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Abstract. In both continuous and discrete settings, Laplace operators appear quite commonly in the model-
ing of natural phenomena, in several context: diffusion, heat propagation, porous media, fluid flows through
pipes, electricity.. .. In these contexts, the discrete Laplace operator enjoys all the properties of its continuous
counterpart, in particular: self-adjointness, variational formulation, stochastic interpretation, mean value
property, maximum principle, ... In a first part, we give a detailed description of the correspondence between
these mathematical properties and modeling considerations, in contexts where the continuous and the dis-
crete settings perfectly match. In a second part, we describe a pathological situation, in the context of granu-
lar crowd motion models. Accounting for the non-overlapping constraint between hard discs leads to a par-
ticular operator acting on a field of Lagrange multipliers, defined on the dual graph of the contact network.
This operator is defective in a certain sense: although it is the microscopic counterpart of the macroscopic
Laplace operator, this discrete operator indeed lacks some properties, in particular the maximum principle.
We investigate here how this very defectivity may explain some paradoxical phenomena that are observed in
crowd motions and granular materials, phenomena that are not reproduced by macroscopic models.

Résumé. Aux niveaux continu et discret, 'opérateur de Laplace intervient de facon trés courante dans la
modélisation de phénomenes naturels, dans de nombreux contextes: diffusion, propagation de la chaleur,
milieux poreux, écoulement de fluides dans des conduits, électricité.... Dans ces contextes, le laplacien
discret possede toutes les propriétés de son pendant continu: caractere auto-adjoint, structure variationnelle,
interprétation stochastique, propriété de la valeur moyenne, principe du maximum, .... Dans une premiéere
partie, nous proposons une description détaillée des liens entre ces propriétés et les aspects de modélisations,
dans des contextes ol les notion continues et discrétes se correspondent parfaitement. Dans une seconde
partie, nous décrivons une situation pathologique, dans le contexte de la modélisation de foules d'un point
de vue granulaire. La prise en compte de la contrainte de non recouvrement entre grains rigides conduit a
un opérateur particulier qui agit sur les champs de multiplicateurs de Lagrange, définis sur le graphe dual
du réseau de contacts. Cet opérateur est déficient dans un certain sens : bien qu'’il apparaisse comme le
pendant discret du laplacien continu, il ne vérifie pas certaines des propriétés usuelles du laplacien, en
particulier le principe du maximum. Nous explorons comment cette déficience permet d’expliquer certains
effets paradoxaux observés en mouvements de foules, que les modeles continus ne reproduisent pas.

Keywords. Discrete Laplace operator, maximum principle, crowd motion, faster-is-slower effect.
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1. Introduction, continuous and discrete Laplacians

The Laplace operator occupies a central position in the modeling of physical phenomena. In
many situations, it combines a phenomenological phenomenon together with a conservation
principle. In the context of diffusion of some substance represented by its density p = p (x, 1),
Fick’s Law states that the flux vector J is proportional to the gradient of p:

J=-DVp,

where D > 0 is the diffusion coefficient. The flux vector J is such that, for any oriented surface
>, with normal vector n, fz J - n is the flux of substance through X, counted positively in the
n-direction. Now considering a domain w, assuming that there is a source term f, mass balance

writes d
ailp=Low=[ o= ym=[ 0= s

f(mp+VJFf)=0
Since w is arbitrary, and J = —DVp, it yui)elds the heat equation
0;p—DAp=f,
the stationary version of which is the Poisson equation

-DAp=f,

which leads to

set in a domain Q occupied by the substance. Let us mention another context in which —A
appears as a composition of V (gradient) and —V- (minus the divergence operator). We consider
the flow of an incompressible viscous fluid in a porous medium. Darcy’s law writes

u=-kVp

where p is the pressure, k the permeability of the medium, and u is the Darcy velocity (which
should be thought of as a volume flux, expressed in cubic meter per square meter per second,
which is indeed homogeneous to a velocity). Volume conservation writes

-V-u=-V-kVp =0,

which is again the Laplace equation in a possibly non homogeneous medium.

To obtain a discrete Laplacian, one may e.g. consider a set of cells filled with some medium
(see Figure 1). A substance freely diffuses in each cell, so that the concentration within a cell can
be considered as uniform. Cells are separated by a membrane, and the flux of substance between
two cells is assumed to be proportional to the difference between concentrations. We define the
abstract non-oriented graph (V, E) as follows : the set of vertices V is the set of cells (symbolized
by black dots in the figure), and the set of edges E contains (x, y) if and only if cells x and y
share a piece of membrane. Note that E is symmetric by construction: the graph is said to be
non oriented. We shall write x ~ y whenever (x, y) € E. If we denote by p, the concentration (or
partial pressure) on the cell x, and cyy the permeability of the membrane (cyy plays the role of a
conductance in electrical / fluid networks), the flux from y to x writes

]yax = ny(py - Px).
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Cxy(Py — Px

Figure 1. Diffusion process between cells.

Note that the flux is symbolically associated to the edge connecting x and y, but it corresponds
here to a transfer that is spread over the interface which separates x and y cells (grey arrows in
the figure).
Denoting by My the volume of cell x, the product M, py is the total quantity of substance at x,
and mass balance at each cell x writes
dpx

My di :_J;xcxy(px_py)-

It can be written globally
M 1p=o
arPTY

where L is a discrete Laplacian, i.e. the discrete counterpart of —A, defined as

LZPERV—’LPZ(Zny(Px—Py)) )
y~x xeV
and M = diag(M,).

In another context, natively static, one may also consider a network of interconnected pipes,
in which a viscous fluid is flowing. If we denote by V the set of bifurcation points, by Ec V x V
the (symmetric) set of pipes between vertices, the flow through a pipe (x, y) follows the so-called
Poiseuille’s law

Uy = Cxy (Px = Py),
where cy is the conductance of the edge (x, y), which depends on geometrical properties of the
actual pipe that it represents. Now consider that the flow in conservative at some vertices, the set
of which is denoted by V, and possibly non conservative on the set of remaining points ' = V\ V/
(see Figure 2). Conservation on V writes

Z Uxy = Z ny(px_py):() VxeV.
y~x y~x
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Figure 2. Network (V,E,c,T)

As a consequence, if the value of the pressure is prescribed at boundary points (field P € R"),
the pressure field is the solution to a Dirichlet problem

Lp=0 inV
p=P onl.

This setting has been intensively used to model the airflow in the respiratory tree (see e.g. [1]
or [2]). It can be transposed to resistive electrical networks, where the potential plays the role of
the pressure, and electric intensity the role of fluid fluxes.

Remark 1. Let us make it clear that the discrete equations written above do not aim here at
approximating the solution to continuous Poisson or Laplace equations, they model intrinsically
discrete phenomena, and so will the discrete Laplace operator introduced in Section 3. Let us
nevertheless mention the deep link between the diffusion between cells which we considered
(Figure 1) and the elaboration of numerical methods of the Finite Volume type, for which cells
are virtual, since they do not correspond in general to a specific physical zone of the underlying
domain. We refer to [3] for a very detailed and documented account of discretization strategies
of the Finite Volume type. Requiring that the discrete operator verify the maximum is essential to
establish ¢° stability of the numerical scheme. Note that, in the context of approximating PDE’s,
convergence also relies on consistency with respect to the continuous operator, which calls for
strong requirements on the mesh that is used. In the present setting, as detailed in the next
section, the maximum principle is automatically verified since the models are compliant with the
principles of thermodynamics, whereas consistency with respect to the continuous Laplacian is
not an issue.

2. Mathematical properties and their physical interpretations

We recall in this section the main properties of the standard Laplace operator on euclidean
domains, and formulate their discrete counterparts for resistive networks. Some of the results at
the continuous level require the domain to be smooth in some sense. We shall simply call smooth
a domain with Lipschitz boundary.
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2.1. Self-adjointness, positivity, variational setting

Consider the case of Dirichlet boundary conditions, i.e. p is set to 0 on Q. From a functional
analysis standpoint, —A is an unbounded operator in L?(Q), which is self-adjoint, thanks to
Green’s formula:
<—An|q>=—quAp=fQVp-Vq=<—Aq|p>-

Its self adjoint character comes from the fact that “~V-” (opposite of the divergence) and V
(gradient) are mutually adjoint for the L?>- duality. Note that, although it is intensively used
in the theoretical study of linear elliptic equations, this fact is in some way fortuitous, and
makes a connections between considerations of very different natures. On the one hand, the
divergence operator expresses a universal conservation principle, sometimes called Lavoisier’
Principle. It would not make any sense to imagine an alternative way, e.g. nonlinear, to express
this conservation principle. On the other hand Fick’s law is phenomenological, it was inferred
from experimental measurements, and in some contexts it takes a nonlinear form (see e.g. [4]).

This makes it possible to formulate the Dirichlet problem as a minimization problem, the
Poisson equation corresponding to optimality conditions. It can be expressed in the form of a
very classical existence and uniqueness property, which we shall write extensively anyway to
emphasize the similarity with the discrete context (see Proposition 5 thereafter).

Proposition 2. Let Q be a bounded smooth domain, and let P € H'?(') be given. Then the
Dirichlet problem

-Ap=0 inQ
’ p in M

p=P onTl.

admits a unique weak solution in HY(Q), in the sense that there exists a unique p € Hll) (Q) such
that

f Vp-Vg=0 ¥ qe HyQ),
Q
with
Hy(Q) ={qe H(Q), qr =P},
where qr denotes the trace of q onT'. Furthermore, p is the unique minimizer of

v— J(v) = lf Iva|*
2Ja

oyl
inH b
Proof. Seee.g. [5]. O

In the discrete setting, a similar framework can be set. Let us consider a resistive network
(V,E,c,T), where ¢ €]0,+oo[F is the collection of conductances, and T is the subset of vertices
which may exchange fluid (or intensity in the electrical context) with the outside world. We shall
consider pressure fields p € RY and flux fields u € RE, with the convention that fluxes are skew

symmetric, i.e. Uy, = —uyy. As detailed in [1], we can define a discrete divergence operator (it
actually stands for the opposite of the divergence):

0:ueRf—oueRr?
Ou)y= Z Uyx.
y~x

The conservation at interior vertices simply writes (1), = 0 for any x € V.
In the same spirit, we define a discrete gradient (or “drop”) operator as

0* : peRV — 0*peRF
(a*p)xy:py_px‘
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ueRE(1 - chains) — 2> dueRY(0— chains)

0* p e RE(1 - cochains) ~.—pe RY (0 cochains)

Figure 3. Abstract setting: chains and cochains.

Poiseuille / Ohm'’s law then writes u = —cd* p.
The two operators 4 : R — RY and * : RV — RF defined above can be straightforwardly
checked to be mutually adjoint, as stated by the next proposition.

Proposition 3. We have that
(0u|p), =(uld*p), YueRf peRr’,
where (-|-)y and {-|-) g are the canonic scalar products on RY and RE, respectively.

Proof. For u e RE, pe RV, it holds that

<auip>v= Z px(0u)x = Z Px Z Uyx = Z ”xy(Py‘Px) =<”|0*P>E’
xeV xeV y~x (x,y)€E N—
0*p (x,y)

which ends the proof. O

Remark 4. In the language of algebraic topology, the operators d and 0* can be considered as
boundary and coboundary operators, respectively, whereas fluxes are 1-chains, mass conserva-
tion defects are 0-chains, pressure fields are 0-cochains, and pressure drops are 1-cochains (see
Figure 3). The duality between 1-chains and 1-cochains (on the left-hand side of the figure) cor-
responds to the power dissipated within edges, whereas the duality between 0-chains and 0-
cochains corresponds to the power of external pressures (i.e. pressure at non-conservative ver-
tices where some fluid is exchanged with the outside world). In the spirit of Remark 1, it is fruitful
to establish a link between this abstract setting and discretization strategies for Partial Differen-
tial Equations. We refer to [6] for a detailed description of how principles borrowed from exterior
calculus can be integrated in the elaboration of Finite Element discretization strategies which are
respectful of the underlying equations, from this standpoint.

The problem takes the form of a discrete Darcy problem, which combines a phenomenological
law (Poiseuille, Fick, or Ohm), together with a conservation principle:

u+cd*p=0 overE
ou =0 inV.
Like in the continuous setting, the discrete Laplace operator appears through the elimination
of the velocity in the Darcy system. It can be written L = dcd* where, for any p € RY, c0* p simply
stands for the term-by-term product of ¢ and 0* p, i.e. c0*p € RE, with (co* Ple = Ce (0™ ple. Its
self-adjointness is a straight consequence of Proposition 3:

(Lp|q)=(0co*p|q)=(co*p|0*q)=(0"p|cd*q)=(p|dco*q)=(p|Laq).
Like in the continuous setting again, this property can be seen as fortuitous in terms of modeling,
since it relies on a strong relation between a universal principle (mass conservation) and a
phenomenological law (Poiseuille’s in a fluid context, or Ohm’s law for a electrical network).
Proposition 2 has a discrete counterpart: the Dirichlet problem is well-posed under general
assumptions, and the problem can be formulated in a variational way.

2
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Proposition 5. Let (V, E,c,T') be a connected resistive network, with boundaryT # @, and P € R"
a collection of boundary value. Then the Dirichlet problem

(Lp)xz Z ny(Px_py) =0 VxeV
y~x
3)
Px :Px Vxerl.

admits a unique solution inR" . It is the unique field p € Hp such that

Y. cxy(px—py)(ax-ay)=0 VqeHy,
(x,y)€E
with
Hp={6]€[RV, q‘rZP}.

Furthermore, p is the unique minimizer of

N | =

qg—J(q) = Z Cxy (Clx_qy)z
(x,y)€EE

2 77l
in Hp,.
Proof. Any field g of RV can be written (§,gr) so that minimizing J over Hp amounts to
minimizing

G— () =71 (4 Pr)

over RV. Let us show that ® is coercive. Let q = (g, Pr) be given in Hp. Since the graph is connected
and T # @, any x € V can be connected to I by a path

XoeEl~x1 ~+-~x,=x.
It holds that

n n

|0l = |+ 2 (051 — @) =190 + X [0, -
j=1 j=1

p N2(p |2
= |Px0‘ + Z Cxj1xj |Gdxj—1 — dx; ) (Z )
j=1 j=1 Cxj1x;

5](";)1/2
Boundedness of ®(§) therefore implies boundedness of g (for any norm in this finite dimen-
sional context). The functional ® is therefore coercive: ®(§) — +oo when |q| — +00. Since it is
continuous, it admits a minimizer p, at which V® vanishes, so that p = (p, Pr) solves (3), which
ensures the existence of a solution. Let us now prove that @ is strictly convex. Considering p and
p' two different fields, we consider p = (p, Pr) and p’ = (p/, Pr). Since p # p’, while they identify
atleast at one vertex, and since the graph is connected, there exist at least an edge (x, y) on which
Px—Py# Py~ p’y. The associated quadratic term of @ therefore ensures strict convexity. The min-
imizer of @ is therefore unique. By convexity of @, any field p that vanishes the gradient (i.e. such
that (p, Pr) is a solution to (3)) is a minimizer, which ensures that the solution to (3) is unique. [

Let us insist on the fact that, in the discrete setting, the notion of boundary is somewhat
arbitrary, whereas for a euclidean domain its designs the topological boundary Q \ Q. The latter
expression makes no sense for a network, and I' is simply the set of non conservative vertices. We
may even consider the caricatural case I' = V, V= @, which leads to a trivial Dirichlet problem
p=P.

In both the continuous and the discrete settings, the positivity of the Laplace operator that
results from the Darcy system expresses dissipation of energy. For the continuous Darcy problem,
c |V p|2 is the dissipated power per unit volume (or area in 2d), due to viscous stress in the fluid. At
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the discrete level, (¢ |6* p|2)e is the dissipated power within edge e, through dissipative stress in
the fluid context, or through Joule’s effect in the electrical context (p then represents an electrical
potential).

2.2. Mean value property and maximum principle

The Laplacian of a function at some point measures the discrepancy between the value at this
point and the mean value around it, as stated by the following proposition.

Proposition 6. Let Q € R? be a domain (nonempty open set). A scalar field P is an harmonic
functioninQ, i.e. —Ap=0inQ, ifand only if for any x € Q, any r > 0 such that B(x,r) € Q,

pydy= pydy,

[B(x, )| JBx,n |S(x, 1) Js(x,r)

where |B(x,1)| is the d-volume of the ball B(x,r), and |S(x,1)| the d — 1 dimensional measure of
the sphere S(x,r) =0B(x,r) € R4,

px) =

Proof. See [7, Chapter I]. O

Beyond this characterization of harmonic functions, the Laplacian operator estimates the lo-
cal gap between the value of a function at some point x and the mean value in the neighborhood
of x. This general remark can be formulated as follow :

Proposition 7. Let p be a C* scalar field in an open set containing x € R%. Then

1
-A (x)=—( (x) — ()d)+6’62.
P e \? sl Jsao LYY )
Proof. For € > 0 sufficiently small, for any o € S(0,1), it holds that
3 aaf
flaten)—f) =Y — e +0 (),
|a=1 0%

with |a| = a1 +---+ a4 for a = (ay,...,ag) € N4, and ¢® = 0‘1’” x ...Uzd. We integrate over S(0, 1),
and we use the fact that the terms associated to |&| = 1, |a| = 3, and |@| = 2 except for the diagonal
terms (trace of the Hessian matrix), all vanish by symmetry of S(0, 1). The proposed expansion of
—Ap (x) is obtained by dividing the Taylor expansion by the measure of S(x,€). d

Proposition 8. Let Q be a smooth domain, and p harmonic in Q. Then the maximum of p is
attained on the boundary of Q.

Proof. This is a straight consequence of Proposition 6. U

Another type of maximum principle, namely Hopf maximum principle, will be important to
interpret the behaviour of macroscopic crowd motion models

Proposition 9. LetQ be a smooth domain, and p a smooth scalar field such that —Ap = 0. At any
point of 0Q which minimizes p, it holds thatdp/dn < 0.

Corollary 10. LetQ be a smooth domain, and p such that —Ap = f, with f a smooth nonnegative
function that is non identically zero. Then p is positive in Q, and 0p/dn < 0 on 0Q).

Proof. This a direct consequence of [8, Theorem 3.5]. U

In the discrete setting, the value of an harmonic function at a vertex is the mean value on the
set of direct neighbors.
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Proposition 11. Let (V, E, ¢,T) be a resistive network, and p a field that is harmonic on V. Then,
foranyx €V, py is an explicit convex combination of values at neighboring vertices:

. Cxy
Px= ) MxyPy, Withfiyy=—=,Cy= ) Cyy.
y~x Cx y~x

Proof. This is a straight consequence of the harmonicity at x. g

Note that the counterpart of Proposition 7 for the continuous Laplacian is simply the defini-
tion of L, introduced as the difference between the vertex value and the mean value over neigh-
bors.

Remark 12. The explicit formula given by the latter proposition is only valid for the strict
neighborhood of a vertex. One can actually express a more general property, and express the value
at some point x as a convex combination of values taken in a set y of vertices that surrounds x
in some sense. Yet, unlike in the continuous setting, this combination is not fully explicit, it relies
on the harmonic measure over v, relative to x (see Proposition 19).

2.3. Stochastic setting

The Dirichlet problem (1) has the following stochastic interpretations (see e.g. [7]).

Proposition 13. Consider a smooth and bounded domain Q in R%, and P a smooth function
defined on the boudaryT = 0Q. For any x € Q, let w’. be the brownian motion from x. Let T be the
hitting time of T = 0Q by wy, i.e.

7, =inf{r, wleT}.
Define p as the expected value of P at the hitting point:

p(x) =E(P(wy")).
Then p is the solution to Dirichlet Problem (1).

Proof. See [7, Chapter IX], or [9, Chapter 4]. U

Another property involves the so-called harmonic measure relative to a point.

Proposition 14. Consider a smooth and bounded domain Q) in IRd, and x € Q. Let wy,(t) be the
brownian motion from xo andt y, the hitting time of ' = 0Q by wy, like in the previous proposition.
Then Yy, = w;;m € I' is a random variable valued in T, the law of which is the measure piy, onT.
This measure admits a density with respect to the Lebesgue measure onT', which is —0q/0n, where
q is the solution to the homogeneous Dirichlet problem with singular right-hand side

-Aq =6y inQ
q=0 onT. @
In other words, for any measurable subset AcT
P(Yye A =- 6—q
A0n

The mesure iy, with density —0q/0n is called the harmonic measure relative to xo.

Proof. See [10]. O

As a direct consequence of the two previous propositions, one can express the solution to the
Dirichlet problem
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Proposition 15. Let Q be a smooth and bounded domain, and p the solution to Dirichlet
problem (1) associated to the boundary condition P. Then, at any x € Q, p expresses

plx) = f P(y)dux(y)
00
where Ly is the harmonic measure relative to x.

This property is the conceptual core of Monte Carlo methods to solve non-homogeneous
Dirichlet problems, we refer to the pioneering paper [11] for more details.

Proposition 13 admits a discrete counterpart, where the brownian motion is replaced by the
random walk canonically associated to the resistive network (see e.g. [12]).

Proposition 16. Let (V,E,c,T') be a connected resistive network, with boundaryT # ¢, and P € RT
a collection of boundary values. We consider the Markov process on V defined by x — y transition
probabilities

ny
nxy— —,Cx= Z Cxy,

with cxy = 0 whenever (x,y) ¢ E. For any xo € V, we denote by (wfo)k the random walk from xy,
according to the transition probabilities indicated above. We define the hitting time ky, as

ke, = inf{k, wk T}
and Yy, = waO the hitting point, that is a random variable valued inT. We finally define p € RV by
Pxy = [E(PYXO)'
Then p is the solution to the discrete Dirichlet problem (3).

Proof. If xp €T, then ky, = 0 and py, = Px,, so that p verifies the boundary condition. If xo ¢ T,
the property is a straight consequence of the law of total expectation. Indeed,

c
0= D ”xoy[E(PYy): Y TayPy= Y =Py

Y~ Xo y~Xo Y~ Xo Cxo
so that
Z Cxoy (P = Py) =0,
y~Xo
i.e. p is harmonic, which ends the proof. O

Proposition 14 also admits a discrete counterpart, which characterizes the discrete harmonic
measure.

Proposition 17 (Harmonic measure in the discrete setting). Let (V,E,c,I') be a connected
resistive network, with boundaryT # @. Like in the previous proposition, for any xy € V, we define
kX . . . . R
Yy, = wy," as the hitting point inT of the random walk from x,. For any y € T', the probability that
Yy, is yo writes
P (Yy, = yo) = 0u(yo) = —0¢d™ p(y0),

where p is the solution to the Poisson problem

(BcO*p)y = Byyx VXEV

p=0 onT. ®)

where 8y, . is the Kronecker delta. The field —0c0* p on T is the harmonic measure with respect
1o xgp.
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Proof. The proofrelies on an auxiliary Laplace problem with Dirichlet boundary conditions. Let
g be the solution to

0c0*q(x) =0 VxeV
qy =06y, Vyer.

Since g is harmonic on f/, and p vanishes on T, it holds that

Y. px(0c0*q), =0.

xeV

(6)

Since the Laplacian dcd* is selfadjoint, the latter expression also writes

Z Px (aca*q)x = Z qx (aca*p)x =qx t (aca*p)yo ’

xeV xeV
so that g, = —(0c0* p) y,. Now, thanks to Proposition 16, g, is the probability that Yy, is yo, which
ends the proof of Proposition 17. O

Remark 18. In a euclidean domain, if one extends the pressure field of Proposition 14 by 0,
—0p/0n expresses mass unbalance on the boundary I'. It is also u - n, with u = —Vp. It identifies
to the singular part of —Ap, which is a single layer distribution on I'. In the discrete setting,
there is no such notion as “normal derivative”, but the mass unbalance at a boundary vertex yp
is (Ou)y, (that is the outflow through yp), with u = —cd* p, so that the mass unbalance writes
—(8cd™ p)y,, which is therefore the discrete counterpart of —dp/dn at yp, as expressed by the
previous proposition.

The notion of harmonic measure makes it possible to establish a generalization of the Mean
Value Property in the discrete setting. The following proposition is a straight discrete counterpart
of Proposition 15.

Proposition 19. Let (V,E, c,T) be a connected resistive network, with boundaryT # @, and p € RV
a field that is harmonic in V. Let xo € V be given, andy  V a set of interior vertices which isolates
Xo fromT, in the sense that all the paths from xy to any vertex of I' necessarily meety. We denote by
Vi, the set of vertices which can be connected to xy without meetingy. Then p, writes as a convex
combination of values taken by p ony:

px=) 0yp,, 0,20 VYyey, > 0,=1. @)
yey yeY
The field of weights (8,), is the harmonic measure ony relative to xo, in the sense of Proposition 17,
ie.
Qy =— (aca*q)y,
where q is the solution to the Dirichlet problem on Vy, Uy
(0c0*q), = Oxpx ¥ X € Vy,
dy =py VYeYy.

Proof. Let us consider the subnetwork (V',E’,¢/,T"), where V' = Vy, Uy, E’ contains the edges
of E that connect two vertices in V', ¢’ is simply the restriction of ¢ to E’, and I'" = y. We apply
Proposition 17 to the subnetwork (V',E',I"). It ensures that 6, = —(0cd* q), is the probability
that a random walk from xy meets y at y, where g solves (8). Now since y isolates xp from I', any
random walk starting from xy and ending at first hit with y does not meet I, thus it only visits
vertices in f/, at which the field p is harmonic, which makes it possible to use Proposition 16
applied to the new network (V', E/,T"), with I = y. As a consequence, py, is the expected value of
p at the first hit with y, which is expressed by (7). d

8)
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3. Macroscopic and microscopic congestion models

The approach which we present in this section was initially motivated by the handling of colli-
sions in fluid-particle simulations (see e.g. [13-15]). We shall present a common strategy to han-
dle congestion at microscopic and macroscopic scales. This strategy can be carried out for sec-
ond order in time evolution problems, see [15] for microscopic granular flows, and [16] for the
macroscopic version. We also refer to [17], where the authors propose a numerical scheme to
solve Euler equations with a singular pressure meant to account for congestion, or [18] for the
asymptotic analysis of a similar system. We shall present here the overdamped versions of these
inertial problems, with a hard handling of the maximal density constraint, in the context of crowd
motion modeling.

We describe in this section the macroscopic and the microscopic settings, and we show
how they both lead to a Poisson-like problem. The next section proposes a deeper look on the
discrepancy between both settings, and a detailed analysis of the pathologies of the discrete
Laplacian.

Macroscopic setting

The macroscopic crowd motion model proposed in [19] reads as follows. Given a domain @
(which covers the zone possibly occupied by the crowd), the crowd is represented by a density
p = p(x, t) subject to remain below a certain maximal value, which we set to 1. The set of feasible
density is thus

K:{peLl(@), 0Osp=<lael}.
We denote by U = U(x) the desired velocity, that is given: U(x) is the velocity that a person at x
would take, would they be alone. We write that p is transported by the actual velocity u :

0/p+V-(pu) =0, 9)

where u is is the closest to U among all those velocities which do not lead to a violation of the
constraint, i.e. which are expansive in the zone which are already saturated. More formally, it
amounts to prescribe a nonnegative divergence in the saturated zone. This constraint can be
expressed in a dual way by subjecting u to belong to

Co = {UELZ(@),f v-Vg=0 VqeHy0), qua.e.}
o
were
Hy(©0)={qe H'®), g1-p)=0ae}.
Note that the condition g(1 — p) = 0 contrains g to vanish in zones where p < 1, i.e. where the
constraint is not saturated. We may now write the full model by defining the actual velocity as

u="Pc,(U), (10)
where the projection is defined in the L? sense.

Remark 20. Model (10), like its microscopic counterpart (14) below, is not meant to account for
sophisticated individual tendencies, it merely encodes a very basic strategy in terms of behavior:
individual strive to achieve their desired velocity, regardless of others. The resulting interactions
are physical in nature (contact forces), and they may induce nonlocal effects over connected
saturated zones.

Boundary conditions can be accounted for through the definition of the pressure field. As
an archetypal example, consider the situation represented in Figure 4 where @ is a room with
boundary T, union of I';, (walls) and I’y (exit). The saturated zone [p = 1] corresponds to the
grey domain, which we denote by Q. In this situation, we prescribe g = 0 on Iy, whereas ¢ is
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p=1]

Lout

Figure 4. Evacuation from a room.

“free” on I',. Note that, due to the constraint g(1 — p) = 0, the pressure vanishes on the upstream
side of the saturated zone Q. Let us now comment on the definition of C,, in this particular
situation. Suppose Q = [p = 1] is a smooth domain, and suppose u € C, is smooth, considering
smooth and nonnegative test functions ¢ in H}, compactly supported in Q, the dual condition

yields
f u-qu—f qV-u=<0,
o Q

so that V-u =0 a.e. in Q. Now consider test functions which are no longer compactly supported
in Q, which can take positive values on I';,,. The same integration by part yields a boundary term,

so that we obtain
[ qu-n<0,
Tw

which imposes u-n <0 onT',: people may not exit through the wall.

We refer to [19] for a full analysis of the evolution problem (9)(10). This analysis is delicate
due to the nonlinearity and lack of smoothness of p — u = P¢, U, which rules out standard
PDE approaches. The natural framework is the Wasserstein space, built upon a distance between
densities that is based on optimal transportation. We shall disregard here these aspects, and
rather focus on the projection step (10), which defines u. In a paradoxical way, we shall see that
this step is much more delicate and rich at the microscopic scale than at the macroscopic one.
Indeed, implementing (10) amounts to minimize the functional

_1 T
”_’](”)_2_[@,“’ ul-,

on the feasible set C,. Since C, is closed and convex in L[%(®), and since J is continuous and
strongly convex, the projection problem admits a unique solution u.

Saddle-point formulation and Poisson problem
Let us introduce
B:vel’@)— -V-veH,' = (Hl)'
TV veH, =|H,
defined by
(-V-v,q9) =f v-vgq.
(4]

The projection problem (10) can be formulated as a saddle-point problem (see e.g. [20]) for the
Lagrangian

1
L(”’q)zj(v)“L(B”‘q):EI@“’_U'ZJ“[@”‘V"' (11)
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Proposition 21. The Lagrangian defined by (11) admits a unique saddle point (u,p) in V x Ay,
with

V=1*@), As={qe Hy(©),q=0 ae}.
This saddle point is characterized by u € L2(0), peEH ; (©)

u+Vp=U in0C

-V-u=s0 onlp=1]

p=0 aeinC (12)

fu‘Vp:O.
0

where the second equation is meant in a weak sense, i.e.

[ u-vg=0
o

for any non-negative test function which vanishes outside [p = 1]. The primal part of this saddle-
point is the projection of U on C,,.

Proof. This problem fits into the abstract framework of Proposition 32 in Section 5, in the
infinite dimensional situation. Well-posedness comes from that fact that B is surjective, which
is a straight consequence of Poincaré inequality (see [21, Proposition 3] for details). g

Now consider a situation where the saturated zone is a smooth domain (like in the evacuation
situation represented in Figure 4). As detailed in [21], if the desired velocity field in concentrating,
i.e. V.U <0, then p cannot vanish on an open subset on Q (it would rule out the constraint in
this subdomain). Thus, the complementarity slackness condition (4™ line in (12)) imposes that
the constraint is saturated, i.e. V- u = 0, in Q. As a consequence, one may eliminate the velocity
to obtain a Poisson problem on the pressure with mixed boundary conditions:

-Ap=-V-U in Q

p=0 on IoyrUlyp (13)
op
— =0 on I'y,.
on w

As we shall see in the next section, this Poisson problem is central in the behavior of this
congestion model.

Microscopic setting

The microscopic counterpart of the previous approach was introduced in [22]. It is Lagrangian
in nature, based on the position of N individuals x = (x1,...,xn) € R2N . The individuals are
identified to rigid discs of radius r, they are subject to a non-overlapping constraint, i.e. g must
remain in the feasible set

K={xeR*®™, D;j(x)=|xj—x;|-2r=0 Vi#j}.

We consider a collection of desired velocities U = (U, ..., Uy) € R%V. The constraint on the diver-
gence at the macroscopic level becomes here a non-overlapping constraint: Feasible velocities
are those fields which do not decrease distances that are already 0. For any x € K, the feasible set
for velocities writes

Cx={ll€|R2N, Dij(x):0:>eij-(vi—vj)50},
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where e;j = (xj — x;)/ |x i x,-| is the unit vector pointing from x; to x;. The evolution problem,
which is the microscopic counterpart of (9)(10), writes

&,
dt (14)
u= PCXU-

Note that, in this purely Lagrangian setting, the Eulerian transport equation (9) is replaced here
by a simple definition of the velocity as the time derivative of the position vector.

Like in the macroscopic context, the set of feasible velocities is a closed convex cone, which
ensures existence and uniqueness of a projection. The analysis of the time evolution problem,
which is not the topic of the present paper, is detailed in [22], it relies on the so-called prox-
regularity of the position feasible set K, which essentially says that the projection on this set
is locally well-defined. We shall focus here on the projection step which defines u. Let us first
introduce a matrix formulation of the constraints: the set of feasible velocities can be written

Cx={v, Bv<0}

where each row of B stands for an active contact, i.e. a couple (i, j) such that D;; = 0, and thus
writes

Bij={0.0,..0r €30, 0,=€ij,0,.., 0 eR?N,
12

! !
i j
The matrix B belongs to .4, x2n(R), where N, is the current number of contacts. This number

may vary in time, but we shall here focus on the instantaneous problem.
The constrained minimisation problem admits a saddle-point formulation for the Lagrangian

1 N
L(v,q):](v)+<Bu|q>=E.Zl|ui—U,~|2+. % Opijxeij-(yi—uj), (15)
1= 1<y, ij=

as expressed in the following proposition (discrete counterpart of Proposition 21).
Proposition 22. The Lagrangian defined by (15) admits a saddle point (u, p) in V x A, with
V=R A, =R

This saddle point is characterized by

u+B*p=U

Bu=0

p=0 (16)
(p|Bu) = 0.

The primal part of this saddle-point is the projection of U on Cy.

Proof. This elementary property relies on classical arguments: like in the macroscopic setting
(Proposition 21), this problem fits into the abstract framework of Proposition 32, in the case
where the number of constraints is finite. Note that no assumption is made on B, in particular
surjectivity is not required, so that uniqueness may be ruled out for the dual component p. O
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Figure 5. One-dimensional cluster

All matrices take a simple form in the one-dimensional setting. Consider a cluster of N discs
in a row (see Figure 5). Matrix B, discrete opposite of the divergence, and BB*, write

2-10 - - 0
1-10 ... ... 12 10
01 -1......
B= o ,BB*=] - (17)
00 - - 12 -1
00 ..1-1 B B
0 - - 0-12

which is the discrete Laplacian in dimension one.

Remark 23. The operator B plays here the role of 9 for resistive networks (see Section 2.1 and
Figure 3), which is the discrete counterpart of the opposite of the divergence. Mass balance is
replaced here by overlap estimate. Indeed, by definition, each line of B expresses the first order
term of the expansion of the distance, e.g

D,’j(x+€U) = Dij(x) +€(BU),']' +o0(€).

——
=0

Accordingly, B* plays the role of 8*, which is a discrete gradient. For a resistive fluid network, a
pressure field induces a collection of fluxes proportional to 0* p, which write uyy, = cxy(px — py)
in each edge (x, y). In the present context, a pressure field p € Re induces a force field B* p over
the primal degree of freedom, which are the positions of the grains. Note that the fact that B and
B* are mutually adjoint is not fortuitous like in the case of resistive networks, this property is
inherent to the saddle-point formulation which defines p.

Remark 24. Note that this matrix corresponds to the Finite Difference discretization of a Laplace
problem with Dirichlet boundary condition. Since the grain 1 (see Figure 5) has no neighbor
on its left-hand side, it is as if a zero pressure were imposed at the grey circle on its left. In the
Finite Difference context, these grey circles correspond to boundary points at which a zero value
is prescribed, so that they do not correspond to unknowns, and they are in general removed
from the matrix formulation. This will play an important role in what follows: we shall define
Laplace-like operators on clusters of discs, and those operators will act on pressures which are
defined on edges of the contact network, which is the dual graph. The resulting discrete Laplacian
corresponds to a situation where a zero pressure is prescribed on the border.

For discs in R?, following the idea that B is the discrete counterpart of the opposite of the
divergence, it can be expected that the matrix BB* can be interpreted as a discrete Laplacian.
Figure 6 represents such a cluster of discs, the associated primal graph, and the associated dual
graph (in red), the vertices of which are the points of application of the interactions forces. The
operator BB* acts on the dual graph of the contact network. As illustrated in the figure, the dual
graph is not planar as soon as some discs have more than 3 neighbors, whereas the primal graph
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Primal network

Dual network

Figure 6. Primal and dual graphs

is planar. The thick red lines in the figure correspond to the stencil associated to a “vertex” of the
dual graph, that is the contact (i, k). This dual vertex has 7 neighbors, which are the other contacts
that implicate either i or k. One may imagine that some substance circulates among discs, with
a flux between two discs given by a Fick-like law. This would lead to a standard Laplacian of the
type 6cd*, defined on the primal graph (in black in the figure), like in Section 1. The maximal
degree would be 5 (grain k has 5 neighbors), whereas the maximal degree of the dual graph is 7
here. As we shall see, the operator BB* which emerges from the saddle-point formulation, which
is dual in some way to dcd*, presents very different characteristics.

Like in the macroscopic setting, one may deduce from Proposition 16 that the pressure p
verifies some sort of Poisson problem. Yet, an extra difficulty comes from the fact that the
constraint Bu < 0 is not necessarily saturated, even in the case of a concentrating velocity field
U, i.e. such that BU > 0, which is the first major difference with the macroscopic setting. Let us
explain this first discrepancy in a very simple situation, illustrated by Figure 7 (right), which is a
discrete version of the macroscopic situation represented in the left-hand side of the figure. The
situation is represented in the upper right corner of the figure : 4 discs form a cluster, and the
desired velocities push them toward the center. For any two discs in contacts, moving the discs
along desired velocities would lead to a violation of the constraint, which writes BU > 0.

A macroscopic counterpart of this situation is represented on the left-hand part of the figure:
the domain is an ellipse, and the desired velocity points toward the center, in such a way that
all parts of the domain are compressed by U. It writes —V - U > 0. In the macroscopic situation,
the pressure field is the solution to the Poisson problem —Ap = -V-U > 0, so that p > 0 in Q
by Corollary 10. In this situation, minimizing |v — U| under the constraint —V - v < 0 thus leads
to a pressure field that is positive, so that minimizing over divergence-free fields would lead to
the very same solution. In the microscopic setting the situation is fully different. Minimizing over
ker B amounts to consider that grains are glued to each other (they actually can slip on each
other, but distances of grains in contact have to remain equal to 0). For symmetry reasons, the
projection of U over ker B is obviously 0. In the saddle-point formulation, the interaction force
between the two grains that are on the vertical axis is negative, whereas the other pressures are
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Figure 7. Wedge principle.

positive (see the ‘+’ and ‘-’signs on the figure), which is in full opposition to the macroscopic
situation. As we shall see, it comes from the fact the Laplace operator that we are going to exhibit
does not verify any maximum principle. If one now considers the inequality constraint Bu < 0,
the solution will be different: the two grains on the vertical axis shall be pushed apart, due to the
horizontal squeezing action on the grains on the horizontal axis (wedge effect).

The example that we just considered shows that supposing BU > 0 (grains are pushed agains
each other) does not guarantee that the constraint is saturated (i.e. Bu = 0). To obtain a Laplace
operator by eliminating the velocity thus requires that we first remove from B the rows which
correspond to non-active constraints, i.e. such that the actual velocity fields creates a positive
relative velocity: grains are strictly pulled apart each other.

Proposition 25. For a given desired velocity field U, (u, p) being a solution to the saddle-point
formulation (16), we denote by B the matrix obtained from B by removing all the rows associated
to a non active constraint, i.e. for couple (i, j) such that e; j-(v;—v;) <0. Then p verifies the discrete
Poisson problem

BB*p =BU, (18)
where p is obtained from p by removing all the entries that correspond to removed constraints.

Proof. By construction, we have that Bu = 0 (all the rows with a strict inequality have been
removed). Now, thanks to the complementarity condition, for all those raws (i, j) which have

been removed, it holds that p;; = 0, so that B*p = B*p. We thus obtain the discrete Darcy
problem

u+B*p=0U
o 19
Bu =0 (19)
which yields, after elimination of the velocity, to the discrete Poisson equation (18). O

Let us insist on the fact that the discrete Laplacian BB* does not only depend on the config-
uration. For a given x in K (collection of non-overlapping discs), BB* is the basic discrete Lapla-
cian but, given a compressing field U (i.e. such that BU > 0), the induced pressure will verify a
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Figure 8. Acute angle condition

Poisson problem BB* p = BU, where B is obtained by removing some rows from B, in a way that
depends on U. In other words, there is no canonical Laplacian associated to the dual graph, but a
(finite) collection of Laplacian operators which are defined on subgraphs of the dual graph.

Remark 26. Let us give a very concrete illustration of the previous considerations. Consider a
collection of many coins on a table, with no overlapping but possibly touching. If one exerts
centripetal forces from the outside of the cluster, the induced motion may push some coins away
from each other, and the collection of couples that are split depends on the way the squeezing
force is prescribed.

To better understand the origin of this pathology, let us describe in more detail the matrix B,
in the form of a proposition which expresses a negative property.

Proposition 27. Let x € K represent a collection of N non-overlapping discs. If there exists at least
adisc i which is in contact with j and k such that e;; and ey form an acute angle, then the matrix
BB* isnot a Z-matrix, i.e. it contains extra-diagonal positive entries.

Proof. This comes from the expression of the matrix BB*. The simple example of such a situation
isrepresented in Figure 8, which is an extraction of a 3-cluster from the configuration represented
in Figure 6. Let us compute the 2x2 contribution to BB* that comes from the interaction between
(i, j) and (i, k) (red dots in the figure). The corresponding matrices are

Bii ik = (
so that the contribution of this interaction to the global Laplacian is
Bi ininB5 =( SRR = € Moo (R).
CDERZENG0 " e - e 2leidl 1/2 2 '

By gathering all those contributions, the extra diagonal term which corresponds to the (i, j), (i, k)
interaction will remain unchanged, thus positive. As a consequence, the resulting matrix BB* has
positive extra-diagonal entries. O

ejj —ejj 0

€ M 6(R),
eix 0 _eik) 26

In the continuous setting, a smooth function defined in a smooth connected domain is
constant if and only if its gradient is identically 0. In the discrete setting, where B* plays the
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role of the gradient, this equivalence is no longer true, and this negative property is not due to
boundary effects.

If one considers the situation represented in Figure 6, the disc k is in contact with 5 discs, and
the contact points are not distributed in a symmetric way. As a consequence, a unit pressure field
induces a non-zero force on grain k, i.e. B*1 # 0.

Conversely, in highly congested situations, the discrete gradient B* may have a rich kernel.
Consider for example a triangular lattice of discs with a common radius. If the number of discs
is N, there are 2N primal degrees of freedom, whereas the number of contacts N, scales like 3NV.
The kernel of B € .4, n has therefore a dimension that scales like N. As a direct consequence,
the Poisson problem

BB*p=b

which is the discrete counterpart of a standard Poisson problem with Dirichlet boundary con-
ditions (see Remark 24), is highly ill-posed in terms of uniqueness. Let us nevertheless add that,
even in situations where the problem is very degenerate, the unilateral homogenous problem is
well-posed: the problem BB* p = 0, with p € R, admits 0 as unique solution. This is a straight
consequence of Hahn-Banach theorem, as detailed in [15]. A simple illustration of this property
is the following: consider a static collection of coins on a table, possibly in contact with each
other. Assuming that coins are not glued to each other, the question is: is is possible to determine
interaction forces ? The answer is yes. Consider an extreme coin (the center of which is not in
the convex hull of other centers). Since forces are repulsive, if the forces acting upon this coin
were not zero, they would push the coin away from the cluster. So they are zero, the coin can be
removed without perturbing the equilibrium, and the process can be further implemented until
exhaustion. Note that, in the same situation, if some coins are glued together (i.e. pressures can
be positive or negative), it is impossible to determine interaction forces from the sole equilibrium
property. It can also be proved that the solution set of the Poisson problem with positivity con-
straint is bounded. Indeed (see again [15, Lemma 1]), it holds that ker B* n [Rivf is bounded, so that
any Poisson problem BB* p = b set in ker B* N [Rf" admits a bounded (possibly empty) solution
set.

Before exploring the effect of the (negative) properties of BB* upon the behavior of the
evolution model (14), let us summarize these properties. Its form provides it with a variational
setting. Indeed, as illustrated in Figure 14, the pressure that is a solution to the saddle-point
formulation (16), minimizes |U - B* q|2. As for the other properties listed in Section 2, most of
them are not verified by BB*. Since some extra diagonal terms can be positive, there is no mean
value properties (Proposition 11 is not true), no stochastic interpretation (Propositions 16, 17,
and 19 do not make any sense, since there is no random walk canonically associated to BB*).

4. Capacity drop and Faster is Slower effect at the macroscopic and macroscopic scales

We explain in this section how the “nice” properties of the macroscopic (standard) Laplace
operator prevent the corresponding model to reproduce some observed effect and, on the other
side, how the pathologies of the microscopic operator make it possible to reproduce these effects.

Capacity drop

In the context of evacuation, the Capacity Drop (CD) effect designs a reduction of the flux
though an exit door or a bottleneck when the number of evacuees upstream increases, see
e.g. [23]. Let us first show that the macroscopic model (9) (10) does not reproduce the CD effect.

Proposition 28. Let us consider the situation represented in Figure 4: pedestrians are represented
at some time by a density p upstream the exitT 5y, the saturated zone (p = 1) is a smooth domain
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Q, and the desired velocity field points to the door, in such a way thatV - U < 0, and this quantity is
not identically 0 on Q. Then, according to the model (9) (10), people actually exit faster than they
would if there were no congestion.

Proof. This is a straight consequence of the Maximum Principle. We give here a formal proof of
this property, and we refer to [21] for a more detailed proof. Since U is concentrating, the con-
traint V- u = 0 is saturated over (, so that V- u is identically 0. The unilateral Darcy problem (12)
thus becomes a standard Darcy problem. Elimination of the velocity yields the Poisson problem

-Ap=-V-U,

with homogeneous Dirichlet boundary conditions on Iy, (the exit), I'y, (the upstream front),
and homogeneous Neumann condition on I';, (walls). The field p is such that —Ap = 0, and not
identically 0 in w, so that p > 0 in Q. As a consequence, for any x € T',,,; the value of p is strictly
less that p(y) for any y € Q and, by Corollary 10, 0p/dn(x) < 0. As a consequence

9
u-n:(U—Vp)-n:U-n—ﬁ(x»U-n,

which exactly states that people exit faster than they would if they were alone (i.e. if they adopted
their desired velocity). O

The previous property shows that the macroscopic model in its basic form is not relevant to
recover the Capacity Drop phenomenon. Note that some attempts have been proposed to incor-
porate this phenomenon in macroscopic models. In [24, 25], the authors prescribe a limitation
of the flux at the exit, in a way that non-locally depends on the number of people accumulated
upstream the exit, which makes it possible to enforce the CD phenomenon. Yet, up to our knowl-
edge, no macroscopic model is currently able to natively reproduce this phenomenon, in a way
that would explain it.

We shall investigate now how the microscopic setting, because of the very defects of the dis-
crete Laplacian BB*, reproduce the Capacity Drop phenomenon. The discrete model actually ex-
hibits an extreme version of the Capacity Drop phenomenon, that is the spontaneous emergence
of static jams.

Definition 29 (Static jam). In an evacuation situation like the one represented in Figure 4, a static
jam is an equilibrium point of the evolution problem (14), i.e. a configuration x € K such that
Pc U =0. By Proposition 16, it can also be defined as any configuration x € K such that there exists
a pressure field p € IRiV ¢ which balances U, in the sense that B*p = U.

We may express in an informal way the ability of the microscopic model to reproduce the
Capacity Drop phenomenon:

In an evacuation situation like the one represented in Figure 4, with desired velocities pointing
to the outside of the room through the exit door, the microscopic evolution model (14) leads in some
situations to static jams in the sense of Definition 29, even when the width of the exit is significantly
larger that the size of an individual.

The mechanism of jams is illustrated in Figure 9. The bottom corresponds to the macroscopic
situation, it illustrates Proposition 28: the red arrows correspond to the variations of velocities due
to congestion, i.e. —Vp, which points outward the domain, meaning that people exit faster than
they would if they were alone (capacity rise phenomenon). This property is a direct consequence
of the Maximum Principle for —A, as detailed in Proposition 28. The top part of the figure
corresponds to the microscopic situation. According to Remark 24, one can consider that the
grey dots, located at the zone of grains facing the exit, correspond to points where a zero pressure
is prescribed. Now consider positive pressures between grain in contact, the corresponding
correction on the velocity, that is — B* p (discrete counterpart of —V p), points inward the domain,
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Figure 9. Principle of a static jam

Figure 10. Stable static jam

meaning that people exit slower than they would if they were alone (CD phenomenon). The
previous example explains the mechanism through which the desired velocity can be balanced
by interaction forces. In can be checked that such jams spontaneously appear in numerical
simulations, as illustrated by Figure 10, which represents a jammed situation with the desired
velocities in black, and the forces induced by pressure in blue.

Figure 11 represents the pressure field during an evacuation process. Pressures are associated
to edges between two centers, and the width of edges are proportional to pressure values.
Pressure arches are quite visible, in particular at the very exit, which instantiates the general
principle described in Figure 9. Note also that the highest pressures implicate discs upfront,
to be compared to the macroscopic situation, where maximal pressures are attained on a zone
significantly upstream the exit, so that people at the exit are pushed ahead.
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Figure 11. Macroscopic (top) and microscopic (bottom) pressure fields.

Faster is Slower effect

The Faster is Slower (FiS) effect pertains to a wide class of systems which may perform
globally worse as their individual components strive to do better (see e.g. [26]). In the context
of evacuation, it corresponds to a situation where the eagerness of some individuals to exit a
room leads to a decrease of the evacuation efficiency. We explain here why the macroscopic
model (9) (10) does not make it possible to recover the FiS effect, whereas its microscopic
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counterpart (14) reproduces this effect. We propose a partial explanation of this paradoxical
phenomenon, which relies on the defects of the underlying Laplacian.

We consider again the situation represented by Figure 4, with a desired velocity field U
which points toward the exit. In [27] it was proposed to change U by introducing a scalar speed
correction field B(x), B > 1 corresponding to a speed increase, and to investigate the dependence
of the flux through the exit upon . We extend here this approach by allowing variations of U in
any direction, and we shall keep  to denote the variation around U, so that U + § is the modified
velocity field, and we shall investigate the dependence of the flux upon . The FiS issue formalizes
in this context:

Are there any zones such that a variation of U in its own direction (so that
B-U > 0) induces a decrease of the flux at the exit ?

The pressure pg associated to this desired velocity U + f is the solution to the Poisson problem
—App=-V-U-V-B, (20)

with homogeneous Dirichlet boundary conditions pg = 0 on Ty, and Ty, and homogeneous
Neuman boundary conditions dpg/dn = 0 on I'y,. The associated flux through the exit is thus

0[9[5
= ‘n= U-n- —_—. 21
](ﬁ) fliuut uﬁ ! ]1;0141 " jl;out an ( )

Proposition 30. Let us assume that the desired velocity U is tangent to the wall. Let f — J(P) the
flux functional defined by (21). We assume that desired velocities are not modified at the exit, i.e.
B=0o0nT,,. The gradient of ] at B3, that is the field g such that

f(ﬁ+5)=l(ﬁ)+f9g‘ﬁ+0(ﬁ),

for all variations B vanishing onT ,y; is =V q, where q is the solution to the adjoint problem

-Ag=0 inQ,
q=-1 onTyy
q=0 onTy (22)
dq
— =0 onTly.
on v

Proof. The gradient is determined by the adjoint problem method. We introduce a dual variable
g, that is a function defined in Q, and which makes it possible to express the relation between the
control variable B and the state variable p. For any such g (assumed to be smooth), from (20), we
have that

op
b(p,q)zf Vp-Vq—f—ch qV~U+f qv-p=0, (23)
Q ron Q Q

where the boundary integral over I' can be replaced by an integral over I'g = I'yys UT'p, thanks
to the boundary condition on I';,,. Now, since we assume that desired velocities are not modified
at the exit, and since we are interested in variations of the flux only, we may drop the first term
of (21) in the definition of J :
op
JB) =— fr =r

out 6” '
The Lagrangian

op op
L(/v,ﬁ,ci):—fr %+fQVp~W/—fr a—nq+quV-U+quV-ﬁ
out N 0

flux b(p.q)
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is such that, for any pg coupled with § by the state equation, b(pg, g) = 0 for any g. Thus, for any
f and any ¢,

L(pg,B,q) =J(PB).
We differentiate with respect to  both sides of this identity:

DpJ =DyLoDgpp+DgL. (24)

The approach consists in choosing an adjoint variable g such that D, L = 0, which circumvents
the difficulty to explicitly estimate Dgpg. Let p denote a variation in the variable p. It holds that

~ op - op op
DL:—/ —+fv-v-f—— £
ptP ko on o p-vq - 0n61 Cu anq
op _ [0q . op
=- —(g+1)+ | (-A +| —p- —q.
frman(q ) fﬂ( q)p fran” ., an
Since p is a variation of p, which identically vanishes on Iy, the boundary integral over I' = 0Q
reduces to an integral over I';,. The adjoint problem is designed in order to make the previous
expression vanish:

0
-Ag=0inQ, g=-1onTlyy,;, a—q:OOan,q=OonFup,
n

which is exactly (22), up to a change in sign in the Dirichlet boundary condition. Let g be the
solution to this adjoint problem, so that D, L(pg, B, q) = 0. From (24), it comes

DgJ=0+DgL(pp,B,q),

with

DyIB= [ av-F=-[ B-va+ [ ap-n

Q Q r

Since E: 0OonTyys, g=00nTyy, and U-n=0onT, the boundary term vanishes, which yields
vﬂ] = —VCI;

which ends the proof of Proposition 30. g

Figure 13 represents —Vq. The fact that it is the gradient of J(f), that is the outflow through the
exit, means that, at any point x of the saturated domain, if a person located around x change their
desired velocity by a vector S, the effect upon the flux will be proportional to —V¢g - 8. As shown
in the figure, the gradient of J(p) is strikingly similar to a desired velocity field, which means that
any local variation of the desired velocity in its own direction will lead to an increase of the flux
through the door, which corresponds to a Faster is Faster effect.

Let us now show that the situation is fully different in the microscopic setting. As previously, we
shall investigate the dependence of some observable quantifying the evacuation upon variations
of individual desired velocities of people upstream the exit. We aim here at determining whether
it might be possible that some agents would improve the evacuation efficiency by reducing their
pace. In the discrete situation, the instantaneous flux through the exit is not a relevant marker
of egress efficiency. We shall rather consider the velocity of a particular agent close to the exit.
We consider a highly congested situation like the one represented in Figure 12. We propose to
formulate the FiS issue in the following terms: consider a person (i.e. a disk) of index i on the
front of the cluster, i.e. close to the exit (see Figure 12).

We denote by n; the direction of their desired velocity. Now consider that any other individual
J has the ability to slightly change their speed, i.e. by changing their desired velocity to U; + ;.
The FiS issue amounts to investigate whether taking §; in the direction of U; for some individuals
might decrease the velocity of i in the desired direction, thereby decreasing the flow near the exit.
To formalize this question, we first consider the actual velocity field associated to the desired
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Figure 12. Definition of i and n;.

velocity field U at some instant, i.e. the couple (u, p) solves System (16). As in Proposition 25, we
eliminate all those rows of B that do not correspond to active constraints. We keep the same
notation for the reduced B and the associated reduced vector p of Lagrange multipliers. The
system writes
u+B*p =1,
Bu =0,
where all pressures are positive. The velocity can be eliminated, which yields

BB*p = BU,

(25)

which is the discrete counterpart of the macroscopic Poisson problem (-Ap = -V - U).

We now consider the velocity as a function ug of f € R2V, i.e. the desired velocity of individual
Jis U;j + Bj. Admitting that the network of active contacts remains the same for small variations
of B, it holds that

BB*pg=BU+Bp, ug=U+p-B*pg.
The objective function we are interested in is the actual velocity of i in its desired direction:
ug-ni=U;-nj+p-nj—B*pg-n;, n;=(0,...,0,U;/ |Uj|,0,...,0). (26)

Since person i is the closest to the exit, with no one in front, any change of i’s desired velocity
shall affect their actual velocity in the same direction. We shall therefore disregard variations of
speed for i, so that the first two terms above are constant, and we define the objective function as

J(B)=—-B*pg-n;. @27)

Proposition 31. Let — J(B) be the flux functional defined by (27). The gradient of ] with respect
to B is —B* q, where q is the solution to the adjoint problem

BB*q=Bn;,. (28)

Proof. Like in the macroscopic setting, the core of the approach relies on a so-called Lagrangian,

that is a function of the state variable p, the control variable 8, and a dual variable g. It is defined

as the sum of the objective function (velocity of i along the desired direction) expressed in the

state variable p (uncoupled from the control variable ), and a weak expression of the state
equation BB*pg = BU + Bf:

L(p,B,q)=-B*p-n;+(BB*p—-BU-Bf)-q.
As a consequence, for any  and any g,

L(pp.B,q) =J(B).
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Figure 13. Solution to the adjoint problem, in the macroscopic (top) and microscopic
(bottom) settings.

Differentiation with respect to 8 both sides of this identity yields Eq. (24). The approach consists
again in choosing an adjoint variable g such that D,,L = 0. Let p denote a variation in the variable
p. It holds that
D,Lp=-B*p-n;+(BB*p)-q=(-Bn;+BB*q)-p.

The adjoint problem is designed in order to make the previous expression vanish, it therefore
reads

BB*q = Bn;,. (29)
On the other hand, it holds that

DgLB=-Bf-q=-Bxq-p.

We finally obtain

VJ(B)=-B*q
where g is the solution to the adjoint problem (29). g

This expression of the gradient makes it possible to investigate the Faster is Slower effect.
Figure 13 represents a congested situation, the black disk corresponds to i, the agent upfront. The
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black arrows represent to VJ, i.e. —B* g, where ¢ is the solution to the adjoint problem. This field
is the straight discrete counterpart to the continuous field represented on the top of the figure, yet
it presents very different characteristics. Contrary to the macroscopic field, some arrows indeed
point upstream the exit. For all such agents (represented in blue in the figure), changing their
velocity against their desired direction (i.e. slowing down) will increase the speed of i, i.e. it will
speed up the evacuation process.

5. Abstract considerations

We propose here an abstract setting to handle the macroscopic and microscopic saddle-point for-
mulations (systems (12) and (16), respectively), and we give an abstract criterium to distinguish
those situations which lead to a maximum principle from those which do not.

Abstract saddle-point formulations

The abstract setting is represented in Figure 14 (middle). The primal space V is L?(@) in the
macroscopic setting, and R*" in the microscopic one. The figure represents the different cones
which can be introduced. The left-hand side of the figure represents C, the feasible cone, and its
polar

C°={veV,{w|luy<s0 YueC},
in (ker B)1, so that ker B is reduced to single point, which is C n C°, in this representation.

Proposition 32. Let V and A be Hilbert spaces, B € £(V,\), A+ a closed convex cone in A. We
define its polar cone as

AL ={qeA, (q|p)<0 VpeA}.

For a given U € V, we consider the problem which consists in minimizing
Jw) = 2 v-Up?
v—J)==-lv-Ul,
2
over C c V defined by
C={veV,(Bvlg)<0 YqeA.}=B'(A3).

There exists a unique minimizer for ] over C and, in any of the following situations:
(i) A, isspanned by a finite number of vectors, i.e. Ay = co(g1,...,8p) (conic convex hull).
(ii) B is surjective.
the problem admits a variational formulation in the following sense: u is the constrained mini-
mizer if and only if there exists p such that
u+B*p=U
Bu € A%

p e A, (30)

(p|Bu) =o.

Proof. The Hilbert space V is decomposed into the sum of C and its polar cone C°,i.e.any U € V
decomposes uniquely as the sum

U=u+u°, uecC, u”€C0,<u|u°):0,

which can be seen as a unilateral version of the direct sum of two orthogonal subspaces (see [28]).
Let us prove now that, in both cases i and ii, u° can be written B* p with p € A
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kerB

kerB

U e€—-C¢C°+kerB

Figure 14. Abstract setting.

Casei. If A, is the closed convex conic hull of a finite number of vectors, i.e. if

A+:c0(g1,...,gp):{z/1igi, with 1; =0 Vizl,...,p},
then C can be written
C={veV,{v|B*gi)<0 Vi=1,...,p}
and the identity
C°:c0(B*g1,...,B*gp):{Z/liB*gi, with A; =0 Vizl,...,p}

is a straight consequence of Farkas’ Lemma. Note that this lemma is usually expressed in a finite
dimensional setting, but it can be easily checked that it generalizes to infinite dimensional spaces
as soon as the number of unilateral constraints is finite (the cone has a finite number of facets).
The previous identity implies that u° € C° can be written u° = B* p, with p € 1., which settles
Case .

Caseii. In all generality it holds that
C°=B*A.

Indeed, C° c B*A; is trivial, and if the inclusion is strict, there exists v € B*A, with v ¢ C°. By
Hahn-Banach Theorem, there exist w € V and a € R such that

(B*qw)sa<(vlw) VqeA;.

Since A, is a cone, the first inequality implies that (B* ¢ | w) < 0 for any g € A+, so that w € C, and
a = 0. We then have (v| w)0, with v € C° and w € C, which is impossible.
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As a consequence, if B* A, is closed, then C° = B* A,.. Let us prove that B* A is indeed closed.

If B is surjective between the Hilbert spaces V and A, then there exists y > 0 such that (continuous
inf-sup condition)

infsup —<B 7 i 9)

Ay lullgl

As a consequence, if a sequence B* g,, converges in V, with g, € A, then g, is a Cauchy sequence

that converges to g € A, and the previous limit is B* g € B* A, which proves that B* A, is closed,

and thereby ends the proof of Proposition 32. O

zy=|B"q|zy|a| Vqen

Remark 33. In the case of equality affine constraints, assuming that B(V) is closed is sufficient
to ensure existence of a Lagrange multiplier, whereas surjectivity ensures its uniqueness. In the
present situation, with inequality constraints, assuming surjectivity, as we did, is essential to
ensure existence. Indeed, an operator with closed range maps a closed convex cone to a convex
cone which is not necessarily closed: if B*(A) is closed (which is equivalent to say that B has a
closed range), it does not imply that B* (A ) is closed, even in the finite dimensional setting, we
refer to [21] for a counter-example.

Abstract maximal principle

The difference between the macroscopic and the microscopic models can be described within
the abstract setting presented above. In the macroscopic case, if one considers a desired velocity
that is concentrating, i.e. =V -U = 0, it writes BU € —C (the operator B is —V:). The fact that
—Ap =—-V-U = 0 (which writes BB* p = BU), admits a solution that is non-negative means that
there exists p € A, such that U — B* p is in ker B. In other words, the maximal principle takes the
abstract form

—Cc C®°+kerB,
which is equivalent to —C < B*(A+) + ker B. Figure 14 (middle), which gives a representation in
(ker B)*, correspond to this situation : —C appears as included in C°, and the vector U’ (in green)
corresponds to a concentrating field (i.e. with nonpositive divergence).

The microscopic situation corresponds to the situation represented in the bottom. The inclu-
sion above no longer holds :

—-C¢ B*(A4) +kerB.
There exists vectors U’ in —C, i.e. concentrating fields like the one represented in Figure 7 (top-
right), that are not in C° + ker B so that there exists no pressure fields in A, = R such that
BB* p = BU, which expresses the pathology of this Laplacian BB*.

6. Conclusion

We have recalled in this paper the tight links between continuous and discrete Laplacians, in
contexts where the discrete Laplacian combines a phenomenological law of the Ohm’s type
together with a conservation principle. In the context of crowd motions (or granular flows),
accounting for the non-overlapping constraint between solid grains can be done by duality,
which leads to a unilateral discrete Darcy problem. Like in the continuous setting, eliminating
the velocity leads to a Poisson-like problem for a pressure field defined on the dual graph of
the contact network. The discrete Laplacian BB* is the straight counterpart of -V -V = —A
in the one-dimensional situation (people / grains in a row), but the situation is fully different
in higher dimensions. In particular, the matrix BB* does not verify any maximum principle
in general, and it does vanish on constant fields. We have investigated how these very defects
make it possible to recover effects that are observed in reality, whereas in the continuous setting,
with a standard Laplacian verifying the maximum principle, these effects are not reproduced.



Bertrand Maury 31

These considerations also rule out the possibility to properly obtain the continuous model as a
many-body limit of the discrete one, as illustrated for example by Figures 11 and 13, which enlight
the deep discrepancies between both scales, although the corresponding models are built upon
the very same principles.
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