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Abstract. We review different models for thin structures using bending as principal mechanism to undergo
large deformations. Each model consists of minimizing a fourth order energy, potentially subject to a
nonconvex constraint. Equilibrium deformations are approximated using local discontinuous Galerkin finite
elements. The discrete energies relies on a discrete Hessian operator defined on discontinuous functions with
better approximation properties than the piecewise Hessian. Discrete gradient flows are used to drive the
minimization process. They are chosen for their robustness and ability to preserve the nonconvex constraint.
Several numerical experiments are presented to showcase the variety of shapes achievable with these models.
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1. Introduction

Deformations of thin materials are widely observed in nature, from the snapping of the venus
flytrap [1, 2] to the natural growth of soft tissues in leaves and flowers [3–6]. They also appear in a
variety of man-made applications [7,8]. Some thin structures, called bilayers, are made of two thin
layers of different materials that react differently to external stimuli (changes in temperature or
humidity, electrical or chemical stimuli, etc.). Examples include the bimetal strips in thermostats,
microactuators [9,10], and plywood panels in climate-responsive architectures [11] inspired from
the morphology of conifer cones. Bending of thin sheets can also occur when folding is present;
examples of this include origami and flexible structures [12, 13]. We refer to the review paper [6]
for additional examples.
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All the phenomena listed above can be modelled as thin limits of hyperelastic materials.
A thin structure of thickness s endowed with a hyperelastic energy Es is approximated by its two
dimensional midplane endowed with a limiting energy as the thickness vanishes. A hierarchy
of reduced models for elastic deformations is described in [14], in which the type of the model
depends on the scaling of the elastic energy Es with the thickness s of the plate. The scaling Es ∼ s
corresponds to stretching, the scaling Es ∼ s3 corresponds to bending, and the scaling Es ∼ s5

corresponds to the von Kármán theory of plate bending. Each of these reduced energies is the
Γ-limit of Es . We refer to [15] for the membrane theory, to [16–18] for the bending theory, and
to [14, 19] for the von Kármán theory. In particular, cluster points of sequences of minimizers of
{Es }s>0 are minimizers of the Γ-limit.

In this work, we are mainly interested in the bending regime, namely when the hyperelastic
three dimensional energy

Es (u) =
∫
Ω×(− s

2 , s
2

) W
(
∇u(x)G− 1

2 (x)
)

dx (1)

scales like the cube of the thickness of the plate Ω× (− s
2 , s

2 ). Here, Ω is the midplane of the
thin structure, u : Ω× (− s

2 , s
2 ) → R3 is a deformation of the plate, G is a prescribed Riemannian

metric (deformations satisfying the target metric G are stress-free), and W is some energy density
function satisfying [17]

• W ∈C 0(R3×3), W ∈C 2 in a neighborhood of SO(3);
• W is frame indifferent: W (F ) =W (RF ) for all F ∈R3×3 and all R ∈ SO(3);
• W (F ) ≥C dist2(F,SO(3)) for all F ∈R3×3 and W (F ) = 0 if F ∈ SO(3),

where SO(3) denotes the special orthogonal group of rotations in R3. In this work, we restrict our
considerations to the St. Venant–Kirchhoff stored energy, see (8).

The prestrain metric G characterizes the material. From the third property of the energy
density, we see that when G is the identity matrix, the minimum of the hyperelastic energy (1)
(without boundary conditions or external forces) is zero and is achieved by rigid motions. That is,
at equilibrium, the plate is stress free and flat. When the Riemannian curvature tensor of G is not
identically zero, then the minimum of the hyperelastic energy is strictly positive [20]. In this case,
there is no stress-free configuration. The plate is then said to be non-Euclidean or prestrained
and generally exhibits more complex equilibrium shapes.

In 1850, Kirchhoff [21] obtained a reduced energy that can be formally obtained assuming that
the material deformation reads

u(x1, x2, x3) = y(x1, x2)+x3ν(x1, x2), (2)

where ν is the normal to the deformed midplane y(Ω). This assumption, used by Love [22], is
usually referred to as (nonlinear) Kirchhoff–Love ansatz in the literature, although it is not due to
Kirchhoff [17]. When the thickness s of the plate is small, it is convenient to derive reduced models
for the deformation y of the midplaneΩ. In [23], see also [5], the Kirchhoff–Love assumption (2) is
made for prestrained plates. The resulting model consists of the sum of a stretching and a bending
component multiplied by different powers of the plate thickness s. We derive a similar energy
referred to as the preasymptotic energy to express that it is obtained upon assuming that s is
small but not vanishing. To do this, we follow [20] and assume that

G(x1, x2, x3) =
(

g (x1, x2) 0
0 1

)
, (3)

i.e. G is uniform within the thickness and no stretching occurs in the direction orthogonal to the
plane. The function g :Ω→R2×2 is assumed to be symmetric and uniformly positive definite.

The vanishing thickness limit of prestrained materials has been studied in several works.
When G is the identity matrix, as mentioned above, a reduced energy was obtained formally
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by Kirchhoff [21]. Much later, an ansatz-free derivation was obtained via Γ-convergence in the
seminal work [17]. The limiting energy involves the second fundamental form of the midplane
deformation and is finite only for isometric immersions.

For the derivation in the general case, namely when G is not the identity matrix, we refer
to [5, 20, 24–26]. The first Γ-convergence results for prestrained plates were obtained in [20] for
target metrics as in (3), and later extended to more general metrics in [24]. In both cases, the
metric is assumed to be independent of the thickness and uniform throughout the thickness.
For the particular metric given in (3), the limiting energy involves the second fundamental form
of the midplane deformation and is finite only for isometric immersion of the two dimensional
target metric g . In [27] a formal derivation based on a modified Kirchhoff–Love assumption (2) of
the reduced model is provided.

Bilayer materials are composed of two thin layers of materials with different properties.
External (thermal, electrical or chemical) stimuli correspond to a prestrain metric

G = (I3 ±ζsN )T (I3 ± sζN ), (4)

where the product sζ describes the lattice mismatch between the layers, and N encodes the in-
homogeneity and anisotropy of the bilayer. When actuated, the material deforms to relax its in-
ternal stress and can typically undergo large deformations even with relatively small stimuli. The
reduced model for bilayer plates was derived via Γ-convergence in [28] and formally explained
in [29] for a metric of the form (4). The limiting energy penalizes deviations of the second funda-
mental form of the midplane from a spontaneous curvature Z which depends on the mismatch
between the two layers (i.e. on ζ and N ). In this model, as in the others when G = I3, the energy is
finite only when the deformations are isometries.

The ability of the plate to fold along creases was incorporated in [30]. It considers hyperelastic
materials with G = I3 assumed to be weakened in a neighborhood of a curve Σ ⊂Ω modelling a
crease. Assuming an asymptotic behavior of the defect width and strength (see (28)), the limiting
model reduces to the original model without the crease, except that jumps on the deformations
gradients are allowed across the crease without suffering any energetic penalty. Note that in
principle, any plate – with an isometry constraint or prestrain, a single layer or a bilayer – can have
folding. However, only the case of a single layer plate with isometry has been derived rigorously
so far.

Motivations and Novelties

One of the goals of this paper is to review different models for the deformation of plates,
including single layer and bilayer plates, plates with an isometry constraint as well as gen-
eral prestrain metric constraints, and plates with folding along some curves inside the do-
main. Although emphasis is made on the pure bending of plates, the preasymptotic regime, in
which both the bending and the stretching/shearing of the plate are considered, is also ana-
lyzed. To give an intuitive derivation, the reduced two dimensional energies are obtained for-
mally using a (modified) Kirchhoff–Love assumption for the deformation of the three dimen-
sional plate. However, as mentioned above, ansatz-free limiting energies have been obtained via
Γ-convergence for most cases.

A second goal is to collect in one place the numerical methods proposed recently by the
authors and collaborators for the approximation of near minimizers of the discrete energies.
These methods are based on a local discontinuous Galerkin (LDG) approach for the space
discretization and a gradient flow for the minimization of the discrete energy. This methodology
has already been successfully applied to a wide range of problems, see for instance [27, 30, 31].
Moreover, the Γ-convergence as the mesh size goes to zero of the discrete energies obtained using
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LDG is analyzed in [31–33] and [30] for the preasymptotic, prestrain, bilayer, and folding case,
respectively. Note that other discretizations are also possible. We refer to [34–36] for approaches
using the symmetric interior penalty discontinuous Galerkin method, and to [29, 37–39] for a
method based on Kirchhoff elements.

This work also offers several novel contributions. We present a recently developed algorithm
for the preasymptotic model, extend the existing algorithms to time-dependent input data,
present a uniform treatment of folding effects, and introduce an accelerated algorithm that
drastically improves the performance of the unconstrained discrete gradient flows. We perform
new and challenging simulations highlighting the various types of deformations that can be
achieved with the models, as well as the versatility of the code.

Outline

The rest of this paper is organized as follows. In Section 2, we formally derive the various two di-
mensional models for the deformation of thin structures and discuss how to incorporate forcing
and boundary conditions into these models. In Section 3, we present the spatial discretization of
the two dimensional energies based on the LDG method, including the introduction of a discrete
Hessian operator – the key component of the method. The discrete gradient flows put forward to
minimize the discrete energies are described in Section 4, which also includes strategies to pro-
duce good initial deformations and to potentially improve the convergence rate of the iterative
processes. Section 5 is devoted to numerical experiments demonstrating the variety of deforma-
tions that can be achieved.

Notation

In what follows, we will denote by In the identity matrix in Rn×n . Moreover, for a multivariate
function, we write ∂i the partial derivative with respect to the i th variable. Uppercase letters and
bold lowercase letters will be used for matrix-valued and vector-valued functions, respectively,
and subindices will denote their components. For instance, the (i , j ) component of M : Rm →
Rn1×n2 will be denoted Mi j : Rm → R, 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, while the j th component
of v : Rm → Rn will be denoted v j : Rm → R, 1 ≤ j ≤ n. Furthermore, for Φ : Rm → Rn×m ,
Φ j : Rm → Rn will denote the j th row of Φ, 1 ≤ j ≤ n. For Φ : Rm → Rm×m , the divergence
operator is applied row-wise, namely [div(Φ)]i = ∑m

j=1∂ j (Φi j ) for i = 1,2, . . . , m. Finally, we use
the notation A : B to denote the Euclidean scalar product between two tensors A,B and |.| for the
corresponding Frobenius norm. For the particular case of vectors, the Euclidean scalar product
between v,w ∈Rn is instead denoted by v ·w.

2. Mathematical Models

In this section, we provide a formal but intuitive derivation of two dimensional models for
three dimensional thin hyperelastic structures. References to rigorous derivations of the bending
model with isometry and prestrain constraint and of the bilayer model via Γ-convergence can be
found in Sections 2.2, 2.3, and 2.4, respectively. The thin structure is denoted Ωs :=Ω× (− s

2 , s
2 ) ⊂

R3, where s > 0 stands for the thickness of the structure and Ω ⊂ R2 is a open, bounded domain
with Lipschitz boundary which represents the midplane (see the diagram on the left of Figure 1).
A deformation of the plate is denoted by u :Ωs ⊂ R3 → R3 while its restriction to the midplane is
denoted y :Ω⊂R2 →R3 (see the diagram on the right of Figure 1). For later use, we also introduce
the unit normal vector to the surface y(Ω) at the point y(x′)

ν(x′) := ∂1y(x′)×∂2y(x′)∣∣∂1y(x′)×∂2y(x′)
∣∣ , x′ ∈Ω,
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and the first and second fundamental forms of the surface y(Ω)

I(y) := (∇′y)T ∇′y and II(y) :=−(∇′y)T ∇′ν= (
∂i j y ·ν)2

i , j=1 . (5)

Here ∇′ denotes the gradient with respect to the variable x′ ∈Ω⊂R2.

Ωs

Ω x′ = (x1, x2)

s

x1

x3

x2

Ω

y(Ω)

x′

x1

x2

x3
ν(x′)

y(x′)

∂2y(x′)
∂1y(x′)

Figure 1. The undeformed reference plate (left) and the deformed midplane (right).

In all the models presented below, the structure is endowed with an energy favoring defor-
mation with Cauchy–Green strain tensor (∇u)T ∇u matching a given target metric G :Ωs → R3×3

(symmetric and positive definite), i.e. for which the strain tensor

ϵ(∇u) := (∇u)T ∇u−G

2
(6)

is as close to zero as possible. Note that ϵ(∇u) ≡ 0 signifies that the first fundamental form of the
deformed surface u(Ωs ) is G and that u is an isometric immersion of G . Whether a given n dimen-
sional Riemannian manifold has an isometric immersion into RN is a long standing problem in
differential geometry, see for instance [40, 41]. By the Nash–Kuiper embedding theorem [42–44],
there always exists an isometric immersion u :Ωs →R3 of G in W 1,∞(Ωs ). However, the deforma-
tion u cannot be orientation preserving unless the Riemannian curvature tensor of G is identi-
cally zero, see [6] and the references therein.

2.1. Bending of Isotropic Thin Structures

We start by considering thin structures endowed with the isotropic hyperelastic energy

Es (u) :=
∫
Ωs

W (∇u(x))dx, (7)

where W :R3×3 →R is the St. Venant–Kirchhoff stored energy density function defined by

W (F ) :=µ|ϵ(F )|2 + λ

2
tr(ϵ(F ))2, ϵ(F ) := F T F − I3

2
. (8)

Here F :=∇u is the deformation gradient assumed to satisfy the orientation condition det(∇u) >
0, ϵ(F ) is the Green–Lagrange strain tensor corresponding to G = I3 in (6), and λ and µ are the
Lamé constants. As we shall see below, deformations for which Es (u) scales like s correspond to
a stretching of the midplane (membrane theory), while bending occurs when Es (u) scales like s3

(bending theory).
Note that in absence of other constraints such as boundary conditions or external forcing,

energy (7) is minimized on SO(3), i.e. when the deformations are isometries:

(∇u)T ∇u = I3 inΩs .
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2.2. Limiting Model and Modified Kirchhoff Assumption

Two dimensional models for hyperelastic thin structures are derived in [17]. It is shown that when
bending is the chief mechanism of deformations, the energy Es must scale like s3 and

Γ−lim
s→0+

s−3Es = E

where for y :Ω→R3

E(y) =


1

24

∫
Ω

(
2µ

∣∣II (y(x′)
)∣∣2 + 2µλ

2µ+λ tr
(
II

(
y(x′)

))2
)

dx′, when I(y) = I2,

+∞, otherwise.
(9)

Part of the Γ-convergence argument provided in [17] is based on the construction of a recovery
sequence given for x′ ∈Ω and x3 ∈ (− s

2 , s
2 ) by

u(x′, x3) = y(x′)+

x3 + λ

2µ+λ tr
(
II

(
y(x′)

))
︸ ︷︷ ︸

=:β(x′)

1

2
x2

3

ν(x′) (10)

for a midplane deformation y : Ω→ R3 with finite energy E(y) < ∞. This indicates that the two
dimensional model (9) requires that the fibers orthogonal to the midplane are not stretched
homogeneously on Ω. This differentiates the theory in [17] from the standard Cosserat (or
Kirchhoff–Love) theory based on the ansatz

u(x′, x3) = y(x′)+x3ν(x′)

and leading to the same two dimensional energy improperly scaled with coefficient λ instead of
2µλ

2µ+λ in front of the trace term [16, 17].

2.2.1. Preasymptotic

We follow [27] and provide a formal derivation of the preasymptotic energy for thin structures
with non-vanishing but small thickness under assumption (10) on the deformations. We are
interested in deformations where bending is the chief mechanism and thus also fix 0 < s ≪ 1
and assume that

Es (u) ≤Λs3 (11)

for a constant Λ independent of s. We recall that ∇′ stands for the gradient with respect to
x′ ∈Ω⊂R2 so that

∇u =
[
∇′y+x3∇′ν+ 1

2
x2

3∇′(βν),ν+x3βν

]
.

Because ∂i y ·ν= 0 for i = 1,2 and νTν= 1, we have

νT ∇′y = 0, (∇′y)Tν= 0, νT ∇′ν= 0, (∇′ν)Tν= 0,

and thus

(∇u)T ∇u =
[

(∇′y)T ∇′y 0
0 1

]
+x3

[
(∇′y)T ∇′ν+ (∇′ν)T ∇′y 0

0 2β

]
+x2

3

[
(∇′ν)T ∇′ν+ 1

2 (∇′y)T ∇′(βν)+ 1
2

(∇′(βν)
)T ∇′y 1

2

(∇′(βν)
)T
ν

1
2ν

T ∇′(βν) β2

]
+O

(
x3

3

)
.
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We rewrite the above expression using the first and second fundamental forms (5) of the de-
formed midplane y(Ω). In addition, we take advantage of the symmetry of the second funda-
mental form to obtain

(∇u)T ∇u− I3 = A1 +2x3 A2 +x2
3 A3 +O

(
x3

3

)
, (12)

where

A1 :=
[
I(y)− I2 0

0 0

]
, A2 :=

[−II(y) 0
0 β

]
,

A3 :=
[

(∇′ν)T ∇′ν+ 1
2 (∇′y)T ∇′(βν)+ 1

2

(∇′(βν)
)T ∇′y 1

2

(∇′(βν)
)T
ν

1
2ν

T ∇′(βν) β2

]
.

Using this relation in the energy density (8) with F =∇u, we obtain

W (∇u) = µ

4

(|A1|2 +4x3 A1 : A2 +4x2
3 |A2|2 +2x2

3 A1 : A3 +O
(
x3

3

))
+ λ

8

(
tr(A1)2 +4x3tr(A1)tr(A2)+4x2

3tr(A2)2 +2x2
3tr(A1)tr(A3)+O

(
x3

3

))
.

Note that the terms with odd power of x3 vanish when integrating x3 on (− s
2 , s

2 ) to derive an
expression of the energy (7). Thus, we get

Es (u) = µ

4

∫
Ω

(
s|A1|2 + s3

3
|A2|2 + s3

6
A1 : A3

)
dx′

+ λ

8

∫
Ω

(
s tr(A1)2 + s3

3
tr(A2)2 + s3

6
tr(A1)tr(A3)

)
dx′+O (s4).

The terms with A1 : A3 and tr(A1)tr(A3) are of higher order. Indeed, thanks to the scaling
assumption (11), we have∫

Ω
A1 : A3dx′ ≤

(∫
Ω
|A1|2dx′

) 1
2
(∫
Ω
|A3|2dx′

) 1
2 ≤

(∫
Ω
|A3|2dx′

) 1
2
(

4

µ
Λ

) 1
2

s,

where (
∫
Ω |A3|2dx′)

1
2 is independent of s. A similar argument holds for the trace terms. As a

consequence, in view of the definitions of A1 and A2 in (12), the expression (5) for the first and
second fundamental forms, and the definition of β in (10), we arrive at the final expression for
the three dimensional energy per unit volume s−1Es (u):

s−1Es (u) = Ẽ S (y)+ s2Ẽ B (y)+O
(
s3) , (13)

where

Ẽ S (y) := 1

8

∫
Ω

(
2µ

∣∣I(y)− I2
∣∣2 +λtr

(
I(y)− I2

)2
)

dx′

Ẽ B (y) := 1

24

∫
Ω

(
2µ

∣∣II(y)
∣∣2 + 2µλ

2µ+λ tr
(
II(y)

)2
)

dx′

denote the stretching and bending energies, respectively.

2.2.2. Limiting Bending Model

We are now interested in taking the limit when s → 0+. We recall that we are assuming (11),
which, as we shall see, implies that the limiting plate deformation y cannot stretch nor shear the
midplaneΩ but can bend it to reduce its energy.

The starting point to derive the limiting energy as the thickness s vanishes is the preasymptotic
expression (13) for the energy. The bending regime condition (11) implies that Ẽ S (y) = 0 and

E(y) := lim
s→0+

s−3Es (u) = 1

24

∫
Ω

(
2µ

∣∣II(y)
∣∣2 + 2µλ

2µ+λ tr
(
II(y)

)2
)

dx′. (14)
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Note that when Ẽ S (y) = 0,

I(y) = (∇′y
)T ∇′y = I2 a.e. inΩ,

i.e. is an isometry and in particular y ∈ [W 1,∞(Ω)]3. Furthermore, for isometries the following
relations for the second fundamental form hold (see for instance [37]):∣∣II(y)

∣∣= ∣∣∇′∇′y
∣∣= tr

(
II(y)

)
. (15)

This allows to rewrite the limiting energy as

E(y) = α

2

∫
Ω

∣∣∇′∇′y
∣∣2 dx′, (16)

when y ∈ [H 2(Ω)∩W 1,∞(Ω)]3 is an isometry, i.e. I(y) = I2, and where α := µ(µ+λ)
3(2µ+λ) .

2.3. Single Layer with a General Metric Constraint

Without additional constraints such as boundary conditions, the minimum of energy (7) with
density (8) is achieved by the identity deformation u(x) = x, which is an isometry. In particular, the
reference flat configuration is stress-free. We now consider prestrained materials characterized by
the presence of internal stresses in the flat configuration. Examples are nematic glasses [45, 46],
natural growth of soft tissues [3, 4], and manufactured polymer gels [7, 47, 48].

We follow [20, 24] (see also [27]) and modify the energy (7) to read

E pre
s (u) :=

∫
Ωs

W
(
∇u(x)G(x)−

1
2

)
dx, (17)

where G : Ωs → R3×3 is a given symmetric positive definite target metric and G− 1
2 denotes

the positive definite symmetric square root of the inverse G−1 of G . Note that the previous
case is recovered when G = I3. Furthermore, when G is a metric immersion, i.e. there exists a
deformation u :Ωs →R3 such that

(∇u)T ∇u =G a.e. inΩs , (18)

we have (
∇u(x)G(x)−

1
2

)T ∇u(x)G(x)−
1
2 = I3,

and thus u is a minimizer of E pre
s with E pre

s (u) = 0.
Following [20, 23], we further assume that G has the form

G(x′, x3) =
(

g (x′) 0
0 1

)
, x′ ∈Ω, x3 ∈ (−s/2, s/2), (19)

where g :Ω→ R2×2 is symmetric and uniformly positive definite. In other words, the metric G is
independent of the variable x3, is uniform throughout the thickness, and no stretching is allowed
in the vertical direction.

The Γ-convergence of this model towards the two dimensional energy given below is obtained
in [20, 24]. Proceeding as in Section 2.2.1, an intuitive derivation of the two dimensional Γ-limit
can be obtained, using again assumption (10). Indeed, when 0 < s ≪ 1, neglecting the O (s3) terms
the three dimensional prestrain energy, (17) satisfies

s−1E pre
s (u) = E S (y)+ s2E B (y) =: E pre

s (y), (20)

where

E S (y) := 1

8

∫
Ω

(
2µ

∣∣∣g− 1
2
(
I(y)− g

)
g− 1

2

∣∣∣2 +λtr
(
g− 1

2
(
I(y)− g

)
g− 1

2

)2
)

dx′ (21)
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and

E B (y) := 1

24

∫
Ω

(
2µ

∣∣∣g− 1
2 II(y)g− 1

2

∣∣∣2 + 2µλ

2µ+λ tr
(
g− 1

2 II(y)g− 1
2

)2
)

dx′. (22)

Note that we slightly abuse the notation by using E pre
s to refer to both the three dimensional and

two dimensional prestrain energy. Which energy E pre
s is referring to will be clear from the context.

For the limit s−3Es (u) to be finite as the thickness s goes to zero, the two dimensional
deformation y :Ω→R3 must satisfy the metric constraint

(∇y)T ∇y = g (23)

and in that case

lim
s→0+

s−3Es (u) = 1

24

∫
Ω

(
2µ

∣∣∣g− 1
2 II(y)g− 1

2

∣∣∣2 + 2µλ

2µ+λ tr
(
g− 1

2 II(y)g− 1
2

)2
)

dx′. (24)

Remark 1. Nash’s theorem guarantees that there exists an isometric immersion of g intoR10 [49],
but whether or not there exists an isometric immersion into R3 depends on g . We refer to [40] for
a discussion of positive and negative results for metrics with specific properties. Note that the
existence of y ∈ H 2(Ω) satisfying (23) is equivalent to the boundedness condition (11) on Es . We
refer to [20] for the case where G has the form (19) and to [50] for a general Riemannian metric.

Comparing the limiting energy (24) with (14), we find that the isometry case is recovered for
g = I2. However, in the case of isometries, the energy is further reduced to (16) thanks to (15).
When g ̸= I2, the second fundamental form of y in (24) cannot be substituted by the Hessian of
y. Nevertheless, [27, Proposition 1] and [33, Proposition A.1] guarantee that for y ∈ [H 2(Ω)]3 and
g ∈ [H 1(Ω)∩L∞(Ω)]2×2, up to an additive term only depending on g , the limiting energy (24) is
equal to

1

24

3∑
m=1

∫
Ω

(
2µ

∣∣∣g− 1
2
(∇′∇′ym

)
g− 1

2

∣∣∣2 + 2µλ

2µ+λ tr
(
g− 1

2
(∇′∇′ym

)
g− 1

2

)2
)

dx′,

where ym is the mth component of y. In addition, in view of the metric constraint (23) we have
y ∈ [W 1,∞(Ω)]3. As a consequence, the equilibrium deformations of the thin limit of prestrained
materials are deformations y ∈ [H 2(Ω)∩W 1,∞(Ω)]3 satisfying I(y) = g and minimizing

E pre(y) := 1

24

3∑
m=1

∫
Ω

(
2µ

∣∣∣g− 1
2
(∇′∇′ym

)
g− 1

2

∣∣∣2 + 2µλ

2µ+λ tr
(
g− 1

2
(∇′∇′ym

)
g− 1

2

)2
)

dx′. (25)

2.4. Bilayer Plates

We now discuss an anisotropic model where the three dimensional hyperelastic structure is
a compound of two thin layers with different mechanical properties. Each material exhibits a
different response under external stimuli, generating a material mismatch compensated by the
bending of the structure. Temperature, humidity, pH, and electric current are typical external
stimuli. We refer for instance to [9, 51–53] for devices actuated by electric current and to [11, 54]
for humidity controlled materials.

From a mathematical point of view, this corresponds to a prestrain tensor of the form

G(x′, x3) = (I3 ±ζsN )T (I3 ±ζsN ) = I3 ±2ζsN +ζ2s2N 2, ±x3 ≥ 0, (26)

where the inhomogeneity and anisotropy of the bilayer material is encoded in the tensor

N :=
(

Nx′x′ m
mT n

)
with Nx′x′ : Ω→ R2×2 uniformly symmetric, n : Ω→ R, and m : Ω→ R2. Note that the expres-
sion (26) does not reduce to the previous setting with target metric (18).
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The limiting model is derived in [28] via Γ-convergence when N = I3 and can again be formally
recovered using a modified Kirchhoff–Love assumption, namely

u(x′, x3) = y(x′)+x3(1± cζs)ν(x′)+ 1

2
x2

3d(x′)ν(x′)

with

c := 2µ+3λ

2µ+λ and d(x′) :=− λ

2µ+λ tr
(
II(x′)

)
.

Proceeding as in the previous section, the limiting energy as the thickness s goes to zero is

1

24

∫
Ω

(
2µ

∣∣II(y)−3ζNx′x′
∣∣2 + 2µλ

2µ+λ tr
(
II(y)−3ζNx′x′

)2
)

dx′+C

provided that y is an isometry, where the constant C depends on µ, λ, ζ, and N , but not on the
deformation y. We refer to [29] for more details in the case µ= 6 and λ= 0.

In what follows, we consider an equivalent limiting two dimensional energy
α

2

∫
Ω

∣∣II(y)−Z
∣∣2 dx′

for α> 0 and with Z (x′) := 3ζNx′x′ . Note that Z acts as an intrinsic spontaneous curvature tensor
favoring deformations with principal curvatures matching the eigenvalues of Z . Now recall that
the entries of the second fundamental form II(y) are given by[

II(y)
]

i j = ∂i j y ·ν= ∂i j y · ∂1y×∂2y∣∣∂1y×∂2y
∣∣ , i , j = 1,2,

and is thus nonlinear in y. Taking advantage of relation (15) valid for isometries, we have∣∣II(y)
∣∣= ∣∣∇′∇′y

∣∣ and
∣∣∂1y×∂2y

∣∣= 1,

which allows us to write

α

2

∫
Ω

∣∣II(y)−Z
∣∣2 dx′ = α

2

∫
Ω

∣∣∇′∇′y
∣∣2 dx′−α

2∑
i , j=1

∫
Ω
∂i j y · (∂1y×∂2y

)
Zi j dx′+ α

2

∫
Ω
|Z |2 dx′.

Deformations of bilayer materials are thus deformations y ∈ [H 2(Ω)∩W 1,∞(Ω)]3 satisfying I(y) =
I2 and minimizing

E bil(y) := α

2

∫
Ω

∣∣∇′∇′y
∣∣2 dx′−α

2∑
i , j=1

∫
Ω
∂i j y · (∂1y×∂2y

)
Zi j dx′. (27)

2.5. Folding

We incorporate the capability for the plates to fold along a given crease. In particular, we make
structural assumptions leading to a limiting model for which folding does not require any
energy. We restrict our description to single layer plates with isometry constraint (i.e. g = I2).
The derivation of the folding model described here was originally proposed in [30]. Extensions
to other models, although feasible, have not been treated in the existing literature. However,
numerical simulation are available in [31] for the bending of a bilayer plate with folding.

Folding models are obtained by assuming that the thin structure has a material defect in a
cylindrical neighborhood of a C 2 curveΣ⊂Ω (the crease) splittingΩ in two parts and intersecting
the boundary transversely. LetΩs =Ω× (−s/2, s/2) be as above and let Σs,r := B(Σ,r )× (−s/2, s/2)
be the location of the defect. Here, for r > 0 to be determined, B(Σ,r ) :=∪x′∈Σ{z′ ∈Ω : |z′−x′| < r }
(see Figure 2).

The hyperelastic energy (7) in presence of a defect reads

E fold
s (u) :=

∫
Ωs

fε,r (x′)W (∇u(x))dx,
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Σ

B(Σ,r )

r

Ω

s

Σs,rr

Ωs

Figure 2. Material with defect. (Left) Midplane domain Ω with a crease Σ and its tubular
neighborhood B(Σ,r ). (Right) Thin domainΩs with inflated crease Σs,r .

where fε,r :Ω→ (0,1] defined by

fε,r (x′) := εχB(Σ,r )(x′)+1−χB(Σ,r )(x′)

is 1 away from B(Σ,r ) and ε in B(Σ,r ) for 0 < ε≪ 1. Here χB(Σ,r ) is the characteristic function of
B(Σ,r ).

We assume the following asymptotic behaviors of r and ε:

limsup
s→0+

s2

ε
<∞, limsup

s→0+

s

r
<∞, and limsup

s→0+

εr

s2 = 0. (28)

They guarantee that the limiting deformations are globally Lipschitz and that folding is per-
formed at no energy cost. The Γ-limit of s−3E fold

s under assumptions (28) and in the bending
regime s−3E fold

s ≤Λ<∞, is

E fold(y) := 1

24

∫
Ω\Σ

(
2µ

∣∣II(y)
∣∣2 + 2µλ

2µ+λ tr
(
II(y)

)2
)

dx′ = α

2

∫
Ω\Σ

∣∣∇′∇′y
∣∣2 dx′,

provided y ∈ [H 2(Ω \Σ)∩W 1,∞(Ω)]3 is an isometry and where α = α(µ,λ) is defined as in (16);
see [30]. In particular, E fold reduces to E in (16) when no creases are present.

Although not rigorously justified, in the numerical section below we provide experiments
with multiple folding arcs not necessarily intersecting the boundary. Also, we assume that the
prestrain and bilayer energies can be modified similarly to account for possible folding along a
crease Σ. Without modifying the notation but with the understanding that Σ = ; in the original
cases (25) and (27), we redefine for y ∈ [H 2(Ω\Σ)∩W 1,∞(Ω)]3

E pre(y) := 1

24

3∑
m=1

∫
Ω\Σ

(
2µ

∣∣∣g− 1
2
(∇′∇′ym

)
g− 1

2

∣∣∣2 + 2µλ

2µ+λ tr
(
g− 1

2
(∇′∇′ym

)
g− 1

2

)2
)

dx′ (29)

and

E bil(y) := α

2

∫
Ω\Σ

∣∣∇′∇′y
∣∣2 dx′−α

2∑
i , j=1

∫
Ω\Σ

∂i j y · (∂1y×∂2y
)

Zi j dx′. (30)

2.6. Forcing Term and Boundary Conditions

To complete the model, it remains to discuss how to incorporate external forces and boundary
conditions.

In the presence of an external force fs :Ωs → R3, the hyperelastic energy (7) must be modified
to read

Es (u) =
∫
Ωs

W (∇u(x))dx−
∫
Ωs

fs (x) ·u(x)dx.
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In view of (11), the force applied to the three dimensional thin structureΩs =Ω×(−s/2, s/2) must
satisfy ∣∣∣∣ lim

s→0+
s−3

∫ s/2

−s/2
fs (x′, x3)dx3

∣∣∣∣<∞, x′ ∈Ω.

This allows us to define f(x′) := lims→0+ s−3
∫ s/2
−s/2 fs (x′, x3)dx3 which yields

lim
s→0+

s−3
∫
Ωs

fs (x) ·u(x)dx =
∫
Ω

f(x′) ·y(x′)dx′

when using the modified Kirchhoff–Love ansatz (10) on the three dimensional deformation u.
Therefore, when external forces are present, the term

F (y) :=
∫
Ω

f(x′) ·y(x′)dx′ (31)

must be subtracted from the energies E pre
s (y), E pre(y), and E bil(y) (scaled by s2 for the preasymp-

totic energy).
Different types of boundary conditions can be incorporated into the system. We say that

Dirichlet boundary conditions are imposed on ΓD ⊂ ∂Ωwhen

y =ϕ and ∇′y =Φ on ΓD , (32)

whereϕ :Ω→R3 andΦ :Ω→R3×2 are sufficiently smooth, and withΦ satisfying the compatibil-
ity condition ΦTΦ= g a.e. in Ω. In the case where ϕ(x) = (x,0)T and Φ=∇ϕ, the boundary con-
ditions (32) are referred to as clamped boundary conditions. A mixed boundary condition occurs
when only the value of the deformation on ΓM ⊂ ∂Ω is specified, that is

y =ϕ on ΓM (33)

for some smooth functionϕ :Ω→R3.
All the energy models are defined on [W 1,∞(Ω)]3 and thus also on continuous functions

[C 0(Ω)]3. This means that pointwise boundary conditions can be enforced on the deformations
as well. Given a collection of points ΓP := {x1,x2, . . . , xP } lying on ∂Ω and corresponding values
{ϕ1,ϕ2, . . . ,ϕP } ⊂R3, we set

y(xi ) =ϕi ∀ xi ∈ ΓP .

The free boundary case refers to the case where ΓD ∪ΓM ∪ΓP =;.

3. Space Discretization

We now describe numerical methods based on finite element methods to approximate minimiz-
ers of the preasymptotic energy E pre

s in (20) and the limiting energies E pre in (29) and E bil in (30).
We point out two difficulties addressed below: (i) all the energies are defined on a subspace of
[H 2(Ω \Σ)]3 (recall that Σ=; when no creases are present) and thus conforming discretizations
can only be achieved by globally C 0 elements which are also C 1 onΩ\Σ; (ii) all but the preasymp-
totic energy require the deformations to satisfy the metric constraint (23). The latter is too rigid
to be satisfied a.e. inΩwhen using piecewise polynomial approximations.

Discontinuous Galerkin finite elements are put forward to circumvent the conformity require-
ment. In essence, discrete energies are designed by substituting the Hessian of the deformation
by a suitable discrete Hessian. It is worth pointing out that discontinuous Galerkin elements are
also preferred for their flexibility; in particular, they are more efficient for the approximation of
the metric constraint [34, 35].

We first set up the notation related to discontinuous Galerkin finite element methods in
Section 3.1. Then, in Section 3.2, we introduce a discrete Hessian operator, the crucial ingredient
in all the numerical schemes discussed in Section 3.3.
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To simplify the notation, from now on we will write x instead of x′, and accordingly for the
differential operators (e.g. ∇′ will be denoted ∇). Moreover, the variable of integration will no
longer be indicated.

3.1. Discontinuous Galerkin Finite Elements

For the description of the method we assume that the midplane Ω ⊂ R2 is a polygonal domain,
but extensions to general domains can be performed using standard techniques. Let {Th}h>0

be a sequence of shape-regular but possibly graded partitions of Ω made of elements T , either
triangles or quadrilaterals, of diameter at most h. Hanging nodes are thus allowed, and we assume
that all the elements within each domain of influence have comparable diameters [55]. Let
Eh := E 0

h ∪E b
h denote the set of edges, where E 0

h stands for the set of interior edges and E b
h for

the set of boundary edges. We also define E D
h to be the set of Dirichlet boundary edges and E M

h to
be the set of mixed boundary edges.

In the presence of a crease Σ, we assume that the crease is well approximated by the subdivi-
sion Th in the spirit of [30]. That is, the folding curve Σ is approximated by the piecewise linear
curve

Σh :=∪L
l=1el , (34)

where E Σ
h := {el }L

l=1 ⊂ E 0
h is a collection of interior edges such that the endpoints of each edge el

belong to Σ.
It will be convenient later to group all the active edges into two sets: E val

h := E 0
h∪E D

h ∪E M
h for the

deformations and E
grad
h := (E 0

h \E Σ
h )∪E D

h for the gradient of the deformations. These sets contain
all the edges over which averages and jumps will be computed. Notice that in the presence of
a crease, the crease edges are not included in the active edge set for the gradients to allow for
discontinuous gradients. As we shall see, this is the only difference between the schemes with
and without folding.

We define the diameter function h on Th ∪Eh ∪ΓP (recall that ΓP = {xi }P
i=1 are the locations

where pointwise boundary conditions are prescribed) by

h|T := hT := diam(T ), ∀ T ∈Th , h|e := he := diam(e), ∀ e ∈ Eh ,

h|xi := hi := 1

#(ωi )

∑
T ∈ωi

hT , i = 1,2, . . . , P,

where ωi := {T ∈Th : xi ∈ ∂T }. The minimum mesh size is hmin := minT ∈Th hT .
We assume that the boundary regions ΓD and ΓM , where Dirichlet and mixed boundary

conditions are enforced, are exactly captured by all the subdivisions. This means that for all h > 0
we have

ΓD = {
e : e ∈ E D

h

}
and ΓM = {

e : e ∈ E M
h

}
for some E D

h ,E M
h ⊂ E b

h . We also assume that the locations ΓP = {xi }P
i=1, where pointwise boundary

conditions are prescribed, are vertices of all the subdivisions. To keep a uniform notation, we
introduce various skeletons of the mesh Th

Γa
h =∪{

e : e ∈ E a
h

}
for a ∈ {0,D, M , val, grad}.

For an integer r ≥ 0, let Pr and Qr denote polynomials of total degree at most r and degree at
most r in each variable, respectively. We then define the finite element space

Vr
h := {

vh ∈ L2(Ω) : vh|T ◦FT ∈Pr ∀ T ∈Th
}

, (35)

wherePr is replaced byQr if the subdivision is made of quadrilaterals. Here FT : T̂ → T is the map
from the reference element T̂ (unit simplex for triangulation and unit square for subdivisions
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made of quadrilaterals) to the physical element T ∈ Th . In what follows, the deformation of the
plate y will be approximated by a discrete function yh ∈ [Vk

h]3 with k ≥ 2.
The broken (elementwise) gradient of a scalar function vh ∈ Vk

h is denoted ∇h vh . We use a
similar notation for other differential operators, for instance D2

h vh =∇h∇h vh denotes the broken
Hessian. Moreover, these operators are applied componentwise for vector-valued functions.

Let us now introduce the jump and average operators instrumental for discontinuous Galerkin
methods to relax conformity conditions. For each e ∈ E 0

h let ne be a unit normal to e (the
orientation is arbitrary but fixed once for all). With this notation, we set for vh ∈Vr

h and e ∈ E 0
h

[vh]|e := v−
h − v+

h , {vh}|e := v+
h + v−

h

2
,

where v±
h (x) := limϱ→0+ vh(x±ϱne ) for any x ∈ e. Note that if e = ∂T1 ∩∂T2 with T1,T2 ∈Th , then

[vh]|e ne = vh|T1 n∂T1 + vh|T2 n∂T2

with n∂Ti the outward unit normal to ∂Ti , i = 1,2. For edges on the boundary e ∈ E b
h , ne is the

outward unit normal vector to ∂Ω and [vh]|e = {vh}|e := vh . The jumps and averages of non-scalar
functions are computed componentwise.

We introduce the mesh-dependent bilinear form 〈·, ·〉H 2
h (Ω) defined for any vh , wh ∈Vk

h by

〈vh , wh〉H 2
h (Ω) := (

D2
h vh ,D2

h wh
)

L2(Ω)

+ (
h−1[∇h vh], [∇h wh]

)
L2

(
Γ

grad
h

)+ (
h−3[vh], [wh]

)
L2

(
Γval

h

)+ ∑
xi ∈ΓP

h−2
i vh(xi )wh(xi ) (36)

and we set
|vh |H 2

h (Ω) := 〈vh , vh〉1/2
H 2

h (Ω)
.

These definitions are extended componentwise to vector-valued functions.

3.2. Discrete Hessian

All the energies considered in this work involve the Hessian of the deformation. Conforming
approximations come at the price of using costly and rigid C 1 finite element methods. Instead,
we describe an LDG approach, which retains the simplicity of the discrete problem while not
requiring C 1 elements.

The proposed LDG methods consist of replacing the continuous Hessian D2y by a suitable dis-
crete (aka reconstructed) Hessian Hh(yh) that we introduce now. The discrete Hessian described
here was originally proposed in [27] following ideas from, for example, [56, 57] but modified to
possibly account for subdivision containing non-affine elements.

For vh ∈ [Vk
h]3, we recall that D2

hvh : Ω → R3×2×2 is the piecewise Hessian of vh . Because
vh does not belong to [H 2(Ω)]3, a better approximation of the Hessian must account for the
jumps of vh and ∇hvh across elements. To achieve this, we use (local) lifting operators [58–60]
re : [L2(e)]2 → [Vl1

h ]2×2 and be : L2(e) → [Vl2
h ]2×2 to construct representations of these jumps in

L2(Ω). Given l1, l2 ≥ 0, they are defined for e ∈ Eh by

re (φ) ∈
[
V

l1
h

]2×2
:
∫
Ω

re (φ) : τh =
∫

e
{τh}ne ·φ ∀ τh ∈

[
V

l1
h

]2×2
,

and

be (φ) ∈
[
V

l2
h

]2×2
:
∫
Ω

be (φ) : τh =
∫

e
{divτh} ·neφ ∀ τh ∈

[
V

l2
h

]2×2
.

Note that the support of the liftings re and be is the union of the two elements sharing e as an
edge (which reduces to a single element if e is a boundary edge).
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With these lifting operators, we can now define the discrete Hessian of a function vh ∈Vk
h as

Hh(vh) := D2
h(vh)−Rh([∇h vh])+Bh([vh])

:= D2
h(vh)− ∑

e ∈E
grad
h

re ([∇h vh])+ ∑
e ∈E val

h

be ([vh]). (37)

This definition is naturally extended to vector-valued functions in [Vk
h]3 by componentwise

application. For the remainder of this work, we set l1 = l2 = k.
To motivate definition (37) of the discrete Hessian, we briefly sketch an argument showing a

(weak) convergence property of H 2
h(vh). Let τ ∈ [C∞

0 (Ω)]2×2 and let {vh}h>0 ⊂ Vk
h be a sequence

such that |vh |H 2
h (Ω) ≤ C for some constant C independent of h and such that vh → v in L2(Ω) as

h → 0+ for some v ∈ H 2(Ω). On the one hand, notice that thanks to the regularity of v and the
convergence of vh to v , using two integrations by parts we have∫

Ω
D2v : τ=

∫
Ω

v div(div(τ)) ←
∫
Ω

vh div(div(τ)) as h → 0+.

On the other hand, using again two integrations by parts, we have for any T ∈Th∫
T

vh div(div(τ)) =
2∑

i , j=1

∫
T

vh∂i
(
∂ jτi j

)
=

2∑
i , j=1

[∫
T
∂ j (∂i vh)τi j −

∫
∂T
∂i vhτi j (n∂T ) j +

∫
∂T

vh∂ jτi j (n∂T )i

]
=

∫
T

D2vh : τ−
∫
∂T

∇vh · (τn∂T )+
∫
∂T

vh div(τ) ·n∂T .

Therefore, summing over the elements T ∈ Th and using the fact that τ is smooth, namely that
[τ] = {τ} = τ and similarly for div(τ), we get∫

Ω
vh div(div(τ)) =

∫
Ω

D2
h vh : τ− ∑

e ∈E
grad
h

∫
e

[∇h vh] · {τ}ne +
∑

e ∈E val
h

∫
e

[vh] {div(τ)} ·ne .

If τ were an admissible test function for the lifting operators, then the right hand side of the
last relation would be

∫
Ω Hh(vh) : τ and we would conclude that for all τ ∈ [C∞

0 (Ω)]2×2∫
Ω

D2v : τ←
∫
Ω

Hh(vh) : τ as h → 0+,

i.e. Hh(vh) converges weakly to D2v in L2(Ω)2×2. Because τ does not belong to [Vk
h]2×2 in general,

it remains to show that for the Lagrange interpolant Ih : [C∞
0 (Ω)]2×2 → [Vk

h ∩H 1
0 (Ω)]2×2 we have∫

Ω
D2

h vh : (τ− Ihτ)− ∑
e ∈E

grad
h

∫
e

[∇h vh] · {τ− Ihτ}ne +
∑

e ∈E val
h

∫
e

[vh] {div(τ− Ihτ)} ·ne → 0

and ∫
Ω

Hh(vh) : (τ− Ihτ) → 0

as h → 0+. This fact follows from the uniform boundedness assumptions |vh |H 2
h (Ω) ≤ C and

standard interpolation estimates. We refer to [33, Lemma 2.4] for additional details when Σ = ;
(see Appendix B for a proof in the free boundary case and Appendix C for the Dirichlet boundary
conditions case). The case Σ ̸= ; is derived similarly. Strong convergence properties are also
available, for example, in [33].

We now turn our attention to the boundary conditions and start by noting that the Dirich-
let/mixed boundary edges e ∈ E D

h ∪E M
h are incorporated in the definition of the discrete Hessian.

They do not influence the weak convergence property sketched above (because τ is compactly
supported). However, the value of the deformation and its gradient imposed on ΓD ∪ΓM must be
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added separately for strong consistency [61]. To this end, we introduce the lifting of the boundary
conditions (32) and (33)

Lh(Φm ,ϕm) :=− ∑
e ∈E D

h

re (Φm)+ ∑
e ∈E D

h ∪E M
h

be (ϕm),

where we recall that Φm stands for the mth row of Φ, m = 1,2,3. The discrete Hessian operator
accounting for the boundary conditions is then chosen to be

Hh(ϕm ,Φm ; yh,m) := Hh(yh,m)−Lh(Φm ,ϕm) (38)

with the usual extension for vector-valued functions.

3.3. Discrete Energies

We are now in a position to describe the approximation of the different energies E pre
s (y)

(preasymptotic), E pre(y) (prestrain), and E bil(y) (bilayer).

3.3.1. Preasymptotic Energy

We start with the preasymptotic energy

E pre
s (y) = E S (y)+ s2E B (y)

and approximate the stretching and bending components separately. For the stretching part, we
simply replace the derivatives appearing in (21) by their piecewiese counterparts and define for
yh ∈ [Vk

h]3

E S
h(yh) := µ

4

∫
Ω

∣∣∣g− 1
2
(
(∇h yh)T ∇h yh − g

)
g− 1

2

∣∣∣2 + λ

8

∫
Ω

tr
(
g− 1

2
(
(∇h yh)T ∇h yh − g

)
g− 1

2

)2
. (39)

For the bending part, we first replace as in [5] the second fundamental form in E B by the Hessian.
This step is not justified but taken for computational convenience. We then take advantage of the
discrete Hessian (38) and set for yh ∈ [Vk

h]3

E B
h (yh) := µ

12

3∑
m=1

∫
Ω

∣∣∣g− 1
2 Hh

(
ϕm ,Φm ; yh,m

)
g− 1

2

∣∣∣2

+ µλ

12(2µ+λ)

3∑
m=1

∫
Ω

tr
(
g− 1

2 Hh
(
ϕm ,Φm ; yh,m

)
g− 1

2

)2
; (40)

compare with (22). In the preasymptotic case Σ=; but for later use, we still define the approxi-
mation of the bending energy and subsequent quantities using Σ.

At this point neither E S
h nor E B

h enforce weak continuity condition nor are the boundary
conditions (when ΓD ∪ΓM ∪ΓP ̸= ;) imposed properly. This is the purpose of the stabilization
term defined for yh ∈ [Vk

h]3 by

Sh(yh) :=γ0

2

∥∥∥h− 3
2 [yh]

∥∥∥2

L2
(
Γ0

h

)+ γ0

2

∥∥∥h− 3
2 (yh −ϕ)

∥∥∥2

L2
(
ΓD

h ∪ΓM
h

)
+ γ1

2

∥∥∥h− 1
2 [∇h yh]

∥∥∥2

L2
(
Γ0

h \Σh

)+ γ1

2

∥∥∥h− 1
2
(∇hyh −Φ)∥∥∥2

L2
(
ΓD

h

)
+ γ2

2

∑
xi ∈ΓP

h−2
i

∣∣yh(xi )−ϕi

∣∣2 ,

(41)

where γ0,γ1,γ2 > 0 are stabilization parameters. Note that a particularity of the LDG method is
that these parameters are not required to be sufficiently large.
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It remains to incorporate possible external forces - see (31) - to arrive at the following approx-
imation of E pre

s

E pre
s,h (yh) := E S

h(yh)+ s2 (
E B

h (yh)+Sh(yh)−F (yh)
)

.

The discrete problem is thus to seek y⋆h ∈ [Vk
h]3 such that

y⋆h ∈ argmin

yh ∈
[
Vk

h

]3
E pre

s,h (yh). (42)

The Γ-convergence of E pre
s,h to E pre

s as h → 0+ is proved in [32] when using continuous (rather than
discontinuous) piecewise polynomial approximations of the deformations and when Σ = ; (i.e.
without folding).

3.3.2. Prestrain Energy

The approximation of the prestrain energy E pre in (25) directly follows from the above discus-
sion since E pre = E B . Accounting for the potential external forces and boundary conditions, we
thus set

E pre
h (yh) := E B

h (yh)+Sh(yh)−F (yh). (43)

However, unlike the preasymptotic model, the deformations are required to satisfy the metric
constraint (23). We have already pointed out that when using polynomial approximations, the
metric cannot be satisfied everywhere in Ω. We thus consider the following relaxation of the
constraint

Daver
h (yh) := ∑

T ∈T h

∣∣∣∣∫
T

(
(∇yh)T ∇yh − g

)∣∣∣∣≤ ε (44)

for some ε> 0 sufficiently small. This leads to the definition of the discrete admissible sets

Aaver
h,ε :=

{
yh ∈

[
Vk

h

]3
: Daver

h (yh) ≤ ε
}

. (45)

With these notations, the discrete preastrained minimization problem originally proposed
in [27, 33] is to find y⋆h ∈ [Vk

h]3 such that

y⋆h ∈ argmin
yh ∈Aaver

h,ε

E pre
h (yh). (46)

The Γ-convergence of E pre
h to E pre as h → 0+ is proved in [33] for the case Σ=; (i.e. without fold-

ing). Moreover, the case Σ ̸= ; is considered in [30] for the bending problem with isometry con-
straint (i.e. g = I2) assuming that Σh in (34) is an exact representation of the folding curve Σ. Fi-
nally, it is worth mentioning that extension to approximate curves obtained using isoparametric
finite elements of degree k ≥ 2 is investigated [36] for the linear bending problem, namely for the
bending problem without the isometry constraint which is suitable for small displacements.

3.3.3. Bilayer Energy

The bilayer energy (27) is composed of two terms: the bending term E B (with g = I2) approxi-
mated by E B

h and the nonlinear term

N (y) :=α
2∑

i , j=1

∫
Ω
∂i j y · (∂1y×∂2y

)
Zi j .

Note that both terms are fourth order terms, requiring the nonlinearity to be discretized with
care. To motivate the proposed scheme, we first note that

N (y)≲ ∥y∥H 2(Ω)∥∇y∥2
L∞(Ω) (47)
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which is bounded for deformations y ∈ [H 2(Ω)]3 satisfying the isometry constraint ∇yT ∇y = I2

(and thus |∇y| ∈ L∞(Ω)). In particular, the control on the nonlinear term is only possible thanks
to the isometry constraint.

The relaxation (44) of the metric constraint does not provide enough control. Instead, we
introduce an alternate discrete admissible set which guarantees a pointwise control at all the
barycenter xT of the elements T in the subdivision Th :

D
bary
h (yh) := max

T ∈Th

∣∣[(∇yh)T ∇yh − I2
]

(xT )
∣∣≤ ε (48)

for ε > 0 sufficiently small; compare with (44). This leads to the definition of the discrete
admissible set

A
bary
h,ε :=

{
yh ∈

[
Vk

h

]3
: Dbary

h (yh) ≤ ε
}

. (49)

The approximate constraint (48) implies (see [31])

1−ε≤ ∣∣∂i yh(xT )
∣∣≤ 1+ε, i = 1,2,

so that |∇h yh(xT )| is uniformly bounded for all T ∈ Th . Whence, in order to obtain a discrete
version of (47), we approximate the nonlinear term N (yh) using a 1-point quadrature with
quadrature points localized at the barycenter of each element T ∈Th

N (y) ≈α
2∑

i , j=1

∑
T ∈Th

|T |[∂i j y · (∂1y×∂2y
)

Zi j
]

(xT ).

In addition, it would be tempting to replace the second derivatives ∂i j y(xT ) by the discrete
hessian Hh(yh)(xT ). However, estimates on the quadrature error would require regularity of y
beyond [H 2(Ω)]3. To circumvent this issue, we introduce the L2(Ω) projection H h(yh) of Hh(yh)
onto the piecewise constant tensors and set

Nh(yh) :=α
2∑

i , j=1

∑
T ∈Th

|T |
[(

H h(yh)
)

i j ·
(
∂1yh ×∂2yh

)
Zi j

]
(xT ).

The discrete bilayer minimization problem is to seek y⋆h ∈ [Vk
h]3 such that

y⋆h ∈ argmin
yh ∈Abary

h,ε

E bil
h (yh), (50)

where for yh ∈ [Vk
h]3,

E bil
h (yh) := E B

h (yh)+Sh(yh)−F (yh)−Nh(yh). (51)

Note that the discrete minimization problem (50) was introduced in [31] following ideas from [29,
38]. Moreover, the proof that E bil

h Γ-converges to E bil as h → 0+ can be found in [31].

4. Energy Minimization: Discrete Gradient Flows

Now that we have established the discrete minimization problems, it remains to discuss numeri-
cal procedures to construct approximate minimizers to each problem.

We recall that the considered energies are nonconvex and/or the minimization problem is
subject to a nonconvex constraint. Hence, we use a gradient flow for its robustness and ability
to approximately satisfy the type of nonconvex constraints encountered in our context. These
benefits come at the expense of slow convergence towards minimizers.

Gradient flows require an initial condition, and their efficiency depends on both the energy
of the initial condition and, for constrained problems, how well the initial condition satisfies
the constraint. After introducing the (main) discrete gradient flow, we discuss preprocessing
algorithms to construct suitable initial deformations. A bi-harmonic problem is advocated to
enforce the boundary conditions (recall that the boundary conditions are part of the energies)



Andrea Bonito, Diane Guignard and Angelique Morvant 19

while an unconstrained gradient flow is put forward for reducing the metric defect of the initial
deformation.

For the unconstrained preasymptotic minimization problem and in the metric preprocessing
algorithm, an accelerated (Nesterov-type) algorithm considerably improves the number of itera-
tions required to achieve a near minimum. This is the topic of the last part of this section.

4.1. Main Discrete Gradient Flows

Discrete gradient flows are used to minimize the discrete energies introduced in Section 3.3.
Note that we have two types of minimization problems, namely an unconstrained minimization
problem of the form

min
yh ∈

[
Vk

h

]3
Eh(yh)

for the preasymptotic case and a constrained minimization problem of the form

min
yh ∈Ai

h,ε

Eh(yh), i ∈ {aver, bary},

for all the other cases.
Gradient flows are chosen to minimize the different energies because of their robustness

(energy decreasing property). In all the cases, we advocate an H 2
h(Ω) gradient flow based on the

mesh-dependent inner product (·, ·)H 2
h (Ω) defined for any vh ,wh ∈ [Vk

h]3 by

(vh ,wh)H 2
h (Ω) :=σ(vh ,wh)L2(Ω) +〈vh ,wh〉H 2

h (Ω), (52)

where 〈vh ,wh〉H 2
h (Ω) is given by (36). Here σ= 0 if ΓD ̸= ; and σ= 1 otherwise to ensure that (52)

is indeed an inner product on [Vk
h]3 when no Dirichlet boundary conditions are imposed. The

gradient flow metric is thus

∥vh∥H 2
h (Ω) := (vh ,vh)1/2

H 2
h (Ω)

, vh ∈
[
Vk

h

]3
.

We detail below the discrete gradient flows for the different energies. In order to simplify the
discussion, we do not include the possible contribution from external forces (in other words we
assume that f = 0).

4.1.1. Preasymptotic Energy

We start with the unconstrained minimization problem (42) and recall that without external
forces

E pre
s,h (yh) = E S

h(yh)+ s2 (
E B

h (yh)+Sh(yh)
)

.

A minimizing movements procedure is adopted to determine successive approximations re-
ducing E pre

s,h . The minimization process requires a pseudo time-step τ > 0 and an initial guess

y0
h ∈ [Vk

h]3. Ideally, each iteration of the algorithm would read: given yn
h ∈ [Vk

h]3, find a deforma-
tion minimizing

vh 7→
(

1

2τ

∥∥vh −yn
h

∥∥2
H 2

h (Ω) +E pre
s,h (vh)

)
over [Vk

h]3. Note that the Euler–Lagrange equation associated with the above minimization
problem is nonlinear, and solving it would entail using an iterative method. Instead, we consider
the following linearization

δE pre
s,h

(
yn+1

h ,wh
)≈ δE S

h

(
yn

h ;yn+1
h ,wh

)+ s2 (
δE B

h

(
yn+1

h ,wh
)+δSh

(
yn+1

h ,wh
))

.
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Here δE B
h (vh ,wh) is the Gâteau derivative of E B

h (see (40)) at vh in the direction wh , δE S
h(yn

h ;vh ,wh)
is the following linearization at yn

h of the Gâteau derivative of E S
h (see (39)) at vh in the direction wh

δE S
h

(
yn

h ;vh ,wh
)

:=
µ

2

∫
Ω

g− 1
2 l (vh ,wh)g− 1

2 : g− 1
2 m

(
yn

h

)
g− 1

2 + λ

4

∫
Ω

tr
(
g− 1

2 l (vh ,wh)g− 1
2

)
tr

(
g− 1

2 m
(
yn

h

)
g− 1

2

)
,

where

l (vh ,wh) := (∇h vh)T ∇h wh + (∇h vh)T ∇hwh and m
(
yn

h

)
:= (∇h yn

h

)T ∇hyn
h − g ,

and δSh(vh ,wh) is the Gâteau derivative of Sh (see (41)) at vh in the direction wh .
With these notations, we define yn+1

h ∈ [Vk
h]3 to be solution of

τ−1 (
yn+1

h −yn
h ,wh

)
H 2

h (Ω) +δE S
h

(
yn

h ;yn+1
h ,wh

)+ s2 (
δE B

h

(
yn+1

h ,wh
)+δSh

(
yn+1

h ,wh
))= 0 (53)

for all wh ∈ [Vk
h]3. Note that (53) has a unique solution and the sequence of energies {E pre

s,h (yn
h )}n≥0

is decreasing, i.e.
1

τ

∥∥yn+1
h −yn

h

∥∥2
H 2

h (Ω) +E pre
s,h

(
yn+1

h

)≤ E pre
s,h

(
yn

h

)
provided τ is sufficiently small (proportional to hmin and E pre

s,h (y0
h)−1). As a consequence, we

obtain E pre
s,h (yn+1

h ) < E pre
s,h (yn

h ) if yn+1
h ̸= yn

h . We refer to [32] for more details, see also [33].

4.1.2. Prestrain Energy

The prestrain energy E pre
h = E B

h + Sh appears simpler to reduce because it does not include
the problematic non-quadratic stretching energy E S

h . However, the metric condition appears as a
constraint on the deformations, which have to belong to the admissible set Aaver

h,ε (see (45)) for a
prescribed ε> 0.

Note that the metric constraint ∇yT ∇y = g is relaxed in Aaver
h,ε and only needs to be satisfied

approximately. To achieve this, we compute increments in a (pseudo-)tangent space of the
constraint and rely on the H 2

h(Ω) metric of the gradient flow to guarantee that all the deformations
generated by the gradient flow indeed belong toAaver

h,ε for a specific choice of ε.

Given a deformation yn
h ∈ [Vk

h]3, we define the (pseudo-)tangent space at yn
h as follows:

Waver
h

(
yn

h

)
:=

{
wh ∈

[
Vk

h

]3
:
∫

T

(
(∇h wh)T ∇h yn

h + (∇hyn
h )T ∇hwh

)= 0 ∀ T ∈Th

}
.

Now, given a pseudo time-step τ > 0 and an initial guess y0
h ∈ [Vk

h]3, the discrete gradient flow
algorithm for the constrained minimization problem (46) consists in computing successively
yn+1

h ∈ [Vk
h]3 such that yn+1

h −yn
h ∈Waver

h (yn
h ) and

τ−1 (
yn+1

h −yn
h ,wh

)
H 2

h (Ω) +δE pre
h

(
yn+1

h ,wh
)= 0 ∀ wh ∈Waver

h

(
yn

h

)
,

where
δE pre

h

(
yn+1

h ,wh
)

:= δE B
h

(
yn+1

h ,wh
)+δSh

(
yn+1

h ,wh
)

.

In practice, the linear constraint encoded in Waver
h (yn

h ) is enforced using piecewise constant
Lagrange multipliersΛh :Ω→ [V0

h]2×2 withΛT
h =Λh .

The resulting sequence of deformations is again energy decreasing, i.e.

1

τ

∥∥yn+1
h −yn

h

∥∥2
H 2

h (Ω) +E pre
h

(
yn+1

h

)≤ E pre
h

(
yn

h

)
(54)

irrespective of the choice of the pseudo timestep τ > 0. Furthermore, because yn+1
h − yn

h ∈
Waver

h (yn
h ), we can show that the metric defect Daver

h defined in (44) is uniformly controlled,
namely

Daver
h

(
yn

h

)≤Daver
h

(
y0

h

)+ c1τ
(
E pre

h

(
y0

h

)+ c2
)

, n = 1,2, . . . , (55)
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where the constant c1 > 0 depends only on the constants in Poincaré–Friedrichs-type inequalities
and c2 ≥ 0 depends on the input data (namely µ, g , ϕ, and Φ) as well as the stabilization
parameters γ0,γ1. We refer to [33] for more details when ΓP =;.

The control on the metric defect (55) implies that upon setting ε=Daver
h (y0

h)+c1τ(E pre
h (y0

h)+c2),
yn

h ∈ Aaver
h,ε for all n = 1,2, . . . . In particular, the recursive algorithm produces a sequence of

deformation inAaver
h,ε with decreasing energy as desired.

4.1.3. Bilayer Energy

It remains to discuss the constrained minimization problem (50) associated with the bilayer
energy

E bil
h = E B

h +Sh −Nh ,

see (51) (recall that f = 0). This case contains the two difficulties encountered above: the Gâteau
derivative δE bil

h is not bilinear due to the cubic term Nh and the minimization is subject to an
approximate isometry constraint. Note that the latter is enforced at the cells’ barycenters rather
than in average, see (49).

Nevertheless, the algorithm considered in [31], which in turn is inspired from [38], combines
the ideas of the previous two cases. We define for yn

h ∈ [Vk
h]3 the set

W
bary
h

(
yn

h

)
:=

{
wh ∈

[
Vk

h

]3
:
[

(∇hwh)T ∇h yn
h + (∇hyn

h

)T ∇h wh

]
(xT ) = 0 ∀ T ∈Th

}
and seek yn+1

h ∈ [Vk
h]3 such that yn+1

h −yn
h ∈Wbary

h (yn
h ) and

τ−1 (
yn+1

h −yn
h ,wh

)
H 2

h (Ω) +δE B
h

(
yn+1

h ,wh
)+δSh

(
yn+1

h ,wh
)= Nh

(
yn

h ;wh
)

(56)

for all wh ∈Wbary
h (yn

h ). Here

Nh
(
yn

h ;wh
)

:=α
2∑

i , j=1

∑
T ∈Th

|T |
[(

H h(wh)
)

i j ·
(
∂1yn

h ×∂2yn
h

)
Zi j

]
(xT )

+α
2∑

i , j=1

∑
T ∈Th

|T |
[(

H h
(
yn

h

))
i j ·

(
∂1wh ×∂2yn

h

)
Zi j

]
(xT )

+α
2∑

i , j=1

∑
T ∈Th

|T |
[(

H h
(
yn

h

))
i j ·

(
∂1yn

h ×∂2wh
)

Zi j

]
(xT )

so that (56) corresponds to an explicit treatment of the cubic term Nh . As in the prestrain case, the
linear constraint encoded inWaver

h (yn
h ) is enforced using piecewise constant Lagrange multipliers

Λh :Ω→ [V0
h]2×2 withΛT

h =Λh .
As it turns out, except for the mild requirement τ≲ | ln(hmin)|−1, the explicit treatment of Nh

does not affect the convergence property (in [29] its treatment was implicit thereby requiring a
fixed-point iteration at each step). In particular, the energy decay property (54) holds for E bil

h with
a factor 1

2τ instead of 1
τ in front of the metric term and the isometry defect satisfies

D
bary
h

(
yn

h

)≤D
bary
h

(
y0

h

)+ c1τ| log(hmin)|(Eh
(
y0

h

)+ c2
)

, n = 1,2, . . . , (57)

where similarly to (55), the constant c1 > 0 depends only on the constants in Poincaré–Friedrichs-
type inequalities while c2 ≥ 0 depends on the input data (in this case Z , ϕ, and Φ) as well
as the stabilization parameters γ0,γ1. Refer to [31] for additional details in the case ΓP = ;.
Again, this implies that all the iterations of the algorithms belong to A

bary
ε,h provided that ε ≥

D
bary
h (y0

h)+ c1τ| log(hmin)|(Eh(y0
h)+ c2).
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4.2. Preprocessing Step

In this section we introduce a preprocessing strategy which can be used to construct the initial
deformation y0

h required by the gradient flows detailed in Section 4. The estimates (55) and (57)
for the metric defect satisfied by the constraint minimization problem suggest that the initial
condition should satisfy approximately the boundary conditions (to reduce the energy) and
have a small metric defect. Therefore, the preprocessing strategy consists of two main modules
dedicated to each aspect. Note that in some cases, a suitable initial deformation is known a
priori, as in the case of clamped boundary conditions and isometry constraint (g = I2), which are
satisfied by the identity map y0

h(x1, x2) = (x1, x2,0)T . However, in general, the initial deformation
is not accessible.

4.2.1. Boundary Conditions Preprocessing

The BC preprocessing consists in solving a bi-Lapacian problem to obtain a deformation
satisfying (approximately) the prescribed boundary conditions. We seek an approximation of the
solution to the bi-Laplacian problem

∆2ŷ = f̂ inΩ
∇ŷ = Φ on ΓD

ŷ = ϕ on ΓD ∪ΓM

ŷ(xi ) = ϕi for all xi ∈ ΓP ,

(58)

supplemented with the following natural boundary conditions{ (
D2 ŷm

)
n = 0 on ∂Ω\ΓD

∇(∆ŷm) ·n = 0 on ∂Ω\
(
ΓD ∪ΓM

) (59)

for m = 1,2,3. Note that f̂ is a fictitious forcing term. Its value is irrelevant but can be employed to
obtain a non-planar deformation, namely a deformation ŷ = (y1, y2, y3) with y3 ̸≡ 0, in particular
when ΓD = ;. This happens to be critical because the main discrete gradient flow preserves
planar configurations (when f = 0) and can therefore not reach non-planar minimizers.

The approximation ŷh of ŷ is obtained using an LDG approach, that is

ŷh := argmin

yh ∈
[
Vk

h

]3
E pre

h (yh),

where E pre
h is given by (43) with µ= 6, λ= 0, and g = I2. In particular, the solution ŷh is obtained

upon solving the associated Euler–Lagrange equation.

4.2.2. Metric Constraint Preprocessing

The metric preprocessing aims at minimizing the metric defect Di
h , i ∈ {aver,bary}. It consists

of minimizing the simplified stretching energy

E str
h (yh) := 1

2

∫
Ω

∣∣∣(∇h yh
)T ∇h yh − g

∣∣∣2
(60)

over [Vk
h]3. The stretching energy E str

h is not quadratic, but its reduction can be performed using
an H 2

h(Ω) discrete gradient flow coupled with a linearization similar to the one for E pre
s,h . Setting

ỹ0
h = ŷh , the deformation obtained by the BC preprocessing algorithm, recursively computes

ỹn+1
h ∈ [Vk

h]3 as the solution to

τ̃−1 (
ỹn+1

h − ỹn
h ,wh

)
H 2

h (Ω) +δE str
h

(
ỹn

h ; ỹn+1
h ,wh

)= 0 ∀ wh ∈
[
Vk

h

]3
, (61)
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where τ̃> 0 is a given (sufficiently small) pseudo time-step and where for vh ,wh ∈ [Vk
h]3

δE str
h

(
ỹn

h ;vh ,wh
)

:=
∫
Ω

(
(∇hvh)T ∇hwh + (∇h wh)T ∇h vh

)
:
((∇h ỹn

h

)T ∇h ỹn
h − g

)
.

The gradient flow produces iterates with decreasing energy provided that τ̃ is sufficiently small
compared to E str

h (ỹ0
h)−1 and hmin, see [33]. Similar to the main discrete gradient flow, one draw-

back of the metric constraint preprocessing is that planar configurations are local minimizers
of (60) regardless of the target metric g , see [27]. A non-planar deformation can nevertheless be
obtained using a non-planar initial deformation ỹ0

h . Such an initial deformation can be gener-
ated, for instance, by solving (58)-(59) with f̂ ̸≡ 0. Moreover, the metric constraint preprocessing
does not necessarily construct a deformation with finite energy E pre

h . If needed, a bending term
could be added to the energy (60) to generate iterates with a uniformly bounded H 2

h(Ω) semi-
norm, see [33].

4.3. Accelerated Algorithm

It is well-documented that gradient flows exhibit slow convergence towards minimizers. Several
accelerated algorithms have been introduced to improve the convergence rate of the standard
gradient descent algorithm, but they are mainly available for convex problems.

Below we design an accelerated algorithm suited for the minimization of the preasymptotic
energy and the stretching energy used in the preprocessing process. The proposed algorithm is
inspired by Nesterov’s original accelerated gradient method [62], see also [63, 64].

Typical results for the minimization of functions f : Rd → R is an O (n−2) convergence in f
when f is a C 1 convex function with Lipschitz gradient. Here n denotes the number of iterations.
This is a significant improvement over the standard gradient method for which the convergence
rate is only O (n−1).

The Fast Iterative Shrinkage/Thresholding Algorithm (FISTA) is an extension to when f is the
sum of two convex and lower-semicontinuous functions, one of class C 1 with Lipschitz gradient
and the other potentially non-smooth. The convergence of the FISTA algorithm is also quadratic
in the number of iterations, see [65] and [66].

Inspired by the FISTA algorithm (case f1 ≡ 0), but adapted to the functional setting, our
accelerated algorithm for the minimization of the preasymptotic energy E pre

s,h and the stretching

energy E str
h used in the metric constraint preprocessing reads. Given y0

h ∈ [Vk
h]3, set v0

h = y0
h . Then

for n = 0,1, . . . do

(a) Find yn+1
h ∈ [Vk

h]3 satisfying (53) or (61) with yn
h replaced by vn

h ;

(b) Set vn+1
h = yn+1

h +ηn+1(yn+1
h −yn

h ), where ηn+1 = tn+1−1
tn+2

and {tn}n≥1 satisfies

t1 = 1 and tn+1 =
√

t 2
n + 1

4
+ 1

2
for n = 0,1, . . . .

As in the case of the main gradient flow, a linearization is performed at vn
h to avoid a nonlinear

system at each iteration.
Note that the accelerating algorithm does not have the energy decreasing property that the

gradient descent algorithm does. This can be observed experimentally, see Figure 4 below.
However, the algorithm does appear to converge when the appropriate step size is chosen.

Finding analytic estimates for the convergence rate of the proposed algorithm remains an
open problem. In Section 5.1.2 we observe at least an O (n−2) convergence rate and illustrate the
significant gain when the accelerated version of the algorithm is used.
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4.4. Dynamics: Time Discretization

Several numerical experiments presented in Section 5 are dynamical in the sense that the data
(boundary conditions and external forces) vary over the time interval [0,T ]. The minimizers of
the different energies y are thus time dependent as well.

For a positive integer M, we let ∆t := T /M be the physical time-step (as opposed to the pseudo-
time step used in the gradient flows) and consider the points tm := m∆t for m = 0,1, . . . , M. We
assume that the elastic relaxation is faster than the time relaxation, i.e. at each time step, the thin
elastic structures have minimal energies. In particular, the deformations yh(tm) ∈ [Vk

h]3 at each
time tm are discrete minimizers of the discrete energy defined using the input data evaluated at
t = tm .

The dynamic algorithm reads:

Initialization (t = 0): Obtain ŷ(0)
h using the BC preprocessing algorithm with the prescribed

conditions evaluated at t = 0; Set y(0)
h = ŷ(0)

h ;

Dynamics (t ∈ (0,T ]). for m = 1,2, . . . , M, do

(i) Obtain δŷ(m)
h := ŷ(m)

h − y(m−1)
h using the BC preprocessing algorithm with the increment

boundary conditions

∇δŷ(m)
h =Φ(tm)−Φ(tm−1), on ΓD

δŷ(m)
h =ϕ(tm)−ϕ(tm−1), on ΓD ∪ΓM

δŷ(m)
h (xi ) =ϕi (tm)−ϕi (tm−1), for i = 1,2, . . . , P ;

(ii) Starting from ŷ(m)
h , obtain ỹ(m)

h using the metric preprocessing algorithm to satisfy ap-
proximately the metric constraint;

(iii) Starting from ỹ(m)
h , obtain y(m)

h using the (main) gradient flow to minimize the discrete
energy with the data evaluated at t = tm .

It is important to point out that the BC preprocessing procedure embedded in the dynamic
algorithm above determines the increment δŷ(m)

h := ŷ(m)
h −y(m−1)

h (rather than the preprocessed

deformation ŷ(m)
h directly) by solving (58)-(59) with incremental boundary conditions. This is

done to take advantage of the previous step and, in particular, to avoid using a costly metric
preprocessing algorithm starting from scratch at each time step.

5. Numerical Experiments

In this section, we illustrate the performance of the different algorithms. All the simulations are
performed with µ = 6 and λ = 8 (note that µ = 6 and λ = 0 yield the factor 1/2 for the bilayer
case) and without any external force (i.e. f = 0) except for the experiment in Section 5.3. The
polynomial degree used for the approximated deformations yh is chosen to be k = 2, and, unless
specified otherwise, we take γ0 = γ1 = 1 and γ2 = 10 for the stabilization parameters. The main
gradient flow ends when

τ−1 ∣∣Eh
(
yn+1

h

)−Eh
(
yn

h

)∣∣≤ tol

for a prescribed tolerance tol specified for each numerical experiment below. For the metric
preprocessing we stop when

τ̃−1 ∣∣Ẽh
(
ỹn+1

h

)− Ẽh
(
ỹn

h

)∣∣≤ t̃ ol or Di
h

(
ỹn+1

h

)≤ ε̃0, i ∈ {aver,bary},

for some tolerances t̃ ol and ε̃0 specified below. Finally, for the experiments in Sections 5.1
and 5.3, where the domain Ω consists of the unit disc, we use a quadratic mapping FT in (35)
to better approximate the domain.
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5.1. Preasymptotic

We first consider two experiments using the preasymptotic model. The first experiment illustrates
the effect of the thickness of the plate on the final configuration, while the second demonstrates
the advantages of the Nesterov-type acceleration discussed in Section 4.3. In both experiments
the computational domain Ω is a disc of radius one, and we use τ = 0.01 for the gradient flow
pseudo time-step.

5.1.1. Disc with Oscillating Boundary

Our first experiment is inspired by [6, 8], in which a hydrogel disc of negative Gaussian
curvature is observed to develop more oscillations along the boundary as its thickness is reduced.
The material is prestrained according to the metric

g = J T (
g̃ ◦ζ) J ,

where J is the Jacobian matrix for the change of variables (r,θ) = ζ(x1, x2) from polar to Cartesian
coordinates and g̃ (r,θ) is the first fundamental form of the following deformation

ỹ(r,θ) = (
r cos(θ),r sin(θ), 0.2r 4 sin(6θ)

)
. (62)

This deformation corresponds to a disk with six wrinkles.
For the discretization, our subdivision consists of 1280 quadrilaterals and a total of 34560 =

1280 ·9 ·3 degrees of freedom. The initial deformation y0
h is taken to be the continuous Lagrange

interpolant of (62). We set tol = 10−8 for the stopping criterion and run the experiment for
s2 = 10−1, 10−2, 10−3, and 0.

The computed deformations minimizing the preasymptotic energy E pre
s are provided in Fig-

ure 3. In accordance with the laboratory experiments [6,8], the number of wrinkles increases from
0 to 6 as s decreases.

Figure 3. Final configurations for the oscillating boundary experiment. Left to right and
top to bottom: s2 = 10−1, 10−2, 10−3, and 0.
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5.1.2. Accelerated Algorithm

This example illustrates the benefits of using the accelerated algorithm introduced in Sec-
tion 4.3 over our original gradient flow. This time the material is characterized by a “bubble” met-
ric with positive Gaussian curvature, namely

g (x1, x2) =
 1+απ2

4 cos
(
π
2 (1− r )

)2 x2
1

r 2 απ2

4 cos
(
π
2 (1− r )

)2 x1x2
r 2

απ2

4 cos
(
π
2 (1− r )

)2 x1x2
r 2 1+απ2

4 cos
(
π
2 (1− r )

)2 x2
2

r 2


with r =

√
x2

1 +x2
2 and α= 0.2.

The mesh for this experiment consists of 320 quadrilaterals and a total of 8640 = 320 · 9 · 3
degrees of freedom. The initial deformation is taken to be the continuous Lagrange interpolant

of the shallow paraboloid − x2
1

16 +
x2

2
16 . This gives a slight initial bending that allows the simulation to

find a non-flat minimizer. (Recall from Section 4.2 that the flat configuration is a local minimizer
of the preasymptotic energy.) For the thickness of the material, we use the values s2 = 10−3, 10−4,
10−5, and 0 and we set tol = 10−6 as stopping criterion.

Figure 4. Evolution of E pre
s,h during the minimization when using the standard gradient

flow and the accelerated algorithm. The energy are reported for the first few iterations to
illustrate better the convergence of the acceleration.

The discrete stretching energy E S
h and bending energy s2(E B

h +Sh) along with the number of
iterations needed to reach the tolerance tol are reported in Table 1 when using the standard
gradient flow and the accelerated algorithm. We observe that the accelerated algorithm finishes
in much fewer iterations for all values of the thickness s. The approximate preasymptotic energy
E pre

s,h = E S
h + s2(E B

h + Sh) versus the algorithm iteration number n is depicted in Figure 4 for the
different values of s considered. When using a standard gradient flow, we observe numerically



Andrea Bonito, Diane Guignard and Angelique Morvant 27

that the energy decay is like O (n−1), while the accelerated algorithm exhibits a decay similar to
O (n−2). The latter is the expected convergence rate when using Nesterov-type accelerations.

Table 1. Final energy and number of iterations for different values of s2, with and without
acceleration.

Discrete Gradient Flow Accelerated Gradient Flow
s2 E S

h E B
h Iterations E S

h E B
h Iterations

0 2.390e-4 0 17746 8.098e-6 0 1007
10−5 1.525e-4 2.685e-4 26784 2.694e-4 3.990e-4 359
10−4 4.479e-5 5.951e-4 37799 6.350e-6 4.095e-4 896
10−3 5.595e-5 2.843e-3 39533 3.920e-5 2.741e-3 664

5.2. Bilayer and Folding

We consider here two experiments taken from [67], referred to as diamond and bird in the
following. They illustrate the rigidity, robustness, and great variety of shapes achievable with this
technology. In these examples, the computational domain consists of a collection of subdomains
delimited by creases where folding is allowed. The bilayer material is designed to yield a piecewise
constant spontaneous curvature tensor Z on each subdomain with α= 1.

In both experiments we set τ = 0.1 for the gradient flow pseudo time-step and tol = 10−3 for
the stopping criterion.

5.2.1. Diamond

The diamond computational domain is provided in Figure 5 (left). It consists of the square
(−1.5,1.5)× (−1.5,1.5) rotated counter-clockwise by an angle of π/4. The two dashed red curves
represent the creases. They are quadratic Bézier curves with the origin as control point. The point
z1 is at distance 1/3 from x1 on the segment from x1 to x2, and similarly for the three other points.
We denote by Zi ∈ R2×2 the spontaneous curvature associated with each subdomain i ∈ {1,2,3}
and set

Z1 = Z3 = 0.6I2 and Z2 =−0.6I2.

1

2

3

x1

x2

x3

x4

z1

z2z3

z4

Figure 5. Computational domain (left) and subdivision (right) for the diamond setting. The
dashed red curves are creases across which folding is possible.
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The subdivision Th is depicted in Figure 5 (right). It consists of 449 quadrilaterals with maxi-
mal mesh size 0.331678 (total of 13470 degrees of freedom, 12123 = 449 ·9 ·3 for the deformation
yh and 1347 = 449 · 3 for the Lagrange multipliers used to enforce the linearized isometry con-
straint). Moreover, the initial deformation y0

h is taken to be the identity map y0
h(Ω) =Ω× {0} for

which E bil
h = 3.24 and D

bary
h = 8.72497 ·10−15. The deformations obtained at several steps of the

gradient flow are provided in Figure 6, including the final (equilibrium) deformation reached in
305 iterations. For the final deformation, the energy and isometry defect are E bil

h = 0.679318 and

D
bary
h = 0.0334151, respectively.

Figure 6. Deformations for the diamond experiment. Left to right and top to bottom:
deformation obtained after 20, 70, 120, 305 (top view), and 305 (side view) iterations.

5.2.2. Bird

The bird geometry is depicted in Figure 7. It consists of 26 curves: 17 for the boundary of Ω
(black plain curves), 7 creases (red dashed curves), and 1 extra curve on the tail (black dotted
curve) which is only used for the construction of the subdivision (i.e. no folding is possible across
this curve). All the curves are quadratic or cubic Bézier curves, i.e. obtained using one or two
control points. The latter are chosen so that we obtain a geometry similar to [67]. In this example,
the piecewise constant spontaneous curvature tensors Z1, . . . , Z9 are given on each subdomain
by

Z1 = Z5 =
(

0 0
0 0.4

)
, Z2 = Z4 =

(
0 0
0 −0.3

)
, Z3 = 0.7I2,

Z6 =
(−0.2 0

0 0

)
, Z7 =

(
0.7 0
0 0

)
and Z8 = Z9 =−0.7I2.
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1 2 3 4 5

6

7

8

9

Figure 7. Computational domain for the bird experiment.

The mesh is constituted of 1468 quadrilaterals with maximal mesh size 0.690837 (total of 44040
degrees of freedom, 39636 = 1468 ·9 ·3 for the deformation yh and 4404 = 1468 ·3 for the Lagrange
multipliers used to enforce the linearized isometry constraint), see Figure 8.

Figure 8. Mesh for the bird example.

The initial deformation y0
h is again taken to be the identity map y0

h(Ω) = Ω× {0} for which

E bil
h = 12.9388 and D

bary
h = 3.0149 ·10−14. The deformation obtained after 100, 200, 500 and 2383

(final) iterations are given in Figure 9. For the latter the energy is E bil
h = 4.2239 while the isometry

defect is D
bary
h = 0.0529014.

It is worth pointing out that the equilibrium shape obtained is rather sensitive to the value
of the spontaneous curvature tensors. To illustrate this, a coefficient −0.4 instead of −0.3 in Z2

and Z4 leads to an equilibrium deformation reported in Figure 10. After 2383 iteration of the
gradient flow, the deformation is similar to the one obtained in Figure 9 (bottom-right), but the
final deformation reached in 8085 iterations is quite different.
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Figure 9. Deformations for the bird experiment. Left to right and top to bottom: deforma-
tion obtained after 100, 200, 500, and 2383 iterations.

Figure 10. Deformations for the bird experiment when Z2 = Z4 = [0,0;0,−0.4]. (Left)
Deformation obtained after 2383 iterations; (right) final deformation reached in 8085 itera-
tions.

5.3. Single Layer with Time-Dependent Force

In this experiment, the domainΩ is the unit disc endowed with a prestrain metric corresponding
to a half-sphere, namely g = I(y) with

y(x1, x2) =
(

x1, x2,
√

1+ϵ−x2
1 −x2

2

)T

, ϵ= 10−3, (63)

where the small parameter ϵ is introduced to avoid singularities at the boundary ∂Ω. We study the
effect of a uniform axial force directed towards the center of the sphere. When the external force
is sufficiently strong, we expect the sphere to crush like when the pressure inside a thin spherical
reservoir is significantly smaller than the atmospheric pressure.

In this experiment, the external force is given by

f(x1, x2, t ) =−tν(x1, x2) =− tp
1+ϵy(x1, x2), (64)

where ν is the structure outward pointing normal and t denotes the time. We prescribe a mixed
boundary condition with deformation given by ϕ(x1, x2) = (x1, x2,

p
ϵ)T on ΓM = ∂Ω, which is

compatible with (63).
The subdivision of Ω consists of 992 quadrilaterals with hanging nodes and of maximal mesh

size 0.194084 (total of 29760 degrees of freedom, 26874 = 992 · 9 · 3 for the deformation yh and
2976 = 992 ·3 for the Lagrange multipliers used to enforce the linearized metric constraint). It is
finer near the boundary where more stretching is expected. The initial deformation y0

h is taken
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to be the continuous Lagrange interpolant of y in (63), see Figure 11, for which E pre
h = 561.443

and Daver
h = 0.169394. The other numerical parameters are τ= 0.2, tol = 10−3, and ∆t = 5 so that

tm = m∆t = 5m.

Figure 11. Initial deformation for the half-sphere experiment.

For m = 1, . . . , 44, the equilibrium deformation is similar to the initial one given in Figure 11.
The number of gradient flow iterations are 1594 for m = 1 and between 8 to 101 for 2 ≤ m ≤ 44.
When m = 45, f(x1, x2, tm) =−225ν(x1, x2) and the object cannot sustain the corresponding force
anymore. It collapses and deforms all the way to a half-sphere in the opposite direction. In
particular, the range of values for the third component of the deformation is [0.03094,0.97704] at
the first iteration and [−1.06951,0.03254] at the last iteration of the gradient flow (81484). We refer
to Figure 12 for the deformation obtained at different steps of the gradient flow and to Table 2 for
the corresponding energy metric defect.

Table 2. Prestrain energy E pre
h and metric defect Daver

h at different steps of the gradient flow
for the half-sphere experiment when t = 225, see Figure 12 for the corresponding deforma-
tions.

n E pre
h Daver

h
0 738.520 0.206666

400 711.633 0.245251
800 597.757 0.351605

1200 313.706 0.524551
81484 49.763 0.528641

5.4. Starshade Experiment

The starshade technology was developed as part of the NASA exoplanet exploration program.
Starshades are occulters external to a telescope that shade the light from stars when imaging
planets [68]. They fold to minimize the space they occupy when transported in rockets and are
easily deployable when arrived at the destination.

The mathematical model corresponds to the single layer case with isometry constraint and
time-dependent boundary conditions mimicking compression (closing) and decompression
(opening). The geometry is taken from [69] and consists of a dodecagon, see Figure 13.

Inside the computational domain, there are 12 cubic Bézier curves as well as 6 straight lines
(hexagon) across which folding is possible. The red dashed curves correspond to valley folds while
the blue ones are mountain folds. The nodes of the dodecagon are given by
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Figure 12. Deformation for the half-sphere experiment when t = 225 in the forcing
term (64). Left to right and top to bottom: initial deformation and deformation obtained
after 400, 800, 1200, and 81484 steps of the gradient flow.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

Figure 13. Domain for the starshade example.

xi =
(
R cos

(
(i −1)π

6

)
,R sin

(
(i −1)π

6

))
, i = 1,2, . . . , 12,

with R = 7, while the nodes of the hexagon are given by

zi =
(
r cos

(
(i −1)π

3
− π

72

)
,r sin

(
(i −1)π

3
− π

72

))
, i = 1,2, . . . , 6,
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with r = 0.8. For the curves, we use the following control points (i = 1,2, . . . ,6):

pV
i =

(
3cos

(
(i −1)π

3
− π

8

)
,3sin

(
(i −1)π

3
− π

8

))
qV

i =
(
5cos

(
(i −1)π

3
− π

24

)
,5sin

(
(i −1)π

3
− π

24

))
pM

i =
(
3cos

(
(i −1)π

3
+ 5π

72

)
,3sin

(
(i −1)π

3
+ 5π

72

))

and

qM
i =

(
5cos

(
(i −1)π

3
+ π

8

)
,5sin

(
(i −1)π

3
+ π

8

))

The first valley curve is obtained using z1, pV
1 , qV

1 and x1, the first mountain curve uses z1, pM
1 ,

qM
1 and x2, the second valley curve uses z2, pV

2 , qV
2 and x3, and so on.

For the boundary conditions, we compress the 6 valley points xi , i = 1,3,5,7,9,11. More
precisely, we consider a dynamical setting by prescribing for i = 1,3,5,7,9,11, the following time-
dependent pointwise boundary condition for the deformation yh

ϕi (t ) = (1−2cr t )

(
R cos

(
(i −1)π

6

)
,R sin

(
(i −1)π

6

)
,0

)T

, (65)

where cr = 0.25 is a compression ratio. Using the strategy described in Section 4.4, we compute
an approximate equilibrium deformation ym

h at time t = tm , m = 0,1, . . . , M . Recall that this
entails running the BC preprocessing for the variation δŷm

h = ŷm
h − ŷm−1

h imposing the pointwise
conditions

δϕi =−2cr∆t

(
R cos

(
(i −1)π

6

)
,R sin

(
(i −1)π

6

)
,0

)T

, i = 1,3,5,7,9,11.

Note that at t = 0, ϕi = xi and in particular, the BC preprocessing with the above boundary
conditions results in a flat deformation which is conserved by the metric preprocessing and
gradient flow. In order to generate an out of plane deformation, the boundary conditions for the
initialization step (see case t = 0 in Section 4.4) are modified to be (65) for the valley points and
ϕi = (xi ,1.5)T for the 6 mountain points xi , i = 2,4,6,8,10,12.

The time-step for the time discretization is ∆t = 0.05, and M = 35 steps are performed. The
gradient flow parameters are τ = 0.05 and tol = 0.1 while τ̃ = 0.01, t̃ ol = 0.5, and ε̃0 = 0.5 are
chosen for the metric preprocessing. The computational domain subdivision consists of 620
quadrilaterals of maximum mesh size 1.20925 (total of 18600 degrees of freedom, 16740 = 620·9·3
for the deformation yh and 1860 = 620 · 3 for the Lagrange multipliers used to enforce the
linearized isometry constraint), see Figure 14. The penalty parameters are γ0 = γ1 = γ2 = 10.
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Figure 14. Mesh for the starshade example.

Figure 15. Left to right and top to bottom: equilibrium deformations for the starshade
experiment at time tm for m = 5,10,15,20,25,30,35.
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Figure 16. Left to right: equilibrium deformations for the starshade experiment at time tm

for m = 10,20,30 (side view).

The equilibrium deformations obtained for several time tm = m∆t are reported in Figure 15,
see Figure 16 for corresponding side views.
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