
Comptes Rendus

Mécanique

Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

Combining machine-learned and empirical force fields with the parareal
algorithm: application to the diffusion of atomistic defects

Published online: 18 October 2023

https://doi.org/10.5802/crmeca.220

Part of Special Issue: The scientific legacy of Roland Glowinski

Guest editors: Gregoire Allaire (CMAP, Ecole Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France), Jean-Michel Coron (Laboratoire Jacques-Louis Lions, Sorbonne
Université) and Vivette Girault (Laboratoire Jacques-Louis Lions, Sorbonne Université)

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mécanique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1873-7234

https://doi.org/10.5802/crmeca.220
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mécanique
Published online: 18 October 2023
https://doi.org/10.5802/crmeca.220

The scientific legacy of Roland Glowinski / L’héritage scientifique de Roland
Glowinski

Combining machine-learned and empirical

force fields with the parareal algorithm:

application to the diffusion of atomistic

defects

Olga Goryninaa, b, Frédéric Legoll∗, c , b, Tony Lelièvrea, b and Danny Perezd

a CERMICS, École des Ponts, Marne-La-Vallée, France

b MATHERIALS project-team, Inria, Paris, France

c Navier, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-La-Vallée, France

d Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, NM 87545,
USA

E-mails: olga.gorynina@enpc.fr (O. Gorynina), frederic.legoll@enpc.fr (F. Legoll),
tony.lelievre@enpc.fr (T. Lelièvre), danny_perez@lanl.gov (D. Perez)

Abstract. We numerically investigate an adaptive version of the parareal algorithm in the context of molec-
ular dynamics. This adaptive variant has been originally introduced in [1]. We focus here on test cases of
physical interest where the dynamics of the system is modelled by the Langevin equation and is simu-
lated using the molecular dynamics software LAMMPS. In this work, the parareal algorithm uses a family of
machine-learning spectral neighbor analysis potentials (SNAP) as fine, reference, potentials and embedded-
atom method potentials (EAM) as coarse potentials. We consider a self-interstitial atom in a tungsten lattice
and compute the average residence time of the system in metastable states. Our numerical results demon-
strate significant computational gains using the adaptive parareal algorithm in comparison to a sequential
integration of the Langevin dynamics. We also identify a large regime of numerical parameters for which sta-
tistical accuracy is reached without being a consequence of trajectorial accuracy.

Keywords. Parallel-in-time simulation, Molecular dynamics, Adaptive algorithm, Statistical accuracy.

Funding. Part of this work has been completed while DP was visiting Paris-Est Sup as an invited professor.
The hospitality of that institution is gratefully acknowledged. The work of FL and TL was partially supported
by ANR through grant ANR-15-CE23-0019-06 (project CINE-PARA). This project has also received funding
from the Agence Nationale de la Recherche (ANR, France) and the European High-Performance Comput-
ing Joint Undertaking (JU) under grant agreement 955701 (project Time-X). The JU receives support from
the European Union’s Horizon 2020 research and innovation programme and Belgium, France, Germany,
Switzerland. This work was also partially funded by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant 810367; project EMC2).

Published online: 18 October 2023

∗Corresponding author.

ISSN (electronic) : 1873-7234 https://comptes-rendus.academie-sciences.fr/mecanique/

https://doi.org/10.5802/crmeca.220
mailto:olga.gorynina@enpc.fr
mailto:frederic.legoll@enpc.fr
mailto:tony.lelievre@enpc.fr
mailto:danny_perez@lanl.gov
https://comptes-rendus.academie-sciences.fr/mecanique/


2 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

1. Introduction

This work is motivated by molecular dynamics (MD) simulations, where one often has to com-
pute ensemble averages or dynamical quantities, which both involve averages over very long tra-
jectories of stochastic dynamics (we refer e.g. to [2] for a general, mathematically oriented pre-
sentation of the MD context). Reducing the computational cost of these long time simulations,
or at least the wall-clock time it takes to obtain such long trajectories, is thus of great practical
interest. As conventional spatial parallelization schemes based on domain decomposition allow
for larger system sizes but not longer simulation times [3], one alternative way to speed up such
computations is to design accelerated MD approaches based on the parallelization of the prob-
lem in the temporal domain [4].

A popular parallel-in-time method for integrating ordinary differential equations is the
parareal algorithm, which has been first introduced in [5]. Using a time domain decomposition,
the algorithm aims at computing, in an iterative manner, an approximation of the exact solu-
tion of the dynamics (see Section 2.1 for a detailed description). The whole time domain is di-
vided into several subintervals. At each iteration, the parareal algorithm utilizes a coarse solver to
quickly step through the time domain by computing relatively cheap approximate solutions for
all time subintervals, and then simultaneously refines all of these approximate solutions using an
accurate fine solver which is applied in parallel over each time subinterval. Since the fine prop-
agator corrections (which are expensive to compute) are applied concurrently over the subinter-
vals (and not in a sequential manner from the initial until the final time), reduction in the asso-
ciated wall-clock time is possible. In contrast, the coarse propagator is applied sequentially over
the complete time interval, but its cost is often negligible when compared with the cost of the
fine propagator.

In the MD context, it is convenient to consider parareal algorithms where the coarse and the
fine propagators integrate dynamics based on different potential energies. More precisely, we
assume here that both potential energies are written in terms of the same degrees of freedom
(both phase spaces having thus the same dimension), and observe that most physically relevant
coarse potentials are likely to have similar numerical-stability constraints as fine potentials (we
refer to [6] for parareal variants adapted to slow-fast systems, for which the coarse propagator
may integrate an effective system of smaller dimension, where fast degrees of freedom have been
averaged out, and hence using a larger time-step; this is not an idea that we pursue here). We are
thus going to use the same time-step to integrate both dynamics, the difference in cost stemming
from the different complexity for evaluating the potential. In this setting, an adaptive version of
the parareal algorithm has recently been introduced in [1]. It is shown there that this adaptive
version leads to significantly improved gains (in comparison to the standard version of parareal)
on some toy examples.

The main goal of this article is to investigate the performances of the adaptive parareal
algorithm for realistic problems of physical interest. To that aim, we focus on the MD simulation
of the diffusion of a self interstitial atom (SIA) in a body-centered cubic (BCC) tungsten lattice.
The simulation is performed using the LAMMPS [7] molecular dynamics software (Large-scale
Atomic/Molecular Massively Parallel Simulator), a software which is very broadly used within
the materials science community. To model the tungsten lattice, we consider several interatomic
potentials in two families: machine-learned spectral neighbor analysis potentials (SNAP) [8] and
embedded-atom method potentials (EAM) [9].

This article is organized as follows. In Section 2, we briefly review the classical parareal
algorithm and the adaptive version introduced in [1]. We also discuss the implementation of our
method in LAMMPS, including some issues related to the fact that we use as is the time-stepping
scheme implemented in LAMMPS (for the sake of having a non-intrusive implementation).



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 3

This raises some unexpected difficulties (some calculation details related to these questions are
postponed until Appendix A). We next present our SIA simulations in Section 3. We describe
the MD settings we have chosen and demonstrate the accuracy (both from a trajectorial and a
statistical viewpoint) of the results obtained using the adaptive parareal algorithm in comparison
to reference results obtained using a standard sequential integration of the dynamics. We also
discuss in Section 3 the significant computational gains obtained when using the adaptive
parareal algorithm (on our test cases, this gain varies between 3 and 20 depending on the choice
of the coarse propagator and of the time-step).

2. Algorithm

The present work focuses on the parallelization in time of the Langevin dynamics{
d q(t ) = p(t )d t ,

d p(t ) =−∇V (q(t ))d t −γp(t )d t +
√

2γβ−1 dW (t ),
(1)

with initial condition (q0, p0). Here (q(t ), p(t )) ∈ R3m ×R3m are the positions and momenta at
time t ∈ [0,T ] of m particles in the three-dimensional space, V : R3m → R is the potential energy
of the system, γ > 0 is the friction coefficient, β is (up to a multiplicative constant) the inverse
temperature and W (t ) is a standard Brownian motion in dimension 3m. In (1), we have set the
mass of each particle to unity for simplicity, but the generalization to non-identity mass matrix is
straightforward (and the numerical tests discussed in Section 3 are actually performed with the
physically relevant values of the particle masses).

Let us introduce a uniform grid on the time interval [0,T ] with N time-steps of length ∆t =
T /N :

0 = t0 < t1 =∆t < ·· · < N∆t = tN = T.

Because it will be useful in the context of the parareal algorithm, each time-step ∆t is itself
subdivided into L time-steps of length δt =∆t/L for some L ≥ 1.

The integrator for the Langevin dynamics (1) implemented in LAMMPS is a modification of
the BBK scheme [10] with an effective force which takes into account the damping term and
the fluctuation term associated to the white noise, in addition to the physical force −∇V . Let us
consider L+1 independent standard Gaussian random variables, denoted G0, G1, . . . , GL . The first
iterate of the scheme has a particular expression:

p1/2 = p0 −
δt

2
∇V (q0)− δt

2
γp0 +

1

2

√
2γβ−1δt G0,

q1 = q0 +δt p1/2,

p1 = p1/2 −
δt

2
∇V (q1)− δt

2
γp1/2 +

1

2

√
2γβ−1δt G1,

(2)

where we recall that (q0, p0) is the initial condition. The subsequent iterates (for 1 ≤ ℓ≤ L−1) are
given by 

pℓ+1/2 = pℓ−
δt

2
∇V (qℓ)− δt

2
γpℓ−1/2 +

1

2

√
2γβ−1δt Gℓ,

qℓ+1 = qℓ+δt pℓ+1/2,

pℓ+1 = pℓ+1/2 −
δt

2
∇V (qℓ+1)− δt

2
γpℓ+1/2 +

1

2

√
2γβ−1δt Gℓ+1.

(3)

The first iterate (2) differs from the next ones (3) in two ways. First, if we were to set ℓ = 0 in the
first line of (3), we would need to know p−1/2 to compute p1/2. However, p−1/2 is of course not
defined. It is replaced in the first line of (2) by p0. Second, and more importantly, the random
variable G0 is only used in the first iteration, whereas all the other random variables {Gℓ}1≤ℓ≤L−1



4 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

are used twice (Gℓ is used in the last step of iterate ℓ−1 and in the first step of iterate ℓ). Stated
otherwise, the first iterate (2) uses two independent random variables, whereas each subsequent
iterate only uses one additional independent random variable. Since we are going to work with
relatively small values of L in the sequel, this difference has far-reaching consequences, e.g. on
the equilibrium kinetic temperature simulated by the numerical scheme, as will be discussed in
details in Section 2.4.

Remark 1. The modification (2)–(3) of the BBK scheme is particularly well-suited to adapt to
the Langevin equation an implementation of the standard Verlet algorithm used to integrate
deterministic Hamiltonian dynamics. Indeed, as in a Verlet scheme, for ℓ≥ 1, the total force (sum
of force field, damping and fluctuation) to compute pℓ+1/2 from pℓ in the first step of iterate ℓ is
exactly the same as the total force to compute pℓ from pℓ−1/2 in the last step of iterate ℓ−1. The
total force hence only needs to be computed once per time-step.

2.1. Parareal method

To integrate (1) over a time interval of length ∆t , we consider two propagators: F∆t is a fine,
expensive propagator which accurately approximates the exact solution of (1), and C∆t is a
coarse, less expensive propagator which is also less accurate. In the MD context, F∆t and C∆t

are often integrators with a fixed discretization scheme and with the same time-step, but run on
different potential energy landscapes. In what follows, and similarly to [1], the fine propagator
F∆t performs L iterations of (3) (with the time-step δt = ∆t/L), where V ≡ VF is the reference,
accurate potential energy. The coarse propagator C∆t also performs L iterations of (3) (with
the same time-step δt ), but where V ≡ VC is now a coarse, approximate potential energy.
As explained above, for both propagators F∆t and C∆t , the first of these L iterates is given
in the form of (2) instead of (3). We emphasize that, to ensure convergence of the parareal
algorithm, both propagators F∆t and C∆t should use the same random variables. We denote by
{Gℓ,n}0≤ℓ≤L,1≤n≤N the random variables used to propagate the system from the initial time to
the final time N ∆t .

The classical parareal method (as first introduced in [5] and reformulated in [11]) is an
iterative, parallel-in-time algorithm, which computes the trajectory over [0,T ] by using domain
(in time) decomposition. It proceeds as follows. Starting from the initial condition (q0, p0), the
algorithm first performs a sequential coarse propagation to compute {(q0

n , p0
n)}0≤n≤N :(

q0
n+1, p0

n+1

)=C∆t
(
q0

n , p0
n

)
,

(
q0

0 , p0
0

)= (q0, p0). (4)

Suppose now that we have at hand some numerical trajectory {(qk−1
n , pk−1

n )}0≤n≤N , obtained at
the previous iteration k − 1. The new parareal solution {(qk

n , pk
n)}0≤n≤N is computed from the

following scheme:(
qk

n+1, pk
n+1

)
=C∆t

(
qk

n , pk
n

)
+F∆t

(
qk−1

n , pk−1
n

)
−C∆t

(
qk−1

n , pk−1
n

)
,

(
qk

0 , pk
0

)
= (q0, p0). (5)

We thus propagate the system (qk−1
n , pk−1

n ), in parallel over the time-windows [n∆t , (n + 1)∆t ],
according to both the coarse and the fine propagators, thereby obtaining F∆t (qk−1

n , pk−1
n ) and

C∆t (qk−1
n , pk−1

n ). We next compute, still in parallel, the jumps F∆t (qk−1
n , pk−1

n )−C∆t (qk−1
n , pk−1

n ).
We next perform a sequential propagation, from the initial condition and using the coarse
propagator that we correct according to the precomputed jumps. We note that the fine solver
is only used in the parallel part of the algorithm (the fine solver is applied in each interval
[n∆t , (n +1)∆t ] independently of the other intervals), while the sequential part of the algorithm
only calls the coarse propagator. The random numbers {Gℓ,n}0≤ℓ≤L,1≤n≤N which are used are
the same at each parareal iteration k.



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 5

The parareal algorithm has been successfully applied to many problems. We refer to [12] for
a reformulation of the algorithm in a more general setting that relates the parareal strategy to
earlier time-parallel algorithms (see also [13, 14]). Several variants of the algorithm have been
proposed for specific applications: multiscale-in-time problems (see e.g. [15, 16], [6] and [17]),
Hamiltonian ODEs or PDEs [18, 19], stochastic differential equations [20–22], reservoir simula-
tions [23], applications in fluid and solid mechanics [24, 25], to mention but a few. This work is
based on the adaptive version of the algorithm that we introduced in [1]. We also wish to men-
tion [26] for another work in the direction of designing adaptive variants of the parareal algo-
rithm.

In the following, we denote by {(qref
n , pref

n )}n≥0 the reference trajectory obtained by a sequen-
tial use of the fine propagator F∆t (and which is thus expensive to compute): (qref

n+1, pref
n+1) =

F∆t (qref
n , pref

n ). An important feature of the parareal method is that, on the interval [0, N∆t ], it
is guaranteed to converge to this reference solution in at most k = N iterations (see e.g. [11]):
for any k ≥ N , we have (qk

n , pk
n) = (qref

n , pref
n ) for any 0 ≤ n ≤ N . In practice, convergence is often

reached much sooner, therefore providing computational gains (a noteworthy exception is the
case of hyperbolic problems, where a larger number of iterations is often needed to reach con-
vergence, as observed e.g. in [18, 19]; we also refer to the analysis in [1]).

Let us introduce the relative error between the reference trajectory {qref
n }0≤n≤N and the

parareal trajectory {qk
n }0≤n≤N at the iteration k:

Eref

(
qk , N

)
=

∑N
n=1

∣∣qref
n −qk

n

∣∣∑N
n=1

∣∣qref
n

∣∣ .

The error Eref cannot be computed in practice, since we do not have access to the reference
trajectory {qref

n }n≥0. Therefore, in order to monitor the convergence of the parareal method along
the iterations, we introduce the relative error between two consecutive parareal trajectories:

E
(
qk−1, qk , N

)
=

∑N
n=1

∣∣qk
n −qk−1

n

∣∣∑N
n=1

∣∣qk−1
n

∣∣ . (6)

As mentioned above, we have qk
n = qref

n for any k ≥ n, and thus E(qk−1, qk , N ) = 0 for k ≥ N +1.
In our numerical experiments discussed below, we proceed with the parareal iterations until

the accuracy reaches the user-chosen threshold δconv, namely until E(qk−1, qk , N ) < δconv. We
denote by kconv the number of parareal iterations required to reach this accuracy.

Remark 2. Even though the errors Eref and E are not (because of their denominator) invariant by
translation, this definition of error still makes sense in practice for the examples that we consider
in this work. As explained below (see Section 3.1), we enforce periodic boundary conditions on
the system, and we have checked that, along the various trajectories that we have considered, all
the atoms of the system always stay in the same periodic cell. There is hence no significant global
translation of the system, which remains close to the origin. We also note that, should need be,
the definition of Eref and E can easily be modified to be translation-invariant.

Remark 3. Note that other criteria of convergence can be envisioned. For example, one could
imagine a criteria based on the statistical properties of the numerical solution {(qk

n , pk
n)}0≤n≤N .

We do not address this question in this work.

The classical parareal algorithm, as described above, is presented as Algorithm 1.
Let us denote by C f (resp. Cc ) the cost of a single evaluation of the fine integrator F∆t (resp.

coarse integrator C∆t ). Assuming that the communication time is zero, the wall-clock time cost
of the parareal algorithm is N Cc +kconv((C f +Cc )+N Cc ). In contrast, the wall-clock time cost of



6 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

Algorithm 1: Parareal algorithm

Numerical parameters: N , δconv

1 Compute
{(

qcur
n , pcur

n

)}
0≤n≤N :

(
qcur

0 , pcur
0

)
:= (

q0, p0
)

and
(
qcur

n+1, pcur
n+1

)
:=C∆t

(
qcur

n , pcur
n

)
;

2 Set k := 0 and δ := 2δconv;

3 while δ≥ δconv do

4 k := k +1;

5 Define
{(

qprev
n , pprev

n
)}

0≤n≤N as
(
qprev

n , pprev
n

)
:= (

qcur
n , pcur

n

)
for any 0 ≤ n ≤ N ;

6 Compute {Jn}0≤n≤N−1 in parallel: Jn :=F∆t
(
qprev

n , pprev
n

)−C∆t
(
qprev

n , pprev
n

)
;

7 for n ← 0 to N −1 by 1 do
8

(
qcur

n+1, pcur
n+1

)
:=C∆t

(
qcur

n , pcur
n

)+ Jn ;

9 end
10 Compute the relative error δ= E

(
qprev, qcur, N

)
;

11 end
Output of the algorithm:

{(
qcur

n , pcur
n

)}
0≤n≤N and kconv := k

a sequential propagation according to the fine propagator is N C f . We are thus able to define the
wall-clock gain of the parareal method as

Γ (δconv, N ) = N C f

N Cc +kconv
((

C f +Cc
)+N Cc

) .

If we additionally assume that the cost of the coarse propagations is negligible in comparison
with the cost of the fine propagator (i.e. N Cc ≪ C f ), we get Γ(δconv, N ) = Γideal(δconv, N ), where
the ideal gain is defined by Γideal(δconv, N ) := N

kconv
. Note that the total CPU effort spent by the

parareal algorithm, which is equal to N Cc +kconv(N (C f +Cc )+N Cc ), is of course larger than the
total CPU effort spent by a sequential fine integration (which is equal to N C f ). Beyond the wall-
clock time gain provided by usual parallelism over processors, note that computational efficiency
considerations can further increase the attractiveness of parareal. For example, MD simulations
on small systems can be very inefficient on modern Graphical Processing Units (GPUs), given the
extremely high level of data parallelism that can be accommodated by the hardware. In this case,
parareal could be implemented to execute all the fine-grained steps simultaneously on the same
GPU instead of requiring parallelization over multiple GPUs, which could significantly improve
the efficiency of the calculation and lead to a decrease in the net computational effort required
to carry out the simulation.

2.2. Adaptive parareal method

The work [1] has introduced an adaptive version of the parareal algorithm, motivated by the fact
that, when applied to MD problems, the classical parareal algorithm suffers from various limi-
tations (in particular, possible intermediate blow-up of the trajectory and lack of computational
gain in the case of too long time horizons). The new approach introduced in [1] consists in adap-
tively dividing (on the basis of the relative error between two consecutive parareal trajectories)
the computational domain [0, N ∆t ] in several subdomains. For that, we have to revisit the defi-
nition of the error (6) for an arbitrary time-slab [Ninit∆t , Nfinal∆t ], for some fixed Nfinal ≥ Ninit ≥ 0.
We naturally extend (6) as

E
(
qk−1, qk , Ninit, Nfinal

)
=

∑Nfinal
n=Ninit

∣∣qk
n −qk−1

n

∣∣∑Nfinal
n=Ninit

∣∣qk−1
n

∣∣ .



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 7

The adaptive parareal method proceeds as follows (see Algorithm 2). We fix two parameters
δconv > 0 (convergence parameter) and δexpl > 0 (explosion threshold parameter, which satisfies
δexpl > δconv) and start by running the classical parareal algorithm on the whole time-slab [0,T ].
As in the classical parareal method, for every parareal iteration k, we check whether the trajectory
has reached convergence on the whole time slab, i.e. whether

E
(
qk−1, qk ,0, N

)
< δconv.

If this is the case then we stop the iterations. If this is not the case, then

• either E(qk−1, qk ,0, N ) ≤ δexpl, and we then proceed with the next parareal iteration over
the whole time-slab [0,T ].

• or E(qk−1, qk ,0, N ) > δexpl, which means that the relative error at the parareal iteration
k is too large. We then give up on trying to reach convergence on the whole time-
slab [0,T ] and decide to shorten it. In practice, we look for the smallest n such that
E(qk−1, qk ,0,n) > δexpl, denote it ncur and shorten the original time-slab [0, N∆t ] to
[0,ncur∆t ].

We then proceed with the next parareal iterations on this new time-slab, that will
possibly be further shortened, until the relative error E , on the shortened time-slab
[0,ncur∆t ], becomes smaller than δconv. We have then reached convergence on the
current time-slab and proceed with the subsequent part of the time range. We thus define
the new (tentative) time-slab as [ncur∆t , N ∆t ] and start again the adaptive parareal
algorithm. This procedure is repeated until the final time T is reached.

The adaptive parareal method, as described above, is presented as Algorithm 2. We denote there
by Nslab the number of time-slabs in which the whole time range [0, N ∆t ] is eventually divided:

[0, N ∆t ] = ⋃
1≤ i ≤Nslab

[
N i

init∆t , N i
final∆t

]
,

with

N 1
init = 0, N i

final = N i+1
init and N Nslab

final = N .

For any 1 ≤ i ≤ Nslab, we denote by k i
conv the number of parareal iterations required to reach

convergence on [N i
init∆t , N i

final∆t ].
We now evaluate the cost of the adaptive algorithm, assuming that the communication time

is zero. Each time-slab [N i
init∆t , N i

final∆t ] eventually identified by the algorithm has been deter-

mined in an iterative process. We denote by [N i
init∆t , N i , j

final∆t ] the time-slab considered at the j th

iteration of that process (note that only the endpoint of the time-slab depends on j ). Denoting mi

the number of iterations required to identify a sufficiently short time-slab such that convergence
of the parareal iterations can be reached, we have that {N i , j

final}1≤ j ≤mi is a decreasing sequence

with N i ,1
final = N and N i ,mi

final = N i
final. For any 1 ≤ j < mi , the adaptive algorithm performs k i , j addi-

tional parareal iterations before realizing that the current time slab [N i
init∆t , N i , j

final∆t ] is too long.
For j = mi , the adaptive algorithm performs k i ,mi additional parareal iterations before reaching
convergence. The total number of iterations that have been performed to reach convergence on
the i th time-slab is given by

k i
conv =

mi∑
j=1

k i , j .

The wall-clock time cost of the adaptive algorithm is

Cost =
Nslab∑
i=1

[(
N −N i

init

)
Cc +

mi∑
j=1

k i , j
((

C f +Cc
)+ (

N i , j
final −N i

init

)
Cc

)]
. (7)



8 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

Algorithm 2: Adaptive parareal algorithm

Numerical parameters: N , δconv, δexpl

1 Set Ninit := 0, Nfinal := 0, and δ := (δconv +δexpl)/2;

2 Set
(
qcur

0 , pcur
0

)
:= (

q0, p0
)
;

3 Set Nslab := 0;

4 while Nfinal < N do

5 if δ< δexpl then
6 Ninit := Nfinal; // initialization for a new time-slab
7 Nfinal := N ;

8 Compute
{(

qcur
n , pcur

n

)}
Ninit ≤n≤Nfinal

:
(
qcur

n+1, pcur
n+1

)
:=C∆t

(
qcur

n , pcur
n

)
for all

Ninit ≤ n ≤ Nfinal −1;

9 Nslab := Nslab +1;

10 kNslab
conv := 0;

11 end

12 Set δ := (δconv +δexpl)/2;

13 while δ ∈ [
δconv,δexpl

]
do

14 Define
{(

qprev
n , pprev

n
)}

Ninit≤n≤Nfinal
as

(
qprev

n , pprev
n

)
:= (

qcur
n , pcur

n

)
for all

Ninit ≤ n ≤ Nfinal;

15 Compute {Jn}Ninit ≤n≤Nfinal−1 (in parallel): Jn :=F∆t
(
qprev

n , pprev
n

)−C∆t
(
qprev

n , pprev
n

)
;

16 kNslab
conv := kNslab

conv +1;

17 for n ← Ninit to Nfinal −1 by 1 do
18

(
qcur

n+1, pcur
n+1

)
:=C∆t

(
qcur

n , pcur
n

)+ Jn ;

19 Update the relative error δ= E
(
qprev, qcur, Ninit,n +1

)
;

20 if δ> δexpl then
21 Nfinal := n;

22 break; // exit the for loop if condition satisfied; we also
exit the while loop since δ is too large

23 end
24 end
25 end
26 end

Output of the algorithm:
{(

qcur
n , pcur

n

)}
0≤n≤N , Nslab,

{
k i

conv

}
1≤ i ≤Nslab

The first term corresponds to the coarse propagation on the initially proposed i th time slab,
namely [N i

init∆t , N ∆t ]. The algorithm then proceeds with parareal iterations, on a slab which
is possibly iteratively shortened. The wall-clock gain of the adaptive algorithm is

Γadapt
(
δexpl,δconv, N

)= N C f

Cost
. (8)

If we additionally assume that the cost of the coarse propagator is negligible in compari-
son with the cost of the fine propagator (i.e. N Cc ≪ C f ), we obtain Γadapt(δexpl,δconv, N ) ≈
Γideal

adapt(δexpl,δconv, N ), where the ideal gain is defined by



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 9

Γideal
adapt

(
δexpl,δconv, N

)
:= N

Nslab∑
i=1

k i
conv

. (9)

2.3. Implementation in LAMMPS

In order to provide a non-intrusive implementation of the Algorithms 1 and 2 in LAMMPS,
we did not modify the source code of LAMMPS but proceeded as follows. The logic of the
parareal algorithm is implemented in a so-called master code written in Python, while the force
calculations and timestepping is carried out in LAMMPS. For each given (qk

n , pk
n), the Python code

calls LAMMPS through an API in order to request an advance of the system (using either VF or
VC ) over a time range ∆t (by making L time-steps of length δt ), thereby computing F∆t (qk

n , pk
n)

and C∆t (qk
n , pk

n). The jumps F∆t (qk
n , pk

n)−C∆t (qk
n , pk

n) are then computed by the master code. In
the sequential part, Python first requests LAMMPS to compute C∆t (qk+1

n , pk+1
n ) and then adds the

jump to obtain (qk+1
n+1, pk+1

n+1). This implementation does not run the fine integrations in parallel,
but it already allows us to monitor the performance of the algorithm in terms of required parareal
iterations.

We mentioned previously that, in order to ensure convergence of the parareal algorithm, both
propagators should use the same array of random variables {Gℓ,n}0≤ℓ≤L in the scheme (2)–(3),
when propagating the system from time n∆t to time (n + 1)∆t . An ideal solution would be to
first draw these random numbers and then to feed them to the coarse and fine propagators as
required. However, in our implementation, the computation of F∆t and C∆t is performed within
LAMMPS where there is no possibility to control the random increments used at each step of the
scheme (2)–(3) (with 0 ≤ ℓ≤ L). We can only control the seed of the random number generator.

To circumvent this difficulty, we proceed as follows to reach the final time T = N ∆t :

• in Python, we draw a list of N random numbers that we denote {Sn}1≤n≤N and that will
be used as seeds by LAMMPS. Since LAMMPS expects the seed to be an integer number
in a given range, we draw {Sn}1≤n≤N as a random sequence of i.i.d. integers uniformly
distributed within that range.

• when we enter LAMMPS to compute F∆t or C∆t to integrate the system from time
(n −1)∆t to n∆t (at any parareal iteration k), we provide the LAMMPS random number
generator with the seed Sn . On the basis of that seed, the random number generator of
LAMMPS provides the Gaussian increments Gℓ,n for any 0 ≤ ℓ≤ L. Because the seed is the
same for F∆t and C∆t and at all parareal iterations, both schemes make use of the same
sequence of increments {Gℓ,n}0≤ℓ≤L (which of course remains the same at each parareal
iteration).

We have made sure that the pseudo-random number generators of Python and of LAMMPS are
of different type (by default, Python uses Mersenne Twister1 while LAMMPS uses a Marsaglia
random number generator2). The procedure that we have adopted, which is constrained by
practical considerations, hence seems to be reasonable. We however note that a perfectly clean
procedure would require to use parallel pseudo-random number generators (see e.g. [27]), in
order to avoid correlations between the sequence of numbers used by LAMMPS on the different
intervals [(n −1)∆t ,n∆t ].

The Python code corresponding to Algorithm 2 can be found in the GitHub repository at

https://github.com/OlgaGorynina/Parareal_MD

1https://docs.python.org/3/library/random.html
2https://docs.lammps.org/fix_gld.html

https://github.com/OlgaGorynina/Parareal_MD
https://docs.python.org/3/library/random.html
https://docs.lammps.org/fix_gld.html


10 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

2.4. Kinetic temperature

In our implementation of the parareal algorithm, LAMMPS is called N times from Python, each
of these calls asking LAMMPS to perform L steps of the scheme (2)–(3). This procedure generates
a trajectory over a time interval of total length N ∆t = N Lδt . We explain in this section that,
surprisingly enough, this procedure is not equivalent to performing directly N L time-steps of (2)–
(3), and actually introduces a bias in the observed kinetic temperature. This is because the
first step of the scheme (namely (2)) reads differently from the subsequent ones (performed
following (3)). In particular, one has to implement a carefully chosen temperature schedule in
order to recover the correct kinetic temperature.

Consider the scheme which consists in making L steps of the BBK scheme (that is, we start
with (2) and next perform L −1 steps of (3)). We show in Appendix A.1 (on the basis of analytical
computations, see (18), which are confirmed by the numerical results of Table 5) that the equilib-
rium kinetic temperature reached by the scheme in the limit N →∞ is

Keq =β−1

(
1− 1

2L

)
+O(δt ). (10)

Of course, if L is very large, which is the standard regime in which LAMMPS is expected to be used,
then Keq is close to the target value β−1, up to a time discretization error of the order of O(δt ).
This explains why the scheme (2)–(3) is justified for MD simulations that are usually performed
for long time horizons. But this is not our situation: we actually work with relatively small values
of L (in practice, in the numerical experiments described in Section 3, we even work with L = 1).
Therefore, we are in a situation where the kinetic temperature (10) is quite different from β−1.

In order to guarantee that the scheme indeed reaches the correct equilibrium kinetic temper-
ature, we propose to use a time-dependent temperature (which is indeed an option available in
LAMMPS). In the first (resp. third) line of the time-integrator, instead of considering a fluctuating
term of the form √

2γβ−1δt Gℓ

(
resp.

√
2γβ−1δt Gℓ+1

)
as in (3), we use a term of the form√

2γβ−1
ℓ
δt Gℓ

(
resp.

√
2γβ−1

ℓ+1δt Gℓ+1

)
,

where the temperature thus depends on the iterate number. More precisely, we consider the
following scheme (compare with (2)–(3)). The first iterate of the scheme is given by

p1/2 = p0 −
δt

2
∇V (q0)− δt

2
γp0 +

1

2

√
2γβ−1

0 δt G0,

q1 = q0 +δt p1/2,

p1 = p1/2 −
δt

2
∇V (q1)− δt

2
γp1/2 +

1

2

√
2γβ−1

1 δt G1,

(11)

where we recall that (q0, p0) is the initial condition. The subsequent iterates (for ℓ≥ 1) are given
by 

pℓ+1/2 = pℓ−
δt

2
∇V (qℓ)− δt

2
γpℓ−1/2 +

1

2

√
2γβ−1

ℓ
δt Gℓ,

qℓ+1 = qℓ+δt pℓ+1/2,

pℓ+1 = pℓ+1/2 −
δt

2
∇V

(
qℓ+1

)− δt

2
γpℓ+1/2 +

1

2

√
2γβ−1

ℓ+1δt Gℓ+1.

(12)

The first iterate (11) differs from the next ones (12) in the same two ways as (2) differs from (3).
We note that the temperature schedule appears in the scheme (11)–(12) in such a way that the
fluctuating force in the last step of the iterate ℓ is equal to the fluctuating force in the first step of



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 11

the iterate ℓ+1, thereby preserving the implementation of the scheme as a Verlet scheme with
a force including the damping and the fluctuation terms, in addition to the force field term (see
Remark 1).

As shown in Appendix A.2, for each value of L, several schedules {βℓ}0≤ℓ≤L are possible in
order to reach the correct equilibrium temperature. The only choice which is valid whatever L is
given by

β−1
ℓ =Cℓβ

−1 with C0 = 3 and Cℓ = 1 for any ℓ≥ 1. (13)

In the particular case when L = 1 (which is the only case we consider in the numerical experi-
ments of Section 3), another possible choice (and this is the one we make in Section 3) is

β−1
0 =β−1

1 = 2β−1. (14)

Details about the implementation in LAMMPS of such schedules are provided in Remark 8 within
Appendix A.2.

Remark 4. A strategy different from the one we have adopted here would be to allow ourselves
to modify the source code of LAMMPS, in an intrusive fashion. In that case, it is of course possible
to modify the time-scheme used to integrate the Langevin equation (1), and choose a numerical
scheme which provides the correct kinetic temperature (up to discretization errors) for any value
of L.

3. Numerical results

3.1. MD settings

We demonstrate the efficiency of the adaptive algorithm described above by simulating the
diffusion of a self-interstitial atom (SIA) in a tungsten lattice. To do so, we consider a perfect
periodic lattice of tungsten atoms and insert an additional tungsten atom. This extra atom can
relax to a number of equilibrium positions. Because of thermal fluctuations, the interstitial atom
hops from one equilibrium state to another one in a metastable fashion (see e.g. [2, 3] for a
comprehensive description of the MD context). We choose to work with SIA because of relatively
small activation energies for diffusion, in contrast with the diffusion of other lattice defects,
such as vacancies for instance, for which the activation energies are much larger. Because the
activation energy is small, we can afford to run trajectories where we observe several jumps,
which makes it possible to make statistical analysis on these jumps. For instance, we can compute
the mean transition time with a reasonable statistical accuracy. As mentioned above, we use
LAMMPS to perform these molecular dynamics simulations, and use the adaptive parareal
algorithm discussed above (with L = 1) to compute the trajectories.

We consider a system containing 129 tungsten atoms, forming a BCC lattice (except for the
interstitial atom) with periodic boundary conditions. The temperature (equal to β−1 up to a
multiplicative constant) is set to 2000 K and the damping parameter satisfies γ−1 = 1 ps. These
values for temperature and damping parameter are used for all calculations in the current
section. We consider two choices of time-step, δt = 2 fs and δt = 0.5 fs.

To compute the forces on the atoms, we consider two types of interatomic potentials:

• empirical force fields based on a physically informed parameterized expression; we use
the Embedded-Atom Method (EAM) potential [9];

• machine-learned force fields using generic features as input to describe the chemical
environment of each atom; we use Spectral Neighbor Analysis Potentials (SNAP) [8],
where the parameters of the generic features are optimized using machine-learning
techniques to reproduce (on some small configurations) the energies, forces, and stress



12 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

tensors obtained by ab-initio computations; these potentials are denoted SNAP-6, . . . ,
SNAP-205, depending on the number of features. The larger the number of features,
the more accurate the potential is with respect to ab-initio results, but also the more
computationally expensive it is.

Table 1 presents typical computational times required to perform 5000 iterations of the
scheme (11)–(12) (in a purely sequential manner), with various interatomic potentials, as mea-
sured on a laptop computer equipped with Intel(R) Core(TM) i7-10610U at 1.80GHz. We see that,
on average, SNAP-205 is 175 times (resp. 2600 times) more expensive than SNAP-6 (resp. EAM).

Table 1. Computational time (in seconds) required to perform (in a sequential manner)
5000 iterations of (11)–(12), with different interatomic potentials, on a standard laptop.

Potential Comp. time

EAM 0.6923
SNAP-6 10.20
SNAP-15 22.65
SNAP-31 58.06
SNAP-56 151.2
SNAP-92 373.2
SNAP-141 861.2
SNAP-205 1787

For every simulation described below, we first initialize the system with the following equili-
bration procedure. We consider a sample containing the 128 tungsten atoms located on a BCC
lattice. A self-interstitial tungsten atom is then inserted in the sample and we minimize the to-
tal energy of the 129 atoms system (to drive the system in an equilibrium position, i.e. a local
minimum of the energy). We then perform 10,000 steps of (2)–(3), in a purely sequential manner
and using the fine potential VF . The resulting thermalized configuration is our initial condition.
Starting from there, we will next propagate the system for N steps, either sequentially using VF ,
or in a parareal manner using the fine potential VF and a coarse potential VC . We use the Voronoi
analysis of OVITO [28] to identify the location of the SIA, which allows us to estimate transition
times between metastable states.

The reference solution {(qref
n , pref

n )}0≤n≤N is computed in a sequential manner with the SNAP-
205 potential, which we denote V SNAP−205

F
. The corresponding reference average SIA residence

time (that we compute on the basis of a single long trajectory of N = 400,000 time-steps) is
0.63568 ps.

We have at our disposal several potentials to be used as coarse potentials in the (adaptive)
parareal algorithm. If we choose VC to be close to V SNAP−205

F
, we may hope to need few iterations

to reach convergence, but the discrepancy in term of cost between the fine and the coarse
potential may be too small to observe any computational gain. From (7)–(8), we indeed know
that the gain of the parareal algorithm crucially depends on the ratio C f /Cc . In what follows, we
consider two strategies for the (adaptive) parareal algorithm:

• Strategy I consists in using the SNAP-6 potential (denoted by V SNAP−6
C

) as coarse poten-
tial;

• Strategy II consists in using the EAM potential (denoted by V EAM
C

) as coarse potential.

In both strategies, the fine potential is the SNAP-205 potential V SNAP−205
F

. We thus have C f /Cc ∼
175 in the first case and C f /Cc ∼ 2600 in the second case (on an Intel(R) Core(TM) i7-10610U
machine).



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 13

In the following sections, we investigate the accuracy of the parareal trajectories, first in
a strong, trajectorial sense (in Section 3.2), second in a statistical sense (in Section 3.3). We
conclude by discussing the observed computational gains (in Section 3.4).

3.2. Convergence of adaptive trajectories

The objective of this section is to check the trajectorial convergence of the adaptive parareal
algorithm. We consider the physical system described above and perform a trajectory consisting
of N = 1500 time-steps (after equilibration), either using only the reference potential V SNAP−205

F
or using the parareal algorithm. Along the trajectory, we register the number of time-steps (of
length δt ) that the system spends in a given well before hoping to another one. The results, which
have been computed with the time-step δt = 2 fs and the explosion threshold δexpl = 0.35, are
presented in Table 2.

The first line corresponds to the reference trajectory. The next two lines correspond to the
parareal results using the strategy I, and the last two lines correspond to the parareal results using
the strategy II (for two values of the convergence threshold δconv).

We see that, when we use δconv = 10−5, the parareal results (for strategy I and II) differ from
the reference results. The parareal trajectory is not sufficiently close to the reference trajectory
to obtain accurate results in terms of residence times (recall that the system is chaotic, so a
small difference at some point of the trajectory may lead to a large difference in terms of the
time spent in a metastable state). In contrast, when we set δconv = 10−10, we observe that both
parareal strategies essentially give the same SIA residence times as the reference solution. In the
case I (resp. case II), the first seven (resp. first six) residence times are exactly reproduced by the
parareal trajectory. With a small enough value of δconv, it is thus possible to obtain convergence
on a long time interval (the horizon T is sufficiently large to witness several exits of metastable
states on [0,T ]).

Note that we do not observe (and actually do not expect to observe) an exact trajectorial
convergence in the limit δconv → 0, because of the inherent chaoticity of the trajectories: even
when δconv is as small as 10−10, the values of the last jumps are different between the parareal
trajectories and the reference one, even though they are driven by exactly the same noise. This is
often not important in practice since many commonly considered quantities of interest actually
only depend on the law of the trajectories (statistical quantities) and not on the exact realization
for a given noise. This is why we investigate the statistical accuracy of the parareal scheme in the
next section.

3.3. Statistical analyses

The aim of MD simulations, especially those using stochastic equations of motion, is most of-
ten to generate statistically correct trajectories, in contrast to very accurately obtaining a trajec-
tory corresponding to a specific random number sequence. Quantities of interest include ther-
modynamical averages (which are computed as time averages along the trajectory) or dynamical
information in a mean sense, such as average residence times in metastable states.

In this section, we monitor the residence times of the SIA along a trajectory of N = 100,000
time-steps (computed with the time-step δt = 2 fs), and compute from the observed exit events
an average residence time along with a confidence interval (in practice, 50 trajectories of 2,000
times-steps are computed).

We first consider the reference trajectory, computed only using the reference potential
V SNAP−205

F
. Along the N time-steps, we observe slightly more than 300 exit events. On Figure 1,

we plot the average of the SIA residence times, as more and more transition events are taken into



14 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

Table 2. SIA residence times (in units of δt ) for the reference and the parareal trajectories
(for example, in the reference computations, the system spends 122 time-steps in the first
well, then hops to a second well where it stays 23 time-steps, . . . ). We mark in bold the
residence times of the parareal trajectories that exactly agree with those of the reference
trajectory (δt = 2 fs and δexpl = 0.35).

SIA residence times for reference solution
[122, 23, 27, 476, 14, 32, 560, 245]

δconv SIA residence times for strategy I
10−5 [273, 1226]
10−10 [122, 23, 27, 476, 14, 32, 560, 217, 26, 2]

δconv SIA residence times for strategy II
10−5 [63, 27, 16, 36, 19, 34, 332, 972]
10−10 [122, 23, 27, 476, 14, 32, 575, 15, 28, 31, 156]

account to compute the average. We find that the average residence time is Tavg = 320.26, with
the confidence interval [268.74;371.78] (here and throughout the article, confidence intervals are
computed in a way such that the corresponding expectation belongs to the confidence interval
with a probability of 0.95). Since we work with the time-step δt = 2 fs, this corresponds to an av-
erage residence time of 640 fs, a time consistent with the one obtained in Section 3.1 (0.63568 ps)
from a very long trajectory.

Figure 1. Reference results, in units of δt . The average residence time Tavg = 320.26 is
shown by the dark blue line, and the confidence interval [268.74;371.78] is represented in
light blue.

We next repeat the same experiments, but with the EAM potential as reference potential.
Results are shown on Figure 2. In this case, the mean residence time is Tavg = 99.8 (with the
confidence interval [92.89;106.71]). These results are very far from the reference solution results.
We thus cannot rely on the EAM model to accurately predict the residence times. A coupling
strategy (such as the parareal algorithm) is needed.



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 15

Remark 5. Note that, in this section, all the Gaussian increments that we use (i) for the refer-
ence computations, (ii) for the EAM simulations and (iii) for the various parareal simulations
presented below are independent one from each other. Likewise, the initial conditions for the
three types of computations are independent. We have made this choice in view of our aim to
monitor the statistical accuracy of the EAM or parareal computations with respect to the refer-
ence computations. On the other hand, within one type of computations (e.g. parareal simula-
tions for given VC and δconv), we have of course used the same Gaussian increments for the two
propagators C∆t and F∆t and at all parareal iterations.

Figure 2. Results when modelling the system with the EAM potential, in units of δt . The
average residence time Tavg = 99.8 is shown by the dark blue line, and the confidence
interval [92.89;106.71] is represented in light blue.

We now consider parareal results obtained using the strategy II (coupling the fine potential
V SNAP−205

F
with the coarse potential V EAM

C
), with the explosion threshold δexpl = 0.35 and with

various values of the convergence threshold δconv (for this test, we have not considered the
strategy I because, as shown in Section 3.4 below, it provides smaller computational gains than
the strategy II). Results obtained withδconv = 10−3 (resp. δconv = 10−5, δconv = 10−10) are shown on
Figure 3 (resp. Figure 4, Figure 5). For these three values of δconv, we obtain confidence intervals
for the mean residence time which overlap with the reference confidence interval obtained on
Figure 1 (and that we have reproduced in orange on Figures 3, 4 and 5). The parareal results are
thus statistically consistent with the reference results. This is true even in the case δconv = 10−3,
which is a too large value to expect trajectorial convergence. We also note that, in the case
δconv = 10−10, the statistical accuracy is not a consequence of a trajectorial convergence of the
parareal trajectories to the reference trajectories. Indeed, as pointed out in Remark 5, the initial
configurations and the random noises used in the reference computations differ from those used
in the parareal computations (each converged parareal trajectory is thus different from any of
the reference trajectories). Moreover, for a given sequence of random noises, we have observed
in Section 3.2 that the parareal trajectory differs from the reference trajectory (computed with the
fine potential) after roughly 10 jumps.

For the sake of completeness, we have also considered the aggressive choice δconv = 10−1

(results not shown). As could be expected, for this very large value of convergence threshold,
the confidence intervals on residence times do not overlap at all and the parareal results are
inaccurate.



16 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

Figure 3. Parareal results (strategy II) with δconv = 10−3, in units of δt . The average res-
idence time Tavg = 285.714 is shown by the dark blue line, and the confidence interval
[239.73;331.7] is represented in light blue. We also show (in orange) the reference result
(with its confidence interval).

Figure 4. Parareal results (strategy II) with δconv = 10−5, in units of δt . The average res-
idence time Tavg = 356.36 is shown by the dark blue line, and the confidence interval
[300.9;411.83] is represented in light blue. We also show (in orange) the reference result
(with its confidence interval).

3.4. Computational gains

We now investigate the wall-clock gains obtained using the adaptive parareal algorithm, for
various values of the time-step δt , the convergence threshold δconv and the explosion threshold
δexpl. We fix the time horizon at T = N δt with N = 2000. The gain is computed using (8) (we also
compute the ideal gain defined by (9)), where the costs are those measured on a laptop computer
(see Table 1).



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 17

Figure 5. Parareal results (strategy II) with δconv = 10−10, in units of δt . The average
residence time Tavg = 340.14 is shown by the dark blue line, and the confidence interval
[287.82;393.45] is represented in light blue. We also show (in orange) the reference result
(with its confidence interval).

We first consider the parareal strategy I, and collect in Table 3 the values of the gain. If we
use the time-step δt = 2 fs, then the maximal value of the (actual) gain is equal to 2.95 and is
attained for δexpl = 0.35 and δconv = 10−3. If we work with the smaller time-step δt = 0.5 fs, then
the gain increases to 9.08 (attained for δexpl = 0.3 and δconv = 10−3). Table 4 collects the gains
for the parareal strategy II. The gain reaches the value 5.18 (with the choice δexpl = 0.35 and
δconv = 10−3) when using δt = 2 fs, and increases up to 19.05 (with the choice δexpl = 0.3 and
δconv = 10−3) when using δt = 0.5 fs.

Overall, the gain obtained using strategy II is always larger than the one obtained using
strategy I. This is expected since the ratio C f /Cc is more than ten times larger in the case II. In
addition, the gain is always larger when considering δt = 0.5 fs rather than δt = 2 fs.

As expected, the largest values of the gain are obtained when δconv = 10−3 (if we decrease δconv

to 10−5 or 10−10, more parareal iterations are requested to achieve convergence). In terms of δexpl,
the gain seems to describe a “bell shape”, in the sense that it increases when δexpl is very small and
decreases when δexpl is too large. This is in agreement with the behavior observed in the previous
work [1]: there exists a range of values of δexpl for which the gain remains roughly constant.

We conclude this section by noticing that the gains obtained here are roughly similar to the
gains reported in [1] for a Lennard–Jones cluster of 7 atoms in dimension two, although the
system is here much more complex (in particular with a much larger dimensionality).

Remark 6. In the case of the strategy I, we have systematically observed that the choice δexpl =
0.4 leads to a gain which is smaller than one. For some parameter choices (e.g. δt = 0.5 fs,
δexpl = 0.4 and δconv = 10−10), we decided to stop the computations when it was obvious that
the gain would be smaller than one, hence the void entries in Tables 3 and 4.

Still in the case of strategy I, we also note that the choice δexpl = 0.45 (not reported in Table 3)
may lead to unstable simulations. The system then explores regions of the phase space that are
so unexpected (and so unphysical) that LAMMPS stops, declaring a lost atom.



18 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

Table 3. Wall-clock gain obtained using the adaptive parareal algorithm and strategy I (we
use V SNAP−6

C
and V SNAP−205

F
) on trajectories of length N = 2000. We have marked in bold the

best results.
δt (in fs) δexpl δconv Γideal

adapt Γadapt Nslab

0.5 0.15 10−10 6.76 3.85 38
0.5 0.20 10−10 7.75 4.63 26
0.5 0.25 10−10 8.97 5.62 17
0.5 0.30 10−10 10.27 8.06 11
0.5 0.35 10−10 11.63 3.5 5
0.5 0.40 10−10 <1

0.5 0.15 10−5 9.22 4.56 36
0.5 0.20 10−5 10.7 5.51 27
0.5 0.25 10−5 11.24 6.05 17
0.5 0.30 10−5 10.99 4.44 9
0.5 0.35 10−5 12.35 3.77 4
0.5 0.40 10−5 <1

0.5 0.15 10−3 10.53 4.91 37
0.5 0.20 10−3 10.99 5.39 26
0.5 0.25 10−3 13.25 7.1 17
0.5 0.30 10−3 13.07 9.08 9
0.5 0.35 10−3 12.35 4.03 6
0.5 0.40 10−3 <1

2 0.15 10−10 1.92 1.06 147
2 0.20 10−10 2.24 1.75 102
2 0.25 10−10 2.54 1.38 71
2 0.30 10−10 2.93 2.26 42
2 0.35 10−10 3.32 2.49 19
2 0.40 10−10 1.66 0.55 5

2 0.15 10−5 2.84 1.34 145
2 0.20 10−5 3.07 1.67 100
2 0.25 10−5 3.32 2.1 68
2 0.30 10−5 3.51 2.55 39
2 0.35 10−5 3.67 2.89 22
2 0.40 10−5 2.21 0.81 7

2 0.15 10−3 3.13 1.32 140
2 0.20 10−3 3.33 1.76 102
2 0.25 10−3 3.5 2.17 64
2 0.30 10−3 3.54 2.55 41
2 0.35 10−3 3.68 2.95 24
2 0.40 10−3 2.4 0.9 9



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 19

Table 4. Wall-clock gain obtained using the adaptive parareal algorithm and strategy II (we
use V EAM

C
and V SNAP−205

F
) on trajectories of length N = 2000. We have marked in bold the

best results.

δt (in fs) δexpl δconv Γideal
adapt Γadapt Nslab

0.5 0.15 10−10 9.9 9.21 23
0.5 0.20 10−10 12.05 11.48 14
0.5 0.25 10−10 13.33 12.88 9
0.5 0.30 10−10 15.75 15.31 5
0.5 0.35 10−10 16.39 14.64 2
0.5 0.40 10−10 <1

0.5 0.15 10−5 14.93 13.99 22
0.5 0.20 10−5 16.26 15.42 13
0.5 0.25 10−5 17.24 16.77 9
0.5 0.30 10−5 17.7 16.59 4
0.5 0.35 10−5 18.52 17.09 2
0.5 0.40 10−5 <1

0.5 0.15 10−3 16.13 14.88 22
0.5 0.20 10−3 16.95 15.78 15
0.5 0.25 10−3 17.54 16.81 9
0.5 0.30 10−3 20.0 19.05 5
0.5 0.35 10−3 17.7 15.84 2
0.5 0.40 10−3 <1

2 0.15 10−10 2.71 2.58 89
2 0.20 10−10 3.18 3.04 61
2 0.25 10−10 3.7 3.56 40
2 0.30 10−10 4.26 4.11 24
2 0.35 10−10 4.82 4.62 13
2 0.40 10−10 2.27 1.94 4

2 0.15 10−5 4.39 4.06 87
2 0.20 10−5 4.56 4.28 62
2 0.25 10−5 4.9 4.66 41
2 0.30 10−5 5.28 5.06 25
2 0.35 10−5 5.22 4.98 14
2 0.40 10−5 4.93 4.39 5

2 0.15 10−3 4.73 4.34 90
2 0.20 10−3 4.84 4.5 61
2 0.25 10−3 5.06 4.8 38
2 0.30 10−3 5.28 5.06 23
2 0.35 10−3 5.45 5.18 13
2 0.40 10−3 3.67 3.12 4

Appendix A. Kinetic temperature simulated in LAMMPS

We consider the scheme (2)–(3) with L time-steps, and assume that we repeat N times this loop.
We show in Appendix A.1 that the equilibrium kinetic temperature Keq provided by the scheme
is different from the target value β−1, and that it is significantly smaller than β−1 when L is small.



20 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

This motivates the introduction of the variant (11)–(12) (with the schedule (13) or (14)), that
we show in Appendix A.2 to yield the correct equilibrium kinetic temperature. All the analytical
derivations of this appendix are performed under the simplifying assumptions that the force field
∇V vanishes. The analytical conclusions are confirmed by numerical experiments performed on
a realistic physical system modelled by a SNAP-56 potential energy.

A.1. Stationary state of the kinetic temperature in the scheme (2)–(3)

We consider the scheme (2)–(3) with a vanishing force field. We can assume without loss of
generality that there is a single, one-dimensional particle: (q, p) ∈ R×R. We define the kinetic
temperature at step ℓ ∈ {0, . . . ,L} as Kℓ = Var pℓ. We want to identify the equilibrium kinetic
temperature Keq of the scheme (2)–(3) with L steps. This is a value such that, if Var p0 = Keq,
then Var pL = Keq. This is also, by ergodicity, the limit of Var pnL when n →∞.

From the first and the third lines of (3), we compute that, for any ℓ≥ 1,

pℓ+1/2 = pℓ−
δt

2
γpℓ−1/2 +

1

2

√
2γβ−1δt Gℓ

=
[

pℓ−1/2 −
δt

2
γpℓ−1/2 +

1

2

√
2γβ−1δt Gℓ

]
− δt

2
γpℓ−1/2 +

1

2

√
2γβ−1δt Gℓ.

We set

θ = 1

2
γβ−1δt , µ= 1− 1

2
γδt , (15)

and we therefore have, for any ℓ≥ 2, that

pℓ−1/2 =
(
1−γδt

)ℓ−1 p1/2 +2
p
θ
ℓ−1∑
i=1

(
1−γδt

)i−1 Gℓ−i .

Obviously, the above relation also holds for ℓ = 1 (with the convention
0∑

i=1
· = 0). Using the first

line of (2), we thus deduce that, for any ℓ≥ 1,

pℓ−1/2 =µ
(
1−γδt

)ℓ−1 p0 +2
p
θ
ℓ−1∑
i=1

(
1−γδt

)i−1 Gℓ−i +
p
θ

(
1−γδt

)ℓ−1 G0.

Using now the last line of (2) and (3), we obtain that, for any ℓ≥ 1,

pℓ =µpℓ−1/2 +
p
θGℓ

=µ2 (
1−γδt

)ℓ−1 p0 +2µ
p
θ
ℓ−1∑
i=1

(
1−γδt

)i−1 Gℓ−i +µ
p
θ

(
1−γδt

)ℓ−1 G0 +
p
θGℓ.

(16)

Using that p0 and all the G j , 0 ≤ j ≤ ℓ, are independent and centered random variables and that
VarG j = 1, we compute the expectation of p2

ℓ
as

Var pℓ =µ4 (
1−γδt

)2(ℓ−1) Var p0 +4µ2θ
ℓ−1∑
i=1

(
1−γδt

)2(i−1) +µ2θ
(
1−γδt

)2(ℓ−1) +θ.

Using that θ =O(δt ), we have, at the leading order in the time-step, and for any ℓ≥ 1, that

Var pℓ =
(
1−2ℓγδt

)
Var p0 +4θ (ℓ−1)+θ+θ+O

(
δt 2)

= (
1−2ℓγδt

)
Var p0 +4θ

(
ℓ− 1

2

)
+O

(
δt 2) .

(17)



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 21

We are now in position to identify the equilibrium kinetic temperature Keq of the scheme (2)–(3)
with L steps. Indeed, inserting Var pL = Var p0 = Keq in (17), we obtain

2Lγδt Keq = 4θ

(
L− 1

2

)
+O

(
δt 2)= 2γβ−1δt

(
L− 1

2

)
+O

(
δt 2) ,

and therefore

Keq =β−1

(
1− 1

2L

)
+O(δt ). (18)

We see that Keq is always smaller than the target valueβ−1, and that the difference is significant
if L is small (think again of our choice L = 1, for which Keq = β−1/2+O(δt )). At the intermediate
stages, that is for pℓ with 1 ≤ ℓ ≤ L −1, the result is not better: inserting (18) in (17), we see that,
for any ℓ ∈ {1, . . . , L},

Var pℓ =
(
1−2ℓγδt

)
Keq +4θ

(
ℓ− 1

2

)
+O(δt 2) = Keq +γδt β−1

(
ℓ

L
−1

)
+O

(
δt 2) , (19)

which is close to Keq and thus significantly different from β−1 for small L.
In order to confirm the predictions of the above calculations in a more general setting (higher

dimension and non-zero force field), we now turn to numerical experiments, performed using
the SNAP-56 potential energy, for the same system as in Section 3 (128 tungsten atoms on a BCC
lattice, this time without any defect). We consider the scheme (2)–(3) with L time-steps of length
δt , and we iterate it N times, in order to reach the final time N∆t . The numerically computed
values of the equilibrium kinetic temperature Keq are shown in Table 5 for several choices of L, N
and β.

The first two lines of Table 5 show that Keq is indeed of the order of β−1/2 when L = 1,
as predicted by (18). If we set L = 10 and β−1 = 300, we expect from (18) to find Keq = 285.
A first simulation with N = 20,000 yields Keq ≈ 280 (see third line). The discrepancy with the
theoretically predicted result decreases if N is increased to N = 200,000, as shown on the fourth
line (we then expect to be closer to the ergodic limit). Finally, when L = 100 (fifth line), the
difference between the computed equilibrium kinetic temperature and its targetβ−1 is negligible.

Table 5. Equilibrium kinetic temperature obtained using the scheme (2)–(3), for different
values of L, N and target temperature β−1 (SNAP-56 potential energy, time-step δt = 0.5 fs,
damping coefficient γ−1 = 1 ps).

N ×L N L β−1 Keq

20,000 20,000 1 300 156.57
20,000 20,000 1 600 303.47

200,000 20,000 10 300 280.06
2,000,000 200,000 10 300 287.56
2,000,000 20,000 100 300 303.46

Remark 7. We have defined the numerical equilibrium kinetic temperature as the empirical
variance of {pn,ℓ}0≤n≤N ,0<ℓ≤L . We could alternatively have defined it as the empirical variance
of {pn,L}0≤n≤N . In all the test cases considered in Table 5, the first order correction in the right
hand side of (19) satisfies ∣∣∣∣γδt β−1

(
ℓ

L
−1

)∣∣∣∣≤ 0.3,

and is thus negligible in comparison to the leading order term Keq = β−1(1 − 1
2L ) of (19). We

thus expect the variances of {pn,ℓ}0≤n≤N ,0<ℓ≤L and of {pn,L}0≤n≤N to be close. The analytical
result (18) corresponds to the theoretical variance of {pn,L}0≤n≤N .



22 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

A.2. Correction procedure

In order to ensure that the kinetic temperature at every time-step of our integrator remains fixed
to β−1, we have introduced in Section 2.4 the variant (11)–(12) of (2)–(3). We are now going to
show how to choose the temperature schedule in order to guarantee that the equilibrium kinetic
temperature is indeed Keq =β−1 at all the steps ℓ ∈ {0, . . . , L}.

Instead of working with βℓ, we work with the correction constants Cℓ defined by

β−1
ℓ =Cℓβ

−1.

Similarly to (15), we set

θℓ =
1

2
γβ−1

ℓ δt ,

and similarly to (16), we have, for any ℓ≥ 1, that

pℓ =µ2 (
1−γδt

)ℓ−1 p0 +2µ
ℓ−1∑
i=1

(
1−γδt

)i−1 √
θℓ−i Gℓ−i +µ

√
θ0

(
1−γδt

)ℓ−1 G0 +
√
θℓGℓ.

We next compute the expectation of p2
ℓ

as

Var pℓ =µ4 (
1−γδt

)2(ℓ−1) Var p0 +4µ2
ℓ−1∑
i=1

(
1−γδt

)2(i−1)
θℓ−i +µ2θ0

(
1−γδt

)2(ℓ−1) +θℓ.

Using that θ j = O(δt ) for any j , we have, at the leading order in the time-step, and for any ℓ≥ 1,
that

Var pℓ =
(
1−2ℓγδt

)
Var p0 +4

ℓ−1∑
i=1

θi +θ0 +θℓ+O
(
δt 2) . (20)

We now wish to choose C0, C1, . . . , CL such that, if Var p0 =β−1, then Var pℓ =β−1 for any 1 ≤ ℓ≤ L.
We thus have L+1 unknowns for L equations.

Setting ℓ= 1 in (20) and imposing Var p0 = Var p1 =β−1 there, we get

2γδt β−1 = θ0 +θ1 +O
(
δt 2)= 1

2
γβ−1δt (C0 +C1)+O

(
δt 2) ,

which leads to enforcing
C1 = 4−C0. (21)

We next infer from (20) that, for any ℓ≥ 2,

Var pℓ = Var pℓ−1 −2γδt Var p0 +4θℓ−1 +θℓ−θℓ−1 +O
(
δt 2) .

Imposing there that Var p0 = Var pℓ−1 = Var pℓ =β−1 leads to

2γδt β−1 = 3θℓ−1 +θℓ+O
(
δt 2)= 1

2
γβ−1δt (3Cℓ−1 +Cℓ)+O

(
δt 2) ,

which leads to enforcing
Cℓ = 4−3Cℓ−1 for any ℓ≥ 2. (22)

Collecting (21) and (22), we obtain

Cℓ = 1− (−3)ℓ− (−3)ℓ−1 C0 for any 1 ≤ ℓ≤ L,

from which we infer the simpler expression

Cℓ = 1+3ℓ−1 (C0 −3) if ℓ is even, Cℓ = 1+3ℓ−1 (3−C0) if ℓ is odd.

We now observe that not all choices of C0 are admissible choices, since we have to ensure that
Cℓ > 0 for any 0 ≤ ℓ≤ L. If ℓ can take arbitrary large values, then the only possible choice is

C0 = 3, Cℓ = 1 for any ℓ≥ 1. (23)



Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 23

This is the only choice which is robust with respect to L. In contrast, if L is fixed beforehand,
several choices are possible. For instance, in the case L = 1, in addition to the choice C0 = 3 and
C1 = 1, another possible choice is C0 =C1 = 2.

Remark 8. We have proceeded as follows to implement the scheme (11)–(12) in LAMMPS.
In LAMMPS, the temperature schedule is defined in terms of the total amount of time (here,
n∆t + ℓδt for some n and ℓ) elapsed since the initial time t = 0. In contrast, in our scheme,
the effective temperature β−1

ℓ
depends on ℓ but is independent of n. Our implementation relies

on using the command reset_timestep of LAMMPS, which allows to reset the simulation clock
to zero and that we call whenever t = n∆t for some n. Thus, LAMMPS always makes use of the
temperature at time 0, namely β−1

0 , when considering the first line of (11) to advance from time
n∆t to time n∆t +δt .

In order to check that the temperature schedules derived above indeed enforce the correct
temperature in the system, we now turn to numerical experiments, which are performed with the
same physical system as in Appendix A.1. We consider the scheme (11)–(12) with L time-steps of
length δt , and we iterate it N times to reach the final time N ∆t . The numerically computed value
of the equilibrium kinetic temperature Keq is shown in Table 6 for several choices of L, N and
correction procedure.

In the first two lines of Table 6, we set L = 1 and consider two possible correction procedures,
C0 =C1 = 2 in the first line and C0 = 3, C1 = 1 in the second line. We observe that both procedures
lead to a numerical equilibrium kinetic temperature very close to its target (compare with the
first line of Table 5). For larger values of L (here, L = 10; we have considered two values of N for
the sake of comparison with Table 5), we only consider the robust choice (23), which leads to
excellent results.

Table 6. Equilibrium kinetic temperature obtained using the corrected scheme (11)–(12),
for different values of L and N and different correction procedures (SNAP-56 potential
energy, target temperature β−1 = 300 K, time-step δt = 0.5 fs, damping coefficient γ−1 =
1 ps).

N ×L N L correction procedure Keq

20,000 20,000 1 C0 =C1 = 2 303.38
20,000 20,000 1 C0 = 3, C1 = 1 296.87

200,000 20,000 10 C0 = 3, C[1,...,10] = 1 303.12
2,000,000 200,000 10 C0 = 3, C[1,...,10] = 1 303.85

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research
organizations.

Acknowledgments

The authors thank the anonymous referees for their constructive comments.



24 Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez

References

[1] F. Legoll, T. Lelièvre, U. Sharma, “An adaptive parareal algorithm: application to the simulation of molecular
dynamics trajectories”, SIAM J. Sci. Comput. 44 (2022), no. 1, p. B146-B176.

[2] T. Lelièvre, M. Rousset, G. Stoltz, Free Energy Computations. A mathematical perspective, Imperial College Press, 2010.
[3] B. P. Uberuaga, D. Perez, “Computational methods for long-timescale atomistic simulations”, in Handbook of

Materials Modeling: Method: Theory and Modeling (W. Andreoni, S. Yip, eds.), Springer, 2020, p. 683-688.
[4] R. J. Zamora, D. Perez, E. Martinez, B. P. Uberuaga, A. F. Voter, “Accelerated molecular dynamics methods in a

massively parallel world”, in Handbook of Materials Modeling: Methods: Theory and Modeling (W. Andreoni, S. Yip,
eds.), Springer, 2020, p. 745-772.

[5] J.-L. Lions, Y. Maday, G. Turinici, “Résolution d’EDP par un schéma en temps pararéel (A “parareal” in time
discretization of PDE’s)”, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 7, p. 661-668.

[6] F. Legoll, T. Lelièvre, G. Samaey, “A micro-macro parareal algorithm: application to singularly perturbed ordinary
differential equations”, SIAM J. Sci. Comput. 35 (2013), no. 4, p. A1951-A1986.

[7] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer,
S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. R. Trott, S. J. Plimpton, “LAMMPS – a flexible
simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales”, Comput. Phys.
Commun. 271 (2022), article no. 108171.

[8] A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, G. J. Tucker, “Spectral neighbor analysis method for automated
generation of quantum-accurate interatomic potentials”, J. Comput. Phys. 285 (2015), p. 316-330.

[9] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other
defects in metals”, Phys. Rev. B 29 (1984), no. 12, p. 6443-6453.

[10] A. Brünger, C. L. Brooks III, M. Karplus, “Stochastic boundary conditions for molecular dynamics simulations of ST2
water”, Chem. Phys. Lett. 105 (1984), no. 5, p. 495-500.

[11] G. Bal, Y. Maday, “A parareal time discretization for nonlinear PDE’s with application to the pricing of an American
put”, in Recent developments in domain decomposition methods (L. F. Pavarino, A. Toselli, eds.), Lecture Notes in
Computational Science and Engineering, vol. 23, Springer, 2002, p. 189-202.

[12] M. J. Gander, S. Vandewalle, “Analysis of the parareal time-parallel time-integration method”, SIAM J. Sci. Comput.
29 (2007), p. 556-578.

[13] M. J. Gander, T. Lunet, D. Ruprecht, R. Speck, “A unified analysis framework for iterative parallel-in-time algorithms”,
SIAM J. Sci. Comput. 45 (2023), no. 5, p. A2275-A2303.

[14] M. J. Gander, “50 years of time parallel time integration”, in Multiple Shooting and Time Domain Decomposition
Methods (T. Carraro, M. Geiger, S. Körkel, R. Rannacher, eds.), Contributions in Mathematical and Computational
Sciences, vol. 9, Springer, 2015, p. 69-114.

[15] A. Blouza, L. Boudin, S.-M. Kaber, “Parallel in time algorithms with reduction methods for solving chemical kinetics”,
Commun. Appl. Math. Comput. Sci. 5 (2010), no. 2, p. 241-263.

[16] Y. Maday, “Parareal in time algorithm for kinetic systems based on model reduction”, in High-dimensional partial
differential equations in science and engineering (A. Bandrauk, M. C. Delfour, C. Le Bris, eds.), CRM Proceedings &
Lecture Notes, vol. 41, American Mathematical Society, 2007, p. 183-194.

[17] S. Engblom, “Parallel in time simulation of multiscale stochastic chemical kinetics”, Multiscale Model. Simul. 8
(2009), p. 46-68.

[18] X. Dai, C. Le Bris, F. Legoll, Y. Maday, “Symmetric parareal algorithms for Hamiltonian systems”, ESAIM, Math. Model.
Numer. Anal. 47 (2013), no. 3, p. 717-742.

[19] X. Dai, Y. Maday, “Stable parareal in time method for first- and second-order hyperbolic systems”, SIAM J. Sci.
Comput. 35 (2013), no. 1, p. A52-A78.

[20] G. Bal, “Parallelization in time of (stochastic) ordinary differential equations”, Preprint available at https://www.stat.
uchicago.edu/~guillaumebal/PAPERS/paralleltime.pdf.

[21] G. Pagès, O. Pironneau, G. Sall, “The parareal algorithm for American options”, C. R. Acad. Sci. Paris Sér. I Math. 354
(2016), no. 11, p. 1132-1138.

[22] F. Legoll, T. Lelièvre, K. Myerscough, G. Samaey, “Parareal computation of stochastic differential equations with time-
scale separation: a numerical convergence study”, Comput. Vis. Sci. 23 (2020), article no. 9.

[23] I. Garrido, M. Espedal, G. Fladmark, “A convergent algorithm for time parallelization applied to reservoir simulation”,
in Domain decomposition methods in science and engineering (R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau,
O. Widlund, J. Xu, eds.), Lecture Notes in Computational Science and Engineering, vol. 40, Springer, 2005, p. 469-476.

[24] C. Farhat, M. Chandesris, “Time-decomposed parallel time-integrators: theory and feasibility studies for fluid,
structure, and fluid–structure applications”, Int. J. Numer. Methods Eng. 58 (2003), no. 9, p. 1397-1434.

[25] M. Gaja, O. Gorynina, “Parallel in time algorithms for nonlinear iterative methods”, ESAIM, Proc. Surv. 63 (2018),
p. 248-257.

[26] Y. Maday, O. Mula, “An adaptive parareal algorithm”, J. Comput. Appl. Math. 377 (2020), article no. 112915.

https://www.stat.uchicago.edu/~guillaumebal/PAPERS/paralleltime.pdf
https://www.stat.uchicago.edu/~guillaumebal/PAPERS/paralleltime.pdf


Olga Gorynina, Frédéric Legoll, Tony Lelièvre and Danny Perez 25

[27] P. L’Ecuyer, D. Munger, B. Oreshkin, R. Simard, “Random numbers for parallel computers: Requirements and
methods, with emphasis on GPUs”, Math. Comput. Simul. 135 (2017), p. 3-17.

[28] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool”,
Model. Simul. Mat. Sci. Eng. 18 (2010), no. 1, article no. 015012.


	1. Introduction
	2. Algorithm
	2.1. Parareal method
	2.2. Adaptive parareal method
	2.3. Implementation in LAMMPS
	2.4. Kinetic temperature

	3. Numerical results
	3.1. MD settings
	3.2. Convergence of adaptive trajectories
	3.3. Statistical analyses
	3.4. Computational gains

	Appendix A. Kinetic temperature simulated in LAMMPS
	A.1. Stationary state of the kinetic temperature in the scheme (2)–(3)
	A.2. Correction procedure

	Declaration of interests
	Acknowledgments
	References

