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Abstract. This paper presents a method derived from Whitham’s variational formulation of the problem of
interfacial capillary–gravity short-crested waves. It is developed for the resolution of the problem of waves
generated by obliquely reflecting interfacial waves from a vertical wall. In essence, Whitham’s method is not
changed, but computations are performed and arranged to produce a method that has been applied to a
number of cases demonstrating the effectiveness and the flexibility of the approach. The performance of the
method is illustrated in several examples including the case of harmonic resonance.

Résumé. Cet article présente une méthode dérivée de la formulation variationnelle de Whitham du problème
des ondes interfaciales à courte crête de gravité–capillarité. Elle est développée pour la résolution du pro-
blème des ondes générées par la réflexion oblique des ondes interfaciales sur une paroi verticale. La méthode
de Whitham n’est pas modifiée, mais des calculs sont effectués et organisés pour produire une méthode qui
a été appliquée à un certain nombre de cas démontrant l’efficacité et la flexibilité de l’approche. La perfor-
mance de la méthode est illustrée par plusieurs exemples, y compris le cas de la résonance harmonique.

Keywords. Short-crested interfacial waves, Gravity, Capillarity, Arbitrary depths, Resonance.
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1. Introduction

Over the past decades free surface short crested waves have been studied extensively. These
waves are one of the simplest classes of three-dimensional water waves and which are periodic
in each of two distinct horizontal directions. They arise at the linear level from the superposi-
tion of two progressive wave-trains of equal amplitude and frequency which are propagating
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at an angle to each other. Starting with the work of Fuchs [1] who obtained second-order so-
lutions, approximations through perturbation expansions of higher orders were performed, i.e.,
by Hsu et al. [2], Roberts [3] Ioualalen [4], Kimmoun et al. [5], Craig and Nicholls [6, 7]. Roberts
and Schwartz [8] and Okamura [9, 10] computed fully numerical short-crested wave solutions.
Debiane and Kharif [11] calculated resonant and non-resonant short-crested gravity–capillary
waves in deep water using a method derived from Whitham’s variational formulation.

While free surface short-crested waves have been extensively studied, relatively little theoret-
ical works has been made for internal short-crested waves. To our knowledge, only two stud-
ies have been devoted to this field. Allalou et al. [12] have investigated numerically fully three-
dimensional gravity waves at the interface between two fluids of arbitrary depths confined be-
tween two horizontal rigid walls. They computed solutions via a perturbation expansion up to
the 27th order in wave steepness. Bocharov et al. [13] have numerically solved the weakly non-
linear model equation proposed by Khabakhpashev and Tsvelodub [14]. The shapes of station-
ary traveling internal waves, both periodic in the two horizontal coordinates and soliton-like, are
presented.

Motivated by the efficiency of the method proposed by Debiane and Kharif [11] to the problem
of surface short crested waves, we develop here a similar method for the problem of short-crested
waves on the interface of a two-layer fluid, in the presence of gravity and surface tension. Even
though density stratifications that occur in nature are continuous, it is reasonable to use the two-
layer fluid model with a density discontinuity due to its simplicity and the fact that it provides a
good approximation when the interfacial wavelength is sufficiently longer than the length scale
of the density variation. The study of these waves is the first step to develop an understanding of
understanding of little investigated three-dimensional interfacial water waves.

2. The governing equations

We consider short-crested wave field on the interface of a two-layer system of fluids bounded by
two rigid horizontal walls. These waves are generated by an interfacial wavetrain of wavelength
λ which arrives at some angle of incidence θ on a vertical wall and which is perfectly reflected
(Figure 1). θ is the angle between the direction of propagation of the incident wave and the
normal to the wall. The resulting waves propagate with constant speed c along the wall. The
wavelength in the x-direction is λx = λ/sinθ and the wavelength in the y-direction is λy =
λ/cosθ. The fluids are supposed to be homogeneous, incompressible and inviscid, and the
motion is assumed to be irrotational. The physical variables associated with the lower fluid are
denoted by a subscript (1) and those of the upper fluid by a subscript (2). A cartesian coordinate
system ℜ(o, x, y, z) is adopted with the x- and y-axis located on the horizontal plane, and the z-
axis pointing vertically upwards. The level z = 0 coincides with the separation surface between
the two layers at rest. All the variables and the equations will be written in dimensionless
form in which K −1 = λ/2π and (g K )−1/2 are the length and time of reference with K being the
wavenumber. It is computationally convenient to use the frame of reference ℜ′(O, X ,Y , Z ), whereX

Y
Z

=
px −ϖt

q y
z

 (1)

and in which the short-crested wave is steady with a period of 2π in X and Y . Here ϖ is the
non-dimensional frequency and p and q are the non-dimensional wavenumbers in the X and Y
directions, respectively, defined by

p = sinθ and q = cos θ.
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Figure 1. Sketch of the reflection of plane wave onto vertical wall at angle θ of incidence.

With the assumptions of incompressibility and irrotational flow in each of the layers, the fluid
motions can be described by velocity potentials Φ1(X ,Y , Z ) and Φ2(X ,Y , Z ) in the lower and the
upper layers, respectively. These potentials satisfy Laplace’s equation in the lower and upper fluid
domains

p2Φi X X +q2Φi Y Y +Φi Z Z = 0 (i = 1,2). (2)

These equations are subject to boundary conditions on the interface between the layers
defined by the equation Z = η(X ,Y )

−ϖηX +p2ηXΦi X +q2ηYΦi Y −Φi Z = 0 (3)

− ϖ

µ−1
(µΦ2X −Φ1X )+ µ

2(µ−1)
(p2Φ2

2X +q2Φ2
2Y +Φ2

2Z )

− 1

2(µ−1)

(
p2Φ2

1X +q2Φ2
1Y +Φ2

1Z

)+η−κξ(X ,Y ) = 0 (4)

where

µ= ρ2/ρ1 (5)

κ= T K 2

g (ρ1 −ρ2)
(6)

ξ(X ,Y ) = p2ηxx (1+q2η2
Y )+q2ηY Y (1+p2η2

X )−2p2q2ηX Y ηX ηY

(1+p2η2
X +q2η2

Y )3/2
. (7)

Here, g is the acceleration of gravity, T the surface tension coefficient, ρ1 and ρ2 the densities.
Herein, a stable stratification is considered (µ < 1). Equations (3) and (4) are, respectively, the
kinematic and the dynamic conditions.

On the solid boundaries, the problem is subjected to impermeability conditions

Φ(1)
z = 0 Z =−d1, (8)

Φ(2)
z = 0 Z = d2, (9)

with lower and upper boundaries at Z =−d1, and Z = d2 respectively (d1 > 0,d2 > 0).
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3. Derivation of the algebraic equations

For irrotational interfacial waves, according to Whitham’s method [15], we define the averaged
Lagrangian over a rectangular period, as

L = 1

4π2

∫ 2π

0

∫ 2π

0

{
1

1−µ
∫ η

−d1

[
−ϖ∂Φ1

∂X
+ 1

2

(→∇Φ1

)2
]

dZ

}
dX dY

+ 1

4π2

∫ 2π

0

∫ 2π

0

{
µ

1−µ
∫ d2

η

[
−ϖ∂Φ2

∂X
+ 1

2

(→∇Φ2

)2
]

dZ + 1

2
η2 +κ

(√
1+

(→∇η)2
−1

)}
dX dY

(10)

with
→∇=

(
p
∂

∂X
, q

∂

∂Y
,
∂

∂Z

)
. (11)

We seek expressions forΦ1(X ,Y , Z ),Φ2(X ,Y , Z ) and η(X ,Y ) that are doubly periodic functions
of the transformed horizontal coordinates. A general representation is

Φ1(X ,Y , Z ) = ∑
mn

bmn
chαmn(Z +d1)

chαmnd1
χmn(X ,Y ) (12)

Φ2(X ,Y , Z ) = ∑
mn

cmn
chαmn(Z −d2)

chαmnd2
χmn(X ,Y ) (13)

η(X ,Y ) =
∞∑

m=0

∞∑
n=0

∆m0∆n0amn cosmX cosnY (14)

where

χmn(X ,Y ) = sinmX cosnY (15)

is introduced for notational convenience to calculate the kinetic energy and

∆ j 0 = 1− 1
2δ j 0.

Here δ j 0 is the Kronecker symbol and

α2
mn = p2m2 +q2n2. (16)

Substituting expansions (12)–(14) into (10), the averaged Lagrangian L is obtained as a func-
tion of the unknown coefficients amn , bmn and cmn . Some details of the calculation of L are given
in the Appendix A. The resulting averaged Lagrangian is expressed in the following way

L = 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

bmnbkl

ch(αmnd1)ch(αkl d1)
× 1

(αmn +αkl )
[1Ω

+
mnkl ]t [Θ+

mnkl ]

+ 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn ̸=αkl

bmnbkl

ch(αmnd1)ch(αkl d1)
× 1

(αmn −αkl )
[1Ω

−
mnkl ]t [Θ−

mnkl ]

+ 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn=αkl

bmnbkl

ch2(αmnd1)
× [1Λmn]t [Θ+

mnmn]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

cmnckl

ch(αmnd2)ch(αkl d2)
× 1

(αmn +αkl )
[2Ω

+
mnkl ]t [Θ+

mnkl ]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn ̸=αkl

cmnckl

ch(αmnd2)ch(αkl d2)
× 1

(αmn −αkl )
[2Ω

−
mnkl ]t [Θ−

mnkl ]
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− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn=αkl

cmnckl

ch2(αmnd2)
× [2Λmn]t [Θ+

mnmn]

+ 1

8

∞∑
m=0

∞∑
n=0

∆m0∆n0a2
mn − 1

4(1−µ)
ϖ

∞∑
m=1

∞∑
n=0

m
bmn

αmnch(αmnd1) 1ω
mn
mn

+ µ

4(1−µ)
ϖ

∞∑
m=1

∞∑
n=0

m
cmn

αmnch(αmnd2) 2ω
mn
mn + κ

4
(R00 −4). (17)

The quantities [Θ+
mnkl ], [Θ−

mnkl ], [iΩ
+
mnkl ], [iΩ

−
mnkl ], [iΩmn] and [iΛmn](i = 1,2), are defined in

the Appendix A.
According to Whitham’s theory, the variational equations to be solved are

∂L

∂amn
= 0 (18)

∂L

∂bmn
= 0. (19)

Applying Equations (18) and (19) to the averaged Lagrangian (17) yields the following set of
nonlinear algebraic equations

∂L

∂br s
= 1

32(1−µ)

∞∑
m=1

∞∑
n=0

bmn

ch(αmnd1)ch(αr s d1)
× 1

(αmn +αr s )
[1Ω

+
mnr s ]t [Θ+

mnsr ]

+ 1

32(1−µ)

∞∑
m=1

∞∑
n=0︸ ︷︷ ︸

αmn ̸=αr s

bmn

ch(αmnd1)ch(αr s d1)
× 1

(αmn −αr s )
[1Ω

−
mnr s ]t [Θ−

mnr s ]

+ 1

32(1−µ)

∞∑
m=1

∞∑
n=0︸ ︷︷ ︸

αmn=αr s

bmn

ch2(αr s d1)
× [1Λmn]t [Θ+

mnmn]

− 1

4(1−µ)
ϖ

∞∑
m=1

∞∑
n=0

r

αr s ch(αr s d1) 1ω
r s
r s = 0 (20)

∂L

∂cr s
= 1

32(1−µ)

∞∑
m=1

∞∑
n=0

cmn

ch(αmnd2)ch(αr s d2)
× 1

(αmn +αr s )
[2Ω

+
mnr s ]t [Θ+

mnsr ]

+ 1

32(1−µ)

∞∑
m=1

∞∑
n=0︸ ︷︷ ︸

αmn ̸=αr s

cmn

ch(αmnd2)ch(αr s d2)
× 1

(αmn −αr s )
[2Ω

−
mnr s ]t [Θ−

mnr s ]

+ 1

32(1−µ)

∞∑
m=1

∞∑
n=0︸ ︷︷ ︸

αmn=αr s

cmn

ch2(αr s d2)
× [2Λmn]t [Θ+

mnmn]

− 1

4(1−µ)
ϖ

∞∑
m=1

∞∑
n=0

r

αr s ch(αr s d2) 2ω
r s
r s = 0 (21)

∂L

∂ar s
= 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

bmnbkl

ch(αmnd1)ch(αkl d1)
× 1

(αmn +αkl )

∂

∂ar s
[1Ω

+
mnkl ]t [Θ+

mnkl ]

+ 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn ̸=αkl

bmnbkl

ch(αmnd1)sh(αkl d1)
× 1

(αmn −αkl )

∂

∂ar s
[1Ω

−
mnkl ]t [Θ−

mnkl ]
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+ 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn=αkl

bmnbkl

ch2(αmnd1)

∂

∂ar s
[1Λmn]t [Θ+

mnmn]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

cmnckl

ch(αmnd2)ch(αkl d2)
× 1

(αmn +αkl )

∂

∂ar s
[2Ω

+
mnkl ]t [Θ+

mnkl ]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn ̸=αkl

cmnckl

ch(αmnd2)ch(αkl d2)
× 1

(αmn −αkl )

∂

∂ar s
[2Ω

−
mnkl ]t [Θ−

mnkl ]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn=αkl

cmnckl

ch2(αmnd2)
× ∂

∂ar s
[2Λmn]t [Θ+

mnmn]

− 1

4(1−µ)
ϖ

∞∑
m=1

∞∑
n=0

m
bmn

αmnch(αmnd1)

∂

∂ar s
(1ω

mn
mn)

+ µ

4(1−µ)
ϖ

∞∑
m=1

∞∑
n=0

m
cmn

αmnch(αmnd2)

∂

∂ar s
(2ω

mn
mn)

+ κ

16

∞∑
m=1

∞∑
n=0

amn |T mnr s |t |ϑmnrs|+ 1

4
∆r 0∆s0ar s = 0. (22)

4. Numerical procedure

The series in (12)–(14) are truncated at N and the order N is chosen for truncating the other
expansions and the series in Equations (20)–(22). The resulting system is to be solved for the
unknown amn ,bmn ,cmn and ϖ by fixing the values of θ, µ, d1,d2 and the steepness which is
defined as

ε= η(0,0)−η(π,0) =
N∑

m=0

N∑
n=0

a2m+1,2n+1. (23)

Of course, this definition is different from the peak-to-through wave height, since the maximum
and minimum points are not always at (x, y) = (0,0) and (π,0), respectively.

Note that a00 = 0, the mean surface level being at Z = 0 and, owing to the triangular symmetry
of a short-crested wave,

amm = bmn = cmm = 0 when m +n is odd. (24)

The system of equations (20)–(23) is solved by Newton’s method. In many practical computa-
tions it has been found that less than five iterations are sufficient to satisfy the system of equa-
tions with an error less than 10−14. Of course, the required number of iterations depends on the
configuration studied and on the desired accuracy. For instance, this is the case when we have
a slow decay of the Fourier coefficients. To get convergent series it is necessary to increase the
number of coefficients, which causes higher computational coasts. Decreasing the order of the
truncated series often results in increasing the number of iterations.

The initial estimates for the Newton iteration are given for small amplitudes by analytical
solutions calculated up to the “fifth-order” using a perturbation procedure and the computer
algebra system MAPLE for symbolic computation.

The Fourier coefficients introduced for the purposes of the present method are computed
using the fast Fourier transform (FFT) algorithm. The computational domain is rectangular,
periodic in both directions and discretized with constant steps ∆X =∆Y = 2π/M . M and N may
be chosen with a weak constraint, i.e. M > 2N , in order to avoid the aliasing phenomenon.
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Table 1. Comparison between computed values of the phase velocity with the present
method and those given by Allalou et al. [12] for ε = 0.01,d1 = 0.8,d2 = 1,θ = 50°,µ = 0.1
and 0.5

µ Present method (N = 23) Perturbation method (N = 27)
0.1 0.7443973837 0.7443973838
0.5 0.48129554183 0.48129554186

To check the accuracy of the present method, it was necessary to compare our results with
those obtained, in the case of gravity interfacial waves, by Allalou et al. [12]. A comparison
between computed values of the phase velocity is presented in Table 1. Results using the method
just described are in excellent agreement to those of Allalou et al. computed via a perturbation
expansion up to the 27th order in wave steepness.

5. Results and discussion

To illustrate the performance of the method we shall present examples of fully three-dimensional
calculations. An interesting variety of wave patterns emerges, with a distinct change in character
as a result of different combinations of wave parameters.

5.1. Resonant cases

To find the equation which relates the parameters of short crested waves for which harmonic
resonance occurs with respect to the (m,n)th harmonic, we solve the system (2)–(4) by using the
classical perturbation method. The perturbation parameter we use is the steepness ε. We expand
the quantitiesΦ1,Φ2,η and ϖ as power series in the parameter ε.

Φ1 =
∑
r=1
Φ(r )

1 εr Φ2 =
∑
r=1
Φ(r )

2 εr η= ∑
r=1

η(r )εr ϖ= ∑
r=0

ϖr ε
r . (25)

The dimensionless velocity potentials at the free surface are expressed in terms of the Taylor
expansions at Z = 0 instead of Z = η(X ,Y ):

Φi (X ,Y , Z = η(X ,Y )) =Φi (X ,Y ,0)+ ∂Φi

∂Z

∣∣∣∣
Z=0

η+ ∂2Φi

∂Z 2

∣∣∣∣
Z=0

η2

2!
+ ∂3Φi

∂Z 3

∣∣∣∣
Z=0

η3

3!
+·· · . (26)

As did Kimmoun et al. [5], ξ(X ,Y ) is written in this form

ξ(X ,Y ) = N (X ,Y )

(1+D(X ,Y ))3/2
(27)

with

N (X ,Y ) = p2ηX X (1+q2η2
Y )+q2ηY Y (1+p2η2

X )−2p2q2ηX Y ηX ηY

and

D(X ,Y ) = p2η2
X +q2η2

Y

ξ(X ,Y ) is then developed in terms of a series expansion:

ξ(X ,Y ) = N (X ,Y )
[
1− 3

2 D + 15
8 D2 − 105

48 D3 +O(D5)
]

. (28)
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After substitution into Equations (2)–(4) and gathering the ε of the same power, we get a new
set of equations that was processed using the symbolic software package MAPLE. We proceed by
seeking solutions of the form

Φ(r )
1 =∑∑

b(r )
mn sin(mX )cos(nY )

cosh(αmn(Z +d1))

cosh(αmnd1)

Φ(r )
2 =∑∑

c(r )
mn sin(mX )cos(nY )

cosh(αmn(Z −d2))

cosh(αmnd2)

η(r ) =∑∑
a(r )

mn cos(mX )cos(nY ).

(29)

To determine the resonance condition, one can rewrite the kinematic and dynamical equations,
at order (r ), as follows

−mϖ0a(r )
mn +αmnFmnb(r )

mn = A(r−1)
mn

−mϖ0a(r )
mn −αmnGmnc(r )

mn = B (r−1)
mn

(κα2
mn +1−µ)a(r )

mn +mϖ0(µc(r )
mn −b(r )

mn) =C (r−1)
mn

(30)

where A(r−1)
mn , B (r−1)

mn and C (r−1)
mn are terms depending only on coefficients of order (r −1),

Fmn = tanh(αmnd1), Gmn = tanh(αmnd2) and ϖ2
0 =

(1−µ)(1+κ) tanh(d1) tanh(d2)

µ tanh(d2)+ tanh(d1)
. (31)

The above system of equations has solutions of the form

a(r )
mn =−

αmnGmnFmnC (r−1)
mn +mϖ0

(
Gmn A(r−1)

mn +µF mnB (r−1)
mn

)
−αmn(κα2

mn +1−µ)FmnGmn +m2ϖ2
0(Gmn +µF mn)

b(r )
mn =

m2ϖ2
0µ

(
A(r−1)

mn −B (r−1)
mn

)
−αmnmϖ0GmnC (r−1)

mn −αmnGmn A(r−1)
mn (κα2

mn +1−µ)

−αmn(κα2
mn +1−µ)FmnGmn +m2ϖ2

0(Gmn +µF mn)

c(r )
mn =

m2ϖ2
0

(
A(r−1)

mn −B (r−1)
mn

)
+αmnmϖ0FmnC (r−1)

mn +αmnFmnB (r−1)
mn (κα2

mn +1−µ)

−αmn(κα2
mn +1−µ)FmnGmn +m2ϖ2

0(Gmn +µF mn)
.

(32)

These coefficients have zero divisors when the parameters of the wave satisfy the relation

−αmn(κα2
mn+1−µ) tanh(αmnd1) tanh(αmnd2)+m2ϖ2

0

(
tanh(αmnd2)+µ tanh(αmnd1)

)= 0. (33)

These zero divisors are now recognized to be indicative of the occurrence of harmonic reso-
nances. Physically, the fundamental (1,1) excites the harmonic (m,n) which travels at the same
phase speed. Over a long time scale the resonance allows continual redistribution of energy be-
tween the fundamental and the resonant harmonic.

Taking advantage of the ability of the present method to provide the properties of the fully
resonant waves, it is natural to examine these resonances. Taking m = n = 2, d1 = d2 = 0.5,θ = 48°
and µ= 0.07, Equation (33) yields κ= 0.07587182693956657. . . . As known, such a resonance gives
rise to a multiplicity of solutions. In our case, we obtain three solution branches; two of them
being connected through a turning point which occurs at about ε = 0.009, as shown in Figure 2.
The latter exhibits the multiple solution structure of the wave speed as a function of steepness.
The starting point of branch (1) was generated from a non resonant solution computed with
κ = 0.08 varying progressively κ from this value to 0.07587182693956657 by step not exceeding
few percents of the fixed value. Figure 3 shows the shape of this family of short-crested waves.
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Figure 2. Variation of wave speed with steepness for three-dimensional Wilton ripples.

The lines of the intersection with the planes X = 2π or Y = 0 (remind that the patterns are 2π-
periodic in the both directions) have the same shape as the profile of Wilton type 1 ripples [16]:
they exhibit secondary troughs in the crests. The starting point of branch (2) was obtained, for
small values of the wave steepness, by taking κ = 0.07587182693956657. Figure 4 shows that the
lines of the intersection of their shape with the planes X = 2π or Y = 0 are similar to the profile of
the so-called Wilton type 2 ripples, that is to say, secondary crests of a substantial height appear
in the troughs. Beyond the turning point, we have a mixed-type solution which combines the
latter two patterns. Figure 5 shows the shape of these waves which exhibits secondary troughs in
the crests and similarly secondary crests in the troughs.

5.2. Energies

Once the coefficients amn , bmn and cmn determined, it is straightforward to compute kinetic and
potential energies by using the expressions (A9), (A10) and (A13) given in the Appendix A. As an
illustration we present the results obtained for the resonant cases discussed above. The mean
kinetic- and potential-energy densities for the wave referred to as type 1 are plotted in Figure 6.
Those of the cases referred to as type 2 and type 3 are plotted in Figure 7. In Figure 8, the energy
densities of the wave of type 2 correspond to ε< 0.009 and those of the wave of type 3 to ε> 0.009.
For all the cases presented in these two figures, the kinetic-energy density is larger than the two
potential-energy densities. There are configurations for which potential-energy density, Vg , is
greater than the kinetic-energy, as shown in Figure 8. However, we did not find any cases where
the capillary-potential-energy density, Vτ, is greater than the other two energy densities.

5.3. Square waves

When one layer is shallow and the other is deep, the wave profile is generally more sharply peaked
on the side pointing into the deeper layer. When the lower fluid has a very small depth and the
upper fluid is deep, it will be possible to obtain strongly localized shapes similar to grid waves
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Figure 3. Three-dimensional Wilton ripples of the type 1 for d1 = d2 = 0.5, θ = 48°, µ= 0.07
and κ= 0.07587182693956657.

Figure 4. Three-dimensional Wilton ripples of type 2 for d1 = d2 = 0.5, θ = 48°, µ= 0.07 and
κ= 0.07587182693956657.
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Figure 5. Three-dimensional Wilton ripples of type 3 for d1 = d2 = 0.5, θ = 48°, µ= 0.07 and
κ= 0.07587182693956657.

Figure 6. Variation of mean kinetic energy density (K E), mean gravity-potential-energy
density (Vg ) and mean capillary-potential-energy density with steepness for three-
dimensional Wilton ripples of type 1.

that form square-shaped patterns like those shown in Figure 9. A similar surface wave pattern
has been photographed by Terry Toedte-Meier off the coast of Oregon (cf. Segur [17]). Solutions
in the form of grid waves can be treated as a composition of two plane solitary waves propagating
at right angles to each other. Each wave train exhibits flat-trough, sharp-crest pattern, but
successive wave crests in the same train are so far apart that each crest behaves nearly like a
solitary wave. At the intersections of the crests appear peaks of greater elevation. The flatness
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Figure 7. Variation of mean kinetic energy density (K E), mean gravity-potential-energy
density (Vg ) and mean capillary-potential-energy density with steepness for three-
dimensional Wilton ripples of the type 2 and of the type 3.

Figure 8. Variation of mean kinetic energy density (K E) and mean gravity-potential-energy
density (Vg ) with the density ratio µ for d1 = d2 = 0.1, θ = 50°, ε= 0.02 and κ= 0.

of the trough is due to effects from the bottom and may indicate that these solutions are more
nonlinear. If, on the contrary, it is the upper layer that is shallow and the lower layer is deep, we
obtain similar square-shaped patterns, but their convex sides are oriented upward as shown in
Figure 10. These two families of waves are obtained more easily with very low values of µ and κ.
Their chapes changes as we increase these two parameters.
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Figure 9. Graph in perspective of square waves with their convex sides oriented downward
for d1 = 0.034,d2 = 0.1, θ = 1°, ε = 0.02,µ = 0.1 and κ = 0. The vertical scale is enlarged to
emphasize the shape.

Figure 10. Graph in perspective of square waves with their convex sides oriented upward
for d1 = 5, d2 = 0.02, θ = 1°, ε = 0.02, µ = 0.1 and κ = 0. The vertical scale is enlarged to
emphasize the shape.
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Figure 11. Graph in perspective of hexagonal waves with their convex sides oriented
downward for d1 = 0.034, d2 = 0.1, θ = 5°, ε = 0.02, µ = 0.1 and κ = 0. The vertical scale
is enlarged to emphasize the shape.

5.4. Hexagonal waves

For low values of θ, our method can generate hexagonal traveling wave solutions. There exist
several types of these waves. When the lower fluid has a very small depth and the upper fluid
is deep, we can generate honeycomb shapes like those shown in Figure 11. Each cell have a
large flat trough which is surrounded by a narrow six sided ridge. The pattern is elongated in
the direction perpendicular to the phase velocity. The sides of the ridge which are aligned with
the Y -direction are relatively flat over a large fraction of their length and are higher than the
other four sides which complete the hexagonal pattern. If it is the upper layer that is shallow
and the lower layer is deep, we obtain similar hexagonal patterns but each of them have a large
flat crest which is surrounded by a six sided depression boundary (see Figure 12). Figure 13
presents a third notable case example which exhibit mixed structures, that is to say they have
well-pronounced diamond crests while the troughs have hexagonal patterns. Hexagonal patterns
have been observed experimentally by Hammack et al. [18].

6. Conclusion

A method has been developed for the solution of the problem involving interfacial capillary–
gravity short-crested waves propagating at the interface between two inviscid immiscible fluids
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Figure 12. Graph in perspective of hexagonal waves with their convex sides oriented
upward for d1 = 3, d2 = 0.02, θ = 50°, ε= 0.02,µ= 0.1 andκ= 0. The vertical scale is enlarged
to emphasize the shape.

of different densities lying between two rigid boundaries. A large number of interesting config-
urations can be computed using our approach. Several results have been presented to illustrate
the effectiveness of our approach. The shapes of these waves depend on different parameters of
the problem: the surface tension coefficient, the fluid layer depth, density ratios and the angle be-
tween the direction of propagation of the incident wave and the normal to the wall. The influence
of these parameters will be further investigated in the future.
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Figure 13. Graph in perspective of mixed waves.

Appendix A. Calculation of the averaged Lagrangian L

This appendix describes some details of the calculation of the averaged Lagrangian L.

A.1. The term of kinetic energy

In the averaged Lagrangian function (10) given in the body of the paper, the contribution of the
kinetic energy is

KE = 1

1−µ
1

8π2

∫ 2π

0

∫ 2π

0

∫ η

−d1

(→∇Φ1

)2
dX dY dZ︸ ︷︷ ︸

KE1

+ µ

1−µ
1

8π2

∫ 2π

0

∫ 2π

0

∫ d2

η

(→∇Φ2

)2
dX dY dZ︸ ︷︷ ︸

KE2

. (A1)

The first term on the right-hand side of Equation (A1), labelled KE1, represents the kinetic
energy in the lower fluid of the wave. Substituting expansion (12) into KE1 leads to

KE1 = 1

1−µ
1

8π2

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

(
bmnbkl

ch(αmnd1)ch(αkl d1)

)
×

∫ 2π

0

∫ 2π

0

{∫ η

−d1

ch(αmn(Z +d1))ch(αkl (Z +d1))dZ
→∇(χmn) ·→∇(χkl )

+αmnαkl

∫ η

−d1

sh(αmn(Z +d1))sh(αkl (Z +d1))dZ χmnχkl

}
dX dY . (A2)



Dalila Boughazi et al. 331

Using the properties of the products of hyperbolic functions and proceeding in a similar way
as in Debiane and Kharif [11], we obtain

KE1 = 1

1−µ
1

64

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

bmnbkl

ch(αmnd1)ch(αkl d1)

× 1

(αmn +αkl )


[

1P mnkl
k−m,l−n(p2mk +q2nl +αmnαkl )+ 1P mnkl

k+m,l−n(p2mk −q2nl −αmnαkl )

+1P mnkl
k−m,l+n(p2mk −q2nl +αmnαkl )+ 1P mnkl

k+m,l+n(p2mk +q2nl −αmnαkl )
]

+ 1

1−µ
1

64

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

bmnbkl

ch(αmnd1)ch(αkl d1)

× 1

(αmn −αkl )


[

1M mnkl
k−m,l−n(p2mk +q2nl −αmnαkl )+ 1M mnkl

k+m,l−n(p2mk −q2nl +αmnαkl )

+1M mnkl
k−m,l+n(p2mk −q2nl −αmnαkl )+ 1M mnkl

k+m,l+n(p2mk +q2nl +αmnαkl )
]

(A3)

1P mnkl
r s and 1M mnkl

r s being Fourier coefficients defined by

sh(αmn +αkl )(η+d1) =
∞∑

u=0

∞∑
v=0
∆u0∆v0 1P mnkl

uv cosuX cos vY (A4)

sh(αmn +αkl )(η+d1) =
∞∑

u=0

∞∑
v=0
∆u0∆v01M mnkl

uv cosuX cos vY . (A5)

The second term on the right-hand side of Equation (A1), labelled KE2, represents the kinetic
energy in the upper fluid of the wave. This integral is handled in exactly the same way as for KE1.
The result is

KE2 =− µ

1−µ
1

64

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

cmnckl

ch(αmnd2)ch(αkl d2)

× 1

(αmn +αkl )


[

2P mnkl
k−m,l−n(p2mk +q2nl +αmnαkl )+ 2P mnkl

k+m,l−n(p2mk −q2nl −αmnαkl )

+2P mnkl
k−m,l+n(p2mk −q2nl +αmnαkl )+ 2P mnkl

k+m,l+n(p2mk +q2nl −αmnαkl )
]

− µ

1−µ
1

64

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

cmnckl

ch(αmnd2)ch(αkl d2)

× 1

(αmn −αkl )


[

2M mnkl
k−m,l−n(p2mk +q2nl −αmnαkl )+ 2M mnkl

k+m,l−n(p2mk −q2nl +αmnαkl )

+2M mnkl
k−m,l+n(p2mk −q2nl −αmnαkl )+ 2M mnkl

k+m,l+n(p2mk +q2nl +αmnαkl )
]

(A6)

2P mnkl
r s and 2M mnkl

r s being Fourier coefficients defined by

sh(αmn +αkl )(η−d2) =
∞∑

u=0

∞∑
v=0
∆u0∆v0 2P mnkl

uv cosuX cos vY (A7)

sh(αmn −αkl )(η−d2) =
∞∑

u=0

∞∑
v=0
∆u0∆v0 2M mnkl

uv cosuX cos vY . (A8)

Using expressions (A3) and (A6), the kinetic energy can be expressed in a compact form by

KE = 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

bmnbkl

ch(αmnd1)ch(αkl d1)
× 1

(αmn +αkl )
[1Ω

+
mnkl ]t [Θ+

mnkl ]

+ 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn ̸=αkl

bmnbkl

ch(αmnd1)ch(αkl d1)
× 1

(αmn −αkl )
[1Ω

−
mnkl ]t [Θ−

mnkl ]
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+ 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn=αkl

bmnbkl

ch2(αmnd1)
× [1Λmn]t [Θ+

mnmn]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

cmnckl

ch(αmnd2)ch(αkl d2)
× 1

(αmn +αkl )
[2Ω

+
mnkl ]t [Θ+

mnkl ]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn ̸=αkl

cmnckl

ch(αmnd2)ch(αkl d2)
× 1

(αmn −αkl )
[2Ω

−
mnkl ]t [Θ−

mnkl ]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn=αkl

cmnckl

ch2(αmnd2)
× [2Λmn]t [Θ+

mnmn] (A9)

where we have

[Θ+
mnkl ] =


p2mk +q2nl +αmnαkl

p2mk −q2nl +αmnαkl

p2mk −q2nl −αmnαkl

p2mk +q2nl −αmnαkl

 [Θ−
mnkl ] =


p2mk +q2nl −αmnαkl

p2mk −q2nl −αmnαkl

p2mk −q2nl +αmnαkl

p2mk +q2nl +αmnαkl



[iΩ
+
mnkl ] =


i P mnkl

k−m,l−n

i P mnkl
k−m,l+n

i P mnkl
k+m,l−n

i P mnkl
k+m,l+n

 (i = 1,2) [iΩ
−
mnkl ] =


i M mnkl

k−m,l−n

i M mnkl
k−m,l+n

i M mnkl
k+m,l−n

i M mnkl
k+m,l+n

 (i = 1,2)

[iΛmn] =


ak−m,l−n +4(−1)i di

ak−m,l+n

ak+m,l−n

ak+m,l+n

 .

A.2. The term of potential energy

In the right-hand side of (7), the averaged potential energy, Vg , due to gravity only is defined as

Vg = 1

4π2

∫ 2π

0

∫ 2π

0

[
1

2
η2

]
dX dY = 1

8

∞∑
m=0

∞∑
n=0

∆m0∆n0a2
mn . (A10)

On the other hand, for the term of the averaged capillary energy defined by

Vτ = κ

4π2

∫ 2π

0

∫ 2π

0

√
1+p2

(
∂η

∂X

)2

+q2

(
∂η

∂Y

)2

−1

dX dY (A11)

we introduce the following Fourier expansion√
1+p2

(
∂η

∂X

)2

+q2

(
∂η

∂Y

)2

=
∞∑

m=0

∞∑
n=0

∆m0∆n0Rmn cosmX cosnY . (A12)

That enables us to compute easily the integral to obtain then

Vτ = κ

4
(R00 −4). (A13)

R00 is computed by using the fast Fourier transform (FFT) algorithm.
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A.3. The term of averaged temporal rate of variation of the velocity potentials

The remaining terms represents the total temporal rate of variation of the potentials and has the
following expression

Φt =− 1

1−µ
1

4π2

∫ 2π

0

∫ 2π

0

∫ η

−d1

ϖΦ1X dZ dX dY − µ

1−µ
1

4π2

∫ 2π

0

∫ 2π

0

∫ d2

η
ϖΦ1X dZ dX dY . (A14)

After substituting the expansions (12) and (13) into (A14), and after integration with respect to
Z , one obtains

Φt = − 1

1−µ
ϖ

4π2

∞∑
m=1

∞∑
n=0

m
bmn

αmn

∫ 2π

0

∫ 2π

0

sh(αmn(η+d1))

ch(αmnd1)
cosmX cosnY dX dY

+ µ

1−µ
ϖ

4π2

∞∑
m=1

∞∑
n=0

m
cmn

αmn

∫ 2π

0

∫ 2π

0

sh(αmn(η−d2))

ch(αmnd2)
cosmX cosnY dX dY . (A15)

The integrals of the right-hand-side suggest to use the coefficients of Fourier’s expansion of
sh(αmn(η+d1)) and sh(αmn(η−d2)), that is;

sh(αmn(η+d1)) =
∞∑

i=0

∞∑
j=0
∆i 0∆ j 0(1ω

mn
i j )cos i X cos j Y

sh(αmn(η−d2)) =
∞∑

i=0

∞∑
j=0
∆i 0∆ j 0(2ω

mn
i j )cos i X cos j Y .

In doing so,Φt is easily found as

Φt =− 1

1−µ
ϖ

4

∞∑
m=1

∞∑
n=0

m
bmn

αmnch(αmnd1) 1ω
mn
mn + µ

1−µ
ϖ

4

∞∑
m=1

∞∑
n=0

m
cmn

αmnch(αmnd2) 2ω
mn
mn . (A16)

Using expressions (A9), (A10), (A13), and (A16), the averaged Lagrangian function is obtained
as a function of the coefficients and can be written in the form

L = 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

bmnbkl

ch(αmnd1)ch(αkl d1)
× 1

(αmn +αkl )
[1Ω

+
mnkl ]t [Θ+

mnkl ]

+ 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn ̸=αkl

bmnbkl

ch(αmnd1)ch(αkl d1)
× 1

(αmn −αkl )
[1Ω

−
mnkl ]t [Θ−

mnkl ]

+ 1

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn=αkl

bmnbkl

ch2(αmnd1)
× [1Λmn]t [Θ+

mnmn]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0

cmnckl

ch(αmnd2)ch(αkl d2)
× 1

(αmn +αkl )
[2Ω

+
mnkl ]t [Θ+

mnkl ]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn ̸=αkl

cmnckl

ch(αmnd2)ch(αkl d2)
× 1

(αmn −αkl )
[2Ω

−
mnkl ]t [Θ−

mnkl ]

− µ

64(1−µ)

∞∑
m=1

∞∑
n=0

∞∑
k=1

∞∑
l=0︸ ︷︷ ︸

αmn=αkl

cmnckl

ch2(αmnd2)
× [2Λmn]t [Θ+

mnmn]

+ 1

8

∞∑
m=0

∞∑
n=0

∆m0∆n0a2
mn − 1

4(1−µ)
ϖ

∞∑
m=1

∞∑
n=0

m
bmn

αmnch(αmnd1) 1ω
mn
mn

+ µ

4(1−µ)
ϖ

∞∑
m=1

∞∑
n=0

m
cmn

αmnch(αmnd2) 2ω
mn
mn + κ

4
(R00 −4). (A17)
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The details of first and second derivatives of the averaged lagrangian are available from the
authors. They are useful to calculate the terms of the variational equations (18) and (19) and to
solve them.
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