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Abstract. Dynamics of inclined carbon nanotube (CNT) reinforced composite beams under a moving mass
with influence of CNT agglomeration is studied. The beams compose of a homogeneous core and two
composite face layers with effective properties being estimated by Eshelby–Mori–Tanaka approach. A novel
finite element formulation is formulated and used to establish the equation of motion. Dynamic response is
computed for a simply supported beam by Newmark method. The result reveals the important role of the CNT
agglomeration on the dynamic response. The effects of the mass velocity, inclined angle and agglomeration
parameters on the dynamic behavior are investigated in detail.

Résumé. La dynamique des poutres composites inclinées renforcées par des nanotubes de carbone (NTC)
sous une masse en mouvement avec l’influence de l’agglomération des NTC est étudiée. Les poutres sont
composées d’un noyau homogène et de deux couches composites frontales dont les propriétés effectives
sont estimées par l’approche Eshelby–Mori–Tanaka. Une nouvelle formulation par éléments finis est formu-
lée et utilisée pour établir l’équation du mouvement. La réponse dynamique est calculée pour une poutre
simplement supportée par la méthode de Newmark. Les résultats révèlent le rôle important de l’aggloméra-
tion des NTC sur la réponse dynamique. Les effets de la vitesse de la masse, de l’angle d’inclinaison et des
paramètres d’agglomération sur le comportement dynamique sont étudiés en détail.
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1. Introduction

Since the landmark work of Iijimas [1], carbon nanotubes (CNTs) have been considered as an
ideal reinforcement component for new generation composites. Thanks to superior mechanical,
thermal, thermo-mechanical and vibration characteristics over conventional composites, CNT
reinforced structures have drawn great attention from researchers. It has been shown that the
mechanical properties of a polymer composite can be considerably enhanced by adding a small
amount of CNTs to the matrix. Most studies on mechanical behavior of CNT reinforced com-
posite (CNTRC) structures, however, are considered as aligned single-walled carbon nanotubes
(SWCNTs), and the effective material properties are estimated using a very simple method,
namely the rule of mixture model (ROM) [2–12].

Due to the high aspect ratio and low bending stiffness, CNTs tend to be agglomerated within
the polymer matrix. Rubel et al. [13] discussed the effects of CNT agglomerations in compos-
ites formation for various CNTs reinforced composites. The authors pointed out that the ag-
glomeration/clustering of CNTs has a direct effect on the thermal, electrical, and mechanical
properties of composites and reduces the physical properties. To predict the effective properties
such as Young’s modulus and Poisson’s ratio of composites reinforced by agglomerated CNTs, Shi
et al. [14] proposed a two-parameter micromechanical model that accounts for the influence of
CNT agglomeration. The model in Ref. [14] was used in conjunction with Mori–Tanaka scheme
by Heshmati and Yas [15] to derive elastic moduli of randomly oriented CNTRC in a free vibration
analysis of functionally graded (FG)-CNTRC beams. Finite element method was adopted in [15]
to obtained the beam frequencies. The generalized differential quadrature method (GDQM) was
adopted by Nejati and Eslampanah [16] to evaluate natural frequency of a thick cantilever CN-
TRC beam. The influence of agglomerated CNTs on the natural frequencies of beam reinforced
by randomly oriented agglomerated CNTs is considered by the authors. Based on Timoshenko
beam theory and the GDQM, Kamarian et al. [17] determined free vibration characteristics of FG
nanocomposite sandwich beams on Pasternak foundation, considering the agglomeration effect
of SWCNTs. The GDQM was also employed in [18] to study vibration of non-uniform agglomer-
ated CNTRC beams with piezoelectric layers. A two-parameter model based on a combination
of self-consistent and Mori–Tanaka method was presented by Pan and Bian [19] for investigat-
ing the effect of aggregation on CNT reinforced composites. It was concluded by the authors that
the CNT agglomeration reduces the elastic stiffness of composites, while the uniformly dispersed
CNTs enhance the reinforcement. Kiani et al. [20] presented a thermo-mechanical buckling anal-
ysis of CNTRC beams under non-uniform thermal loading, also considering the CNT agglomera-
tion. Hamilton’s principle was adopted to construct the governing equations, and the GDQM was
used to obtain the solution. Yue et al. [21] introduced a quasi-3D beam model in their investiga-
tion of the effect of CNT agglomeration on the nonlinear dynamic stability of CNTRC beams.

The problem of inclined beams under the moving loads is practically important, and it
draws much attention from researchers. As positions of the dynamic loads vary with time,
special techniques are required to analyze this problem. In an early work, the finite element
method was used by Wu [22] to study dynamics of an inclined isotropic Euler–Bernoulli beam
subjected to a moving mass. The influence of the inertia, Coriolis and centrifugal forces was
taken into consideration in the study. The author concluded that the transverse displacement of
the beam decreases considerably by increasing the inclined angle. Also using the finite element
method and Euler–Bernoulli beam theory, Bahmyari et al. [23] investigated dynamic response
of laminated composite beams under moving distributed masses. It has been shown that the
deflection of the inclined beams is remarkably influenced by the friction force, while it is not
considerably affected by the Coriolis and centrifugal forces. An equivalent horizontal beam
model in which the force acting on the inclined beam is split into the transverse and axial forces, is
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Figure 1. A simply supported inclined CNTRC sandwich beam under a moving mass.

proposed by Mamandi et al. [24] for the geometrically nonlinear dynamic analysis of an inclined
Euler–Bernoulli beam under a moving force. The work was then extended by Mamandi and
Kargarnovin [25] to investigate the nonlinear dynamic response of Timoshenko beams subjected
to moving masses. The numerical results in Refs. [24, 25] show that the geometric nonlinearity
stiffens the dynamic response of the beams. Recently, Nguyen et al. [26] presented a third-order
shear deformation theory based finite element procedure for dynamic analysis of an inclined
functionally graded sandwich beam carrying a moving mass. The material properties of the beam
are considered to vary in both the axial and the transverse directions by the power gradation laws.

As seen from the above literature review, the dynamic analysis of inclined beams under moving
loads has not been considered sufficiently. Motivated by this fact, this paper studies dynamics
of inclined CNTRC sandwich beams under a moving mass, taking into account the influence
of CNTs agglomeration. The sandwich beams are composed of a homogeneous core and two
face sheets made from CNTRC material. The effective properties of the composite face sheets
are estimated by Eshelby–Mori–Tanaka approach. Based on the trigonometric shear deformation
theory, a novel finite element formulation, taking into account the influence of the inertial,
Coriolis and centrifugal forces, is derived and used to establish the discretized equation of motion
for the beams. To improve efficiency of the formulation, the transverse shear rotation instead of
the conventional section rotation is employed herein as an independent variable. The effects of
various parameters, including the CNT volume fraction, the agglomeration parameters, the layer
thickness ratio, the mass velocity as well as the inclined angle on the dynamic behavior of the
sandwich beams are investigated in detail and highlighted.

2. Inclined sandwich beam reinforced with agglomerated CNTs

Figure 1 shows an inclined sandwich beam under a moving mass mc in two Cartesian coordinate
systems, a local system (x, z) and a global one (x, z). The sandwich beam has three layers, a
homogeneous core and two face layers made of CNT reinforced composite. The x-axis of the
(x, z) system is chosen on the beam’s mid-plane. The mass mc is assumed to move with a constant
velocity v , and it is always in contact with the beam. Denoted in Figure 1, L, b, h, h0, h1, h2, h3 and
β are, respectively, the length, width and height of the beam, the vertical coordinates of bottom
surface, the interfaces between the layers, the top surface and the inclined angle.

The two-parameter micromechanical model of Shi et al. [14] is adopted herein to account for
the CNT agglomeration. The model is developed by considering a representative volume element
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(RVE) with Eshelby cluster model of CNT agglomeration, as depicted in Figure 2. The total volume
Vr of CNTs in the RVE is divided into two parts as:

Vr =V cluster
r +V m

r (1)

where V cluster
r and V m

r are the volumes of CNTs inside and outside of the cluster, respectively. The
CNT agglomeration is described by two following parameters:

ξ= Vcluster

V
, ζ= V cluster

r

Vr
, 0 ≤ ξ,ζ≤ 1 (2)

where Vcluster denotes the volume of clusters in the RVE. Thus, the parameter ξ in Equation (2) is
the volume fraction of clusters with respect to the RVE volume, the parameter ζ is the ratio of CNT
volume inside the clusters over the total volume of the CNTs inside the RVE. The case, ξ= 1 means
that CNTs are uniformity distributed in the matrix; a lower value of ξ is the more agglomeration of
CNTs. When ζ= 1, all CNTs are located inside the clusters. The case ξ= ζ means that the volume
fraction of CNTs inside the clusters is the same as that of CNTs outside the clusters. In the case
ζ> ξ, the value of ζ is bigger, the distribution of CNTs is more heterogeneous. The effective bulk
and shear moduli of the clusters Kin,Gin, and those of the region outside the clusters Kout,Gout

may be calculated by [14]:

Kin = Km + VCNTζ(δr −3Kmαr )

3(ξ−VCNTζ+VCNTζαr )
,

Gin = Gm + VCNTζ(ηr −2Gmβr )

2(ξ−VCNTζ+VCNTζβr )
,

Kout = Km + VCNT(1−ζ)(δr −3Kmαr )

3[1−ξ−VCNT(1−ζ)+VCNT(1−ζ)αr ]
,

Gout = Gm + VCNT(1−ζ)(ηr −2Gmβr )

2[1−ξ−VCNT(1−ζ)+VCNT(1−ζ)ζβr ]

(3)

with VCNT =Vr /V is CNT volume fraction in the composite, and

αr = 3(Km +Gm)+kr − lr

3(Gm +kr )
,

δr = 1

3

[
nr +2lr + (2kr + lr )(3Km +2Gm − lr )

Gm +kr

]
,

βr = 1

5

(
4Gm +2kr + lr

3(Gm +kr )
+ 4Gm

Gm +pr
+ 2[Gm(3Km +Gm)+Gm(3Km +7Gm)]

Gm(3Km +Gm)+mr (3Km +7Gm)

)
,

ηr = 1

5

[
2

3
(nr − lr )+ 8Gm pr

Gm +pr
+ 8mr Gm(3Km +4Gm)

3Km(mr +Gm)+Gm(7mr +Gm)
+ (2kr − lr )(2Gm + lr )

3(Gm +kr )

]
(4)

with Km = Em/3(1−2υm), Gm = Em/2(1+υm) are the bulk and shear moduli of the matrix,
respectively. In Equations (3) and (4), the subscripts m and r stand for the quantities of the matrix
and the reinforcing phase (CNTs); kr , lr ,mr ,nr , pr are the Hill’s elastic moduli for the reinforcing
phase.

The effective bulk modulus K and shear modulus G of the composite evaluated by the Mori–
Tanaka scheme, scheme that satisfies Hanshin–Shtrikman bounds [27], are of the forms [14]:

K = Kout

1+
ξ

(
Kin

Kout
−1

)
1+α(1−ξ)

(
Kin

Kout
−1

)
 , G =Gout

1+
ξ

(
Gin

Gout
−1

)
1+β(1−ξ)

(
Gin

Gout
−1

)
 (5)
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Figure 2. RVE with Eshelby cluster model of agglomeration of CNTs.

where α = (1+νout)/3(1−νout), β = (8−10νout)/15(1−νout), νout = (3Kout −2Gout)/2(3Kout +
Gout). Noting that the composite is considered to be isotropic for the case CNTs are oriented
completely at random throughout the matrix. In this case, the bulk and shear moduli have the
following forms [14]:

K = Km + VCNT(δr −3Kmαr )

3(cm +VCNTαr )
, G =Gm + VCNT(ηr −2Gmβr )

2(cm +VCNTβr )
(6)

where cm = 1−VCNT, and αr , δr , βr , ηr are given in Equation (4). The effective Young’s modulus
E and the Poisson’s ratio ν of the CNT reinforced layer can be derived by:

E = 9KG

3K +G
; ν= 3K −2G

6K +2G
. (7)

Meanwhile, the effective mass density of the CNT reinforced layer can be estimated by the rule of
mixture as [28]:

ρ = (ρCNT −ρm)VCNT +ρm (8)

with ρCNT, ρm are the mass density of CNT and matrix, respectively.

3. Mathematical formulation

Based on the trigonometric shear deformation theory [29], the displacements in x and z direc-
tions of a point in the sandwich are given as:

u(x, z, t ) = u0(x, t )− zw0,x + sin
πz

h
θ; w(x, z, t ) = w0(x, t ) (9)

where u0(x, t ), w0(x, t ) are the displacements of a point on the x axis; θ is the cross-sectional
rotation, and t is the time variable. In Equation (9) and hereafter, the subscript comma indicates
the derivative with respect to the variable that followed.

In order to improve the finite element formulation derived in the next section, the transverse
shear rotation γ0 = θ+w0,x , not the conventional cross-sectional rotation θ, is employed herein
as the independent variable instead. In this regard, the displacements in Equation (9) can be
rewritten in the form:

u(x, z, t ) = u0(x, t )− zw0,x + sin
πz

h
(γ0 −w0,x ); w(x, z, t ) = w0(x, t ). (10)

The strain field associated with the displacement field in Equation (10) is of the form:

εxx = u0,x − zw0,xx + sin
πz

h
(γ0,x −w0,xx ); γxz = π

h
cos

πz

h
(γ0 −w0,x ) (11)

where εxx and γxz are axial and shear strains, respectively.
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The stress–strain relations in the kth layer with the Hook’s law assumption are as follows:

σ(k)
xx = E (k)εxx ; τ(k)

xz =G (k)γxz (k = 1,2,3). (12)

One can verify that the adopted theory satisfies the free transverse shear stress conditions on the
top and bottom surfaces of the beam. The elastic strain energy of the sandwich beam U is given
by:

U = 1

2

∫ L

0

∫
A

(σ(k)
xx εxx +τ(k)

xz γxz )dA dx

= 1

2

∫ L

0

[
A1u2

0,x −2A2u0,x w0,xx +2A3u0,x (γ0,x −w0,xx )−2A4w0,xx (γ0,x −w0,xx )
+A5(γ0,x −w0,xx )2 + A6w2

0,xx + A7(γ0 −w0,x )2

]
dx (13)

where A = bh is the area of cross section of the beam; A1, A2, . . . , A7 are the beam rigidities,
defined as follows:

(A1, A2, A3, A4, A5, A6) = b
∫ h3

h0

E
(
1, z, sin

πz

h
, z sin

πz

h
, sin2 πz

h
, z2

)
dz

= b
3∑

k=1

∫ hk

hk−1

E (k)
(
1, z, sin

πz

h
, z sin

πz

h
, sin2 πz

h
, z2

)
dz; (14)

A7 = b
π2

h2

∫ h3

h0

G cos2 πz

h
dz = b

π2

h2

3∑
k=1

∫ hk

hk−1

G (k) cos2 πz

h
dz.

The kinetic energy T of the sandwich beam can be expressed as:

T = 1

2

∫ L

0

∫
A
ρ(u̇2 + ẇ2)dA dx

= 1

2

∫ L

0

[
I1(u̇2

0 + ẇ2
0 )−2I2u̇0ẇ0,x +2I3u̇0(γ̇0 − ẇ0,x )

−2I4ẇ0,x (γ̇0 − ẇ0,x )+ I5(γ̇0 − ẇ0,x )2 + I6ẇ2
0,x

]
dx. (15)

The over dot in Equation (15), and hereafter, denotes the derivative with respect to time variable
t ; I1, I2, . . . , I6 are mass moments, defined as:

(I1, I2, I3, I4, I5, I6) = b
∫ h3

h0

ρ
(
1, z, sin

πz

h
, z sin

πz

h
, sin2 πz

h
, z2

)
dz

= b
3∑

k=1

∫ hk

hk−1

ρ(k)
(
1, z, sin

πz

h
, z sin

πz

h
, sin2 πz

h
, z2

)
dz. (16)

When the beam is inclined an angle β and subjected to the moving mass mc , the potential energy
is calculated as follows [25]:

V =
∫ L

0
[(−mc g cosβ+mc ẅ0 +2mc v ẇ0,x +mc v2w0,xx )w0 + (−mc g sinβ+mc ü0)u0]δ(x − v t )dx

(17)
where Px = −mc g sinβ, Pz = −mc g cosβ are force components induced by the mass mc with
g = 9.81 m/s2 is the acceleration of gravity; mc ü0 and mc ẅ0 are components of the inertial force;
2mc v ẇ0,x is the Coriolis force and mc v2w0,xx is centrifugal force; δ(.) is the Dirac delta function;
x is the abscissa of the moving mass, respect to the left end of the beam. One can obtain the
differential equations of motion for the beam by applying Hamilton’s principle to Equations (13),
(15) and (17). However, due to the material heterogeneity as well as the non-traditional inclined
beam configuration, a closed-form solution for such equations is hardly obtained. Finite element
formulation derived in the next section is a reasonable choice to compute the dynamic response
of the beam.
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4. Finite element formulation

A two-node beam element, (1, 2), with length l is firstly derived in the local system (x, z) and
then transferred to the global one in this work. Each node of the element has four degrees of
freedom, namely the axial displacement, transverse displacement, derivative of the transverse
displacement and the shear rotation. Thus, the element vector of nodal displacements (d) has
the form:

d = {du dw dγ}T (18)

where

du = {u01u02}T ; dw = {w01w0x1w02w0x2}T ; dγ = {γ01γ02}T (19)

are, respectively, the vectors of nodal displacement for u0, w0 and γ0 at the nodes 1 and 2. In the
above equations and hereafter, a superscript “T ” denotes the transpose of a vector or a matrix.

The displacements and shear rotation inside the element are interpolated through their nodal
values according to:

u0 = Ndu ; w0 = Hdw ; γ0 = Ndγ (20)

where N = {N1N2} is the matrix of the following linear interpolation functions

N1 = 1− x

l
, N2 = x

l
(21)

and H = {H1 H2 H3 H4} is the matrix of Hermite shape functions with

H1 = 1−3
( x

l

)2
+2

( x

l

)3
, H2 = x −2

x2

l
+ x3

l 2 , H3 = 3
( x

l

)2
−2

( x

l

)3
, H4 =−x2

l
+ x3

l 2 . (22)

Using the interpolations, one can write the strain energy in Equation (13) in the form:

U = 1

2

ne∑
i=1

dT
i ki di (23)

where ne is the total number of elements used to discretize the sandwich beam, and k is the
element stiffness matrix with the following form:

k =


ku0u0 ku0w0 ku0γ0

kT
u0w0

kw0w0 kw0γ0

kT
u0γ0

kT
w0γ0

kγ0γ0

 . (24)

In Equation (24), ku0u0 ,ku0w0 , . . . ,kγ0γ0 are, respectively, the element stiffness matrices stemming
from the axial, bending, shear deformations and their couplings with the following expressions:

ku0u0 =
∫ l

0
NT

,x A1N,x dx, kw0w0 =
∫ l

0
[HT

,xx (2A4 + A5 + A6)H,xx +HT
,x A7H,x ]dx,

kγ0γ0 =
∫ l

0
(NT

,x A5N,x +NT A7N)dx,

ku0w0 = −
∫ l

0
NT

,x (A2 + A3)H,xx dx, ku0γ0 =
∫ l

0
NT

,x A3N,x dx,

kw0γ0 = −
∫ l

0
[HT

,xx (A4 + A5)N,x +HT
,x A7N]dx.

(25)

Similarly, the kinetic energy of the beam in Equation (15) can be rewritten as

T = 1

2

ne∑
i=1

ḋT
i mi ḋi (26)
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where the element mass matrix of the beam m can be written in sub-matrices as

m =


mu0u0 mu0w0 mu0γ0

mT
u0w0

mw0w0 mw0γ0

mT
u0γ0

mT
w0γ0

mγ0γ0

 (27)

in which

mu0u0 =
∫ l

0
NT A1Ndx, mw0w0 =

∫ l

0
[HT

,x (2I4 + I5 + I6)H,x +HT I1H]dx,

mγ0γ0 =
∫ l

0
(NT I5N)dx, mu0w0 =−

∫ l

0
NT (I2 + I3)H,x dx,

mu0γ0 =
∫ l

0
NT I3Ndx, mw0γ0 =−

∫ l

0
HT

,xx (I4 + I5)N,x dx.

(28)

The potential energy in Equation (17) is now of the form:

V =
ne∑

(d̈T mm d̈+ ḋT cm ḋ+dT km d−dT fm), (29)

where mm , cm and km are, respectively, the element mass, damping and stiffness matrices due
to the effects of the inertia, Coriolis and centrifugal forces of the moving mass; fm is the time-
dependent element nodal load vector generated by the moving mass. The expressions for these
matrices and vector are as follows:

mm
8×8

= mc

NT N 0 0
0 HT H 0
0 0 0


|xc

, cm
8×8

= 2mc v

0 0 0
0 HT H,x 0
0 0 0


|xc

, km
8×8

= mc v2

0 0 0
0 HT H,xx 0
0 0 0


|xc

, (30)

fm
8×1

= {Px NT Pz HT 0}
T
|xc

. (31)

In Equations (30) and (31), the notation (.)|xc means that the expression (.) is evaluated at xc —the
current abscissa of the moving mass with respect to the element left node.

The above element matrices and vector are derived in the local coordinate system and they
are necessarily transferred to the global system. To this end, we considered the displacements of
a point in the beam with respect to the global x and z directions, u and w . These displacements
are related to the ones in the local x and z directions, u and w by:

u = u cosβ−w sinβ; w = u sinβ+w cosβ. (32)

Because the local rotation and the global one are identical, the vector of local degrees of freedom

(d) is related to the global one d = {du dw dγ}
T

by d = Td where the transformation matrix T
having the form:

T =



cos β 0 sin β 0 0 0 0 0
0 cos β 0 0 sin β 0 0 0

−sin β 0 cos β 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −sin β 0 0 cos β 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (33)

The global element stiffness and mass matrices are finally computed as:

k = TT kT, and m = TT mT. (34)
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Table 1. Hill’s elastic modulus for the CNTs [28]

CNT radius (Å) kr (GPa) lr (GPa) mr (GPa) nr (GPa) pr (GPa)
10 30 10 1 450 1

Similarly, the element mass, damping, stiffness matrices and nodal load vector in Equa-
tions (30) and (31) written in global coordinate system are as follows:

mm = TT mm T; cm = TT cm T; km = TT km T; fm = TT fm . (35)

The equation for the dynamic analysis of the inclined sandwich beam can now be written as:

M D̈+C Ḋ+K D = F
ex

(36)

where M, K are the instantaneous overall mass and stiffness matrices, respectively. These matri-
ces composed of the constant overall mass and stiffness matrices of the inclined beam itself and
the time-dependent element property matrices due to the moving mass. The overall damping
matrix C is obtained by adding the element damping matrix cm to the damping matrix of the in-
clined beam itself. The overall damping matrix of the inclined beam is proportional to the overall
mass and stiffness matrices by using the theory of Rayleigh damping with a damping ratio of 5%.

5. Numerical results and discussion

This section presents the numerical results on dynamic response of the inclined sandwich beam
subjected to the moving mass. Otherwise stated, a sandwich beam with L/h = 20, b = 0.4 m,
h = 1 m is considered. The beam is simply supported at both ends, and the geometric boundary
conditions are as follows:

At x = 0: u0(0, t ) = w0(0, t ) = 0,
At x = L : u0(L, t ) = w0(L, t ) = 0

with u0 and w0 are the displacements in x and z directions of a point on the x-axis, respectively.
The beam is asumed initially at rest, and all the displacements and velocities at time t = 0 equal
to zero.

The material properties of the matrix are Em = 10 GPa, ρm = 1150 kg/m3, νm = 0.3. The
armchair (10, 10) SWCNTs with ρCNT = 1400 kg/m3 and elastic constants tabulated in Table 1
are used as the reinforcements. The core of the sandwich beam is assumed pure matrix material.

Three numbers in parentheses, e.g. (2-1-1), are used below to denote the layer thickness ratio
of the beam layers, from the bottom layer to the top layer. A moving mass mc = 0.5ρm AL is
employed in all computations reported below. To facilitate the discussion, the dimensionless
parameter is introduced for dynamic magnification factor (DMF) Dd as follows:

Dd = max

(
w0(L/2, t )

wst

)
, (37)

where wst = L3mc g /48Em I is the static deflection of a horizontal beam made of fully core
material under mid-span concentrated load P = mc g , and I is the inertia moment of area of the
cross-section. A uniform increment time step ∆t =∆T /200 with ∆T is the total time needed for
the mass crossing the beam, is used for the Newmark procedure.

5.1. Formulation verification

In order to examine the accuracy and reliability of the present formulation, the effective Young’s
modulus and Poisson’s ratio of an agglomerated randomly oriented CNTRC beam obtained in the
present work are firstly compared with that of Daghigh et al. [28] in Figures 3 and 4, respectively.
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Figure 3. Comparison of effective Young’s modulus of CNTRC for VCNT = 0.1 and different
agglomeration parameters.

The result in the figures is obtained for a matrix phase with Em = 2.5 GPa, the Hill’s elastic moduli
for the CNTs listed in Table 1 and CNT volume fraction VCNT = 0.1. A good agreement between
the results of the present work with that of Ref. [28] is seen from the figures. The figures show
the significant influence of the agglomeration parameters on the effective elastic coefficients of
the CNTRC material. Specifically, the effective Young’s modulus increases with the increase of ξ,
and it approaches the largest value at ξ= ζ, corresponding to the full dispersion of CNTs. On the
contrary, the effective Poisson’s ratio decreases by increasing the parameter ξ, and then reaches
the smallest when ξ= ζ.

In Figure 5, the time histories for mid-span deflection of an inclined homogeneous beam
under a moving mass obtained by present formulation are compared with that of Mamandi and
Kargarnovin [25] for β = π/5 and various values of the mass velocity parameter, namely α = 0.1,
0.25 and 0.5. The velocity parameter α is defined as α = v/vcr , with vcr = (π/L)

√
E I /ρA is the

critical velocity of a moving force on a simply supported beam. Good agreement between the
time histories of the present work with that of Ref. [25] is noted from Figure 5.

Convergence of the derived formulation in evaluating the fundamental frequency parameter
λ2 = ωL2

√
ρm A/Em I (I = bh3/12) of a CNTRC beam is shown in Table 2 for VCNT = 0.075 and

two types of boundary conditions, namely fixed at one end and free at the other (CF), and simply
supported at both ends (SS). For the sake of comparison, the result obtained by 100 Timoshenko
beam elements of Yas and Heshmati [30] is also given in the table. The table shows the fast
convergence of the present formulation, and it needs only 14 and 18 elements for the CF and SS
beams to converge, respectively. The difference between the frequency parameters of the present
work with that of Ref. [30] may be resulted from the different beam theories employed in the two
works, and more important is that the effect of CNT agglomeration is not considered in [30].

Table 3 shows the convergence of the present formulation in computing the dynamic mag-
nification factor of the (2-1-2) and (2-2-1) sandwich beams for β = π/5, VCNT = 0.1, ζ = 1 and
v = 20 m/s. As can be seen from the table, for all considered cases the convergence is achieved
by using 28 elements. In this regards, a mesh of 28 elements is employed in all computations
reported below.
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Figure 4. Comparison of Poisson’s ratio of CNTRC for VCNT = 0.1 and different agglomera-
tion parameters.

Figure 5. Comparison of time histories for mid-span deflection of inclined homogeneous
beam with β=π/5.

5.2. Dynamic response

The dynamic response of the inclined CNTRC sandwich beam under the moving mass is inves-
tigated in this sub-section. In Table 4, the DMFs of the sandwich beam with an inclined angle
β = π/5 are tabulated for v = 50 m/s, ζ = 1 and various values of the agglomeration parameter ξ
and the CNT volume fraction VCNT as well as the layer thickness ratio. One can observe from the
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Table 2. Convergence of the formulation in evaluating fundamental frequency parameters
of a composite beam reinforced with randomly oriented CNTs for different boundary
conditions

Boundary
conditions

Present Ref. [30] Error (%)

ne = 10 ne = 12 ne = 14 ne = 16 ne = 18 ne = 20
CF 2.0573 2.0571 2.0570 2.0570 2.0570 2.0570 2.151246 4.58
SS 3.4432 3.4428 3.4426 3.4425 3.4424 3.4424 3.574603 3.84

Table 3. Convergence of the formulation in computing DMF of the sandwich beam rein-
forced agglomerated CNTs for β=π/5, VCNT = 0.1, ζ= 1 and v = 20 m/s

ne = 16 ne = 20 ne = 24 ne = 28 ne = 32

(2-1-2)
ξ= 0.2 0.7292 0.7292 0.7292 0.7292 0.7292
ξ= 0.5 0.6339 0.6341 0.6342 0.6342 0.6342
ξ= 1 0.5685 0.5687 0.5687 0.5687 0.5687

(2-2-1)
ξ= 0.2 0.7448 0.7448 0.7448 0.7448 0.7448
ξ= 0.5 0.6581 0.6583 0.6583 0.6584 0.6584
ξ= 1 0.5975 0.5977 0.5977 0.5977 0.5977

table the important role of the agglomeration parameter ξ on the DMF. At the given value of the
parameter ζ, the DMF decreases when increasing the parameter ξ, and the decrease is more sig-
nificant when the beam associated with a large CNT volume fraction value of VCNT. As expected,
the increase of the CNT volume fraction VCNT and the face thickness leads to a significant de-
crease in the DMF. The influence of the CNT volume fraction and the face thickness on the DMF,
however is governed by the agglomeration parameters. Looking at (1-1-1) sandwich beam with
ξ = ζ = 1 (uniformly distributed or no agglomeration), one can see from Table 4 that the factor
Dd decreases 71.45% when increasing the VCNT from 0 to 0.3, while the corresponding value is
just 17.09% for the sandwich beam with ξ= 0.1, ζ= 1 (severe CNT agglomeration). Examining the
table in more detail one can see that the dependence of the DMF Dd upon the layer thickness
ratio is significantly influenced by the agglomeration as well. Thus, one can conclude from the
table that the increase of the CNT volume fraction and the reinforced face thickness is the most
effective only when the CNTs agglomeration does not occur.

In Figure 6, the relation between the DMF Dd with the moving mass velocity v of the (1-2-1)
and (2-1-2) beams are depicted for β = π/5 and different CNT volume fractions and the layer
thickness ratios. Various remarks can be drawn from Figure 6. The CNT reinforcement, even
with a small amount of CNT volume fraction of 0.02 can reduce the DMF significantly. However,
the increase in the amount of reinforced CNTs is highly dependent on the CNTs agglomeration,
regardless of the layer thickness ratio. For the case of severe agglomeration, that is when the
two agglomeration parameters are far from each other such as ξ = 0.1, ζ = 1 in Figure 6a,c, the
DMF does not decrease considerably when increasing the CNT volume fraction VCNT, and this
tendency is more clearly for the beam associated with a larger VCNT. In contrast, in case of no
agglomeration, that is ξ= ζ= 1 in Figure 6b,d, the increase of the CNT volume fraction leads to a
sharp decrease in the DMF. By comparing Figure 6b with Figure 6d, one can see that the effect of
the layer thickness ratio on the DMF is really evident only for the case of no CNT agglomeration.
The dependence of the DMF upon the moving mass velocity is similar to that of the FGM beams
subjected a moving load [31], and the DMF repeatedly increases and decreases when increasing
the moving mass velocity v , and it then approaches a maximum value. The moving mass velocity
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Table 4. DMFs of sandwich beam with β=π/5 for v = 50 m/s, ζ= 1 and different values of
agglomeration parameter ξ and CNT volume fraction

ζ= 1 VCNT = 0 VCNT = 0.02 VCNT = 0.05 VCNT = 0.1 VCNT = 0.2 VCNT = 0.3

(1-0-1)
ξ= 0.1 1.4320 1.3066 1.2453 1.2096 1.1880 1.1815
ξ= 0.5 1.4320 1.2460 1.0677 0.8970 0.7337 0.6560
ξ= 1 1.4320 1.2341 1.0189 0.7839 0.5289 0.3955

(2-1-2)
ξ= 0.1 1.4320 1.3077 1.2466 1.2110 1.1889 1.1819
ξ= 0.5 1.4320 1.2476 1.0703 0.9001 0.7369 0.6589
ξ= 1 1.4320 1.2358 1.0218 0.7875 0.5323 0.3982

(1-1-1)
ξ= 0.1 1.4320 1.3111 1.2515 1.2165 1.1945 1.1873
ξ= 0.5 1.4320 1.2525 1.0787 0.9109 0.7486 0.6705
ξ= 1 1.4320 1.2409 1.0310 0.7992 0.5442 0.4088

(2-2-1)
ξ= 0.1 1.4320 1.3205 1.2652 1.2326 1.2120 1.2052
ξ= 0.5 1.4320 1.2662 1.1033 0.9436 0.7864 0.7096
ξ= 1 1.4320 1.2554 1.0582 0.8360 0.5842 0.4465

(1-2-1)
ξ= 0.1 1.4320 1.3214 1.2662 1.2335 1.2127 1.2056
ξ= 0.5 1.4320 1.2673 1.1044 0.9440 0.7856 0.7080
ξ= 1 1.4320 1.2565 1.0592 0.8357 0.5820 0.4433

(1-4-1)
ξ= 0.1 1.4320 1.3417 1.2958 1.2681 1.2502 1.2440
ξ= 0.5 1.4320 1.2967 1.1575 1.0143 0.8670 0.7918
ξ= 1 1.4320 1.2878 1.1177 0.9147 0.6678 0.5244

at which the DMF attains the maximum value is higher for the sandwich beam reinforced with
a higher CNT volume fraction, and this tendency is more visible for the beam with a larger face
layer thickness and no CNT agglomeration in the beam (Figure 6d).

The effect of the inclined angle on the dynamic response of the CNTRC sandwich beam is
shown in Figure 7, where the relation between the DMF with the moving mass velocity of the
(2-1-2) beam is depicted for VCNT = 0.1 and different agglomeration parameters. A significant
decrease of the DMF by increasing the inclined angle is seen from the figure, regardless of the
agglomeration parameters and the moving mass velocity. The influence of the inclined angle on
the dynamic response is more significant for the case of CNT agglomeration (Figure 7a) than for
the case of full dispersion (Figure 7b). Looking closely at Figure 7 one can see that although the
inclined angle can significantly change the DMF, the angle hardly alter the shape of the curves in
the figure as well as the velocity value at which the DMF attains the maximum value. The figure
also confirms again the above remark on the influence of the CNT agglomeration, namely the
DMF obtained for the beam without CNT agglomeration (Figure 7b) is considerably lower than
that of the beam with severe CNT agglomeration (Figure 7a).

The influence of the two agglomeration parameters on the dynamic response of the sandwich
beam is shown in Figure 8, where the variation of the DMF with the first agglomeration parameter
ξ of the (2-1-2) beam is depicted for β = π/5, VCNT = 0.1 and various values of agglomeration
parameter ζ. For ξ < ζ, the DMF decreases with an increase of the parameter ξ, and it attains
the lowest value when ξ= ζ, which corresponds to the case of uniform distribution of CNTs. For
ξ> ζ, the agglomeration degree is more serious when ξ is far from ζ, and the DMF increases again
when increasing the parameter ξ. One can see from Figure 8 that the larger difference between
the two agglomeration parameters is the higher DMF the beam has. Thus, the DMF is clearly
underestimated by ignoring the agglomeration of CNTs.
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Figure 6. Relation between DMF with moving mass velocity of sandwich beam for β=π/5
and different CNT volume fractions and layer thickness ratios.

Figure 7. The effect of inclined angle on the relation between the DMF and moving mass
velocity of (2-1-2) beam with VCNT = 0.1 and different agglomeration parameters.
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Figure 8. Variation of DMF with agglomeration parameter ξ of (2-1-2) beam with β= π/5,
VCNT = 0.1 and various values of agglomeration parameter ζ.

It would be remiss not to consider the influence of the agglomeration on the time history of the
inclined sandwich beam. Figure 9 displays the time histories for mid-span deflection of (2-1-2)
sandwich beam forβ=π/5, VCNT = 0.1, ξ= 1 and various values of the agglomeration parameters.
It can be seen from the figure that the mid-span deflection of the beam reaches the smallest value
when ζ = ξ = 1, and it attains the maximum value when the two agglomeration parameters are
farthest apart, regardless of the moving mass velocity. In addition, the beam tends to execute less
vibration cycles when it is subjected to the mass moving with a higher velocity. The time at which
the deflection reaches its maximum value is earlier as the two parameters closer to each other. In
addition, it seems that the change of the second agglomeration parameter ζ has a stronger effect
on the mid-span deflection of the beam, and this can be confirmed by comparing Figure 9b,d
with Figure 9a,c.

6. Conclusions

The dynamics of the inclined sandwich beams with agglomerated carbon nanotube reinforced
face sheets under a moving mass has been studied in the basis of the trigonometric shear
deformation theory. The Mori–Tanaka approach, taking into consideration of CNT agglomeration
is employed to estimate the material properties of the CNTRC layers. A novel finite element
formulation in which the transverse shear rotation is employed as an independent variable
is derived and used to establish the discretized equation of motion for the sandwich beams.
Dynamic characteristics, including the dynamic magnification factors and the time histories
for mid-span deflections are obtained for a simply supported sandwich beam with the aid of
Newmark method. The effects of the inclined angle, the CNT agglomeration, the mass velocity as
well as the layer thickness ratio on the dynamic response have been investigated in detail. The
present study yields the following main conclusions:

(1) The CNT reinforcement significantly improves the dynamic response of the inclined
sandwich beams. An increase in the CNTs volume fraction leads to a sharp decrease in
the dynamic magnification factor, especially for the beam with a low degree of the CNT
agglomeration.
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Figure 9. Time histories for mid-span deflection of (2-1-2) beam for β = π/5 and various
values of two agglomeration parameters.

(2) CNT agglomeration has an impact role in dynamic response of the sandwich composite
beams. The more severe agglomeration of the CNTs is, the higher dynamic magnification
factor the beam has.

(3) The inclined angle plays an important role on the dynamic response of the sandwich
composite beams, and the dynamic magnification factors of the beams are sharply
decreased by increasing the inclined angle.

(4) The layer thickness ratio has a pronounced effect on the dynamic behavior of the sand-
wich beam. An increase of the CNT reinforced surface layer thickness leads to a signifi-
cant decrease in the dynamic magnification factor, but this reduction is highly dependent
on the CNTs volume fraction and the CNT agglomeration.
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