [0,∞)×Rn , (2)

as approximation to F∗. An “optimal” parametrized feedback law is then determined by a variant
of the following self-learning, structure preserving, variational problem:

min
θ

J (y,Fθ(y))+ 1

2

∫ T

0
γ1

∣∣Vθ(t , y(t ))− Jt
(
y,Fθ(·, y)

)∣∣2 +γ2
∣∣∂y Vθ(t , y(t ))−p(t )

∣∣2 dt + γε

2
|θ|2

s.t. ẏ = f (y)+ g (y)Fθ(y), y(0) = y0, p(T ) =Q⊤
2 Q2

(
y(T )− yT

d

)
−ṗ = f (y)⊤p + ∣∣Dg (y)⊤Fθ(y)

∣∣p +Q⊤
1 Q1(y − yd ).

(3)

In this problem, minimization with respect to u is replaced by minimizing with respect to the
parameters θ which characterize Vθ and Fθ . The cost functional of problem (3) consists of four
parts: The first term represents the objective functional of (P ) where the control u is replaced
by the closed loop expression Fθ(y). The next two terms realize the fact that Vθ is constructed
as approximation to the value function associated to (P ) and exploit the well-known property
that, under certain conditions, the gradient of the value function coincides with the solution of
a suitable adjoint equation, see e.g. [1, p. 21]. The final term penalizes the norm of the structural
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parameters. We point out that Vθ and Fθ are learned along the orbit O = {y(t ; y0) : t ∈ (0,∞)}
within the state space Rn . To accommodate the case that one trajectory does not provide enough
information, we propose to involve an ensemble of orbits departing from a set Y0 of initial
conditions, and to reformulate problem (3) accordingly. This will be done in Section 4 below.
While we focus on linear-quadratic objective functionals, the derived results can be readily
generalized if suitable coercivity and differentiability properties are assumed for this functional.

In our earlier work on learning a feedback function [3], we considered infinite horizon optimal
control problems. In that case, the time-dependent HJB equation results in a stationary one.
There we had not yet incorporated the structure preserving terms involving Vθ and ∂y Vθ into
the cost. Moreover we directly constructed an approximation Fθ to the vector valued function
F∗, rather than approximating the scalar valued function V ∗ and subsequently using (2). In the
present paper we provide the theoretical foundations for the learning based technique that we
propose to construct an approximation to the optimal feedback function for (P ). Recently in [4]
a variant of the approach as in [3] was used for interesting numerical investigations to construct
optimal feedback functions for finite horizon multi-agent optimal control problems.

Let us very briefly mention some of the vast literature on solving the HJB equations. Semi-
Lagrangian schemes and finite difference methods have been deeply investigated to directly
solve HJB equations directly, see e.g. [5–7]. Significant progress was made in solving high dimen-
sional HJB equations by the of use policy iterations combined with tensor calculus techniques,
[2, 8, 9]. The use of Hopf formulas was proposed in e.g. [10, 11]. Interpolation techniques, utiliz-
ing ensembles of open loop solutions have been analyzed in the works of [12, 13], for example.
Finally we mention that optimal feedback control is intimately related to reinforcement learning,
see e.g. the monograph [14], and also the survey articles [15–17].

The manuscript is structured as follows. Some pertinent notation is gathered in Section 2. In
Section 3 concepts of optimal feedback control, semi-global with respect to the initial condition
y0, are gathered. Section 4 is devoted to describing the learning technique that we propose to
approximate the optimal feedback function. In Section 5 the required assumptions on approxi-
mating subspaces are checked for a class of neural networks and a class of piecewise polynomi-
als. Existence of solutions to the approximating learning problems is proved in Section 6. Their
convergence is analyzed in Section 7. The case of learning from finitely many orbits is the focus
of Section 8. Section 9 provides an example illustrating the numerical feasibility of the proposed
method. We do not aim for sophistication in this respect. The Appendix 9.2 details the proofs of
several necessary technical results.

2. Notation

For I := (0,T ), with T > 0, we define WT = { y ∈ L2(I ;Rn) | ẏ ∈ L2(I ;Rn) }, where the temporal
derivative is understood in the distributional sense. We equip WT with the norm induced by the
inner product

(y1, y2)WT = (ẏ1, ẏ2)L2(I ;Rn ) + (y1, y2)L2(I ;Rn ) for y1, y2 ∈WT ,

making it a Hilbert space. We recall that WT embeds continuously into C (Ī ;Rn). For a compact
metric space X we denote the space of continuous functions between X and Y by C (X ;Y ) which
we endow with ∥ϕ∥C (X ;Y ) = maxx∈X ∥ϕ(x)∥Y as norm. By Y0 we denote a compact set of initial
conditions inRn . When arising as index, the space C (Y0;WT ) will frequently be abbreviated by C .
The space C 1(X ;Y ) of continuously differentiable functions is defined analogously. Open balls
of radius ε in a Banach space X with center x will be denoted by Bε(x). The space of bounded
linear operators between Banach spaces X and Y , endowed with the canonical norm, is denoted
by B(X ,Y ). We further abbreviate B(X ) :=B(X , X ).
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3. Semi-global optimal feedback control

Consider the controlled nonlinear dynamical system of the form

ẏ = f(y)+g(y)u in L2 (
I ;Rn)

, y(0) = y0, (4)

described by Nemitsky operators

f : WT → L2 (
I ;Rn)

, f(y)(t ) = f (t , y(t ))

g : WT →L
(
L2 (

I ;Rm)
;L2 (

I ;Rn))
, g(y)(t ) = g (t , y(t ))

(5)

for a.e. t ∈ I , f : I ×Rn → Rm and g : I ×Rn → Rn×m . The smoothness requirements on f and g
will be detailed in Assumption 1 below. Our aim is to choose a control input u∗ ∈ L2(I ;Rm) which
keeps the associated solution y∗ ∈WT close to a known reference trajectory yd , while keeping the
control effort small. This is formulated as the constrained minimization problem inf

y ∈WT ,u∈L2(I ;Rm )
J (y,u)

s.t . ẏ = f(y)+g(y)u, y(0) = y0,
(Py0 )

where

J (y,u) = 1

2

∫
I

(∣∣Q1
(
y(t )− yd (t )

)∣∣2 +β|u(t )|2
)

dt + 1

2

∣∣Q2
(
y(T )− yT

d

)∣∣2
,

which incorporates the weighted misfit between the trajectory y within the time horizon I = (0,T )
and at the terminal time to desired states yd ∈ L2(I ;Rn) and yT

d ∈ Rn , as well as the norm of the
control u. While this open loop optimal control problem captures well the objective formulated
above, it comes with several disadvantages. First, its solution is a function of time only, and does
not include the current state y(t ). This makes the open loop approach susceptible to possible
perturbations in the dynamical system. Second, determining the control action for a new initial
condition requires to solve (Py0 ) from the start.

The aforementioned limitations of open loop optimal controls motivate the study of semi-
global optimal feedback control approaches to (Py0 ). More precisely, given a compact set Y0 ⊂Rn ,
we look for a feedback function F∗ : I ×Rn →Rm which induces a Nemitsky operator

F∗ : WT → L2 (
I ;Rm)

, F∗(y)(t ) = F∗(t , y(t )) for a.e. t ∈ I ,

such that for every y0 ∈ Y0 the closed loop system

ẏ = f(y)+g(y)F∗(y), y(0) = y0, (6)

admits a unique solution y∗(y0) ∈WT and (y∗(y0),F∗(y∗(y0))) is a minimizing pair of (Py0 ).
The determination of an optimal feedback function usually rests on the computation of the

value function to(Py0 ) which is defined as

V ∗(T0, y0) := min
y ∈H 1(T0,T ;Rn),
u∈L2(T0,T ;Rm)

JT0 (y,u) s.t . ẏ = f(y)+g(y)u, y(t0) = y0, (7)

where (T0, y0) ∈ I ×Rn , and JT0 (y,u) is defined as

JT0 (y,u) = 1

2

∫ T

T0

(∣∣Q1(y(t )− yd (t ))
∣∣2 +β|u(t )|2

)
dt + 1

2

∣∣Q2(y(T )− yd (T ))
∣∣2 .

By construction V ∗ satisfies the final time boundary condition

V ∗(T, y0) = 1

2

∣∣Q2(y0 − yd (T ))
∣∣2 ∀ y0 ∈Rn .
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If V ∗ is continuously differentiable in a neighborhood of some (t , y0) ∈ I ×Rn then it solves the
instationary Hamilton–Jacobi–Bellman (HJB) equation

∂t V ∗(t , y0)+ (
f (y0),∂y V ∗(t , y0)

)
Rn − 1

2β

∣∣g (t , y0)⊤∂y V ∗(t , y0)
∣∣2 + 1

2

∣∣Q1(y0 − yd (t ))
∣∣2 = 0 (8)

in the classical sense there, see e.g. [1, 18]. Here ∂t V ∗ denotes the partial derivative of the
value function with respect to t and ∂y V ∗ is the gradient of V ∗ with respect to the y-variable.
An optimal control for (Py0 ) in feedback form is then given by u∗ = − 1

βg(y∗)⊤∂yV ∗(y∗)
where ∂yV ∗(y∗)(t ) = ∂y V ∗(t , y∗(t )) for every t ∈ I , and y∗ = y∗(y0) ∈ WT solves the closed loop
system

ẏ = f(y)− 1

β
g(y)g(y)⊤∂yV ∗(y), y(0) = y0.

Thus (
y∗(y0),− 1

β
g
(
y∗(y0)

)⊤
∂yV ∗ (

y∗(y0)
)) ∈ argmin (Py0 )

and the function

F∗(·, ·) =− 1

β
g (·, ·)⊤∂y V ∗(·, ·)

is an optimal feedback law.
Realizing the optimal feedback in this way requires a solution to (8) which is a partial differen-

tial equation on Rn . This can be extremely challenging or even impossible depending on the di-
mension n and the computational facilities at hand. Similarly to our previous manuscript [3], we
take a different approach by formulating minimization problem over a suitable set of feedback
functions involving the closed loop system as a constraint. This relates to a learning problem,
within which the feedback functions are trained to achieve optimal stabilization. This makes the
problem computationally amenable.

The procedure just described will be formalized in the following section. Here we first summa-
rize the assumptions on the nonlinear dynamical system that we refer to throughout the paper.

Assumption 1.

(A.1) The functions f : I ×Rn →Rn and g : I ×Rn →Rn×m are twice continuously differentiable.
Their Jacobians and Hessians with respect to the second variable, denoted by D y f ,D y y f ,
and D y g ,D y y g , respectively, are Lipschitz continuous on compact sets, uniformly for t ∈ I .

(A.2) There exists a constant MY0 > 0 such that the value function V (·, ·) : I ×Rn → R for (Py0 )
is twice continuously differentiable on I × B̄2M̂ (0) with Lipschitz continuous gradient and
Hessian (w.r.t. y uniformly in t ∈ I ) where

M̂ = MY0 ∥ı∥B(WT ,C (I ;Rn )), (9)

and ı denotes the embedding of WT into C (I ;Rn)).

As a consequence of (A.1), the Nemitsky operators f, g are at least two times continuously
differentiable with domains and ranges as defined in (5). Their derivatives, denoted by Df(y) ∈
B(WT ,L2(I ;Rn)), and Dg(y) ∈ B(WT ;B(L2(I ;Rm);L2(I ;Rn))), are the Nemitsky operators in-
duced by D y f and D y g . Moreover f,Df,g,Dg are Lipschitz continuous and bounded, on bounded
subsets of L∞(I ;Rn), and thus in particular on Yad ⊂WT , where

Yad := {
y ∈WT | ∥y∥WT ≤ 2MY0

}
. (10)

Finally Df⊤(y) ∈B(WT ,L2(I ;Rn)) denotes the Nemitsky operator associated to D y f ⊤.
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Analogously, due to (A.2), V ∗ induces a twice Lipschitz continuously Fréchet differentiable
Nemitsky operator V ∗ : Yad ⊂WT → L2(I ). Moreover V ∗ and its first derivative DV ∗ are weak-to-
strong continuous. Define the Nemitsky operator

F∗ : Yad → L2 (
I ;Rn)

, F∗(y) =− 1

β
g(y)⊤∂yV ∗(y), (11)

where ∂yV ∗ is the Nemitsky operator induced by the gradient ∂y V ∗ = D y V (·, ·)⊤. Note also that
F∗ ∈C 1(WT ; (L2(I ;Rm);L2(I ;Rn))). We further assume the following:

(A.3) For every y0 ∈ Y0 there exists a unique function y = y∗(y0) ∈WT satisfying

ẏ = f(y)+g(y)F∗(y), y(0) = y0, ∥y∥WT ≤ MY0 .

Moreover we have(
y∗(y0),F∗ (

y∗(y0)
)) ∈ argmin (Py0 ) ∀ y0 ∈ Y0.

When referring to Assumption A we mean (A.1)-(A.3). We emphasize that the constant M appear-
ing in (A.2) and (A.3) is assumed to be same. Note further that as a consequence of (A.3) prob-
lem (Py0 ) admits a solution for each y0 ∈ Y0, with the optimal control given by u∗ =F∗(y∗(y0))).

Remark 2. Using (A.1), (A.3) as well as the implicit function theorem it can be readily be verified
that the mapping y∗ : Y0 → WT from (A.3) is continuously differentiable. Given δy0 ∈ Rn the
directional derivative δy := ∂y∗(y0)(δy0) of y∗ at y0 ∈ Y0 in direction δy0 satisfies the linearized
ODE system

δ̇y = Df
(
y∗(y0)

)
δy + [

Dg
(
y∗(y0)

)
δy

]
F∗ (

y∗(y0)
)+g

(
y∗(y0)

)
DF∗ (

y∗(y0)
)
δy, δy(0) = δy0.

Here Dg is induced by D y g which is given by[
D y g (t , y)δy

]
i j =

(
n∑

k=1
∂k gi j (t , y)δyk

)
∀ δy ∈Rn ,

where g (y) = (gi j ) and “∂k ” denotes the partial derivative w.r.t to the kth component of y .
The transposed Dg(y)⊤, which will arise in the adjoint equation below, is induced by the ten-
sor D y g (t , ·)⊤ = (D y g (t , ·)k j i ) ∈ Rn×n×m , with t ∈ I . In particular, we readily verify that Dg(·)⊤ ∈
B(L2(I ;Rm);B(WT ;L2(I ;Rn))).

To end this section we collect structural information on the relation between the adjoined
state, denoted by p below, the optima value function V ∗, and the induced optimal feedback
law F∗.

Proposition 3. Let Assumption 1 hold. Then there exists a unique continuous mapping p∗ : Y0 →
WT such that for each y0 ∈ Y0 the tuple (y, p) = (y∗(y0),p∗(y0)) satisfies

d

d t
y = f(y)+g(y)F∗(y), y(0) = y0, (12)

− d

d t
p = Df(y)⊤p + [

Dg(y)⊤F∗(y)
]

p +Q⊤
1 Q1(y − yd ), p(T ) =Q⊤

2 Q2
(
y(T )− yT

d

)
, (13)

F∗(y) =− 1

β
g(y)⊤p. (14)

Moreover we have

V ∗(t , y(t )) = Jt
(
y(t ),F∗(t , y(t ))

)
, p(t ) = ∂y V (t , y(t )) ∀ t ∈ [0,T ]. (15)

Proof of Proposition 3. By (A.3) problem (Py0 ) admits a solution for each y0 ∈ Y0. Then (A.1)-
(A.2) guarantee that (13), with y = y(y0) ∈WT the state component of a solution to (Py0 ), admits a
unique solution p in WT which continuously depends on y ∈WT . Moreover (12) - (14) represent
the first order necessary optimality condition for (Py0 ) with the optimal control u(t ) = F∗(y(t )).
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Since y∗ : Y0 → WT is continuous as mentioned in Remark 2 and the solution to (13) depends
continuously on y ∈ WT , the claimed continuity p∗ : Y0 → WT follows. Equation (15) is a direct
consequence of the dynamic programming principle, and (A.3). □

4. Optimal feedback control by value function approximation

This section is devoted to introducing a family of computationally tractable minimization prob-
lems from which we will “learn” approximations of optimal feedback laws. Our approach rests on
two main pillars. First, given ε > 0, we consider a family of functions V ε

θ
∈ C (I ×Rn) which are

finitely parametrized by θ ∈ Rε ≃ RNε , Nε ∈ N. These serve as “discrete” approximations of the
optimal value function V ∗. The following a priori estimate is assumed, for some fixed ε0 > 0:

Assumption 4. For every 0 < ε ≤ ε0 there holds V ε· ∈ C 4(Rε×R×Rn) and V ε
θ

(T, y0) = 1
2 |Q2(y0 −

yd (T ))|2 for every y0 ∈Rn and θ ∈Rε. Moreover there exists θε ∈Rε with

max
t ∈ I ,

|y |≤2M̂

∣∣∣V ε
θε

(t , y)−V ∗(t , y)
∣∣∣+ ∣∣∣∂y

(
V ε
θε

(t , y)−V ∗(t , y)
)∣∣∣+∥∥∥∂y y

(
V ε
θε

(t , y)−V ∗(t , y)
)∥∥∥≤ cε (16)

for some c > 0 independent of ε ∈ (0,ε0].

Now recall from (11) that the optimal feedback law F∗ is the superposition operator induced
by F∗(t , y) = −(1/β)g (t , y)⊤∂y V ∗(t , y). With the aim of preserving the dependence of the feed-
back law on the value function in our approximation, we define a set of parametrized feedback
laws F ε

θ
associated to V ε

θ
, θ ∈Rε, by

F ε
θ (y)(t ) = F ε

θ (t , y(t )) =− 1

β
g (t , y(t ))∂y V ε

θ (t , y(t ))

for all y ∈ WT , t ∈ Ī and θ ∈ Rε. A first approach to obtain an optimal feedback law in the
form F ε

θ
can then be found by replacing the open loop control u in (Py0 ) by the closed loop

expression F ε
θ

(y) and minimizing for θ ∈Rε:

min
y ∈WT ,θ∈Rε

J
(
y,F ε

θ (y)
)+ γε

2
∥θ∥2

Rε
s.t . ẏ = f(y)+g(y)F ε

θ (y), y(0) = y0, (17)

where ∥ · ∥Rε denotes a Hilbert space norm on Rε, γε > 0 and y0 ∈ Y0 is fixed. This represents the
goal of finding a feedback law F ε

θ
together with a trajectory y ∈ WT which satisfy (y,F ε

θ
(y)) ∈

argmin (Py0 ). However, this approach falls short in several aspects. First, we cannot hope to
recover a solution of the semiglobal optimal feedback control problem for all y0 ∈ Y0, since the
minimization in (17) is associate to a single initial condition only. Secondly it misses to impose
properties that would guide F ε

θ
(y) to be close to V ∗, and it does not exploit the relation between

the adjoint state p, see (13), and the gradient of the value function ∂yV ∗. Incorporating this
information into the problem can, potentially, lead to improved learning results and improved
parameterized feedback laws which behave similarly to F∗. These considerations lead to the
second pillar of our approach, namely a succinct choice of the cost for the learning problem.
For this purpose we use all of Y0 as “learning set” for initial conditions. It is endowed with the
normalized Lebesgue measure L . Moreover we define the augmented objective

Jε(y, p,θ) = J
(
y,F ε

θ (y)
)+∫ T

0

γ1

2

∣∣V ε
θ (t , y(t ))− Jt

(
y,F ε

θ (y)
)∣∣2 + γ2

2

∣∣∂y V ε
θ (t , y(t ))−p(t )

∣∣2 dt (18)

for penalty parameters γ1,γ2 ≥ 0. The arguments in Jt are the restriction of the solution y to
the equation in (17) and the feedback F ε

θ
(y) to [t ,T ]. The additional terms in this new objective

functional penalize the violation of the cost and its gradient by means of the approximation
based on V ε

θ
, i.e. they penalize the differences between Jt (y,F ε

θ
(y)) and V ε

θ
(t , y(t ), as well as p(t )

and ∂y V ε
θ

(t , y(t ).
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Given a strictly positive weight function ω ∈ L∞(Y0); 0 < c ≤ ω a.e., we thus propose to find a
feedback law F ε

θ
by solving the ensemble control problem

min
y∈yad ,

F ε
θ

(y)∈Uad ,
p∈C (Y0;WT )

θ∈Rε

Jε(y,p,θ) :=
∫

Y0

ω(y0) Jε
(
y(y0),p(y0),θ

)
dL (y0)+ γε

2
∥θ∥2

Rε
(Pε)

subject to the system of closed loop state and adjoint equations

ẏ(y0) = f(y(y0))+g(y(y0))F ε
θ (y(y0)) (19)

−ṗ(y0) = Df(y(y0))⊤p(y0)+ [
Dg(y(y0))⊤F ε

θ (y(y0))
]

p(y0)+Q⊤
1 Q1

(
y(y0)− yd

)
(20)

y(y0)(0) = y0,p(y0)(T ) =Q⊤
2 Q2

(
y(y0)(T )− yT

d

)
,y(y0) ∈Yad (21)

for L -a.e. y0 ∈ Y0. Above yad ⊂C (Y0;WT ) and Uad ⊂ L2(Y0;L2(I ;Rm)) denote the admissible sets
of ensemble state trajectories and admissible controls. They will be specified in section 6.

5. Examples

In this section we discuss two particular examples for the parameterized mappings V ε: deep
residual networks and piecewise polynomial functions of sufficiently high degree.

5.1. Residual networks

To explain the approximation of the value function by residual neural networks, we first fix some
notation. Let Lε ∈ N, Lε ≥ 2, as well as Nε

i ∈ N, i = 1, . . . , Lε − 1 be given. We set Nε
0 = n + 1

and Nε
L = 1. Furthermore define

Rε =
Lε−1×
i=1

(
RNε

i ×Nε
i−1 ×RNε

i ×Nε
i−1 ×RNε

i

)
×RNε

L×Nε
L−1 .

The space Rε is uniquely determined by its architecture

arch(Rε) = (
Nε

0 , Nε
1 , . . . , Nε

L

) ∈NLε+1.

A set of parameters θ ∈Rε given by

θ = (
W11,W12,b1, . . . , WLε

)
is called a neural network with Lε layers. Moreover let σ ∈ C 4(R) be given and assume that σ is
not a polynomial. The function

V ε
θ (t , y) = 1

2

∣∣Q2
(
y − yd (T )

)∣∣2 + f σLε,θ ◦ f σLε−1,θ ◦ · · · ◦ f σ1,θ((t , y))− f σLε,θ ◦ f σLε−1,θ ◦ · · · ◦ f σ1,θ((T, y)) (22)

for (t , y) ∈R×Rn where

f σLε,θ(x) =WLεx ∀ x ∈RNε
L−1

as well as

f σi ,θ(x) =σ (Wi 1x +bi )+Wi 2x ∀ x ∈RNε
i−1 , i = 1, . . . , Lε−1

is called the realization of θ with activation function σ. Here the application of σ is defined to act
componentwise i.e. given an index i ∈ {1, . . . ,Lε−1} and x ∈RNε

i we set

σ(x) =
(
σ(x1), . . . , σ

(
xNε

i

))⊤
.
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By construction, V ε
θ

satisfies the terminal condition

V ε
θ (T, y) = 1

2

∣∣Q2(y − yd (T ))
∣∣2 ∀ y ∈Rn .

Moreover Assumption 4 is fulfilled as confirmed by the following result.

Theorem 5. For every ε > 0 there exists architectures Rε and θε ∈ Rε such that V ε ∈ C 4(Rε×R
×Rn) and V ε

θε
satisfies (16).

Proof. Let us set h(t , y) = V ∗(t , y) for (t , y) ∈ I × B̄2M̂ (0). Then h is twice continuously differen-
tiable on I × B̄2M̂ (0) and h(T, y) = 1

2 |Q2(y − yT
d )|2. A consequence of the universal approximation

theorem implies that for all ε> 0 there exists h̃ε ∈Mnet such that∥∥h − h̃ε
∥∥

C 2
(
I×B̄2M̂ (0)

) ≤ ε

2
, (23)

where Mnet = span{σ(w̃ · x + b̃) : w̃ ∈ Rn+1, b̃ ∈ R}, see eg [19, Theorem 4.1], [20]. Let us observe
that h̃ε can be expressed as a residual network. Indeed, since

h̃ε =
M∑

i=1
c̃ iσ

(
w̃ i · x + b̃i

)
for some M ∈N, w̃ i ∈Rn+1, b̃i , c̃ i ∈R, choosing Lϵ = 2,W11 ∈RM×(n+1) with rows {w̃ i }M

i=1,

b1 = col
(
b̃1, . . . , b̃M

)
, W2 = (c̃1, . . . , c̃M ) , W12 = 0,

we have h̃ε = f σ2,θ ◦ f σ1,θ. Moreover, h̃ε ∈C 4(I × B̄2M̂ ). Following (22) we define

V ε
θε

(t , y) = 1

2

∣∣Q2
(
y − yT

d

)∣∣2 + h̃ε(t , y)− h̃ε(T, y) ∈C 4 (
I × B̄2M̂

)
.

and estimate ∥∥∥V ε
θϵ

(t , y)−V ∗(t , y)
∥∥∥

C 2
= ∥∥h̃ε(t , y)− h̃ε(T, y)+V ∗(T, y)−V ∗(t , y)

∥∥
C 2

≤ 2
∥∥h − h̃ε

∥∥
C 2 ≤ ε,

where all norms are taken over I × B̄2M̂ (0). This ends the proof. □

5.2. Piecewise polynomials

Fix ε0 > 0, and let ε ∈ (0,ε0] be arbitrarily fixed. Throughout this subsection we assume (A.2) and
in particular we shall make use of the global Lipschitz continuity of D2V ∗ on K̄ = Ī×B̄2M̂ (0). Since
K̄ is compact and hence totally bounded, there exist nε ∈N and {(t̄i , ȳ i

0)}nε
i=1 ∈Rn+1 such that

K̄ ⊂
nε⋃

i=1
Ki where Ki = Bε

((
ti , ȳ i

0

))
.

Note that we do not highlight the dependence of (ti , ȳ i
0) and Ki on ε. For each i define the

parametrized polynomial

V ε
i (A,b,c, t , y) =

(
t − t̄i , y − ȳ i

0

)⊤
A

(
t − t̄i , y − ȳ i

0

)
+b⊤

(
t − t̄i , y − ȳ i

0

)
+ c

with

(A,b,c, t , y) ∈ Sym(n +1)×Rn+1 ×R×Rn+1,

where Sym(n) denotes the space of real symmetric n×n matrices. Note that V ε
i is infinitely many

times differentiable in all of its arguments.
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For each ε ∈ (0,ε0] we define a special partition of unity {ϕi }nε
i=1 subordinate to Ki with

ϕi : R×Rn → [0,1], satisfying C 4 and
suppϕi = K̄i ,

∑nε
i=1ϕi (t , y) = 1, ∀ (t , y) ∈ K̄ ,∥∥D jϕi

∥∥
C(K̄i∩K̄ ) = µ̄ε− j ,∀ i = 1, . . . ,nε, and j ∈ {1,2},

card
{
i :ϕi (t , y) ̸= 0

}≤m ∀ (t , y) ∈ K̄ ,ε ∈ (0,ε0],

(24)

with µ̄ and m positive constants independent of i , (t , y) ∈ K̄ ,ε ∈ (0,ε0]. Finally we define

Rε =
nε×

i=1

(
Sym(n +1)×Rn+1 ×R)

,

and introduce the family of parameterized functions on Rn+1 by

V ε
θ (t , y) = 1

2

∣∣Q2(y − yd (T ))
∣∣2 +

nε∑
i=1

ϕi (t , y)
(
V ε

i (Ai ,bi ,ci , t , y)−V ε
i (Ai ,bi ,ci ,T, y)

)
(25)

for θ = (A1,b1,c1, . . . , Anε ,bnε ,cnε ) ∈Rε. Obviously we have V ε· (·) ∈C 4(Rε×R×Rn) and

V ε
θ (T, y) = 1

2

∣∣Q2
(
y − yT

d

)∣∣2 ∀ y ∈Rn .

Thus the final time condition in the HJB equation is fulfilled. Next we show that V ε
θ

satisfies the
approximation property in Assumption 4 for the particular choice of

θε =
(
∂y y V ∗ (

t̄1, ȳ1
0

)
,∂y V ∗ (

t̄1, ȳ1
0

)
,V ∗ (

t̄1, ȳ1
0

)
,

. . . , ∂y y V ∗ (
t̄nε , ȳnε

0

)
,∂y V ∗ (

t̄nε , ȳnε
0

)
,V ∗ (

t̄nε , ȳnε
0

))
, (26)

i.e. V ε
i in (25) are chosen with(

Āi , b̄i , c̄i
)= (

∂y y V ∗
(
t̄i , ȳ i

0

)
,∂y V ∗

(
t̄i , ȳ i

0

)
,V ∗

(
t̄i , ȳ i

0

))
i = 1, . . . , nε. (27)

Theorem 6. Let V ε and θε be chosen according to (25) and (26), respectively, and suppose
that (A.2) and (24) are satisfied. Then Assumption 4 holds.

Proof. We already argued that V ε
θ

has the desired regularity. It remains to prove the required
approximation capabilities. For abbreviation set V ε

i (t , y) = V ε
i (Āi , b̄i , c̄i , t , y), with (Āi , b̄i , c̄i ) as

in (27).
Since V ε

i is the second order Taylor expansion of V at (t̄i , ȳ i
0) we conclude that∥∥V ∗−V ε

i

∥∥
C 2− j (K̄i∩K̄ ) ≤ c̄ε j+1, for j ∈ 0,1,2, (28)

for some c̄ > 0 depending on the global Lipschitz constant of V on K̄ , and independent of ε ∈
(0,ε0] and i . Still recall that the sets Ki depend on ε. To estimate V ∗(t , y)−V ε

θ
(t , y) we recall that

V ∗(T, y) = 1
2 |Q2(y − yT

d )|2, and express V ∗(t , y) as V ∗(t , y) = V ∗(T, y)+V ∗(t , y)−V ∗(T, y). This
leads to

V ∗(t , y)−V ε
θ (t , y)

= ∑
i ∈ {1, ...,nε}

ϕi (t , y)
(
V ∗(t , y)−V ε

i (t , y)
)+ ∑

i ∈ {1, ...,nε}
ϕi (T, y)

(
V ∗(T, y)−V ε

i (T, y)
)

,

for (t , y) ∈ K̄ . From (24) and (24) we deduce that ∥V (t , y)−V ε
θ

(t , y)∥C (K̄ ) ≤ 2c̄ε3.
For the gradient with respect to y we proceed similarly. Fixing (t , y) ∈ K̄ we estimate∣∣∣∂y V ∗(t , y)−∂y V ε

θε
(t , y)

∣∣∣≤ D1 +D2
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where

D1 =
∑

i ∈ {1, ...,nε}

[
ϕi (t , y)

∣∣∂y V ∗(t , y)−∂y V ε
i (t , y)

∣∣+ ∣∣V ε
i (t , y)−V ∗(t , y)

∣∣ ∣∣∂yϕi (t , y)
∣∣]

D2 =
∑

i ∈ {1, ...,nε}

[
ϕi (T, y)

∣∣∂y V ∗(T, y)−∂y V ε
i (T, y)

∣∣+ ∣∣V ε
i (T, y)−V ∗(T, y)

∣∣ ∣∣∂yϕi (t , y)
∣∣] .

By (28) with j = 1 the first terms in D1 and D2 can be estimated by c̄ε2. Using (24) and (28) the
second terms in D1 and D2 can be bounded by mµ̄ε2. Combining these estimate we arrive at∥∥∂y V ∗(t , y)−∂y V ε

θ (t , y)
∥∥

C (K̄ ) ≤ 2ε2(c̄ +m µ̄).

In an analogous manner one can obtain a bound of the order O(ε) on the difference of the
Hessians of V and V ε

θ
. This finishes the proof of Theorem 6. □

In Appendix A it is shown how standard mollifiers can be used so that (24) is satisfied. This
requires some extra attention due to the required bounds on the derivatives of ϕi .

6. Existence of minimizers to (Pε)

This section is devoted to proving the existence of minimizing triples to (Pε). Throughout this
section c will denote a generic constant independent of ε> 0 and y0 ∈ Y0.

6.1. Existence of admissible points

Recall from Assumption 1 and Remark 2 that the optimal ensemble state y∗ ∈ C (Y0;WT ) satis-
fies ∥y∗∥C ≤ MY0 . Accordingly we define the set of admissible states and admissible controls as

yad = {
y ∈C (Y0;WT )

∣∣ ∥y∥C ≤ 2MY0

}
, Uad := L2 (

Y0;L2 (
I ;Rm))

.

We also recall the definition Yad in (10).
To prove the existence of minimizers to (Pε) we first argue that the admissible set

N ε
ad = {

(y,p,θ)∈yad×C (Y0;WT )×Rε

∣∣(y,p,θ) satisfies (19)−(21),F ε
θ (y)∈Uad

}
(29)

is nonempty for ε small enough. For this purpose consider the family θε ∈ Rε, 0 < ε ≤ ε0, from
Assumption 4 as well as the associated closed loop system of state and adjoint equations

ẏε = f(yϵ)+g(yε)F ε
θϵ

(yϵ), (30)

−ṗε = Df(yε)⊤pε+
[

Dg(yε)⊤F ε
θε

(yε)
]

pε+Q⊤
1 Q1(yε− yd ), (31)

subject to the following initial and terminal conditions

yϵ(0) = y0, pε(T ) =Q⊤
2 Q2

(
yε(T )− yT

d

)
,

for every y0 ∈ Y0. We first prove the following approximation result.

Theorem 7. Let Assumptions 1 and 4 hold. There exists a constant c such that for all ε >
0 small enough and for all y0 ∈ Y0 the system (30) and (31) admits unique solutions yε =
yε(y0) ∈ Yad and pε = pε(y0) ∈ WT . Furthermore yε ∈ C 1(Y0;WT ), pε ∈ C (Y0;WT ), and F∗(y∗) ∈
C (Y0;L2(I ;Rm)) hold and∥∥yε−y∗

∥∥
C 1(Y0;WT ) +

∥∥pε−p∗∥∥
C (Y0;WT ) +

∥∥∥F ε
θε

(yε)−F∗(y∗)
∥∥∥

C (Y0;L2(I ;Rm ))
≤ cε.

In particular, (yε,pε,θε) ∈N ε
ad for all ε> 0 small enough.

In order to prove this we require several auxiliary results.
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Lemma 8. There exists a constant c such that for all ε small enough there holds∥∥∥(
F∗(y1)−F ε

θε
(y1)

)
−

(
F∗(y2)−F ε

θε
(y2)

)∥∥∥
L2(I ;Rm )

≤ cε∥y1 − y2∥WT , ∀ y1, y2 ∈Yad .

Proof. According to the definition of F∗ and F ε
θε

we split∥∥∥(
F∗(y1)−F ε

θε
(y1)

)
−

(
F∗(y2)−F ε

θε
(y2)

)∥∥∥
L2(I ;Rm )

≤ D1 +D2

with

D1 = 1/β
∥∥g(y1)⊤

∥∥
B(L2(I ;Rn ),L2(I ;Rm ))

∥∥∥∂y

((
V ∗(y1)−V ε

θε
(y1)

)
−

(
V ∗(y2)−V ε

θε
(y2)

))∥∥∥
L2(I ;Rn )

D2 = 1/β
∥∥g(y1)⊤−g(y2)⊤

∥∥
B(L2(I ;Rn ),L2(I ;Rm ))

∥∥∥∂y

(
V ∗(y2)−V ε

θε
(y2)

)∥∥∥
L2(I ;Rn )

.

Applying the integral mean value theorem yields∥∥∥∂y

((
V ∗(y1)−V ε

θε
(y1)

)
−

(
V ∗(y2)−V ε

θε
(y2)

))∥∥∥
L2(I ;Rn )

≤ sup
s∈ [0,1]

∥∥∥∂y y

(
V ∗(y1 + sh)−V ε

θε
(y1 + sh)

)∥∥∥
B(WT ,L2(I ;Rn ))

∥h∥WT

with h = y2 − y1 ∈WT . Note that y1 + sh ∈Yad for all s ∈ [0,1]. Thus we can use Assumption 4 for
every s ∈ [0,1] and δy ∈W∞ and estimate∥∥∥∂y y

(
V ∗(y1 + sh)−V ε

θε
(y1 + sh)

)
δy

∥∥∥
L2(I ;Rn )

≤
√∫ T

0

∣∣∣∂y y

(
V ∗ (

t , y1(t )+ sh(t )
)−V ε

θε

(
t , y1(t )+ sh(t )

))∣∣∣2

Rn×n
|δy(t )|2dt

≤ cε∥δy∥L2(I ;Rn ) ≤ εc∥δy∥WT .

Similarly we obtain∥∥∥∂y

(
V ∗(y2)−V ε

θε
(y2)

)∥∥∥
L2(I ;Rn )

=
√∫ T

0

∣∣∣∂y

(
V ∗(t , y2(t ))−V ε

θε
(t , y2(t ))

)∣∣∣2
dt ≤

p
T cε.

Last recall that g is Lipschitz continuous and uniformly bounded on Yad . Combining these facts
yields the desired statement. □

With the same arguments the following a priori estimate can be obtained. For the sake of
brevity its proof is omitted.

Corollary 9. There exists a constant c such that for all ε small enough there holds∥∥∥F∗(y)−F ε
θε

(y)
∥∥∥

L2(I ;Rm )
≤ cε∥y∥WT , ∀ y ∈Yad .

Next we establish existence of a unique solution to (30) as well as a first approximation result.

Proposition 10. Let Assumptions 1 and 4 hold. Then for all ε > 0 small enough there is a
unique yε ∈ C 1(Y0;WT ) such that yε := yε(y0) ∈ Yad satisfies (30) for all y0 ∈ Y0. Moreover there
exists a constant c independent of ε such that∥∥y∗−yε

∥∥
C (Y0;WT ) +

∥∥∥F∗(y∗)−F ε
θε

(yε)
∥∥∥

C (Y0;L2(I ;Rm ))
≤ cε.

In particular we have ∥yε∥C (Y0;WT ) ≤ 2MY0 for all sufficiently small ε.

Proof. The proof is based on a fixed-point argument. Let y0 ∈ Y0 be arbitrary but fixed. Define
the set

M =
{

y ∈WT | ∥y∥WT ≤ 3

2
MY0

}
⊂Yad .



Karl Kunisch and Daniel Walter 13

On M we consider the mapping Z : M →WT , where z =Z (y) ∈Yad is the unique solution of

ż = f(z)+g(z)F∗(z)+g(y)F ε
θϵ

(y)−g(y)F∗(y), z(0) = y0. (32)

It is well-defined since the perturbation function v = g(y)F ε
θϵ

(y)−g(y)F∗(y) ∈ L2(I ;Rn) satisfies

∥v∥L2 ≤ ∥g(y)∥B(L2(I ;Rm ),L2(I ;Rn ))

∥∥∥F∗(y)−F ε
θϵ

(y)
∥∥∥

L2
≤ 3

2
cεMY0∥g(y)∥B(L2(I ;Rm ),L2(I ;Rn ))

where we use Corollary 9 and the definition of M . Hence ∥v∥L2 ≤ cε. Here and below c denotes
a generic constant which is independent of y0 ∈ Y0 and all ϵ > 0 sufficiently small. We may
invoke Proposition 30 and Corollary 31 from the Appendix, to assert the existence of a unique
solution z ∈Yad to (32) with

∥z∥WT ≤ MY0 + c∥v∥L2 ≤ 3

2
MY0 , ∀ y0 ∈ Y0,

if ε > 0 is chosen small enough. From this we particularly conclude Z (M ) ⊂ M for all y0 ∈ Y0

and ε > 0 small. It remains to prove that Z is a contraction. To this end let y1, y2 ∈ M be given.
Applying Corollary 31 yields the first inequality in∥∥Z (y1)−Z (y2)

∥∥
WT

≤ c
∥∥∥F∗(y1)−F ε

θϵ
(y1)−F∗(y2)+F ε

θϵ
(y2)

∥∥∥
L2

≤ cε∥y1 − y2∥WT

with a constant c > 0 independent of y1, y2 ∈M as well as of y0 ∈ Y0, and ϵ sufficiently small. The
last inequality follows from Lemma 8. Choosing ε > 0 small enough we conclude that Z admits
a unique fixed point yε = Z (yε) ∈ WT on M . Clearly, the function yε(y0) := yε satisfies (30), yε ∈
M ⊂Yad as well as∥∥yε(y0)−y∗(y0)

∥∥
WT

= ∥∥Z (yε(y0))−Z (0)
∥∥

WT
≤ cε∥yε∥WT ≤ cε

3

2
MY0 ,

and by Corollary 9∥∥∥F∗ (
y∗(y0)

)−F ε
θε

(yε(y0))
∥∥∥

L2

≤ ∥F∗ (
y∗(y0)

)−F∗ (
yε(y0)

)∥L2 +
∥∥∥F∗ (

yε(y0)
)−F ε

θε
(yε(y0))

∥∥∥
L2

≤ c
∥∥y∗(y0)−yε(y0)

∥∥
WT

+ cε∥yε(y0)∥WT ≤ cε.

Finally according to Proposition 30 the solution yε(y0) is unique and the mapping yε is at least of
class C 1. □

Next we estimate the W 1,2 difference between yε and y∗.

Proposition 11. The mapping yε ∈C 1(Y0;WT ) from Theorem 10 satisfies∥∥yε−y∗
∥∥

C 1(Y0;WT ) ≤ cε

for c > 0 independently of ε small enough.

Proof. By the previous proposition the estimate is already known for C 1(Y0;WT ) replaced by
C (Y0;WT ). Now fix y0 ∈ Y0 and i ∈ {1, . . . ,n}. By the inverse mapping theorem the partial deriva-
tives of y∗ and yε at y0 are given by ∂i y∗(y0) = T∗(y0)−1(0,ei ), ∂i yε(y0) = Tε(y0)−1(0,ei ). Here, ei

denotes the ith canonical basis vector in Rn and

T∗(y0)−1,Tε(y0)−1 : L2 (
I ;Rn)×Rn →WT

denote the linear continuous inverses of

T∗(y0)δy=
(
δ̇y −Df

(
y∗(y0)

)
δy − [

Dg
(
y∗(y0)

)
δy

]
F∗ (

y∗(y0)
)−g

(
y∗(y0)

)
DF∗ (

y∗(y0)
)
δy

δy(0)

)
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and

Tε(y0)δy=
(
δ̇y −Df

(
yε(y0)

)
δy − [

Dg
(
yε(y0)

)
δy

]
F ε
θε

(yε(y0))−g(yε(y0))DF ε
θε

(yε(y0))δy

δy(0)

)
.

Using Gronwall’s inequality, we readily verify that

max
{∥∥Tε(y0)−1(δv,δy0)

∥∥
WT

,
∥∥T∗(y0)−1(δv,δy0)

∥∥
WT

}
≤C

(∥δv∥L2(I ;Rn ) +|δy0|Rn
)

(33)

for all δv ∈ L2(I ,Rn), δy0 ∈ Rn , y0 ∈ Y0 and some C > 0 independent of y0,δv,δy0. Now we
recall that yε(y0),y∗(y0) ∈Yad and that Df,Dg,g are Lipschitz continuous, and thus in particular
bounded, on Yad , see Assumption (A.1). Together with boundedness of {∥F∗(y(y0))∥L2 : y0 ∈ Y0},
Corollary 9 and Theorem 10 we conclude∥∥(

T∗(y0)−Tε(y0)
)
δy

∥∥
L2(I ;Rn )×Rn ≤ cε∥δy∥WT ∀ δy ∈WT (34)

for some c > 0 again independent of y0 ∈ Y0. Recalling that B−1 − A−1 = A−1(A − B)B−1 for
invertible bounded linear operators A and B , we obtain∥∥∂i yε(y0)−∂i y∗(y0)

∥∥
WT

= ∥∥Tε(y0)−1(0,ei )−T∗(y0)−1(0,ei )
∥∥

WT

≤C 2 sup
∥δy∥WT ≤1

∥∥(
T∗(y0)−Tε(y0)

)
δy

∥∥
L2(I ;Rn )×Rn ≤ cε,

where C > 0 is the constant from (33). Since all involved constants are independent of y0 ∈ Y0 we
obtain the desired estimate

∥∥∂i yε−∂i y∗
∥∥

C ≤ cε. □

Next we address the solvability of the adjoint equation (20).

Proposition 12. There exists a constant c such that for all ε small enough there exists pε ∈
C (Y0;WT ) such that pε := pε(y0) ∈WT satisfies (31) for all y0 ∈ Y0 and∥∥pε−p∗∥∥

C ≤ cε.

Proof. Given y ∈Yad consider the linear ordinary differential equation

−ṗ = Df(y)p +
[

Dg(y)⊤F ε
θε

(y)
]

p +Q⊤
1 Q1(y − yd ), p(T ) =Q⊤

2 Q2
(
y(T )− yT

d

)
.

It admits a unique solution p = P (y) ∈WT which is bounded independently of y ∈Yad . Moreover
the mapping P : WT → WT is continuous on Yad in virtue of the Gronwall lemma and Assump-
tion 1. The existence of a mapping pε which satisfies (31) then follows by setting pε = P ◦yε.

It remains to prove the estimate for the difference between pε satisfying (31) and p∗ satisfy-
ing (13). For this purpose we can use the same technique as in the proof of Proposition 11 and
therefore we only give the main estimates. Recall that Df(·)⊤,Dg(·)⊤ are Lipschitz continuous
on Yad . The the most involved term in the estimate analogous to (34) is∥∥∥[

Dg
(
yε(y0)

)⊤
F ε
θε

(
yε(y0)

)−Dg
(
y∗(y0)

)⊤
F∗ (

y∗(y0)
)]
δp

∥∥∥
L2

≤ c
(∥∥yε(y0)−y∗(y0)

∥∥
WT

+
∥∥∥F ε

θε
(yε(y0))−F∗ (

y∗(y0)
)∥∥∥

L2

)
∥δp∥WT

with c > 0 independent of ε > 0 and δp ∈ WT . Now a perturbation argument as in the proof of
Propostion 11 provides us with∥∥pε(y0)−p∗(y0)

∥∥
WT

≤ c
(∥∥yε(y0)−y∗(y0)

∥∥
WT

+
∥∥∥F ε

θε

(
yε(y0)

)−F∗ (
y∗(y0)

)∥∥∥
L2

+ ∣∣yε(y0)(T )−y∗(y0)(T )
∣∣)

≤ c
(∥∥yε(y0)−y∗(y0)

∥∥
WT

+
∥∥∥F ε

θε

(
yε(y0)

)−F∗ (
y∗(y0)

)∥∥∥
L2

)
≤ cε

where WT ,→ C (Ī ;Rn) is used in the second inequality, and Proposition 11 and Corollary 9 are
utilized in the final one. Since all involved constants are again independent of y0 ∈ Y0, this finishes
the proof. □
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Summarizing all previous observations we arrive at the proof of Theorem 7.

Proof of Theorem 7. This follows directly by combining Proposition 10, Proposition 11, and
Proposition 12. □

6.2. Closedness of N ε
ad

As a last prerequisite for proving existence to (Pε) we argue that the admissible set N ε
ad is closed.

The existence of at least one minimizing triple to (Pε) then follows by variational arguments.
From here on we always assume that N ε

ad from (29) is nonempty, i.e. that ε is sufficiently small.

Proposition 13. Let (yk ,pk ,θk )k ∈N ⊂N ε
ad be a sequence with weak limit (y,p,θ) in L2(Y0;WT )2 ×

Rε. Then (y,p,θ) ∈N ε
ad and we have

(y,p) ∈C (Y0;WT )2, lim
k →∞

yk (y0) = y(y0) and lim
k →∞

pk (y0) = p(y0) in WT , ∀ y0 ∈ Y0.

The proof builds upon the following two lemmas.

Lemma 14. Let the sequence (yk ,pk ,θk )k ∈N ⊂ N ε
ad satisfy the prerequisites of Proposition 13.

Then y ∈ yad , yk (y0) → y(y0) in WT , F ε
θk

(yk (y0)) →F ε
θ

(y(y0)) in L∞(I ;Rm), and

ẏ(y0) = f
(
y(y0)

)+g
(
y(y0)

)
F ε
θ (y(y0)), y(y0)(0) = y0, (35)

for all y0 ∈ Y0.

Proof. By assumption we have yk ∈ yad , and hence ∥yk (y0)∥WT ≤ 2MY0 for all k ∈N and y0 ∈ Y0,
and yk ∈ C 1(Y0;WT ) for all k ∈N, see Proposition 10. Let us fix an arbitrary y0 ∈ Y0. and set yk :=
yk (y0) for abbreviation. Then there exists a subsequence, denoted by the same index, and ỹ ∈WT

such that yk * ỹ in WT . Since WT ,→c C (Ī ;Rn) ,→ Lp (I ;Rn), 1 ≤ p ≤+∞, we immediately get

yk (0) → ỹ(0) in Rn , f(yk ) → f(ỹ) in L2(I ;Rn), g(yk ) → g(ỹ) in B
(
L2 (

I ;Rm)
,L2 (

I ;Rn))
as well as F ε

θ
(yk ) →F ε

θ
(ỹ) in L∞(I ;Rm). Moreover by Assumption 4 for every δ> 0 there exits Kδ ∈

N such that ∣∣∣∂y V ε
θk

(t , y)−∂y V ε
θ (t , y)

∣∣∣≤ δ ∀ (t , y) ∈ Ī × B̄2M̂ (0) (36)

for all k ≥ Kδ. Here M̂ denotes the constant from (A.2). For all such k we get utilizing (36) for a
constant c independent of k∥∥∥F ε

θk
(yk )−F ε

θ (ỹ)
∥∥∥

L∞ ≤ c
∥∥∥F ε

θk
(yk )−F ε

θ (yk )
∥∥∥

L∞ +∥∥F ε
θ (yk )−F ε

θ (ỹ)
∥∥

L∞

≤ cδ+∥∥F ε
θ (yk )−F ε

θ (ỹ)
∥∥

L∞ .

This implies that limk →∞F ε
θk

(yk ) =F ε
θ

(ỹ) in L∞(I ;Rm). These observations imply

ẏk = f(yk )+g(yk )F ε
θk

(yk ) → f(ỹ)+g(ỹ)F ε
θ (ỹ).

Together with yk * ỹ in WT this implies that yk (y0) = yk → ỹ in WT and

˙̃y = f(ỹ)+g(ỹ)F ε
θ (ỹ), ỹ(0) = y0. (37)

Since the solution to this equation is unique, every weak accumulation point of yk satisfies (37)
and we have yk (y0) → ỹ in WT for the whole sequence. We repeat this construction for all y0 ∈ Y0.
This defines a function ỹ : Y0 →WT such that yk (y0) → ỹ(y0) in WT and such that (37) is satisfied
with ỹ = ỹ(y0) for each y0 ∈ Y0. By Proposition 10 it is the unique solution to (35).

Lebesgue’s dominated convergence theorem for Bochner integrals [21, p. 45] implies that
yk → ỹ in L1(Y0;WT ), and by boundedness of {∥yk∥C }∞k=1 also in L2(Y0;WT ). By assumption yk

converges weakly in L2(Y0;WT ) to y. Thus we have y = ỹ. Moreover ∥y∥C ≤ 2MY0 and hence
y ∈ yad . □
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Next we consider the behavior of the adjoint states pk .

Lemma 15. Let (yk ,pk ,θk )k ∈N ⊂ N ε
ad be a sequence with weak limit (y,p,θ) satisfying the

prerequisites of Proposition 13. Then ∥pk∥C ≤ C for some C > 0 and all k ∈ N large enough,
and p ∈C (Y0;WT ). Moreover pk (y0) → p(y0) in WT , and

−ṗ(y0) = Df(y(y0))⊤p(y0)+ [
Dg(y(y0))⊤F ε

θ (y(y0))
]

p(y0)+Q⊤
1 Q1(y(y0)− yd ),

p(y0))(T ) =Q⊤
2 Q2

(
y(T )(y0)− yT

d

)
,

(38)

for all y0 ∈ Y0.

Proof. From Lemma 14 recall that for the sequences yk := yk (y0) ∈ Yad and y := y(y0) we have
for each y0 ∈ Y0

yk → y in WT , F ε
θk

(yk ) →F ε
θ (y) in L∞(I ;Rm).

Further for each k ∈N and y0 ∈ Y0, the element pk := pk (y0) ∈WT satisfies

−ṗk = Df(yk )⊤pk +
[

Dg(yk )⊤F ε
θk

(yk )
]

pk +Q⊤
1 Q1(yk − yd ), pk (T ) =Q⊤

2 Q2
(
yk (T )− yT

d

)
. (39)

Recall from Assumption 4 that ∂y V ε· is uniformly continuous on compact sets. Thus for every δ>
0 there is Kδ ∈N such that∣∣∣F ε

θk
(t , x)

∣∣∣≤ ∣∣∣F ε
θk

(t , x)−F ε
θ (t , x)

∣∣∣+ ∣∣F ε
θ (t , x)

∣∣≤ δ+ max
(t ,x)∈ I×B̄2M̂ (0)

∣∣F ε
θ (t , x)

∣∣<∞

for all (t , x) ∈ I × B̄2M̂ (0) and k ≥ Kδ. Consequently we obtain

sup
k ≥Kδ

max
(t ,x)∈ I×B̄2M̂ (0)

∥Ak (t , x)∥Rn×n <∞, where Ak (t , x) = D f (t , x)⊤+Dg (t , x)⊤F ε
θk

(t , x).

Applying Proposition 29 to the time-reversed equation (39) implies that

∥pk∥WT ≤ c
(∥∥Q⊤

1 Q1(yk − yd )
∥∥

L2 +
∣∣yk (T )− yT

d

∣∣)
for some c > 0 independent of y0 ∈ Y0 and all sufficiently large k. Since ∥yk∥C ≤ 2MY0 we finally
conclude ∥pk∥C ≤ C for some C > 0 independent of k sufficiently large. We are now prepared to
pass to the limit in (39). For this purpose we proceed as in the proof of Lemma 14 and use

Df(yk )+Dg(yk )⊤F ε
θk

(yk ) → Df(y)+Dg(y)⊤F ε
θ (y) in B

(
L2(Y ;Rn)

)
,

as well as

Q⊤
1 Q1(yk − yd ) → Q⊤

1 Q1(y − yd ) in L2 (
I ;Rn)

,

and

Q⊤
2 Q2(yk (T )− yT

d ) →Q⊤
2 Q2

(
y(T )− yT

d

)
in Rn

to show that every weak accumulation point p̃ ∈ WT of pk is in fact a strong accumulation point
and satisfies the differential equation in (38). Since the solution to this equation is unique we
get pk → p̃ in WT for the whole sequence. Finally utilizing ∥pk∥C ≤C and Lebesgue’s dominated
convergence theorem we conclude p̃ = p(y0) for all y0 ∈ Y0. □

Proof of Proposition 13. This is a direct consequence of Lemma 14 and Lemma 15. □
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6.3. Existence of minimizers

Finally we prove the existence of at least one minimizing triplet to (Pε).

Theorem 16. Let Assumption 1 and 4 hold. Then for all ε> 0 small enough, Problem (Pε) admits
at least one minimizing triplet (y∗ε ,p∗

ε ,θ∗ε ) ∈C (Y0;WT )2 ×Rε.

Proof. According to Theorem 7, the admissible set N ε
ad is nonempty for ε> 0 small enough. Fix

such a ε> 0 and let (yk ,pk ,θk ) ∈N ε
ad denote a minimizing sequence for Jε i.e.

Jε(yk ,pk ,θk ) → inf
(y,p,θ)∈N ε

ad

Jε(y,p,θ).

Since yk ∈ yad and γε
2 ∥θk∥2

Rε
≤ Jε(yk ,pk ,θk ), for all k ∈ N, the sequence {(yk ,θk )} ∈ L2(Y0;WT )

×Rε is bounded. Thus it admits at least one subsequence, denoted by the same index, with

(yk ,θk )* (y∗ε ,θ∗ε ) in L2(Y0;WT )×Rε

for some (y∗ε ,θ∗ε ). As in the proof of Lemma 15 we verify that ∥yk∥C ≤ C and ∥pk∥C ≤ C for
some C > 0 independent of k ∈ N. Consequently, by possibly taking another subsequence we
arrive at

(yk ,pk ,θk )*
(
y∗ε ,p∗

ε ,θ∗ε
)

in L2(Y0;WT )2 ×Rε

for some (y∗ε ,p∗
ε ,θ∗ε ) ∈ N ε

ad . For the following estimates it will be convenient to recall the aug-
mented functional Jε, see (18), which arises in the running cost of (Pε) in compact form:

Jε(y, p,θ) = J
(
y,F ε

θ (y)
)+ γ1

2

∥∥∥V (y)− J•
(

y,F ε
θ∗ε

(y)
)∥∥∥2

L2(I ;R)
+ γ2

2

∥∥p −∂yV (y)
∥∥2

L2(I ;Rn ) , (40)

where Jt was defined below (7). Now fix an arbitrary y0 ∈ Y0 and set

yk := yk (y0), pk := pk (y0), y∗ := y∗ε (y0), p := p∗
ε (y0).

From Lemma 14 and Lemma 15 we get

yk → ỹ , pk → p in WT , F ε
θk

(yk ) →F ε
θ∗ε

(ỹ) in L2 (
I ;Rn)

and, again using the uniform continuity of V ε• and ∂y V ε• , we conclude

V ε
θk

(yk ) → V ε
θ∗ε

(ỹ) in L2(I ), ∂yV ε
θk

(yk ) → ∂yV ε
θ∗ε

(ỹ) in L2 (
I ;Rn)

,

as well as the uniform boundedness of V ε
θk

(yk ) and ∂yV ε
θk

(yk ) in C (Y0;L2(I )) and C (Y0;L2(I ;Rn)),
respectively. Moreover we readily verify that∣∣∣Jt (yk ,F ε

θk
(yk ))−Jt

(
ỹ ,F ε

θ∗ε
(ỹ)

)∣∣∣≤c
(∥∥yk − ỹ

∥∥
L2 +

∥∥∥F ε
θk

(yk )−F ε
θ∗ε

(ỹ)
∥∥∥

L2
+ ∣∣yk (T )− ỹ(T )

∣∣) ,

for some c > 0 independent of y0 ∈ Y0, t ∈ (0,T ), and k ∈N. Thus we arrive at

J•
(

yk ,F ε
θk

(yk )
)
→ J•

(
y,F ε

θ∗ε
(y)

)
in L∞(I ).

Summarizing the previous findings there holds∥∥∥V (yk )−J•
(

yk ,F ε
θk

(yk )
)∥∥∥2

L2
+∥∥pk−∂yV (yk )

∥∥2
L2 →

∥∥∥V (y)−J·
(

y,F ε
θ∗ε

(y)
)∥∥∥2

L2
+∥∥p−∂yV (y)

∥∥2
L2

J
(

yk ,F ε
θk

(yk )
)
→ J

(
y,F ε

θ∗ε
(y)

)
.

Using these expressions in Jε as given in (40), and the boundedness of ∥yk∥L2 , |yk (0)|,
∥pk∥L2 ∥F ε

θk
(yk )∥L2 , ∥V ε

θk
(yk )∥L2 independent of k ∈ N and y0 ∈ Y0 we finally get by using

Lebesgue’s dominated convergence theorem

Jε

(
yk ,pk ,θk

)→Jε

(
y∗ε ,p∗

ε ,θ∗ε
)= inf

(y,p,θ)∈N ε
ad

Jε(y,p,θ). □
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7. Convergence towards optimal controls

In Proposition 10 and 12 it was established that the ensemble triple (y∗,F (y∗),p∗) can be approx-
imated by ensemble triples (yε,F ε

θε
(yε),pε) in the order O(ε). In this section, the convergence of

solutions to (Pε) as ε→ 0 is addressed. We first consider the terms in the definition Jε, see (18).
To obtain the desired asymptotic behavior a smallness condition on the regularisation parameter
γϵ, in relation to the norm of the parameters θε describing the approximation quality, is required.

Theorem 17. Let Assumptions 1 and 4 hold the latter with θε ∈Rε, and let (y∗ε ,p∗
ε ,θ∗ε ), denote an

optimal triple to (Pε) for all ε> 0 small enough. If additionally γε∥θε∥2
Rε

=O(ε), then

0 ≤
∫

Y0

ω(y0)
[

J
(
y∗ε (y0)

)
,F ε

θ∗ε

(
y∗ε (y0)

)−V ∗(0, y0)
]

dL (y0) ≤ c ε

holds and, if γ1,γ2 > 0, we also have∫
Y0

ω(y0)

(∥∥∥V ε
θ∗ε

(
t ,y∗ε (y0)

)−J•
(
y∗ε (y0),F ε

(
y∗ε (y0)

))∥∥∥2

L2
+

∥∥∥∂y V ε
θ∗ε

(
t ,y∗ε (y0)

)−p∗
ε (y0)

∥∥∥2

L2

)
dL (y0) ≤ c ε

for some c > 0 independent of ε.

Proof. Let yε,pε denote the ensembles of state and adjoint trajectories associated to θε, see
Theorem 7, for ε> 0 small enough. Then we have∣∣∣J

(
yε(y0)

)
,F ε

θε

(
yε(y0)

)−V ∗(0, y0)
∣∣∣

≤C
(∥∥yε(y0)−y∗(y0)

∥∥
WT

+
∥∥∥F ε

θε

(
yε(y0)

)−F∗ (
y∗(y0)

)∥∥∥
L2(I ;Rm )

)
≤ cε

for some C > 0 independent of ε. Here we have used V ∗(0, y0) = J (y∗(y0),F∗(y∗(y0))) for all y0 ∈
Y0, the embedding WT ,→ C (Ī ;Rn) as well as the a priori estimates of Proposition 10. Next we
utilize p∗(y0) = ∂V ∗(y∗(y0)), y0 ∈ Y0, to estimate∥∥∥∂yV ε

θε

(
yε(y0)

)−pε(y0)
∥∥∥2

L2(I ;Rn )

≤ 2

(∥∥∥∂yV ε
θε

(
yε(y0)

)−∂yV ∗ (
y∗(y0)

)∥∥∥2

L2(I ;Rn )
+∥∥pε(y0)−p∗(y0)

∥∥2
L2(I ;Rn )

)
≤ cε2,

where the last inequality is deduced from Proposition 10 and Proposition 12. Proceeding analo-
gously and using V ∗(t ,y∗(y0)(t )) = Jt (y∗(y0),F∗(y∗(y0))) for all y0 ∈ Y0, t ∈ I , we obtain∫

Y0

ω(y0)
∫ T

0

∣∣∣V ε
θε

(
t ,yε(y0)(t )

)− Jt
(
yε(y0)

)
,F ε

θε

(
yε(y0)

)∣∣∣2
dt dL (y0) ≤ D1 +D2,

where, using Assumption 4 and again Proposition 10

D1 :=
∫

Y0

ω(y0)
∥∥∥V ε

θε

(
yε(y0)

)−V ∗ (
y∗(y0)

)∥∥∥2

L2(I )
dL (y0) ≤ cε2,

D2 :=
∫

Y0

ω(y0)
∫ T

0

∣∣∣Jt
(
y∗(y0)

)
,F∗ (

y∗(y0)
)− Jt

(
yε(y0)

)
,F ε

θε

(
yε(y0)

)∣∣∣2
dtdL (y0) ≤ cε2.

Combining the previous estimates with the optimality of (y∗,p∗,θ∗ε ), and the assumption on the
asymptotic behavior of γϵ we deduce that

0 ≤
∫

Y0

ω(y0)
[

Jε
(
y∗ε (y0),p∗

ε (y0),θ∗ε
)−V ∗(0, y0)

]
dL (y0)+ γε

2

∥∥θ∗ε ∥∥2
Rε

≤
∫

Y0

ω(y0)
[

Jε
(
yε(y0),pε(y0),θε

)−V ∗(0, y0)
]

dL (y0)+ γε

2
∥θε∥2

Rε
≤ c ε.

Recalling the definition of Jε, this yields all claimed estimates and finishes the proof. □
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Next the convergence of the ensemble trajectories (y∗ε ,p∗
ε ), the feedback controls F ε

θ∗ε
(y∗ε ) as

well as the approximate value function V ε
θ∗ε

are analyzed. For this purpose we make use of the
additional regularity of ensemble solutions to the closed loop system, see Proposition 11, and
introduce further constraints to (Pε). Without changing the notation we henceforth set

Ŷad = {
y ∈C 1(Y0;WT )

∣∣ ∥y∥C ≤ 2MY0 , ∥y∥W 1,2 ≤ 2MW 1,2

}
, (41)

where MW 1,2 > 0 is a constant with ∥y∗∥W 1,2 ≤ MW 1,2 , the function y∗ was introduced in (A.3),
and W 1,2 = {y ∈ L2(I ;WT ) : ∂i y ∈ L2(Y0;WT ), i ∈ {1, . . . , n}} endowed with the natural norm. Next
we note that

β

2

∥∥F∗ (
y∗(y0)

)∥∥2
L2 ≤ J

(
y∗(y0),F∗ (

y∗(y0)
))=V ∗(0, y0)

for all y0 ∈ Y0. Thus, due to the continuity of the value function V ∗, see (A.2), there is MU > 0
with ∥F∗(y∗)∥L∞ ≤ MU . Correspondingly we set

Ûad = {
u ∈ L∞ (

Y0;L2 (
I ;Rm)) | ∥u∥L∞ ≤ 2MU

}
. (42)

We point out that Theorem 16 remains valid despite the additional restriction of the set of
admissible states and controls. Problem (Pε) with Yad ,Uad replaced by Ŷad ,Ûad will be denoted
by (P̂ ϵ).

Proposition 18. Let Assumption 1 and 4 hold. Then for all ε > 0 small enough, Problem (P̂ ϵ)
admits at least one minimizing triple.

Proof. Let (yε,pε,θε) be defined as in Theorem 7. Then we have yε ∈ Ŷad , see Proposition 10 and
Proposition 11, as well as F ε

θε
(yε) ∈ Ûad , according to Proposition 10, for all ε > 0 small enough.

Hence the admissible set of (P̂ ϵ) is not empty. The existence of a minimizing triple then follows
by repeating the arguments of the proof of Theorem 16 noting that the admissible set{

(y,p,θ)∈Ŷad×C (Y0;WT )×Rε

∣∣ (y,p,θ) satisfies (19)−(21),F ε
θ (y)∈Ûad

}
is closed w.r.t to the weak topology on L2(Y0;WT )2 ×Rε. □

Let us next address the convergence of the optimal ensemble states y∗ε , adjoint states pε and
the associated feedback controls F ε

θ∗ε
(y∗ε ) as ε tends to 0.

Theorem 19. Let the prerequisites of Theorem 17 hold, and let εk > 0 be a strictly decreasing
null sequence such that (P̂ εk ) admits a minimizing triple (y∗k ,p∗

k ,θ∗k ). Then (y∗k ,p∗
k ,F εk

θ∗εk
(y∗εk

))

contains at least one accumulation point (ȳ, p̄, ū) ∈ L∞(Y0;WT )2×L∞(Y0;L2(I ;Rm)) w.r.t the strong
topology on L2(Y0;WT )2 ×L2(Y0;L2(I ;Rm)). For each accumulation point and L -a.e. y0 ∈ Y0 we
have that (ȳ , p̄, ū) := (ȳ(y0), p̄(y0), ū(y0)) satisfies

(ȳ , ū) ∈ min (Py0 )

as well as

˙̄y = f(ȳ)+g(ȳ)ū, ȳ(0) = y0,

− ˙̄p = Df(ȳ)⊤p̄ + [
Dg(ȳ)⊤ū)

]
p̄ +Q⊤

1 Q1(ȳ − yd ), p̄(T ) =Q⊤
2 Q2

(
ȳ(T )− yT

d

)
.

Proof. By choice of the admissible sets Ŷad and Ûad we have that {(y∗k ,F ε
θ∗k

(y∗k ))}∞k=1 is

bounded in (W 1,2(Y0;WT )∩L∞(Y0;WT ))×L∞(Y0;L2(I ;Rm)). By Gronwall’s inequality we can ar-
gue that {p∗

k }∞k=1 is also bounded in L∞(Y0;WT ). Thus, due to the Banach–Alaoglu theorem, there
is a subsequence, denoted by the same index, and (ȳ, p̄, ū) ∈ L∞(Y0;WT )2×L∞(Y0;L2(I ;Rm)) such
that (

y∗k ,p∗
k ,F εk

θ∗k

(
y∗k

))
*∗ (

ȳ, p̄, ū
)

in L∞(Y0;WT )2 ×L∞ (
Y0;L2(I ;Rm)

)
,
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and ẏ∗k * ˙̄y in L2(Y0;L2(I ;Rn)). By the compact embedding of W 1,2(Y0;WT ) into L2(Y0;C (I ;Rn)),
see [22, Theorem 5.3] the subsequence can be chosen such that y∗k → ȳ strongly in
L2(Y0;C (I ;Rn)). These properties imply that (ȳ , ū) := (ȳ(y0), ū(y0)) satisfies

˙̄y = f(ȳ)+g(ȳ)ū, ȳ(0) = y0, (43)

for L -a.e. y0 ∈ Y0. This also implies V ∗(0, y0) ≤ J (ȳ , ū) and thus, together with

J
(
y∗k ,F εk

θ∗k

(
y∗k

))→V ∗(0, ·) in L1(Y0;WT ),

see Theorem 17, we have (ȳ , ū) ∈ argmin (Py0 ) for L -a.e. y0 ∈ Y0. Moreover, again using the strong
convergence of y∗k in L2(Y0;C (I ;Rn)) and recalling the definition of J (·, ·) as

J (y,u) = (1/2)
∥∥Q1(y − yd )

∥∥2
L2(I ;Rn ) + (β/2)∥u∥2

L2(I ;Rn ) + (1/2)
∣∣Q2

(
y(T )− yT

d

)∣∣2
,

for all y ∈ WT , u ∈ L2(I ;Rm), we also conclude the convergence of the L2(Y0;L2(I ;Rm)) norm
of F

εk
θ∗k

(y∗k ) towards the norm of ū. Thus F
εk
θ∗k

(y∗k ) → ū strongly in L2(Y0;L2(I ;Rm)), and y∗k → ȳ

strongly in L2(Y0;WT ), by Lebegue’s bounded convergence theorem.
It remains to address the strong convergence of pk . For this purpose we show that the func-

tions [Dg(y∗k )⊤F
εk
θ∗k

(y∗k (·))]p∗
k (·) converge weakly to [Dg(ȳ(·))⊤ū(·)]p̄(·) in L2(Y0;L2(I ;Rn)). Fixing a

test function ϕ ∈ L2(Y0;L2(I ;Rn)) we first note that

lim
k →∞

(
ϕ,

[
Dg(ȳ(·))⊤ū(·))

](
p∗

k (·)− p̄
))

L2(Y0;L2(I ;Rn )) = 0.

Second, for L -a.e. y0 ∈ Y0 we estimate(
ϕ(y0),

[
Dg

(
y∗k (y0)

)⊤
F

εk
θ∗k

(
y∗k (y0)

)−Dg
(
ȳ(y0)

)⊤ ū(y0)
]

p∗
k (y0)

)
L2(I ;Rn )

≤C∥ϕ(y0)∥L2

∥∥p∗
k (y0)

∥∥
WT

(∥∥∥F
εk
θ∗k

(
y∗k (y0)

)∥∥∥
L2

∥∥y∗k (y0)−ȳ(y0)
∥∥

WT
+

∥∥∥F
εk
θ∗k

(
y∗k (y0)

)−ū(y0)
∥∥∥

L2

)
≤C∥ϕ(y0)∥L2

(∥∥y∗k (y0)− ȳ(y0)
∥∥

WT
+

∥∥∥F
εk
θ∗k

(
y∗k (y0)

)− ū(y0)
∥∥∥

L2

)
for some C > 0 independent of k ∈ N and y0. Here we made use of the boundedness of {y∗k }∞k=1
and {p∗

k }∞k=1 in L∞(Y0;WT ), and of {F εk
θ∗k

(y∗k )}∞k=1 in L∞(Y0;L2(I ;Rm)). Integrating both sides of the

inequality w.r.t to L and utilizing the strong convergence of y∗k and F
εk
θ∗k

(y∗k ) we finally arrive at

lim
k →∞

(
ϕ,

[
Dg

(
y∗k (·))⊤F

εk
θ∗k

(
y∗k (·))−Dg(ȳ(·))⊤ū(·)

]
p∗

k (·)
)

L2(Y0,L2(I ;Rn ))
= 0.

By repeating this argument for the different terms appearing in the adjoint equation we get
that (ȳ , p̄, ū) := (ȳ(y0), p̄(y0), ū(y0)) satisfies

− ˙̄p = Df(ȳ)⊤p̄ + [
Dg(ȳ)⊤ū

]
p̄ +Q⊤

1 Q1(ȳ − yd ), p̄(T ) =Q⊤
2 Q2

(
ȳ(T )− yT

d

)
for L -a.e. y0 ∈ Y0. Applying Gronwall’s inequality we deduce∥∥pk (y0)− p̄(y0)

∥∥
WT

≤C
(∥∥y∗k (y0)− ȳ(y0)

∥∥
WT

+∥F εk
θ∗k

(
y∗k (y0)

)− ū(y0)∥L2

)
for L -a.e. y0 ∈ Y0 and C > 0 independent of y0 and k. This yields pk → p̄ strongly in L2(Y0;WT ).
Since the weakly convergent subsequence was chosen arbitrarily in the beginning, this finishes
the proof. □
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Remark 20. If g(y(t )) = B ∈Rm×n then the statement of the previous theorem also holds without
constraints on the control (i.e. for Uad = L2(Y0;L2(I ;Rm))). In this particular case, the uniform
boundedness of F

εk
θ∗k

(y∗k ) in L2(Y0;L2(I ;Rm)) follows from

β

2

∥∥∥F
εk
θ∗k

(
y∗k

)∥∥∥2

L2
≤ c

∫
Y0

ω(y0)J
(
y∗k ,F εk

θ∗k

(
y∗k (y0)

))
dL (y0) ≤C ,

see Theorem 17. Moreover the adjoint equation does no longer depend on the control. Repeating
the arguments of the last proof yields the subsequential convergence of (y∗k ,p∗

k ,F εk
θ∗k

(y∗k )) towards

an element

(ȳ, p̄, ū) ∈ L∞(Y0;WT )2 ×L2 (
Y0;L2 (

I ;Rm))
such that (ȳ , p̄, ū) := (ȳ(y0), p̄(y0), ū(y0)) satisfy the system of state and adjoint equations as well
as (ȳ , ū) ∈ argmin (Py0 ) for L -a.e. y0 ∈ Y0. Then it only remains to argue the additional regu-
larity u ∈ L∞(Y0;L2(Y0;WT )). This is, however, a direct consequence of the first order necessary
optimality condition ū = (−1/β)B⊤p̄ for (Py0 ), see Proposition 3.

We point out that the statement of Theorem 19 holds independently of the values of the
penalty parameters γ1,γ2. If γ1,γ2 > 0 then we additionally obtain the following convergence
results for the approximate value function V ε

θ∗k
and its derivative ∂yV ε

θ∗k
along optimal state

trajectories.

Proposition 21. Let the prerequisites of Theorem 17 hold and let (y∗k ,p∗
k ,θ∗k ) denote a sequence of

minimizing triplets as described in Theorem 19. Assume that (y∗k ,p∗
k ,F εk

θ∗k
(y∗k )) converges to (ȳ, p̄, ū)

in

L2(Y0;WT )2 ×L2 (
Y0;L2 (

I ;Rm))
and γ1,γ2 > 0.

Then we also have

V
εk
θ∗k

(
y∗k

)→ V ∗(ȳ) in L2 (
Y0;L2(I )

)
, ∂yV

εk
θ∗k

(
y∗k

)→ p̄ in L2 (
Y0;L2 (

I ;Rn))
.

Proof. Due to the convergence of y∗k → ȳ in L2(Y0;L2(I ;Rn)) and F
εk
θ∗k

(y∗k ) → ū in L2(Y0;L2(I ;Rm)),

we conclude that

J•
(
y∗k ,F εk

θ∗k

(
y∗k

))→ J•(ȳ, ū) = V ∗(ȳ) in L2 (
Y0;L2(I )

)
.

Together with

lim
k →∞

∫
Y0

ω(y0)
∥∥∥V εk

θ∗k

(
y∗k (y0)

)− J•
(
y∗k (y0),F εk

(
y∗k (y0)

))∥∥∥2

L2
dL (y0) = 0,

see Theorem 17, we arrive at V
εk
θ∗k

(y∗k ) → V ∗(ȳ) in L2(Y0;L2(I )). The statement on the convergence

of ∂yV
εk
θ∗k

(y∗k ) follows similarly from the strong convergence of pk . □

8. Learning from a finite training set

We turn to analysing a discrete version of (Pε). In this case we can proceed without the state-
space constraint y ∈ Yad provided certain growth bounds on f and g are satisfied. The numerical
realization of (Pε) will always rely on such a discrete approximation. Henceforth we fix a finite
ensemble of initial conditions {y i

0 : i = 1, . . . , N } ⊂ Y0. For positive weights ωi , i = 1, . . . , N , and
ε> 0 we consider

inf
yi ,pi ∈WT ,θ∈Rε

[
N∑

i=1
ωi Jε(yi , pi ,θ)+ γε

2
∥θ∥2

Rε

]
(P N

ε )
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subject to

ẏi = f(yi )+g(yi )F ε
θ (yi ), yi (0) = y i

0

−ṗi = Df(yi )⊤pi +
[
Dg(yi )⊤F ε

θ (yi )
]

pi +Q⊤
1 Q1(yi − yd ), pi (T ) =Q⊤

2 Q2
(
yi (T )− yT

d

)
.

Throughout this section, Assumptions 1 and 4 are supposed to hold. Further ε is supposed
to be sufficiently small so that the set of admissible solutions for (P N

ε ) is nonempty, compare
Theorem 7. It will be convenient to introduce y = col(y1, . . . , yN ), and p = col(p1, . . . , pN ), which
replace the ensemble states and costates from the previous sections.

Proposition 22. Let ε> 0 be sufficiently small and let (yk ,pk ,θk ) ∈W 2N
T ×Rε denote an infimizing

sequence for (P N
ε ). If maxi ∥yk

i ∥L∞(I ;Rn ) ≤ M∞ for some M∞ > 0 independent of k ∈ N, then
Problem (P N

ε ) admits at least one minimizer (y∗,p∗,θ∗).

Proof. Since by assumption (yk ,pk ,θk ) is an infimizing sequence for (P N
ε ) and since β > 0 we

have

max
i

∥∥∥Q1 yk
i

∥∥∥2

L2
+max

i

∥∥∥F ε
θk

(
yk

i

)∥∥∥2

L2
≤CN (44)

for some CN > 0 depending on N . Moreover there holds∥∥∥ẏk
i

∥∥∥
L2

≤
∥∥∥f

(
yk

i

)∥∥∥
L2

+
∥∥∥g(yi )F ε

θk

(
yk

i

)∥∥∥
L2

≤C (f,g)M∞(1+CN )

using the uniform L∞ and L2 boundedness of yk
i and F ε

θ
(yk

i ), respectively. Thus we also
have ∥y i

k∥WT ≤ ĈN for all k ∈ N, for some ĈN > 0 which depends on N but not on k and i . The
proof can now be completed by the same steps as Theorem 16. □

Remark 23. The L∞-boundedness of the minimizing sequence yk
i in Proposition 22 can be be

ensured by additional assumptions on the dynamics of the problem. These include:

• Add an additional state constraint ∥yi∥L∞ ≤ M̂ to (P N
ε ).

• Assume that there are a1, a2, a3 > 0 such that

| f (x)| ≤ a1 +a2|x|+a3|x|2, ∥g (x)∥ ≤ a1 +a2|x| ∀ x ∈Rn ,

and that Q1 is positive definite. Then by (44) the family {yk
i } is uniformly w.r.t. i ∈ {1, . . . , n}

and k = 1, . . . bounded in L2(I ;Rn). Further we can readily verify that∥∥∥ẏk
i

∥∥∥
L1

≤
∥∥∥f

(
yk

i

)∥∥∥
L1

+
∥∥∥g

(
yk

i

)∥∥∥
L1

≤ 2a1T +a2

∥∥∥yk
i

∥∥∥
L1

+a3

∥∥∥yk
i

∥∥∥2

L2
+a2

∥∥∥yk
i

∥∥∥
L2

∥∥∥F ε
θk

(
yk

i

)∥∥∥2

L2
≤ MN

for an N -dependent bound MN > 0. Here we made use of the L2-boundedness of yk
i

and F ε
θk

(yk
i ) which follows from (44) in the proof of Proposition 22, and the assump-

tion that Q1 > 0. Consequently yk
i is uniformly bounded in W 1,1(I ;Rn) and thus also

in L∞(I ;Rn).
• Assume that f (x) = Ax −h(x) where A ∈ Rn×n and h is monotone i.e. (x,h(x))Rn ≥ 0 for

all x ∈Rn . Moreover assume that Q1 is positive definite and that

∥g (x)∥ ≤ a1 +a2|x| ∀ x ∈Rn .

In this case, testing the equation satisfied by yi with yi , and a Gronwall argument yields∣∣∣yk
i (t )

∣∣∣2 ≤CN

(∣∣∣y i
0

∣∣∣2 +
∥∥∥yk

i

∥∥∥2

L2
+

∥∥∥F ε
θk

(
yk

i

)∥∥∥2

L2

)
for some N -dependent CN > 0 and all t ∈ I . Thus, the uniform boundedness of yk

i
in L∞(I ;Rn) follows again from the L2-estimates on yk

i and F ε
θk

(yk
i ) in (44).
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The convergence result as ε→ 0+ of Theorem 19 can be transferred to the finite training set
setting as well.

Proposition 24. Let the regularisation parameters satisfy γε∥θε∥2
Rε

= O(ε). Further let εk > 0 be

a positive null sequence such that for each k ∈ N there exists a solution (yk ,pk ,θk ) ∈ W 2N
T ×Rε

to (P N
εk

). If there is M∞ > 0 with maxi ∥yk
i ∥L∞ ≤ M∞ for all k ∈N, then (yk ,pk ,F εk

θk
(yk )) admits at

least one strong accumulation point (ȳ, p̄, ū) in W 2N
T ×L2(I ;Rm)N . Each such point satisfies

(ȳi , ūi ) ∈ argmin

(
P

y i
0

β

)
, i = 1, . . . , N ,

as well as

˙̄yi = f(ȳi )+g(ȳi )ūi , ȳi (0) = y i
0

− ˙̄pi = Df(ȳi )⊤p̄i +
[
Dg(ȳi )⊤ūi

]
p̄i +Q⊤

1 Q1(ȳi − yd ), p̄i (T ) =Q⊤
2 Q2

(
ȳi (T )− yT

d

)
.

Proof. For every εk , with k sufficiently large, denote by θεk ∈Rεk the corresponding parameters
from Assumption 4, by yεk the associated ensemble solution, see Theorem 7, and by pεk the
adjoint states. For abbreviation we set yεk

i := yεk (y i
0) and pεk

i := pεk (y i
0). Then, by optimality, we

have

N∑
i=1

ωi J
(

yk
i ,F εk

θk

(
yk

i

))
≤

N∑
i=1

ωi Jε
(
yεk

i , pεk
i ,θεk

)+ γεk

2

∥∥θεk

∥∥2
Rε

. (45)

As in the proof of Theorem 17 we see that the righthandside of this inequality converges
to

∑N
i=1ωi V ∗(0, y i

0) as k → +∞. Thus it is bounded independently of k ∈ N. Similarly to Propo-
sition 22 we then conclude the existence of CN > 0 depending on N , but not on k, such that

max
i

∥∥∥Q1 yk
i

∥∥∥2

L2
+max

i

∥∥∥F ε
θk

(
yk

i

)∥∥∥2

L2
≤CN .

Utilizing the state equation this can be improved to a k-independent bound on the WT -norm
of yk

i . By a Gronwall-type argument the same can be shown for the adjoint states pk
i . Now fix

an arbitrary index i ∈ {1, . . . , N }. Summarizing the previous observations we get the uniform
boundedness of (yk

i , pk
i ,F ε

θk
(yk

i )) in W 2
T ×L2(I ;Rm) w.r.t. k, for each i = 1, . . . , N . Each of its weak

accumulation points (ȳi , p̄i , ūi ) ∈W 2
T ×L2(I ;Rm) satisfies

˙̄y = f(ȳ)+g(ȳ)ū, ȳ(0) = y0.

From this we conclude that

0 ≤
N∑

i=1
ωi V ∗

(
0, y i

0

)
≤

N∑
i=1

ωi J (ȳi , ūi ) ≤ lim
k →∞

N∑
i=1

ωi J
(

yk
i ,F εk

θk

(
yk

i

))
≤

N∑
i=1

ωi V ∗
(
0, y i

0

)
,

Since the second and third of the above inequalities also hold for each summand we conclude
that limk →∞ J (yk

i ,F εk
θk

(yk
i )) → J (ȳi , ūi ) as well as J (ȳi , ūi ) =V ∗(0, y i

0). Hence

(ȳi , ūi ) ∈ argmin

(
P

y i
0

β

)
.

The proof can now be concluded with minor adaptations to the proof of Theorem 19. □

A result analogous to that of Proposition 21 can also be obtained for Problem (P N
ε ). For the

sake of brevity we do not present the details.
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8.1. The reduced objective functional

In order to compute a solution to (P N
ε ) we will rely on gradient-based optimization methods.

For this purpose we introduce a reduced objective functional by eliminating the state and adjoint
equations in (P N

ε ). Subsequently, we characterize the derivative of the reduced functional by
means of adjoint techniques. To simplify the presentation we fix an arbitrary index i ∈ {1, . . . , N }
in the following. Moreover, for abbreviation, we define the mapping

A : WT ×Rε→B
(
WT ;L2 (

I ;Rn))
, A(y,θ) = Df(y)⊤+ [

Dg(y)⊤F ε
θ (y)

]
.

Using this notation, the adjoint equation in (P N
ε ) can be expressed compactly as

−ṗi = A(yi ,θ)pi +Q⊤
1 Q1(yi − yd ), pi (T ) =Q⊤

2 Q2
(
yi (T )− yT

d

)
.

First, we argue the existence of parameter-to-state operators for the adjoint and the state equa-
tion.

Lemma 25. Define Gi : WT ×WT ×Rε→ L2(I ;Rn)×L2(I ;Rn)×Rn ×Rn by

Gi (y, p,θ) =


ẏ − f(y)−g(y)F ε

θ
(y)

−ṗ − A(y,θ)p −Q⊤
1 Q1(y − yd )

y(0)− y i
0

p(T )−Q⊤
2 Q2

(
y(T )− yT

d

)
 .

Let (ỹ , p̃, θ̃) ∈WT ×WT ×Rε satisfy G(ỹ , p̃, θ̃) = 0. Then there exists a neighbourhood Ni (ỹ)×Ni (p̃)×
Ni (θ̃) as well as C 1-mappings Yi : Ni (θ̃) →Ni (ỹ) ⊂WT , Pi : Ni (θ̃) →Ni (p̃) ⊂WT such that

Gi (Yi (θ),Pi (θ),θ) = 0 ∀ θ ∈N (θ̃).

Given yi := Yi (θ) and pi := Pi (θ), the Fréchet derivatives of Yi and Pi at θ ∈Ni (θ̃), in direction δθ ∈
Rε, denoted by δYi := Y ′

i (θ)(δθ), δPi := P ′
i (θ)(δθ) satisfy

˙δYi −A(yi ,θ)⊤δYi −g(yi )D yF ε
θ (yi )δY

= g(yi )DθF
ε
θ (yi )δθ,− ˙δPi −A(yi ,θ)δPi

= [
D y A(yi ,θ)δYi

]
pi +Q1Q1δYi +

[
∂θA(yi ,θ)δθ

]
pi ,δYi (0)

= 0, δPi (T ) =Q⊤
2 Q2δYi (T ).

Proof. This is a direct consequence of the implicit function theorem applied to G noting that the
directional derivatives satisfy(

∂yGi (y, p,θ) ∂pGi (y, p,θ)
)(δY
δP

)
=−∂θGi (y, p,θ)δθ.

□

Now consider an admissible point (ỹ, p̃,θ) ∈ W 2N
T × Rε for (P N

ε ). For every i = 1, . . . , N ,
let Ni (θ̃) and Yi ,Pi denote the corresponding neighbourhoods and operators from Lemma 25.
Setting N (θ̃) =⋂N

i=1 Ni (θ̃) define the reduced objective functional

JN : N (θ̃) → [0,+∞), JN (θ) =
N∑

i=i
ωi Jε (Yi (θ),Pi (θ),θ)+ γε

2
∥θ∥2

Rε
, (46)

and set

Φi (t ) =
∫ t

0

(
V ε
θ (s, yi (s))− Js (yi ,u)

)
ds.
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Proposition 26. The functional JN from (46) is at least of class C 1 on N (θ̃). Given θ ∈ N (θ̃),
set yi := Yi (θ), pi := Pi (θ) as well as δYi := Y ′

i (θ)(δθ), δPi := P ′
i (θ)(δθ). The directional derivative

of JN at θ in the direction of δθ ∈Rε is given by

J ′
N (θ)(δθ) =

N∑
i=1

ωi

(
(ŷi ,δYi )L2 + (

ŷT
i ,δYi (T )

)
Rn +

(
p̂i ,δPi

)
L2 +

(
θ̂i ,δθ

)
Rε

)
+γε(θ,δθ)Rε

with

ŷi = (1−γ1Φi )Q1Q1(yi − yd )+β(1−γ1Φi )D yF ε
θ (yi )⊤F ε

θ (yi )

+γ1
(
V ε
θ (t , yi )− J•

(
yi ,F ε

θ (yi )
))
∂yV ε

θ (yi )+γ2D y yV ε
θ (yi )

(
∂yV ε

θ (yi )−pi
)

,

and

ŷT
i =α(

1−γ1Φi (0)
)

Q2Q2
(
yi (T )− yT

d

)
,

as well as

p̂i = γ2
(
pi −∂yV ε

θ (yi )
)

,

and

θ̂i = γ1

∫ T

0
DθV ε

θ (t , yi (t ))⊤
(
V ε
θ (t , yi (t ))− Jt

(
yi ,F ε

θ (yi )
))

dt

+
∫ T

0

[
β

(
1−γ1Φi (t )

)
DθF ε

θ (t , yi (t ))⊤F ε
θ (t , yi (t ))+γ2D yθV ε

θ (t , yi (t ))⊤
(
∂y V ε

θ (t , yi (t )
)−pi (t ))

]
dt .

Proof. The regularity of JN follows immediately from Lemma 25 and the chain rule. In order to
compute the directional derivative we abbreviate

F1(y,u,θ) = γ1

2

∫ T

0

∣∣V ε
θ (t , y(t ))− Jt (y,u)

∣∣2 dt ,

F2(y, p,θ) = γ2

2

∫ T

0

∣∣∂y V ε
θ (t , y(t ))−p(t )

∣∣2 dt

in the following. Thus we have

Jε(Yi (θ),Pi (θ),θ) = J
(
Yi (θ),F ε

θ (Yi (θ))
)+F1

(
Yi (θ),F ε

θ (Yi (θ)),θ
)+F2 (Yi (θ),Pi (θ),θ)

=G1(θ)+G2(θ)+G3(θ).

We readily verify

G ′
1(θ)(δθ) = (

Q1Q1(yi − yd ),δYi
)

L2 +β
(
D yF ε

θ (yi )⊤F ε
θ (yi ),δYi

)
L2

+β(
DθF

ε
θ (yi )⊤F ε

θ (yi ),δθ
)
Rε

+ (
Q2Q2

(
yi (T )− yT

d

)
,δYi (T )

)
Rn .

Recalling the definition ofΦi we get

G ′
2(θ)(δθ) = γ1 (E1 +E2 +E3 +E4) ,

where

E1 =
((

V ε
θ (yi )−J•

(
yi ,F ε

θ (yi )
))
∂yV ε

θ (yi ),δYi
)

L2 +
(
DθV

ε
θ (yi )⊤

(
V ε
θ (yi )−J•

(
yi ,F ε

θ (yi )
))

,δθ
)
Rε

= ((
V ε
θ (yi )−J•

(
yi ,F ε

θ (yi )
))
∂yV ε

θ (t , yi ),δYi
)

L2

+
(∫ T

0
DθV ε

θ

(
t , yi (t )

)⊤ (
V ε
θ (t , yi (t ))− Jt

(
yi ,F ε

θ (yi )
))

dt ,δθ

)
Rε

,
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E2 =−
∫ T

0

(
V ε
θ (t , y(t ))− Jt (y,u)

)
(∫ T

t

(
Q1Q1(y(s)− yd (s)),δy(s)

)
ds + (

Q2Q2
(
y(T )− yT

d

)
,δy(T )

)
Rn

)
dt

=−(
Φi Q1Q1(y − yd ),δy

)
L2 −Φi (0)

(
Q2Q2(y(T )− yT

d

)
,δy(T ))Rn ,

as well as

E3 =−
∫ T

0

(
V ε
θ (t , y(t ))− Jt (y,u)

)(
β

∫ T

t

(
D y F ε

θ (s, yi (s))⊤F ε
θ (s, yi (s)),δYi (s)

)
Rn ds

)
dt

=−β(
Φi D yF ε

θ (yi )⊤F ε
θ (yi ),δYi

)
L2 ,

and

E4 =−
∫ T

0

(
V ε
θ (t , y(t ))− Jt (y,u)

)(
β

∫ T

t

(
DθF ε

θ

(
s, yi (s)

)⊤ F ε
θ (s, yi (s)),δθ

)
Rε

ds

)
dt

=−β
(∫ T

0
Φi (t )DθF ε

θ (t , yi (t ))⊤F ε
θ (t , yi (t )) dt ,δθ

)
Rε

,

by means of partial integration. Finally we calculate

G ′
3(θ)(δθ) = γ2

(
D y yV ε

θ (yi )
(
∂yV ε

θ (yi )−pi
)

,δYi
)

L2 −γ2
(
∂yV ε

θ (yi )−pi ,δPi
)

L2

+γ2

(∫ T

0
D yθV ε

θ (t , yi (t ))⊤
(
∂y V ε

θ (t , yi (t ))−pi (t )
)

dt ,δθ

)
Rε

.

Summarizing the previous observations, we arrive at the claimed characterization. □

Applying a gradient method to (P N
ε ) requires the computation of the gradient ∇JN (θ) ∈ Rε

which satisfies

J ′
N (θ)(δθ) = (∇JN (θ),δθ

)
Rε

∀ δθ ∈Rε.

This can be done by computing J ′
N (θ)(e j ) for the canonical basis {e j }Nε

j=1 ⊂ Rε. However, such
reasoning leads to the necessity to solve 2dim(Rε)N additional ODEs in order to compute the
sensitivities Y ′

i (θ)(e j ) and P ′
i (θ)(e j ), respectively. Introducing suitable costate equations, this can

be reduced to 2N additional equation solves.

Lemma 27. Let ŷi , ŷT
i , p̂i as well as δYi ,δPi be defined as in Proposition 26. Then there holds(

ŷi ,δYi
)

L2 +
(
ŷT

i ,δYi (T )
)
Rn +

(
p̂i ,δP

)
L2 =

(
DθF

ε
θ (yi )⊤

(
g(yi )⊤ζi +

[
Dg(yi )κi

]⊤ pi

)
,δθ

)
Rε

where ζi ,κi ∈WT satisfy

−ζ̇i = A(yi ,θ)ζ+D yF ε
θ (yi )⊤g(yi )⊤ζi +

[
D y A(yi ,θ)⊤p

]
κi +Q⊤

1 Q1κi + ŷi

κ̇i = A(yi ,θ)⊤κi + p̂i ,

ζi (T ) =Q⊤
2 Q2κ(T )+ ŷT

i , κi (0) = 0.

Proof. For the sake of readability, we drop the subscript i in the following. By partial integration
and Lemma 25 we obtain(

p̂,δP
)

L2 =
(
κ̇−A(y,θ)⊤κ,δP

)= (−δ̇P −A(y,θ)δP,κ
)+ (

Q⊤
2 Q2δY (T ),κ(T )

)
Rn

= ([
D y A(y,θ)δY

]
p +Q⊤

1 Q1δY + [
∂θA(y,θ)δθ

]
p,κ

)+ (
δY (T ),ζ(T )− ŷT

i

)
Rn
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and

(ŷ i ,δY )L2 + (
ŷT

i ,δY (T )
)
Rn

= (−ζ̇−A(y,θ)ζ−D yF ε
θ (y)⊤g(y)⊤ζ− [

D y A(y,θ)⊤p
]
κ−Q⊤

1 Q1κ,δY
)

L2 +
(
ŷT

i ,δY (T )
)
Rn

= (
˙δY −A(y,θ)⊤δY −g(y)D yF ε

θ (y)δY ,ζ
)

L2

− ([
D y A(y,θ)⊤p

]
κ+Q⊤

1 Q1κ,δY
)

L2 − (δY (T ),ζ(T ))Rn

= (
g(y)DθF

ε
θ (y)δθ,ζ

)
L2 −

([
D y A(y,θ)⊤p

]
κ+Q⊤

1 Q1κ,δY
)

L2 −
(
δY (T ),ζ(T )− ŷT

i

)
Rn .

Adding both equations finally yields(
ŷ i ,δY

)
L2 +

(
ŷT

i ,δY (T )
)
Rn +

(
p1,δP

)
L2 =

(
g(y)DθF

ε
θ (y)δθ,ζ

)
L2 +

([
∂θA(y,θ)δθ

]
p,κ

)
L2

= (
DθF

ε
θ (y)⊤

(
g(y)⊤ζ+ [Dg(y)κ]⊤p

)
,δθ

)
Rε

which ends the proof of Lemma 27. □

We arrive at the following characterization of the gradient ∇JN (θ).

Theorem 28. Let yi , pi ,ζi ,κi ∈ WT , θ̂i ∈ Rε be defined as in Proposition 26 and Lemma 27. The
gradient of JN at θ is given by

∇JN (θ) =
N∑

i=1
ωi

(
DθF

ε
θ (yi )⊤

(
g(yi )⊤ζi +

[
Dg(yi )κi

]⊤ pi

)
+ θ̂i

)
+γεθ.

9. Numerical example

We finish this paper by applying the proposed learning approach to one particular instance
of Problem (Py0 ). Setting I = (0,T ) and Ω = (0,2π), we consider the parabolic bilinear optimal
control problem

min
Y ∈L2(I×Ω),u∈L2(I ;R3)

[
1

2

∫
I
∥Y (t )−Yd (t )∥2

L2(Ω) +
β

2
|u(t )|2

R3 dt

]
+ α

2
∥Y (T )−Yd (T )∥2

L2(Ω)

subject to

∂t Y −△Y + (
u1χ1 +u2χ2 +u3χ3

)
Y = 0, (47)

as well as

Y (t , x) = 0 on I ×∂Ω, Y (0, x) =Y0(x) onΩ.

Hereα> 0,β> 0, and Yd denotes a given desired state. The dynamics of this infinite-dimensional
system can be influenced by choosing a time-dependent three-dimensional control input u ∈
L2(I ;R3) which acts on the subdomains Ω1 = (0.5,1), Ω2 = (2,2.5) and Ω3 = (4,4.5), respectively.
The associated characteristic functions are denoted by χi , i = 1, . . . , 3.

In order to fit this problem into the setting of the current manuscript, let {λi ,ϕi } ∈ R+×L2(Ω)
denote the first n ∈N normalized eigenpairs of the Dirichlet Laplacian on Ω. Approximating the
state dynamics Y as well as the desired state by

Y (t , x) ≈
n∑

i=1
Yi (t )ϕi (t ), Yd (t , x) ≈

n∑
i=1

Y i
d (t )ϕi (t ),

we end up with

min
Y ∈L2(I ;R10),u∈L2(I ;R3)

[
1

2

∫
I
|Y (t )−Yd (t )|2 + β

2
|u(t )|2

R3 dt + α

2
|Y (T )−Yd (T )|2

R10

]
(48)
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subject to

Ẏ (t )+ AY (t )+
3∑

i=1
ui Mi Y (t ) = 0, Y (0) = Y0.

where (Y0)i = (Y0,ϕi )L2 , i = 1, . . . , n, and the symmetric matrices A, Mi ∈Rn×n are given by

A j k =
{

0 j ̸= k

λ j else
, (Mi ) j k =

∫
Ω
φ jφkχi (x) dx, i = 1,2,3, j ,k = 1, . . . ,n.

Note that by choosing a spectral technique to approximate the infinite dimensional system (47)
by a finite dimensional one, we have done justice to the fact that grid based techniques would
rapidly lead to systems of dimensions which are challenging or even impossible. Special tech-
niques, as for instance tensor train methods, would then become essential.

9.1. Learning & validation setup

In the following, we determine an approximate optimal feedback law for (48) by applying the
learning approach detailed in Section 4. The parametrized model V ε

θ
for the value function is

given by realizations of residual networks, as described in Section 5.1, with Lε = 2 layers, arch(θ) =
(11,60,1) and activation function σ given by

σ(x) = sin(x)+cos(x).

This yields a total of 1440 trainable parameters. We emphasize that the architecture as well as
the activation function were chosen based on numerical testing. In particular, the present tests
should not be mistaken as a quantitative survey but as a proof of concept which highlights the
potential of learned feedbacks for optimal control and puts a focus on the role played by the
penalty parameters γ1 and γ2.

Given a fixed reference vector Ȳ0, we randomly generate a set y0 of 130 initial conditions by
sampling uniformly from the closure of B1(Ȳ0), Subsequently, these are split into a training set yt

0
of N = 30 initial conditions, which is used in the learning problem (P N

ε ) together with uniform
weights w j = 1/N , and a validation set yv

0 = y0\yT
0 which we later utilize to assess the performance

of the obtained feedback.
In order to obtain a candidate for the optimal network parameters θ∗ε , a Barzilai-Borwein

method [23], is applied to the learning problems (P N
ε ), based on the reduced objective functional

introduced in (46) as well as the characterization of its gradient in Theorem 28. For every Y0 ∈ yt
0,

this approach entails the computation of the state Y := Yθ(Y0) and the adjoint state P := Pθ(Y0)
which satisfy

Ẏ (t )+
(

A+
3∑

i=1
F ε
θ (t ,Y (t ))i Mi

)
Y (t ) = 0, Y (0) = Y0

−Ṗ (t )+
(

A+
3∑

i=1
F ε
θ (t ,Y (t ))i Mi

)
P (t ) = Y (t )−YD (t ), P (T ) = Y (T )−YD (T )

(49)

as well as the costates K := Kθ(Y0) and Z := Zθ(Y0) with

K̇ (t )+
(

A+
3∑

i=1
F ε
θ (t ,Y (t ))i Mi

)
K (t ) = P̂ (t )
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and

− Ż (t )+
A+

3∑
i=1

F ε
θ (t ,Y (t ))i Mi +D y F ε

θ (t ,Y (t ))⊤
Y j (t )⊤M1

Y j (t )⊤M2

Y j (t )⊤M3

 Z (t )

=−D y F ε
θ (t ,Y (t ))⊤

Y (t )⊤M1

Y (t )⊤M2

Y (t )⊤M3

 Z (t )+K (t )+ Ŷ (t )

equipped with the boundary conditions

K (0) = 0, Z (T ) =αK (T )+ Ŷ T
j

where Ŷ , Ŷ T and P̂ are defined in analogy to Proposition 26. Note that this system is not fully
coupled, i.e. in practice, we first solve the nonlinear closed-loop equation using a Radau time-
stepping scheme and then, successively treat the adjoint and costate equations by an implicit
Euler method. This can be done in parallel for various initial conditions to achieve additional
speed-up. Moreover, the adjoint state P and costate K only need to be computed if γ2 > 0. The
gradient of the reduced objective functional JN in (P N

ε ) at an admissible θ is then obtained as

1

30

∑
Y ∈yt

0

∫
I

(
DθF ε

θ (t ,Yθ(Y0)(t ))⊤
(
Bθ

Y (t )Zθ(Y0)(t )+Bθ
K (t )Pθ(Y0)(t )

)
dt + θ̂(Y0)

)
.

where we set

Bθ
Y (t ) :=

Yθ(Y0)(t )⊤M1

Yθ(Y0)(t )⊤M2

Yθ(Y0)(t )⊤M3

 , Bθ
K (t ) :=

Kθ(Y0)(t )⊤M1

Kθ(Y0)(t )⊤M2

Kθ(Y0)(t )⊤M3

 ,

integration has to be understood componentwise and θ̂(Y0) is as in Proposition 26.
Once the network is determined, we compute the state Yθ(Y0) and adjoint Pθ(Y0) for ev-

ery Y0 ∈ y0 from (49) and set Uθ(Y0) := F ε

θ̄
(Yθ(Y0)). Subsequently we determine a stationary

point (Ȳ (Y0),Ū (Y0)) of (48), Y0 ∈ y0, by applying a Barzilai–Borwein gradient method to its
control-reduced formulation. The associated adjoint state is denoted by P̄ (Y0). At this point,
it should be stressed that both, the open loop as well as the feedback learning problem, are
nonconvex. As a consequence, we cannot ensure global optimality of the computed stationary
points and, in particular, both methods might provide different results. For the present exam-
ple, open loop and learned feedback controls are comparable. Moreover, for every Y0 ∈ y0, we
have J (Ȳ (Y0),Ū (Y0)) ≥ J (Yθ(Y0),Uθ(Y0)). In order to assess the performance of open loop and
feedback controls, let Y ad

0 ⊂ y0 be either Y ad
0 = yt

0 or Y ad
0 = yv

0 and consider the relative differ-
ence between the averaged objective functional values:

ErrJ :=
∑

Y0 ∈Yad
J (Yθ(Y0),Uθ(Y0))−∑

Y0 ∈Yad
J
(
Ȳ (Y0),Ū (Y0)

)∑
Y0 ∈Yad

J
(
Ȳ (Y0),Ū (Y0)

)
as well as the associated normalized mean squared error of J (Yθ(·),Uθ(·)):

ErrJ :=
∑

Y0 ∈Yad

(
J (Yθ(Y0),Uθ(Y0))− J

(
Ȳ (Y0),Ū (Y0)

))2∑
Y0 ∈Yad

J
(
Ȳ (Y0),Ū (Y0)

)2 .

The normalized mean-squared errors of the state, ErrY , adjoint, ErrP , and of the control, ErrU ,
are defined analogously. Moreover, to quantify the influence of the penalty parameters γ1 and γ2,
we define

ErrV :=
∑

Y0 ∈Yad

∫
I

∣∣V ε
θ

(t ,Yθ(Y0)(t ))− Jt (Yθ(Y0),Uθ(Y0)(t ))
∣∣2 dt∑

Y0 ∈Yad

∫
I |Jt (Yθ(Y0),Uθ(Y0)(t ))|2 dt

.
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as well as

Err∂V :=
∑

Y0 ∈Yad

∫
I

∣∣∂y V ε
θ

(t ,Yθ(Y0)(t ))−Pθ(Y0)(t )
∣∣2 dt∑

Y0 ∈Yad

∫
I |Pθ(Y0)(t )|2 dt

.

For Y ad
0 = Y t

0 , these terms correspond to the relative sizes of the additional penalties in (P N
ε ).

Finally, we also want to compare V ε
θ

with the optimal value function V ∗. Of course, V ∗ can neither
be given analytically nor can it be computed exactly. As a remedy, we recall that if V ∗ is sufficiently
regular and (Ȳ (Y0),Ū (Y0)) is a minimizing pair of (48) with adjoint state P̄ (Y0), we have

V ∗ (
t , Ȳ (Y0)(t )

)= Jt
(
Ȳ (Y0),Ū (Y0)

)
as well as ∂y V ∗ (

t , Ȳ (Y0)(t )
)= P̄ (Y0)(t )

for all t ∈ I . As a consequence, setting

d
(
V ∗,V ε

θ

)= ∑
Y0 ∈Yad

∫ T
0

∣∣V ε
θ

(
t , Ȳ (Y0)(t )

)− Jt
(
Ȳ (Y0),Ū (Y0)

)∣∣2
dt∑

Y0 ∈Yad

∫ T
0

∣∣Jt
(
Ȳ (Y0),Ū (Y0)

)∣∣2
dt

.

as well as

d
(
∂V ∗,∂V ε

θ

)= ∑
Y0 ∈Yad

∫ T
0

∣∣∂y V ε
θ

(
t , Ȳ (Y0)(t )

)− P̄ (Y0)(t )
∣∣2

dt∑
Y0 ∈Yad

∫ T
0

∣∣P̄ (Y0)(t )
∣∣2

dt
.

provides a suitable “distance” for the comparison of V ∗ and V θ
ε .

9.2. Validation results

As a concrete example, we set T = 2, β = 0.01, α = 0.25 and Yd (t , x) = x2/10, i.e., we try to steer
the system towards a parabola. Note that there is no control input u ∈ L2(I ;R3) such that the
corresponding solution Y of the PDE (47) satisfies Y (t ) = Yd . The parabolic binlinear control
problem is approximated using n = 10 eigenfunctions. All computations were carried out in
Matlab 2019 on a notebook with 32 GB RAM and an Intel®Core™ i7-10870H CPU@2.20 GHz.

In order to compute an approximately optimal feedback law for this problem, we solve (P N
ε )

for various penalty parameter configurations γ1,γ2 ∈ {0,0.1,1}. The resulting normalized errors
can be found in Table 1, for Y ad

0 = yt
0, and Table 2, for Y ad

0 = yv
0 . Comparing their individual

entries, we observe that there is (almost) no difference in performance between the training
and the validation sets. This means that, while the utilized networks are rather simple and only
comprise a small number of trainable parameters, the corresponding learned feedback controls
generalize well to initial conditions which are not contained in the training set.

Indeed, on the one hand all computed networks provide feedback controls which perform
similarly to their open loop counterparts. This is manifested in very small averaged errors for
the objective functional, i.e. ErrJ and ErrJ , the states and adjoint states, ErrY and ErrP , as well
as the controls, ErrU . These start to (slowly) deteriorate as γ1 and/or γ2 grow. However, cf. the
explanation in Section 4, this is expected: for γ1 > 0 and/or γ2 > 0, the learned feedback has to
strike a balance between minimizing J (Yθ(·),Uθ(·)) and keeping the penalty terms small, hence
the slightly larger error.

On the other hand, the picture looks different once we consider the errors associated to the
approximation of the value function, i.e., ErrV , Err∂V as well as d(∂V ∗,∂V ε

θ
) and d(∂V ∗,∂V ε

θ
). Here

γ1 > 0 and/or γ2 > 0 have a significant influence on d(V ∗,V ε
θ

) and d(∂V ∗,∂V ε
θ

) while the other
normalized mean squared errors remain relatively small. Moreover, we have ErrV ≈ d(V ∗,V ε

θ
)

and Err∂V ≈ d(∂V ∗,∂V ε
θ

) on the test as well as on the validation set. Hence, large values for
these terms are a reliable indicator for structural differences between V ε

θ
and V ∗ and/or ∂y V ε

θ
and ∂y V ∗, respectively.
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Now, while γ1 = γ2 = 0 provides a very good approximation to the open loop optimal control,
it performs the worst in terms of approximating the optimal value function and its derivative.
This is related to two observations. First, in this case, the learning problem (P N

ε ) only depends
on the derivative ∂y V θ

ε but not on the value function V ε
θ

. Since primitives are not unique,
approximating V ∗ by V ε

θ
is unlikely. Second, due to the absence of V ε

θ
in the problem, some of

the parameters in the model are not trainable. In fact, for γ1 = γ2 = 0, there holds ∂W12JN (θ) = 0
for every admissible θ.

Once we increase γ1 and γ2, this is no longer the case. Hence, we observe rapid decrease
for d(V ∗,V ε

θ
) and d(∂V ∗,∂V ε

θ
). Most remarkably, the improvement for both is, to some extend,

already visible for γ1 > 0 and γ2 = 0. In this setting, applying the gradient method neither requires
computing the adjoint state P nor the costate K which limits the cost of every gradient step
to 2N = 60 ODE solve. Quite the contrary, increasing γ2 > 0 but keeping γ1 = 0 fixed, there is no
improvement for d( V ∗,V ε

θ
). This further backs up our reasoning given for the case of γ1 = γ2 = 0.

Consequently, the computed results indicate that the best balance between finding an optimal
control and approximating the value function is achieved by a careful choice of γ1,γ2 > 0. More-
over, they highlight two important points: First, the presented learning approach indeed allows
to compute semiglobal optimal feedback laws F ε

θ
for higher dimensional problems and, thus,

to some extent, alleviates the curse of dimensionality. Second, incorporating additional terms
into the learning problem penalizing the violation of the dynamic programming principles (15),
allows to compute a good approximation V ε

θ
of the optimal value function on the fly. As stated

initially, the present example should be understood as a proof of concept and, following these
first promising results, we believe that this approach to feedback learning deserves further inves-
tigations, both, from the theoretical and the numerical side. For example, it would be interesting
to explore systematic ways of choosing the penalty parameters γ1,γ2. However, this goes beyond
the scope of the current paper and is left for future work.

Table 1. Results on training set i.e. Y ad
0 = yt

0.

Penalty ErrJ ErrY ErrP ErrU

γ1 = 0,γ2 = 0 0.15% 0.04% 0.12% 2.4%

γ1 = 0.1,γ2 = 0.1 0.36% 0.1% 0.24% 5.5%

γ1 = 0.1,γ2 = 0 0.29% 0.1% 0.85% 4.4%

γ1 = 1,γ2 = 1 0.64% 0.25% 1% 8.65%

γ1 = 0,γ2 = 1 0.1% 0.05% 0.26% 2.1%

Penalty ErrJ ErrV Err∂V d(V ε
θ

;V ∗) d(∂y V ε
θ

;∂y V ∗)

γ1 = 0,γ2 = 0 0.0003% 79% 33% 78.8% 33.5%

γ1 = 0.1,γ2 = 0.1 0.001% 0.03% 7.4% 0.03% 7%

γ1 = 0.1,γ2 = 0 0.001% 0.02% 12.5% 0.02% 12.1%

γ1 = 1,γ2 = 1 0.005% 0.007% 4.5% 0.01% 3.5%

γ1 = 0,γ2 = 1 0.003% 88.8% 6.4% 88.5% 6.4%
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Table 2. Results on validation set i.e. Y ad
0 = yv

0 .

Penalty ErrJ ErrY ErrP ErrU

γ1 = 0,γ2 = 0 0.23% 0.06% 0.57% 4.42%

γ1 = 0.1,γ2 = 0.1 0.51% 0.15% 1.1% 9.2%

γ1 = 0.1,γ2 = 0 0.47% 0.16% 2.8% 8.7%

γ1 = 1,γ2 = 1 0.85% 0.35% 6% 13.5%

γ1 = 0,γ2 = 1 0.25% 0.1% 1.3% 4.8%

Penalty ErrJ ErrV Err∂V d(V ε
θ

;V ∗) d(∂y V ε
θ

;∂y V ∗)

γ1 = 0,γ2 = 0 0.002% 78.7% 33.6% 78.6% 33.9%

γ1 = 0.1,γ2 = 0.1 0.007% 0.03% 8.9% 0.03% 7.9%

γ1 = 0.1,γ2 = 0 0.008% 0.02% 15.1% 0.02% 13.1%

γ1 = 1,γ2 = 1 0.02% 0.009% 9.8% 0.01% 4.2%

γ1 = 0,γ2 = 1 0.002% 88% 8.6% 88% 7.1%

Appendix A. Condition (24)

Here we address condition (24). Define Nϵ = ⌈ 2M̂
ε ⌉, M̃ := εNε and introduce the equidistant grid

G = {−M̃ , (1 − Nε)ε, . . . , −ε,0,ε, . . . , (Nε − 1)ε, M̃ }. Next endow the hypercube [−M̃ , M̃ ]n+1 with

the (n + 1)− dimensional product of the grid G . These grid points define {Qi }(2Nε)n+1

i=1 closed
subhypercubes of dimension εn whose union covers K̄ = [0,T ]× B̄2M̃ (0).

We extend this n + 1-dimensional grid by adding k ≥ ⌈ 1
2

p
n⌉ + 1 layers (again all of dimen-

sion εn), to the surfaces of the preexisting grid, resulting in Ñε = (2Nε+2k)n+1 hypercubes whose
union covers [−M̃ − kε, M̃ + kε]n+1. The subhypercubes are ordered in such a manner that the

interiors ones {Qi }(2Nε+2(k−1))n+1

i=1 are assembled first and the ones with a boundary face

(2Nε+2k)n+1

{Qi }
i=(2Nε+2(k−1)+1)n+1

come last. The set of indices corresponding to interior hypercubes are denoted by I , those to
boundary hypercubes by F .

Next we introduce a staggered grid and place a node xi = (ti , yi ) at the barycenter of each of
the Qi , i = 1, . . . , (2Nε+2k)n+1. We shall use the standard mollifier of radius rε defined by

ψ(x) =
 exp

(
1

| x
rε

|2−1

)
, for|x| ≤ rε

0, for|x| ≤ rε,

where rε = ε( 1
2

p
n + .1). Note that by adding .1 in the previous expression the cube [− ε

2 , ε2 ]n

is contained in the interior of the support of psi . Finally we introduce ψ j (x) = ψ(x − x j ), for
j ∈I ∪F and

ϕ j =
ψ j∑

i ∈I ∪F ψi
, for j ∈I .

Let us deduce the following properties:

(i) For each j ∈I ∪F we have suppψ j = K̄ j where K j = {x : |x −x j | < rε}.
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(ii) By construction there exists m such that card{ j : ψ j (x) ̸= 0} ≤ m, ∀ x ∈ Rn+1, and ∀
j ∈I ∪F , for each ε ∈ (0,ε0].

(iii) For each j ∈I the denominator in the definition ofϕ j is different from zero. Henceϕ j is
well-defined with suppϕ j = K̄ j for j ∈I and ϕ j : Rn+1 → [0,1], and it is C ∞ smooth.

(iv) K̄ ⊂⋃
j ∈I Q j ⊂⋃

j ∈I K j .
(v) card{ j :ϕ j (x) ̸= 0} ≤m, ∀ x ∈Rn+1, and ∀ j ∈I , for each ε ∈ (0,ε0].

(vi) Due to the choice of rε the functionsψ are uniformly bounded from below on Q j for each
j , independent of ε ∈ (0,ε0]. Moreover due to the boundedness ofψ and by the definition
of m, there exists ν> 0 such that∑

i ∈I ∪F

ψi (x) ≥ ν,∀ x ∈Q j , with j ∈I ∪F ,

and thus in particular
∑

i ∈I ∪F ψi (x) ≥ ν,∀ x ∈ K̄ .
(vii)

supp ϕ j ∩ K̄ =; ∀ j ∈F .

This is a consequence of the fact that for j ∈F we have di st (x j ,∂([−M̃ , M̃ ]n)) = ε[(k−1)+
1
2 ] and thus di st (∂K j ,∂([−M̃ , M̃ ]n)) ≤ ε[(k−1)+ 1

2 −rε] = k− 1
2 (1+p

n)−.1 > ε(k−1− 1
2

p
n)

> 0.
(viii)

∑
i ∈I ϕi = 1, ∀ x ∈ K̄ . This is a consequence of (vii) and the definition of ϕ j .

(ix) ∥D jϕi∥C (K̄i∩K̄ ) ≤ µ̄ε− j , for some µ̄ independent of i ∈I , and j ∈ {1,2}.

Once we have verified (i x), all the properties demanded in (24) on the partition of unity {ϕi }i∈I

subordinate to Ki will be satisfied.
In the following calculations we repeatedly use that ∇∑

i∈I ϕi (x) = 0 for x ∈ K̄ . This follows
from (viii). As short calculation shows that for each j ∈I , each x ∈ K̄ , and k,ℓ ∈ {1, . . . , n}

∂xkϕ j (x) = ∂xkψ j (x)∑
i ∈I ψi (x)

, ∂xℓ∂xkϕ j (x) = ∂xℓ∂xkϕ j (x)
∑

i ∈I ψi (x)−ψ j
∑

i ∈I ∂xℓ∂xkψi (x)(∑
i ∈I ψi (x)

)2 ,

where we use that ∂xk

∑
i ∈I ψi (x) = 0 for x ∈ K̄ .

To obtain the required estimates we introduce for η> 0

ψη(x) =

 exp

(
1∣∣∣ x

η

∣∣∣2−1

)
, for|x| ≤ η

0, for|x| ≤ η.

Then we have

∂xkψη =−ψη
2xk

η2

(∣∣∣ x
η

∣∣∣2 −1

)2 ,

(
∂xk

)2
ψη =

2ψη

η2

(∣∣∣ x
η

∣∣∣2 −1

)4

[
2x2

k

η2 −
(∣∣∣∣ x

η

∣∣∣∣2

−1

)2

+ 4x2
k

η2

(∣∣∣∣ x

η

∣∣∣∣2

−1

)]
,

and for k ̸= ℓ

∂xℓ∂xkψη =
2ψη xℓxk

η2

(∣∣∣ x
η

∣∣∣2 −1

)4

[
2

η2 + 4

η2

(∣∣∣∣ x

η

∣∣∣∣2

−1

)]
= 2ψη xℓxk

η2

(∣∣∣ x
η

∣∣∣2 −1

)4

[−2

η2 + 4

η4 |x|2
]

.

Considering the behavior of ∂xkψη and ∂xℓ∂xkψη separately on the ball B η
2

(0) and its complement

in Bη(0), it follows that these functions behave like O( 1
η ) and O( 1

η2 ). Applying these estimates in
the expressions for the first and second derivatives for ϕ j and using the lower bound established
in (vi ) we obtain (i x).
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Appendix B. Perturbation results

Here we collect pertinent existence and stability results for dynamical systems. The constant M̂(0)
appearing below relates to Assumption (A.2).

Proposition 29. Let y ∈ C (Y0;WT ), y(y0) ∈ Yad for all y0 ∈ Y0, δv ∈ C (Y0;L2(I ;Rn)), as
well as δy0 ∈ C (Y0;Rn) be given. Moreover let A : I × Rn → Rn×n be continuous, and denote
by A : L∞(I ;Rn) →B(L2(I ;Rn)) the induced Nemitsky operator i.e.

A(y)δy = A(t , y(t ))δy(t ) ∀ δy ∈ L2 (
I ;Rn)

, y ∈ L∞ (
I ;Rn)

and a.e. t ∈ I . Then there is δy ∈C (Y0;WT ) such that

δ̇y = A(y)δy + v, δy(0) = δy0 (B1)

for y := y(y0), δv := δv(y0), δy0 := δy(y0) and all y0 ∈ Y0. It satisfies∥∥δy(y0)
∥∥

WT
≤C

(∥∥δv(y0)
∥∥

L2 +
∣∣δy0(y0)

∣∣) (B2)

for some C > 0 depending continuously on max(τ,y)∈I×B̄2M̂(0)
∥A(τ, y)∥Rn×n , and independent of

y0 ∈ Y0.

Proof. Let y0 ∈ Y0 be arbitrary but fixed. Then there is a unique solution δy ∈ WT to (B1) which
satisfies

1

2

∣∣δy(t )
∣∣2 = 1

2

∣∣δy(0)
∣∣2 +

∫ t

0

(
δ̇y(s),δ(y)(s)

)
ds

= 1

2
|δy0|2 +

∫ t

0

(
δy(s), A(t , y(t ))δ(y)(s)

)+ (
δv(s),δy(s)

)
ds

≤ 1

2
|δy0|2 + 1

2
|δv |2L2 +

1

2

∫ t

0

(
2 max

(τ,y)∈I×B̄2M̂(0)

∥A(τ, y)∥Rn×n +1

)
|δy(s)|2 ds

for all t ∈ I . Setting

L :=
(

2 max
(z,y)∈I×B̄2M̂(0)

∥A(z, y)∥Rn×n +1

)
,

Gronwall’s inequality implies that

∥δy∥L∞ ≤ eT L (|δy0|+ |δv |L2

)
.

By (B1) we further get ∥δ̇y∥L2 ≤ L(∥δy∥L2 +∥v∥L2 ), which implies (B2). Next, let yk
0 ∈ Y0 denote a

convergent sequence with limit y0. For abbreviation set

δyk := δy
(

yk
0

)
, yk := y

(
yk

0

)
, δvk := δv

(
yk

0

)
, δy0 := δy0

(
yk

0

)
as well as

y := y(y0), δv := δv(y0), δy0 := δy0(y0).

Note that δyk is uniformly bounded in WT by (B2). Thus it admits a subsequence, denoted by the
same index, with δyk * δy in WT for some δy ∈WT . This implies

δyk (0) → δy(0) in Rn , δyk → δy in L∞ (
I ;Rn)

, δ̇yk * δ̇y in L2 (
I ;Rn)

.

Moreover, due to the continuity of y,δv and δy0, we get

δ̇yk = A(yk )δyk +δvk → A(y)δy +δv in L2 (
I ;Rn)

, δyk (0) → δy0 in Rn .

Summarizing the previous observations we conclude that

δ̇y = A(y)δy +δv, δy(0) = δy0
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as well as δyk → δy in WT , and thus δy = δy(y0). By uniqueness of solutions to the above
equation δy(yk

0 ) → δy(y0) for the whole sequence in WT follows, and therefore δy ∈ C (Y0;WT ).
□

Next we address nonlinear systems of the form:

ẏv = f(yv )+g(yv )F∗(yv )+ v, yv (0) = y0 (B3)

where v ∈ L2(I ;Rn) is a perturbation.

Proposition 30. Let Assumption 1 hold. Then there exist an open neighbourhood V1 ⊂ L2(I ;Rn)
of 0 and an open neighbourhood y0 of Y0 such that (B3) admits a unique solution yv = yv (y0) ∈Yad

for every pair (v, y0) ∈V1 ×y0. Moreover the mapping

y•(·) : V1 ×y0 →Yad , (v, y0) 7→ yv (y0) (B4)

is continuously Fréchet differentiable.

Proof. Define the mapping

G : Yad ×Rn ×L2 (
I ;Rn)→ L2 (

I ;Rn)×Rn

with

G(y, y0, v) =
(

ẏ − f(y)−g(y)F∗(y)− v
y(0)− y0

)
.

Now fix an arbitrary ȳ0 ∈ Y0 and, utilizing (A.3) denote by ȳ = y∗(y0) ∈ intYad the unique
solution in Yad to the unperturbed closed loop system G(ȳ , ȳ0,0) = 0. Since G is of class C 1 in
a neighborhood of (ȳ , ȳ0,0) we have

D yG(y, y0, v)δy =
(
δ̇y −Df(y)δy − [

Dg(y)δy
]
F∗(y)−g(y)∂yF∗(y)δy

δy(0)

)
.

It is straightforward that the linearized equation

D yG(ȳ , ȳ0, v)δy =
(
δv
δy0

)
admits a unique solution δȳ ∈ WT for every δv ∈ L2(I ;Rn), δy0 ∈ Rn . Moreover, applying Gron-
wall’s lemma yields c > 0 independent of ȳ , ȳ0 with

∥δȳ∥WT ≤ c(∥δv∥L2(I ;Rn ) +|δy0|), ∀ δv ∈ L2 (
I ;Rn)

, δy0 ∈Rn .

Thus from the implicit function theorem we get constants κ1 = κ1(ȳ0) and κ2 = κ2(ȳ0), such
that for every y0 ∈ Rn with |y0 − ȳ0| < κ1 and ∥v∥L2(I ;Rn ) < κ2 there exists yv (y0) ∈ Yad

with G(yv (y0), y0, v) = 0. By (A.1) it is the unique solution to (B3) in Yad . Moreover, the mapping

y•(·) : Bκ2 (0)×Bκ1 (ȳ0) →Y , (v, y0) 7→ yv (y0)

is of class C 1. Observe that repeating this argument for every y0 ∈ Y0 yields an open covering of Y0

i.e.

Y0 ⊂
⋃

ȳ0 ∈Y0

Bκ1(ȳ0)(ȳ0).

Since Y0 is compact there exists a finite set of initial conditions {ȳ i
0}N

i=1 ⊂ Y0, including 0, such that

Y0 ⊂ y0 :=
N⋃

i=1
Bκ1

(
ȳ i

0

) (ȳ i
0

)
.

Set V = ⋂N
i=1 Bκ2(ȳ i

0)(0) ⊂ L2(I ;Rn). Summarizing these arguments yields the existence of a C 1-
mapping

y·(·) : V ×y0 →Yad , yv (y0) uniquely solves (B3) in Yad .
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□

We use the following consequences of the previous proposition.

Corollary 31. There exists an open neighborhood V2 ⊂V1 ⊂ L2(I ;Rn) of 0 as well as c > 0 such that∥∥yv1 (y0)−yv2 (y0)
∥∥

WT
≤ c∥v1 − v2∥L2(I ;Rn ) ∀ y0 ∈ Y0, v1 ∈V2, v2 ∈V2

and ∥∥yv (y0)
∥∥

WT
≤ MY0 + c∥v∥L2(I ;Rn ) ∀ y0 ∈ Y0, v ∈V2,

hold. Here MY0 denotes the constant from (A.3).

Proof. The first assertion follows from the continuous differentiability of v → yv (y0) and com-
pactness of Y0. To verify the second we use that y∗(y0) = y0(y0) and estimate∥∥yv (y0)

∥∥
WT

≤ ∥∥y∗(y0)
∥∥

WT
+∥∥yv (y0)−y0(y0)

∥∥
WT

.

The claim now follows from the first inequality and (A.3). □
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