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Abstract. A stable scheme is proposed in this paper in order to obtain approximate solutions of second-
moment turbulent models for incompressible flows with or without thermal transport equation. The analysis
of the convective terms, which includes the solution of the associated Riemann problem, enables to propose
a standard projection scheme, and to get rid of spurious oscillations.
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1. Introduction

Reynolds-averaged Navier–Stokes models are commonly used in the industrial and environmen-
tal applications in order to predict incompressible or compressible flows (see e.g. [1,2]) due to the
high Reynolds numbers or Grashoff numbers encountered. These equations require closure on
the Reynolds stress tensor (covariance of velocity fluctuations), but second-order closures, which
consist in solving a transport equation on this symmetric tensor, are less used. Temperature or
pollutant averaged transport equations also provide turbulent thermal/scalar fluxes to be mod-
elled. All these second-order models contain first-order non-conservative terms (see e.g. [3–6]).
When focusing on turbulent compressible flows, a stable numerical strategy has been proposed,
which is grounded on the hyperbolic structure of the full-convective system embedded in the
model (see [7–10]). More recently, this methodology has been extended to shallow-water mod-
els [6, 11–13].
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The main purpose of the present work consists in applying similar ideas, while considering
incompressible flow models including second-moment closures, in order to get rid of non-
physical oscillations which occur in many practical situations (see e.g. [14]).

We first recall the set of equations and the realizability constraint on the Reynolds stress tensor,
which is mandatory to guarantee the hyperbolicity of the system. Then, we propose a basic time-
stepping and a special focus is given on the analysis of the full-convection part of the models.
Finally, the strategy is demonstrated using a Rusanov-like solver on a wall bounded flow. This
strategy is extended to anisothermal flows.

1.1. Set of equations

The governing set of equations involves mass and momentum conservations and Reynolds stress
tensor R := u′⊗u′ transport equation:

div
(
u

)= 0, (1a)

∂t u + (
u ·∇∇∇)

u +div (R)−div
(
Σ

)
= 0, (1b)

∂t R+ (
u ·∇∇∇)

R+R ·∇∇∇u +∇∇∇uT ·R+div (GR)−Φ= 0, (1c)

with, for Newtonian fluid and incompressible flow, Σ := − p
ρ0

1+ν0(∇∇∇u+∇∇∇uT ) the mean stress
tensor per mass unit, and p denotes the mean mechanical pressure.

As a covariance matrix, the Reynolds stress tensor is symmetric positive and half-definite. This
refers to the so-called realizability constraint (see [1, 15]).

Models for GR := u′⊗u′⊗u′ usually rely on a classical first gradient assumption GR =
−CRνt (R, T )∇∇∇R, where CR is a positive constant, νt is the turbulent viscosity, and T is the time
scale related to turbulent dissipation.

MoreoverΦ := u′⊗div (Σ′)+div (Σ′)⊗u′ is classically split into two parts:

Φ=Φr (∇∇∇u, R
)+Φs (R, T ) , (2)

where the so-called rapid contribution verifies: Φr (0,R) = 0 and Φr (∇∇∇u, 0) = 0. Moreover Φr is
linear with respect to ∇∇∇u (see e.g. [1] for a review of the turbulence models).

1.2. Total kinetic energy tensor

The evolution equation on R can be combined with the kinetic energy of the mean velocity field
u⊗u to give the total kinetic energy u⊗u = u⊗u+R evolution:

∂t u⊗u+div
(
u⊗u⊗u

)−u⊗div (Σ)+div (Σ)⊗u = 0. (3)

Equation (3) can also be deduced directly from the mean of the instantaneous kinetic energy
tensor, and emphasise that the so-called non-conservative production term −(R · ∇∇∇u +∇∇∇uT ·R)
acts as energy transfer between kinetic energy of the mean velocity field and turbulent kinetic
energy (note that the transfer may not be in the same direction) but is transparent with respect
to the total kinetic energy. This is analogous to what happens to compressible flows with the
non conservative term pdivu term which cancels out between internal energy and kinetic energy
balance. Therefore, the total kinetic energy tensor will be used in the following to derived jump
conditions when dealing with non regular solutions.
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1.3. Realizability constraint

To examine the realizability of the Reynolds stress tensor, we use the following Lemma:

Lemma 1. Assume that the governing equation of a symmetric second-rank tensor R ∈R3 ×R3 is:

∂t R+ (
u ·∇∇∇)

R+R ·H+HT ·R = 0.

Let δR be the determinant of the latter tensor R. Then the governing equation of δR is:

∂tδR + (
u ·∇∇∇)

δR +2tr (H)δR = 0.

A proof can be found in [16, Appendix 1]. H is deduced from the terms R ·∇∇∇u+∇∇∇uT ·R,Φr and
Φs , and the boundedness of the trace of H must be examined to ensure positivity of δR . In case
of the basic Lumley model examined in Section 3 where φr = 0 and for incompressible flows, we
have tr (H) = divu = 0 which implies that ∂tδR remains strictly positive for suitable initial and
boundary conditions, thus all the eigenvalues of R remain strictly positive. This is also true for
the same model in the comrpessible framework if divu is bounded.

2. A first order time scheme

Starting with initial conditions (un , Rn) and using suitable boundary conditions, (un+1, Rn+1)
arises from the following first-order time scheme:

div
(
un+1)= 0, (4a)

un+1 −un

∆t
+∇∇∇pn+1

ρ0
−div

(
ν0∇∇∇un+1)=−((

u ·∇∇∇)
u +div (R)

)n , (4b)

Rn+1 −Rn

∆t
−div

(
CRνt∇∇∇Rn+1)−Φs (

Rn+1,T
)=
−

((
u ·∇∇∇)

R+R ·∇∇∇u +∇∇∇uT ·R−Φr (∇∇∇u,R
))n

. (4c)

A Stokes-like step has been applied in the scheme (4a) and (4b) (see, among others, [17–19]).
The space discretization associated with right-hand-side of (4b), (4c) is derived from the analysis
of the evolution system (5), which involves all convective terms:

∂t u + (
u ·∇∇∇)

u +div (R) = 0, (5a)

∂t R+ (
u ·∇∇∇)

R+R ·∇∇∇u +∇∇∇uT ·R−Φr (∇∇∇u,R
)= 0. (5b)

3. Analysis of the evolution step

In the following, we restrict to the simple Lumley’s model which does not contain so-called
rapid terms Φr = 0. We also restrict from now on to the two-dimensional framework to ease the
presentation. We first recall that the latter system (5) is hyperbolic if the Reynolds stress tensor is
realizable (see [20]).

Eq. (5) is invariant under frame rotation, so we can rewrite it in the (n, τ) reference frame
(where n,τ are some unit orthogonal vectors), defining xn := x ·n, un := u ·n, uτ := u ·τ, Rnn :=
nT Rn, Rnτ := nT Rτ and Rττ := τT Rτ. We now define the evolution step in the n−direction, by
neglecting the transverse derivatives, which yields:

∂t un +un∂nun +∂nRnn = 0, (6a)

∂t uτ+un∂nuτ+∂nRnτ = 0, (6b)

∂t Rnn +un∂nRnn +2Rnn∂nun = 0, (6c)

∂t Rττ+un∂nRττ+2Rnτ∂nuτ = 0, (6d)

∂t Rnτ+un∂nRnτ+Rnn∂nuτ+Rnτ∂nun = 0. (6e)
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We set W := (un , uτ,Rnn , Rττ, Rnτ).

3.1. Hyperbolicity of the evolution system

We assume from now on that initial and boundary conditions comply with the strictly realizability
constraint, which will imply that R remains strictly realizable (see [21]). As system (6) preserves
the realizability, it implies that Rnn > 0 whatever the unit vector n is.

Proposition 2 (Hyperbolic evolution step). System (6) is hyperbolic. It admits five real eigenval-
ues which are:

λ1 = un −
√

2Rnn ,λ2 = un −
√

Rnn ,λ3 = un ,

λ4 = un +
√

Rnn , λ5 = un +
√

2Rnn ,
(7)

and the associated right eigenvectors span R5.

We refer to [20, 22] for a proof. This can be extended to the three-dimensional framework.

3.2. Wave structure

Right eigenvectors are:

r1 =
(

1,
Rnτ

Rnn
, −

√
2Rnn , −

p
2R2

nτ

(Rnn)
3
2

, −
p

2Rnτp
Rnn

)T

, (8a)

r2 =
(
0, 1, 0, − 2Rnτp

Rnn
, −

√
Rnn

)T

, (8b)

r3 = (0, 0, 0, 1, 0)T , (8c)

r4 =
(
0, 1, 0,

2Rnτp
Rnn

,
√

Rnn

)T

, (8d)

r5 =
(

1,
Rnτ

Rnn
,
√

2Rnn ,

p
2R2

nτ

(Rnn)
3
2

,

p
2Rnτp
Rnn

)T

. (8e)

Fields associated with eigenvalues λ2,3,4 are linearly degenerate (LD). The 1-field and 5-field
are genuinely non linear (GNL).

3.3. Riemann invariants

The Riemann invariants I i
R associated with the i th field ( f ∈ I i

R , ∇∇∇ f · ri = 0) are:

I 1
R =

{
un +

√
2Rnn ,

Rnτ

Rnn
, Rττ−

R2
nτ

Rnn
, uτ+Rnτ

√
2

Rnn

}
, (9a)

I 2
R =

{
un , Rnn , uτ+ Rnτp

Rnn
, RττRnn −R2

nτ

}
, (9b)

I 3
R =

{
un , uτ, Rnn , Rnτ

}
, (9c)

I 4
R =

{
un , Rnn , uτ− Rnτp

Rnn
, RττRnn −R2

nτ

}
, (9d)

I 5
R =

{
un −

√
2Rnn ,

Rnτ

Rnn
,Rττ−

R2
nτ

Rnn
, uτ−Rnτ

√
2

Rnn

}
. (9e)
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3.4. Shock waves

Due to non-conservative terms in eq. (6), shock relations cannot be derived in a classical way.
Following [3, 4] approximate shock relations can nevertheless be proposed. These relations are
valid in the limit of weak shocks. Assuming a linear path from left to right with respect to the
variable W = (un , uτ,Rnn , Rττ, Rnτ), these relations write:

σ[un] = ûn[un]+ [Rnn], (10a)

σ[uτ] = ûn[uτ]+ [Rnτ], (10b)

σ[Rnn] = 2R̂nn[un]+ ûn[Rnn], (10c)

σ[Rττ] = 2R̂nτ[uτ]+ ûn[Rττ], (10d)

σ[Rnτ] = R̂nτ[un]+ R̂nn[uτ]+ ûn[Rnτ], (10e)

where [x] := xr − xl denotes jump and x̂ := xr +xl
2 is the arithmetic mean between left and right

states of the discontinuity travelling at speed σ.
Approximate relations (10) can also be obtained from transport equations written in pseudo-

conservative variables R+u ⊗u instead of R introduced in Section 1.2, as explained in [22, p. 18
and Appendix 4].

3.5. An approximate solution of the one-dimensional Riemann problem

Theorem 3 (Existence and uniqueness of the approximate solution). For the approximate
shock relations (10), there exists a unique self-similar realizable solution (W(xn , t ) = w( xn

t ), with
W = (un , uτ,Rnn , Rττ, Rnτ)) to the Riemann problem associated with system (6) supplemented with
strictly realizable initial conditions W(xn ,0) = WL for xn < 0 and W(xn ,0) = WR for xn > 0, if and
only if the following condition holds:

uR
n −uL

n <
(√

2RL
nn +

√
2RR

nn

)
. (11)

As in the compressible framework [7–10], the Riemann problem structure of system (5) allows
to specify wall, symmetry and inlet/outlet boundary conditions.

Proof. The proof follows the main guidelines recalled in [23]. A detailed expression of interme-
diate states are fully given in the sequel for the anisothermal case in Section 6.

Let us consider two initial realizable states WR and WL .

Step 0. Preliminary calculation. To connect left and right states Wl ,r across the 1st and 5th

waves we set z := Rr
nn

R l
nn

> 0. To select the physical solution for shocks (10), we use [un] = ur
n −ul

n ≤ 0

(see [22, Appendix 4]). We can also write from Section 1.2:

−σ[
u2

n +Rnn
]+ [

u3
n +3unRnn

]≤ 0,

in shocks, and therefore, using (10), we get: (û2
n + R̂nn)[un] ≤ 0, and thus once more [un] ≤ 0.

For the 1-shock connexion (z > 1):

Rr
nn = zR l

nn ; ur
n = ul

n + 1− zp
z +1

√
R l

nn ; ur
τ = ul

τ+
1− zp
z +1

R l
nτ√
R l

nn

;

Rr
nτ = zR l

nτ; Rr
ττ = R l

ττ+ (z −1)

(
R l

nτ

)2

R l
nn

.

(12)
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For the 5-shock connexion (0 < z < 1):

Rr
nn = zR l

nn ; ur
n = ul

n + z −1p
z +1

√
R l

nn ; ur
τ = ul

τ+
z −1p
z +1

R l
nτ√
R l

nn

;

Rr
nτ = zR l

nτ; Rr
ττ = R l

ττ+ (z −1)

(
R l

nτ

)2

R l
nn

.

(13)

To connect the left and right states through the 1-rarefaction wave (respectively 5-rarefaction
wave) we use the Riemann invariants (9a) (respectively (9e)) still following [23].

Step 1. Solution in terms of un and Rnn variables A glance at (9b), (9c), (9d) shows that un and
Rnn are constant across the three LD waves. First we can focus only on un and Rnn variables. We
denote their intermediate values by u♯n and R♯

nn , and link these to initial states WR,L :
uL

n = u♯n −h1(z1)
√

2RL
nn , with z1 := R♯nn

RL
nn

,

uR
n = u♯n +h5(z5)

√
2RR

nn , with z5 := RR
nn

R♯nn
,

(14)

h1,5(z) are defined using eqs. (9a), (9e), (12) and (13), following [23]. Note that z1z5 = RR
nn

RL
nn

. We set:

Ψ(z5) := uR
n −uL

n −
√

2RR
nnh5(z5)−

√
2RL

nnh1(z1(z5)) = 0. (15)

Solving eq. (15) gives z5, hence R♯
nn and u♯n . The solution is unique sinceΨ is a strictly monotonic

function. Its lower and upper bounds enable to conclude that u♯n and R♯
nn exist if (11) holds.

Step 2. Solution in terms of uτ, Rnτ, and Rττ variables For these variables, the connexion from
left to right can be done using z1 and z5, and exploiting the Riemann-invariants across the
2nd, 3rd and 4th LD waves. Rnn and RnnRττ−R2

nτ remain constant across the 2nd and 4th waves
(see (9b),(9d)), thus R is realizable. Moreover uτ does not vary across the 3rd wave (see (9c)). □

4. Numerical scheme for the evolution system

The objective of the present work is to obtain a stable numerical scheme (unlike those usually
used as presented in [14], which may use partial upwinding which respect to the material mean
velocity). Therefore we restrict the presentation to low order schemes such as Rusanov scheme.
Other approximate Godunov schemes and MUSL techniques might also be considered.

For the sake of brevity the scheme is presented in a one dimensional framework. The evolution
step (5) can be written (using the incompressibility constraint):

∂W

∂t
+ ∂ (un W)

∂xn
+C(W)

∂W

∂xn
= 0, (16)

Wn+1
i will be computed using the following Rusanov-like [24] scheme:

∆xi
(
Wn+1

i −Wn
i

)+∆t n
(
F n

i+ 1
2
−F n

i− 1
2

)
+∆t nN n

i = 0, (17)
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where the time step ∆t n satisfies the CFL condition maxi (|λn
i+ 1

2

|) · ∆t n

∆xi
≤ 1

2 , ∆xi denotes the size

of cell i . The numerical flux F n
i+ 1

2
and the non-conservative contribution N n

i are:

F n
i+ 1

2
:= (un)n

i+ 1
2

Wn
i +Wn

i+1

2
−
λn

i+ 1
2

2

(
Wn

i+1 −Wn
i

)
,

with λn
i+ 1

2
= max

k
max

l=i ,i+1

(∣∣λk (un I+C)
(
Wn

l

)∣∣) , (18a)

N n
i := C

(
Wn

i

)(Wn
i+1 −Wn

i−1

2

)
, (18b)

where the discrete divergence free condition on (un)n
i+ 1

2

holds.

Unlike scheme (17) and (18), standard schemes only consider material convection upwinding
for stabilization: λn

i+ 1
2

= |(un)n
i+ 1

2

|.

5. Wall bounded flow test case

The following test case describes a flow in the vicinity of a wall, while prescribing shear stress.
The initial states WL,R and the intermediate states (I , I I , I I I , IV ) arising in the 1-dimensional
Riemann problem associated with (6) are given in Table 1. Computations have been performed
using code_saturne finite volume platform [25]. The CFL parameter is set to 0.5 and the meshes
contain from 250 to 32000 cells. The L1-error and the behaviour of W are shown in Figure 3, using
material-upwind scheme and scheme (17) and (18) accounting for all convective effects.

Table 1. Analytical solution for the tangential flow in the vicinity of a wall.

zone L I I I I I I IV R
un

(
ms−1

)
un(= 0) un un un un un(= 0)

uτ
(
ms−1

)
uL
τ (= 1) uL

τ
uL
τ+uR

τ
2 + RL

nτ−RR
nτ

2
p

Rnn

uL
τ+uR

τ
2 + RL

nτ−RR
nτ

2
p

Rnn
uR
τ uR

τ (= 1)

Rnn
(
m2 s−2

)
Rnn(= 0.5) Rnn Rnn Rnn Rnn Rnn(= 0.5)

Rnτ
(
m2 s−2

)
RL

nτ(= 0.4) RL
nτ

(
uL
τ−uR

τ

)p
Rnn

2 + RL
nτ+RR

nτ
2

(
uL
τ−uR

τ

)p
Rnn

2 + RL
nτ+RR

nτ
2 RR

nτ RR
nτ(= 0.5)

Rττ

(
m2 s−2

)
RL
ττ(= 0.3) RL

ττ RL
ττ+

(
R I I

nτ
)2−(

RL
nτ

)2

Rnn
RR
ττ+

(
R I I I

nτ
)2−(

RR
nτ

)2

Rnn
RR
ττ RR

ττ(= 0.4)

6. Extension to anisothermal flows with second-order turbulence models

System (1) is now supplemented with mean temperature θ conservation eq. (19a), turbulent heat
fluxes θ′u′ and temperature variance governing eqs. (19b) and (19c):

∂tθ+
(
u ·∇∇∇)

θ+div
(
θ′u′

)
−div

(
Σ
θ

)= 0, (19a)

∂u′θ′

∂t
+ (

u ·∇∇∇)
θ′u′+θ′u′ ·∇∇∇u+R ·∇∇∇θ+div G

θ′u′ −Φs
θ′u′′′

(
R,θ′u′,θ′2,T,T

θ

)
= 0, (19b)

∂θ′2

∂t
+ (

u ·∇∇∇)
θ′2 +2

(
θ′u′

)
·∇∇∇θ+divG

θ′
2 −Φs

θ′
2

(
R,θ′u′,θ′2,T,T

θ

)
= 0. (19c)

Focus is still given on first-order gradient closure laws for G
θ′

2 and Gu′θ′ . We consider the one
dimensional Riemann problem involving eq. (5) with Φr = 0, supplemented with the first-order
terms of eqs. (19a) to (19c) (thus getting rid of G

θ′
2 , Gu′θ′ ,Φ

s
u′′′θ′

, Φs

θ′
2 and Σ

θ
).
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Using the invariance under frame rotation, the counterpart of (6) can be derived by setting to
zero the transverse derivatives, which yields:

∂t un +un∂nun +∂nRnn = 0, (20a)

∂t uτ+un∂nuτ+∂nRnτ = 0, (20b)

∂t Rnn +un∂nRnn +2Rnn∂nun = 0, (20c)

∂t Rττ+un∂nRττ+2Rnτ∂nuτ = 0, (20d)

∂t Rnτ+un∂nRnτ+Rnn∂nuτ+Rnτ∂nun = 0, (20e)

∂t u′
nθ

′+un∂nu′
nθ

′+u′
nθ

′∂nun +Rnn∂nθ = 0, (20f)

∂t u′
τθ

′+un∂nu′
τθ

′+u′
nθ

′∂nuτ+Rnτ∂nθ = 0, (20g)

∂tθ′2 +un∂nθ′2 +2u′
nθ

′∂nθ = 0, (20h)

∂tθ+un∂nθ+∂nu′
nθ

′ = 0. (20i)

We set W := (un , uτ,Rnn , Rττ, Rnτ, u′
nθ

′, u′
τθ

′, θ′2, θ).

Proposition 4 (Hyperbolic evolution step). System (20) is hyperbolic. It admits nine real eigen-
values which are:

λ1=un −p
2Rnn , λ2,3=un −p

Rnn , λ4,5,6=un ,
λ7,8=un +p

Rnn , λ9=un +p
2Rnn ,

(21)

and the associated right eigenvectors span R9.
Fields associated with eigenvalues λ2,3,4,5,6,7,8 are linearly degenerate (LD). The 1-field and 9-

field are genuinely non linear (GNL).

We refer to [20, 22] for a proof.

6.1. Wave structure

Right eigenvectors are:

r1 =
(

1,
Rnτ

Rnn
, −

√
2Rnn , −

p
2R2

nτ

(Rnn)
3
2

, −Rnτ

√
2

Rnn
,

−
p

2(u′
nθ

′)p
Rnn

, −
p

2(u′
nθ

′)Rnτ

(Rnn)
3
2

, −
p

2(u′
nθ

′)2

(Rnn)
3
2

,
u′

nθ
′

Rnn

)T

, (22a)

r2 =
(

0, 0, 0, 0, 0, −
√

Rnn , − Rnτp
Rnn

, −2u′
nθ

′
p

Rnn
, 1

)T

, (22b)

r3 =
(

0, 1, 0, − 2Rnτp
Rnn

, −
√

Rnn , 0, − u′
nθ

′
p

Rnn
, 0, 0

)T

, (22c)

r4 = (0, 0, 0, 1, 0, 0, 0, 0, 0)T , (22d)

r5 = (0, 0, 0, 0, 0, 0, 1, 0, 0)T , (22e)

r6 = (0, 0, 0, 0, 0, 0, 0, 1, 0)T , (22f)

r7 =
(

0, 1, 0,
2Rnτp

Rnn
,
√

Rnn , 0,
u′

nθ
′

p
Rnn

, 0, 0

)T

, (22g)

r8 =
(

0, 0, 0, 0, 0,
√

Rnn ,
Rnτp
Rnn

,
2u′

nθ
′

p
Rnn

, 1

)T

, (22h)
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r9 =
(

1,
Rnτ

Rnn
,
√

2Rnn ,

p
2R2

nτ

(Rnn)
3
2

, Rnτ

√
2

Rnn
,

p
2(u′

nθ
′)p

Rnn
,

p
2(u′

nθ
′)Rnτ

(Rnn)
3
2

,

p
2(u′

nθ
′)2

(Rnn)
3
2

,
u′

nθ
′

Rnn

)T

. (22i)

6.2. Riemann invariants

The Riemann invariants I i
R associated with the i th field ( f ∈ I i

R , ∇∇∇ f · ri = 0) are:

I 1
R =

{
un +

√
2Rnn ,

Rnτ

Rnn
,

RnnRττ−R2
nτ

Rnn
,

uτ+Rnτ

√
2

Rnn
,
δ3

Rnn
,

u′
nθ

′

Rnn
,
θ′2Rnn −u′

nθ
′2

Rnn
, θ+u′

nθ
′
√

2

Rnn

}
, (23a)

I 2,3
R =

{
un , Rnn , uτ+ Rnτp

Rnn
, RττRnn −R2

nτ, θ+ u′
nθ

′
p

Rnn
,
θ′2Rnn −u′

nθ
′2

Rnn
, Ψ2,3

}
, (23b)

I 4,5,6
R =

{
un , uτ, Rnn , Rnτ, θ, u′

nθ
′
}

, (23c)

I 7,8
R =

{
un , Rnn , uτ− Rnτp

Rnn
, RττRnn −R2

nτ, θ− u′
nθ

′
p

Rnn
,
θ′2Rnn −u′

nθ
′2

Rnn
, Ψ7,8

}
, (23d)

I 9
R =

{
un −

√
2Rnn ,

Rnτ

Rnn
,

RnnRττ−R2
nτ

Rnn
,

uτ−Rnτ

√
2

Rnn
,
δ3

Rnn
,

u′
nθ

′

Rnn
,
θ′2Rnn −u′

nθ
′2

Rnn
, θ−u′

nθ
′
√

2

Rnn

}
, (23e)

with

Ψ2,3 :=
√

Rnn

(
u′
τθ

′+uτθ
)
+u′

nθ
′uτ+Rnτθ, (24)

Ψ7,8 :=−
√

Rnn

(
u′
τθ

′+uτθ
)
+u′

nθ
′uτ+Rnτθ, (25)

δ3 := θ′2RnnRττ+2
(
u′

nθ
′
)(

u′
τθ

′
)

Rnτ−Rnn

(
u′
τθ

′
)2 −Rττ

(
u′

nθ
′
)2 −θ′2R2

nτ. (26)

Approximate shock relations (10) are supplemented with:

σ
[
θ
]
= ûn

[
θ
]
+

[
u′

nθ
′
]

, (27a)

σ
[

u′
nθ

′
]
= ûn

[
u′

nθ
′
]
+ �

u′
nθ

′[un]+ R̂nn

[
θ
]

, (27b)

σ
[

u′
τθ

′
]
= ûn

[
u′
τθ

′
]
+ �

u′
nθ

′[uτ]+ R̂nτ

[
θ
]

, (27c)

σ
[
θ′2

]
= ûn

[
θ′2

]
+2

�
u′

nθ
′
[
θ
]

. (27d)

These relations can also be obtained from pseudo-conservative variables θ2 = θ2 +θ′2 instead of
θ′2 and θu = θu+θ′u′ instead of θ′u′.

Theorem 5 (Extension of Theorem 3 to anisothermal flows). Let

W :=
(
un , uτ,Rnn , Rττ, Rnτ, u′

nθ
′,u′

τθ
′,θ′2,θ

)
,

and consider the approximate shock relations eqs. (10) and (27). Assume strictly realizable initial
conditions W(xn ,0) = WL for xn < 0 and W(xn ,0) = WR for xn > 0, then there exists a unique self-
similar realizable solution: W(xn , t ) = w( xn

t ) to the Riemann problem associated with the evolution
step involved in eqs. (5) and (19) if and only if condition (11) holds.
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Proof. The proof follows the main guidelines recalled in [23] and is only partially detailed in [22].
We consider two initial realizable states WR , WL . We look for the four intermediate states labelled
I , I I , I I I , IV from left to right separating the 5 distinct waves.

Step 0. Preliminary calculation To connect left and right states Wl ,r across the 1st and 5th waves
we set z := Rr

nn

R l
nn

> 0. To select the physical solution for shocks (10), we use [un] = ur
n −ul

n ≤ 0.

For the 1-shock connection (z > 1):

Rr
nn = zR l

nn ; ur
n = ul

n + 1−zp
z+1

√
R l

nn ; ur
τ = ul

τ+ 1−zp
z+1

R l
nτ√
R l

nn

;

Rr
nτ = zR l

nτ; Rr
ττ = R l

ττ+ (z −1)
(
R l

nτ
)2

R l
nn

.
(28)

For the 9-shock connection (0 < z < 1):

Rr
nn = zR l

nn ; ur
n = ul

n + z−1p
z+1

√
R l

nn ; ur
τ = ul

τ+ z−1p
z+1

R l
nτ√
R l

nn

;

Rr
nτ = zR l

nτ; Rr
ττ = R l

ττ+ (z −1)
(
R l

nτ
)2

R l
nn

.
(29)

To connect the left and right states through the 1-rarefaction wave (respectively 9-rarefaction
wave) we use the Riemann invariants (9a) (respectively (9e)).

Step 1. Solution in terms of un and Rnn variables A glance at (9b), (9c), (9d) shows that un and
Rnn are constant across the three LD waves, as for the isothermal case. First we can focus only
on un and Rnn variables. We denote their intermediate values by u♯n = u I

n = u I I
n = u I I I

n = u IV
n and

R♯
nn = R I

nn = R I I
nn = R I I I

nn = R IV
nn , and link these to initial states WR,L :
uL

n = u♯n −h1(z1)
√

2RL
nn , with z1 := R♯

nn

RL
nn

> 0,

uR
n = u♯n +h5(z9)

√
2RR

nn , with z9 := RR
nn

R♯
nn

> 0,

(30)

h1,9(z) are defined using (23a), (23e), (28), (29), following [23]. Note that z1z9 = RR
nn

RL
nn

. We set:

Ψ(z9) := uR
n −uL

n −
√

2RR
nnh9(z9)−

√
2RL

nnh1(z1(z9)) = 0. (31)

Solving (31) gives z9, hence R♯
nn and u♯n . The solution is unique since Ψ is a strictly monotonic

function. Its lower and upper bounds enable to conclude that u♯n and R♯
nn exist if (11) holds. z1 and

z9 enable to compute the remaining components (uτ, Rττ, Rnτ, u′
nθ

′, u′
τθ

′, θ′2, θ) of intermediate
states I and IV .

Step 2. Solution in terms of uτ, Rnτ, and θ, u′
nθ

′ variables As uτ, Rnτ are invariants of 4-5-6
wave, we set u⋆τ = u I I

τ = u I I I
τ and R⋆

nτ = R I I
nτ = R I I I

nτ , given by:
u⋆τ + R⋆

nτ√
R♯

nn

= u I
τ+

R I
nτ√
R♯

nn

,

u⋆τ − R⋆
nτ√
R♯

nn

= u IV
τ − R IV

nτ√
R♯

nn

.

(32)

Equation (32) is obtained from Riemann invariants I 2,3
R , I 7,8

R .
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And similarly for the thermal part, using I 4,5,6
R , we define θ

⋆ = θI I = θI I I
and u′

nθ
′⋆ = u′

nθ
′ I I =

u′
nθ

′ I I I
, obtained through: 

θ
⋆+ u′

nθ
′⋆√

R♯
nn

= θI + u′
nθ

′ I√
R♯

nn

,

θ
⋆− u′

nθ
′⋆√

R♯
nn

= θIV − u′
nθ

′ IV√
R♯

nn

.

(33)

Equation (33) is also obtained from Riemann invariants I 2,3
R , I 7,8

R .

Step 3. Solution in terms of Rττ, θ′2 and u′
τθ

′ variables. Then, we deduce the remaining two
variables Rττ and θ′2 for intermediate states I I (resp. I I I ) from Riemann invariants of the 2−3
wave (resp. 7−8 wave): 

R♯
nnR I I

ττ−R⋆,2
nτ = (

RnnRττ−R2
nτ

)I
,

R♯
nnR I I I

ττ −R⋆,2
nτ = (

RnnRττ−R2
nτ

)IV
,

θ′2
I I − u′

nθ
′⋆,2

R♯
nn

=
(
θ′2 − u′

nθ
′2

Rnn

)I

,

θ′2
I I I − u′

nθ
′⋆,2

R♯
nn

=
(
θ′2 − u′

nθ
′2

Rnn

)IV

.

(34)

The last component u′
τθ

′ I I
(resp. u′

τθ
′ I I I

) is uniquely deduced from the conservation of Riemann
invariantΨI I

2,3 =ΨI
2,3 (resp. ΨI I I

7,8 =ΨIV
7,8). □

One can note that the extension to 3-D for the isothermal case is analogous to the 2-D
anisothermal case treated in this section.

6.3. Numerical simulations

6.3.1. Near wall anisothermal Riemann problem

We present here the solution for the study of the Riemann problem associated to (20) including
passive scalar transport, with initial realizable states:

WL =
(
0,uL

τ ,RL
nn ,RL

ττ,RL
nτ,u′

nθ
′L ,u′

τθ
′L ,θ′2

L
,θ

L)T
,

WR =
(
0,uR

τ ,RL
nn ,RR

ττ,RR
nτ,u′

nθ
′R ,u′

τθ
′R ,θ′2

R
,θ

R)T
.

The numerical simulation of the current Riemann’s problem is performed using code_saturne.
The length of computational domain is L = 100m and the total time of integration is T = 20s, and
we take ∆x/L = 0.002, ∆t/T = 0.005, which satisfy the CFL condition: max(|λi |) ∆t

∆x ≤ 1
2 .

The left and right state numerical values considered are: uL
n = uR

n = 0ms−1, uL
τ = uR

τ = 1ms−1,

RL
nn = RR

nn = RL
ττ = RR

ττ = 0.5m2 s−2, RL
nτ = −RR

nτ = −0.1m2 s−2, θ
L = θ

R = 1[θ], u′
nθ

′L = −u′
nθ

′R =
−0.3[θ]m/s, u′

τθ
′L = u′

τθ
′R = 0.1[θ]m/s and θ′2

L = θ′2
R = 0.5[θ]2. Both left and right states

are realizable and they satisfy the condition of Theorem 5 for existence and uniqueness of the
solution.

The results of the simulation where we applied the Rusanov-like scheme are presented in
Figure 1. As previously we observe the absence of oscillations due to the application of the
Rusanov-like scheme. Figure 1j shows a one-half convergence rate, as expected due to the contact
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Table 2. General solution for the tangential flow in the vicinity of a wall considering the
transport of a scalar quantity.

zone L I II III IV R
un 0 0 0 0 0 0

uτ uL
τ uL

τ
uL
τ+uR

τ
2 + RL

nτ−RR
nτ

2
p

Rnn

uL
τ+uR

τ
2 + RL

nτ−RR
nτ

2
p

Rnn
uR
τ uR

τ

Rnn Rnn Rnn Rnn Rnn Rnn Rnn

Rnτ RL
nτ RL

nτ

(
uL
τ−uR

τ

)p
Rnn

2 + RL
nτ+RR

nτ
2

(
uL
τ−uR

τ

)p
Rnn

2 + RL
nτ+RR

nτ
2 RR

nτ RR
nτ

Rττ RL
ττ RL

ττ RL
ττ+

(
R I I

nτ
)2−(

RL
nτ

)2

Rnn
RR
ττ+ (R I I I

nτ )2−(
RR

nτ
)2

Rnn
RR
ττ RR

ττ

u′
nθ

′ u′
nθ

′L u′
nθ

′L
(
θ

L−θR )p
Rnn

2 + u′
nθ

′L+u′
nθ

′R

2

(
θ

L−θR )p
Rnn

2 + u′
nθ

′L+u′
nθ

′R

2 u′
nθ

′R u′
nθ

′R

u′
τθ

′ u′
τθ

′L u′
τθ

′L u′
τθ

′ I I
u′
τθ

′ I I I
u′
τθ

′R u′
τθ

′R

θ′2 θ′2
L

θ′2
L

θ′2
L +

(
u′

nθ
′ I I )2

−
(
u′

nθ
′L

)2

Rnn
θ′2

R +
(
u′

nθ
′ I I I )2

−
(
u′

nθ
′R

)2

Rnn
θ′2

R
θ′2

R

θ θ
L

θ
L θ

L+θR

2 + u′
nθ

′L−u′
nθ

′R

2
p

Rnn

θ
L+θR

2 + u′
nθ

′L−u′
nθ

′R

2
p

Rnn
θ

R
θ

R

discontinuities. One can also notice that the Rusanov-like scheme does not recover the exact
constant state for Rττ, u′

τθ
′ and θ′2, similarly to what one gets on pressure profiles with Rusanov

scheme for Euler equations with perfect gas equation of state. However this artefact disappears
with space-time convergence.
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Figure 1. Profile of the variables un (a.),uτ (b.), Rnn (c.), Rττ (d.), Rnτ (e.), θ (f.), u′
nθ

′

(g.), u′
τθ

′ (h.), θ′2 (i.) along with convergence graph (j.) obtained applying the Rusanov-like
scheme.

(a) Material-upwinding scheme.

(b) Rusanov-like scheme.

Figure 2. Point-source dispersion of a pollutant using a material-upwinding scheme and
the Rusanov-like scheme.

6.3.2. Point-source dispersion of a pollutant

We present here the steady state of a point-source dispersion of a passive pollutant in a steady
and homogeneous dynamic. The following hypotheses were made:

• the pollutant is introduced using a Dirac mass and continuously in time at a concentra-
tion value of 1 (computationnaly, it is introduced in a single cell),
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• molecular diffusion is neglected in front of turbulent diffusion,

One can observe in Figure 2 the results obtained by applying material-upwind scheme which
present spurious spatial steady oscillations, and are suppressed by the Rusanov-like scheme.

Figure 3. Profiles of the variables un , uτ, Rnn , Rττ, and Rnτ along with convergence
plots obtained by applying material-upwind scheme and Rusanov-like scheme (500 cells,
CFL= 0.5).

7. Conclusion

A numerical strategy has been proposed to compute incompressible flows with second-order
moment turbulence closures, in order to remove numerical oscillations. It is based on the analysis
of the full convective part of the system. As in the compressible framework, the realizability
of the Reynolds stress tensor is mandatory to obtain the hyperbolicity of the evolution system.
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The numerical convergence has been demonstrated on a verification test case using a Rusanov-
like scheme. It is also suitable for anisothermal flows or mean species transport equations with
second-moment turbulence closures.

Of course, more accurate Riemann solvers, or relaxation solvers, and second order extension
can be investigated. This methodology can be applied to projection step methods or Uzawa
algorithms.

Eventually, more complex models involving non-zero contributionΦr (∇∇∇u, R) may be consid-
ered, using the same approach (see for instance [22, Appendix 2]).
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