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Abstract. The equilibrium gap principle offers a good trade-off between robustness and accuracy for regu-
larizing motion tracking, as it simply enforces that the tracked motion corresponds to a body deforming un-
der arbitrary loadings. This paper introduces an extension of the equilibrium gap principle in the large de-
formation setting, a novel regularization term to control surface tractions, both in the context of finite ele-
ment motion tracking, and an inverse problem consistent reformulation of the tracking problem. Tracking
performance of the proposed method, with displacement resolution down to the pixel size, is demonstrated
on synthetic images representing various motions with various signal-to-noise ratios.

Résumé. Le principe de l’écart d’équilibre offre un bon compromis entre la robustesse et la précision pour
la régularisation du suivi du mouvement, car il impose simplement que le mouvement suivi corresponde
à celui d’un corps se déformant sous l’effet de charges arbitraires. Cet article présente une extension du
principe de l’écart d’équilibre dans le cadre des grandes déformations, un nouveau terme de régularisation
pour contrôler les tractions de surface, les deux dans le contexte du suivi de mouvement par éléments finis,
et une reformulation « problème inverse » cohérente du problème de suivi de mouvement avec régularisation
mécanique. Les performances de suivi de la méthode proposée, avec une résolution de déplacement allant
jusqu’à la taille du pixel de l’image, sont démontrées sur des images synthétiques représentant divers
mouvements avec différents rapports signal-sur-bruit.

Keywords. Motion tracking, Mechanical regularization, Equilibrium gap principle, Finite element method,
Inverse problems.

Mots-clés. Suivi de mouvement, Régularisation mécanique, Principe de l’écart d’équilibre, Méthode des
éléments finis, Problèmes inverses.

Manuscript received 7 June 2023, revised 22 August 2023, accepted 26 September 2023.

ISSN (electronic) : 1873-7234 https://comptes-rendus.academie-sciences.fr/mecanique/

https://doi.org/10.5802/crmeca.228
https://orcid.org/0000-0003-2204-201X
mailto:martin.genet@polytechnique.edu
https://comptes-rendus.academie-sciences.fr/mecanique/


430 Martin Genet

1. Introduction

Motion tracking is an important field of image processing, with many application domains from
experimental mechanics to biomedical engineering. In experimental mechanics, especially in
the content of material parameter identification, it induced a true change of paradigm, as it is
no longer necessary to perform delicate experiments with simple kinematics like pure tension or
compression; instead rather complex experiments can now be performed, involving potentially
many deformation mechanisms, as long as the potentially complex kinematics can be tracked
based on surface or volume images [1–4]. In biomedical engineering, it allows for the quantita-
tive analysis of biomedical images, hence to derive objective and quantitative biomarkers for im-
proved diagnosis, either directly based on kinematics [5, 6], or by merging physical models and
imaging data into so called digital twins [7, 8].

Many approaches have been developed over the past decades, based on many variants of the
many aspects of the method, such as harmonic/Fourier versus intensity/features tracking, local
versus global approaches, etc. [9–12]. In this paper, we use an intensity-based global tracking
approach, which is the most natural to integrate our novel regularization approach, though
other tracking approaches could have been considered as well. Existing intensity-based global
approaches differ notably in their motion models (splines, finite elements, etc.), image similarity
metrics (mean squared error, structural similarity index, mutual information, etc.), optimization
methods (gradient descent, Gauss–Newton, Newton, etc.), etc. [11, 12].

One key question in motion tracking is the regularization, i.e., the a priori knowledge intro-
duced in the process to improve the quality of the tracking. It is required by the intrinsic ill-
posedness of the problem (we are looking for a vector field—the displacement—from an input
scalar field—the image—), as well as image finite resolution, noise and bias. As in any inverse or
optimization problem, efficient regularization requires a fine trade-off, here between providing
enough constraint to help the tracking quality and robustness, while providing enough freedom
so as to not interfere with the actual motion. In some sense regularization allows for a control,
through penalization, of the function space into which the solution is sought. Many regulariza-
tion terms have been proposed in the literature, such as Laplacian smoothing [13], fluid-like me-
chanical regularization [14], incompressibility [15], hyperelastic energy [16], etc., some of which
will be discussed in details in this paper. An optimal trade-off is arguably reached by the so-called
equilibrium gap regularization [2, 17], which puts no direct constraint on the kinematics, while
enforcing that the motion is close to a solution of a mechanics problem, in a sense that will be
specified later in the paper.

The equilibrium gap principle was originally formulated, at the discrete level and in the linear
setting, in the context of material parameter identification based on full-field measurement,
in [18], and was later used in the context of motion tracking notably in [19]. An extension to the
non linear setting was proposed, at the continuous level, in [17,20,21], with multiple applications
to biomedical images [22–24]. In this paper, we propose another extension, still in the nonlinear
finite strain setting but at the discrete level—hence allowing to better distinguish the equilibrium
gaps induced by the motion itself and the finite element discretization, as will be detailed in the
paper—, and show that it performs better than all previous formulations.

As already mentioned, and discussed in details later in the paper, the equilibrium gap reg-
ularization consists in enforcing that the obtained displacement is close to a solution of a me-
chanics problem with generic material behavior and arbitrary imposed surface tractions [17, 19].
To actually obtain some regularization of the problem, this arbitrariness must be handled, and
the surface tractions must be somehow controlled independently of the discretization of the dis-
placement field [19]. A surface Laplacian of the displacement was used as an additional regu-
larization term in [19], which unfortunately does not generalize to the large motion setting. One
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option would be to use a separate discretization for the displacement and the tractions, which
however would represent a significant technical difficulty. Instead, in this paper, we propose an
additional regularization term based on the surface gradient of the normal and tangential com-
ponents of the surface tractions, and show that it performs as expected.

The rest of the paper is organized as follows. We first formulate the general motion tracking
problem (Section 2.1), then we provide a short literature review on mechanical regularization
(Section 2.2), and we describe our proposed regularization term, including body (Section 2.3.1)
and boundary (Section 2.3.2) terms. Then, we give an inverse problem formulation to the reg-
ularized motion tracking problem (Section 2.4), and we describe our numerical strategy for the
resolution (Section 2.5). We finish the Methods section with a description of the synthetic images
that will be used for the validation of our method (Section 2.6), and then analyse tracking Results
in the case of rigid motion (Section 3.1), non rigid but homogeneous motion (Section 3.2) and
non homogeneous motion (Section 3.3), as well as in the case of refined meshes (Section 3.4).

2. Methods

2.1. The motion tracking problem

Let us start by precising the problem setting and notations. We consider I0 and I , two images (i.e.,
image intensity fields) representing the same body B at two instants t0 and t :

I0 :

{
□0 →R

X 7→ I0(X ),
I :

{
□→R

x 7→ I (x),
(1)

where □0 and □ are the image domains at t0 and t , which are usually identical. The domains
occupied by the body B at t0 and t are denoted by Ω0 and ω, respectively. The problem is to
find the smooth mapping Φ, or equivalently the smooth displacement field U , between material
points of the reference and deformed domains:

Φ :

{
Ω0 →ω

X 7→ x =Φ(X ),
U :

{
Ω0 →R3

X 7→U (X ) :=Φ(X )−X ,
(2)

where X and x denote the position of a given material point in the reference and deformed
configurations, respectively. Due to its intrinsic ill-posedness, the problem is formulated as a
regularized minimization problem:

Find U sol := argmin{U }

{
J (U ) := (1−β)

J ima(U )

J ima
0

+β J reg(U )

J reg
0

}
, (3)

where J ima is the image similarity metric, or “correlation energy”, J reg is the regularization
energy, J ima

0 and J reg
0 are normalization terms, and β defines the regularization strength. The

normalization terms J ima
0 and J reg

0 allow for the consistent addition of “energies” with very
different physical units, and are typically taken equal to the value of J ima and J reg for a chosen
displacement field [19], for instance a plane wave displacement with a period of 10 finite element
characteristic lengths and a unit magnitude. The correlation energy is assumed to be convex, at
least in the neighborhood of the solution, though it is in general not quadratic.

In image intensity-based global approaches, the following correlation energy is generally used:

J ima(U ) := 1

2

∫
Ω0

(I (X +U (X ))− I0(X ))2 dΩ0. (4)

Other metrics have been proposed; however, we retain this one notably because it can be
differentiated straightforwardly.
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We will employ the finite element method to discretize this problem, such that the displace-
ment field is approximated as U (X ) ≈ tN(X ) ·U with N the array of shape functions. Thus, the
problem becomes a finite dimensional problem:

Find Usol := argmin{U}

{
J (U) := (1−β)

J ima(U)

J ima
0

+β J reg(U)

J reg
0

}
, (5)

where

J ima(U) := 1

2

∫
Ω0

(
I
(

X + tN(X ) ·U
)
− I0(X )

)2
dΩ0. (6)

Note that even without mechanical regularization, finite element discretization introduces some
kind of kinematical regularization, as the richness of the approximation space is controlled by
the mesh size and shape functions degree.

2.2. Short literature review on mechanical regularization

Many regularization terms have been proposed in the literature, see for instance [11]. Here we
will briefly recall the major classes of proposals with mechanical content. All these approaches
require to define a constitutive law, though it does not need to model the actual behavior of the
tracked body: generic material laws can be used, and the material stiffness simply controls the
strength of the regularization.

Elastic [25] and hyperelastic [16] regularizations have been proposed, which consist in penal-
izing the strain energy of the body:

J reg,el(U ) :=
∫
Ω0

ρ0Ψ(U )dΩ0, (7)

where ρ0 is the reference mass density and Ψ the reference specific free energy—in practice,
generic laws such as Hooke or neohookean are usually used. This was probably inspired by the
fact that the elastostatic problem can often be formulated as a minimization problem with the
system potential energy that is the sum of the elastic and loading potential energies. However,
by only considering the elastic energy beside the image similarity metric, and no specific loading
energy, it is implicitly assumed that the only load applied to the body is a body force associated
to image dissimilarity, and no boundary tractions. Moreover, this regularization penalizes strain
itself, as only rigid body motions have zero elastic energy.

Another, arguably more mechanically consistent, regularization approach is based on the
equilibrium gap principle [18]. It was formulated in the linear setting, and directly at the discrete
level, in [19, 26]. We first define K := ∫

Ω0
B : K : tBdΩ0 the system stiffness matrix, with K the ma-

terial stiffness tensor (like for elastic regularization, a generic isotropic Hooke law is usually used,
such that K = λ1⊗1+2µ1 with λ and µ the Lamé constants) and B the array of shape functions

symmetric gradients (i.e., such that ε(X ) := (Grad(U )(X ))sym = (1/2)(t Grad(U )(X )+Grad(U )(X ))

≈ tB(X ) ·U). Then the regularization is expressed as

J reg,eq,lin(U) := 1
2

tU · tK∗ ·K∗ ·U, (8)

where K∗ is a modified system stiffness matrix in which all lines associated to boundary de-
grees of freedom at which the external force in unknown have been set to 0. The implicit
assumption here is that the body is in equilibrium with some arbitrary/unknown boundary
tractions (though the smoothness of the surface displacement is usually controlled by an addi-
tional surface Laplacian term [19]) and no body force (though known body forces such as gravity
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could easily be taken into account). Thus, it does not penalize strain, only deviation from equi-
librium, as any equilibrium solution, even with very large strain, cancels the equilibrium gap
“energy”.

A first attempt toward extending this principle to the large deformation nonlinear setting has
been made in [17]. The main idea is to directly penalize the non verification of the internal linear
momentum equilibrium equation (Div(P ) = 0, where P is the first Piola–Kirchhoff stress tensor
associated to the displacement field U through the chosen constitutive law) through the following
equivalent norm:

J reg,eq,cont(U ) := 1

2

∑
E

∫
E
∥Div(P )∥2 dE + 1

2h

∑
F

∫
F

[[P ·N ]]2 dF (9)

where E is the set of finite elements, F the set of interior faces, N the faces normal, and h a char-
acteristic length of the finite element discretization. Note that the internal angular momentum
equilibrium (t P · t F−1 = F−1 ·P , where F is the deformation gradient associated to the displace-
ment field U ) is usually exactly verified through the constitutive relation, hence it does not need
to be penalized. Thanks to this equivalent norm (inspired by discontinuous Galerkin approaches;
it is necessary because under standard finite element discretization the finite element stress field
is discontinuous across finite element faces, so that its divergence is not defined there, and thus
cannot be directly integrated over the mesh), all terms of the regularization (9) are proper el-
ement or face integrals and can be computed using standard finite element integration tech-
niques (for instance, in practice, if one uses first order polynomial shape functions, the stress
field is constant by element, so that the first term vanishes, and one simply has to compute the
normal stress jump across all internal faces of the mesh). Thus, the underlying assumption is the
same as with regularization (8), i.e., that the body is in equilibrium with some arbitrary bound-
ary tractions and no body force, although the geometrically nonlinear formulation allows to cor-
rectly handle large deformations, including large rotations. Nevertheless, one limitation of this
approach is that the penalization (9) encompasses not just the equilibrium gap arising from the
potential non-equilibrium nature of the considered displacement field (i.e., as it might not be
an equilibrium solution of a mechanical problem), but also accounts for the equilibrium gap re-
sulting from the finite element discretization itself (i.e., even an actual finite element solution of
a mechanical problem leads to a nonzero regularization energy (9), as a finite element solution
verifies the equilibrium equation only weakly, not strongly). This calls for an improvement of the
approach, which is described in the following section.

2.3. The nonlinear discrete equilibrium gap regularization

2.3.1. Body stresses regularization

In order to avoid the limitation of the regularization term (9), we propose here a novel
formulation of the equilibrium gap principle, still in the general context of nonlinear mechanics,
but which allows to completely exclude the discretization-induced equilibrium gap from the
regularization term. The general idea is still to penalize the non-verification of the internal linear
momentum balance (Div(P ) = 0 inΩ0, since the body force is neglected for the sake of simplicity,
though it could be considered as well). However, after standard finite element discretization, the
divergence of the stress tensor is not defined on the element faces (in 3D) or edges (in 2D) thus it is
not square integrable, so we define its projectionΠb onto a space of square integrable functions,

typically a standard continuous finite element space denoted V h :

Πb ∈V h
∣∣∣∣ ∫
Ω0

Πb ·Π∗
b =−

∫
Ω0

Div(P ) ·Π∗
b ∀Π∗

b ∈V h
0 , (10)
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where V h
0 denotes the space of functions of V h that vanish at the boundary, i.e., Π∗

b (∂Ω0) = 0.

Indeed, for now we are only interested in body equilibrium gap. Thus, after integration by parts,
we obtain:

Πb ∈V h
∣∣∣∣ ∫
Ω0

Πb ·Π∗
b =

∫
Ω0

P : Grad(Π∗
b ) ∀Π∗

b ∈V h
0 . (11)

Similar projections, though often performed element-by-element, are used in a posteriori error
estimation methods, to quantify the distance between the finite element solution and an actual
equilibrium solution, i.e., the discretization error [27,28]. However, the objective here is opposite,
i.e., we want to discard the discretization error and quantify the intrinsic equilibrium gap of the
considered finite element field.

Nevertheless, thanks to the proposed projection, we can actually define the regularization
term in a consistent manner:

J reg,eq
b (U ) := 1

2

∫
Ω0

Πb ·Πb dΩ0. (12)

A key question is the calculation of this term in the finite element context. Projection (11) simply
leads to the following linear system:

M ·Πb =Rb (13)

withM := ∫
Ω0
N · tNdΩ0 the mass matrix,Πb such thatΠb = tN ·Πb , and

(Rb)i :=


∫
Ω0

P : Grad(Ni )dΩ0 if i body d.o.f.

0 if i boundary d.o.f.,
(14)

where Ni is the (vector) shape function associated to the degree of freedom (d.o.f.) i , i.e., the i th
line of theN array. Thus, the norm (12) can be expressed as

J reg,eq
b (U) = 1

2
tΠb ·M ·Πb = 1

2
tRb ·M−1 ·Rb . (15)

Note that if we linearize this expression, we obtain Rb ≈ K∗ ·U and thus J reg,eq
b ≈ (1/2)tU ·

tK∗ ·M−1 ·K∗ ·U, i.e., an expression similar to (8), the mass matrix allowing to make the term
consistent when refining the mesh.

2.3.2. Boundary tractions regularization

The regularization term proposed in Section 2.3.1 basically enforces that the motion solution
corresponds to the motion of a body in equilibrium with some arbitrary tractions applied on its
boundary. The arbitrary nature of these tractions can be problematic, especially as the computa-
tional mesh is refined and the variations of these tractions is not controlled. In [19], it was pro-
posed to add a penalization term corresponding to the Laplacian of the boundary displacement,
which however does not generalize to the large motion context. Thus, here we propose a new
term, consistent with the body term that involves internal stresses directly, which consists in pe-
nalizing the surface tractions gradients, an idea already considered in [29].

It is important, however, to note that surface tractions can vary intrinsically but also because
of the surface curvature. For instance, a simple homogeneous pressure applied onto a curved
surface corresponds to a vector that varies in space. To avoid penalizing the surface curvature
itself, we propose to penalize the surface gradient of the normal and tangential components of
the boundary tractions separately. In 2D, the tangential part is scalar; in 3D we propose to take
the norm of the tangential force vector.

Let us start with the regularization term associated to the normal traction, i.e., Fn(U ) :=
t N ·P (U )·N where N is the body outward normal. The problem is the same as for the equilibrium
equation, i.e., the surface gradient of the boundary tractions associated to a standard finite
element displacement field is not defined on the boundary elements edges (in 3D) or points
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(in 2D) thus it is not integrable. Hence we propose to use the same technique, i.e., we first define
its projection onto a space of square integrable functions, again a typical finite element space,
continuous on the domain boundary and denoted ∂V h :

Πn ∈ ∂V h
∣∣∣∣ ∫

∂Ω0

Πn ·Π∗
n =−

∫
∂Ω0

Grads (Fn) ·Π∗
n ∀Π∗

n ∈ ∂V h , (16)

where Grads (Fn) = Π · Grad(Fn) with Π := 1 − N ⊗ N the projection operator onto the domain
boundary [30]. After integration by parts of the right hand side we obtain:

Πn ∈ ∂V h
∣∣∣∣ ∫

∂Ω0

Πn ·Π∗
n =

∫
∂Ω0

Fn ·Divs (Π∗
n) ∀Π∗

n ∈ ∂V h , (17)

where Divs (Π∗
n) = tr(Π ·Grad(Π∗

n) ·Π) [30]. Then, the regularization term is actually defined as:

J reg,eq
n (U ) := 1

2

∫
∂Ω0

Πn ·Πn d∂Ω0. (18)

The discretization procedure is similar to the bulk term (15):

J reg,eq
n (U) = 1

2
tRn ·M−1

∂Ω0
·Rn (19)

whereM∂Ω0 := ∫
∂Ω0

N · tNd∂Ω0 is the “mass” matrix of the domain boundary, and

(Rn)i :=
0 if i body d.o.f.∫

∂Ω0

Fn ·Divs (Ni )d∂Ω0 if i boundary d.o.f.
(20)

Regarding the regularization term associated to tangential tractions, in 2D the tangential force is
a scalar, defined as Ft ,2D (U ) := t T ·P (U )·N where T is the body tangential vector, so it is the same
formulation as the normal traction (19):

J reg,eq
t ,2D (U) = 1

2
tRt ,2D ·M−1

∂Ω0
·Rt ,2D (21)

where

(Rt ,2D )i :=
0 if i body d.o.f.∫

∂Ω0

Ft ,2D ·Divs (Ni )d∂Ω0 if i boundary d.o.f.
(22)

In 3D the tangential force is a vector, defined as Ft ,3D (U ) := Π · (P (U ) ·N ), and we propose to
simply penalize the gradient of its norm, which leads to:

J reg,eq
t ,3D (U) = 1

2
tRt ,3D ·M−1

∂Ω0
·Rt ,3D (23)

where

(Rt ,3D )i :=
0 if i body d.o.f.∫

∂Ω0

∥Ft ,3D∥ ·Divs (Ni )d∂Ω0 if i boundary d.o.f.
(24)

2.4. Inverse problem reformulation

Because the proposed regularization has a strong mechanical sense, the regularized tracking
problem can be reformulated as an inverse problem, where the unknown is the traction field
applied on the domain boundary, and which can be formulated as a constrained optimization
problem:

Find T sol := argmin{T }

{
J (T ) := (1−β)∥I ◦Φ(T )− I0∥2

Ω0
+β∥T ∥2

∂Ω0

}
, (25)

where Φ(T ) is the mapping solution associated to the traction field T , i.e., which verifies consti-
tutive and equilibrium equations, and β is the regularization strength. Norms will be specified
later on. The meaning of this formulation is that we search for a traction field which generates
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a displacement field (through a chosen generic mechanical behavior and standard mechanical
equilibrium) that allows to match the two image intensities, the regularization term allowing to
control the smoothness of the traction field. In optimization, such constraints can be enforced
strongly through Lagrange multipliers, or approximately through penalization [31]. Here we pro-
pose to simply use penalization, such that the problem becomes:

Find (T sol,U sol) := argmin{T ,U }

{
J (T ,U ) := (1−β)∥I ◦Φ− I0∥2

Ω0

+ β∥T ∥2
∂Ω0

+γ
(
∥Div(P )∥2

Ω0
+∥t P · t F−1 −F−1 ·P∥2

Ω0
+∥P ·N −T ∥2

∂Ω0

)}
, (26)

where γ is the penalization coefficient, while the three additional terms represent the balance
of linear momentum (without imposed force, though it could be introduced straightforwardly),
the balance of angular momentum (which is usually verified exactly thanks to the constitutive
framework), and the balance with applied tractions, respectively. In this formulation, Φ, F and P
are the mapping, deformation gradient and first Piola–Kirchhoff stress tensor associated to the
displacement field U . Again, the norms will be specified later on. To simplify the formulation,
we can remove the traction field variable by enforcing strongly the last balance term, i.e., T =
P (U ) ·N , leading to the following formulation:

Find U sol := argmin{U }

{
J (U ) := (1−β)∥I ◦Φ− I0∥2

Ω0
+β∥P ·N∥2

∂Ω0
+γ∥Div(P )∥2

Ω0

}
. (27)

This formulation corresponds formally (i.e., using the right norms) to the original formulation (3),
when using J reg,eq

b for the bulk regularization and J reg,eq
n/t for the surface terms. This gives another

point of view on each term, i.e., that the bulk term can be seen as a penalization term, while
the actual regularization comes from the surface terms. Also, it is important to notice that this
reformulation only makes sense for “equilibrium gap” regularization terms: if one would consider
the motion tracking problem (3) with elastic regularization term (7) as an inverse problem, the
associated direct problem would not have a proper physical meaning, as it would correspond to
a body deforming under a body force induced by the image mismatch and no boundary force.

2.5. Numerical resolution

After describing existing and new regularization terms, we recall that the general motion tracking
problem formulation was given by Equation (5), with the image correlation term J ima given by
Equation (6), and where the regularization term J reg may take the form J reg,el (Equation (7)),
J reg,eq,cont (Equation (9)), J reg,eq

b (Equation (12)), J reg,eq
n (Equation (18)), J reg,eq

t (Equation (22) in
2D, Equation (24) in 3D), or combinations of such terms. Indeed, as already discussed, it is often
necessary to combine bulk and boundary terms. In such cases one might want to use different
weights for each regularization term [19]; however, to simplify the analysis of the performance of
the various terms considered here, we propose to simply sum them, such that they have the same
weight, and there is only one parameter controlling the regularization strength, namely β.

Minimization problem (5) is actually formulated as a root finding problem:

U | ∇J(U) = (1−β)∇Jima(U)+β∇Jreg(U) = 0 (28)

where the gradient of the image term is simply:

∇Jima(U) :=
∫
Ω0

(
I
(

X + tN ·U
)
− I0

) ∂I

∂x

(
X + tN ·U

)
·NdΩ0, (29)

and the gradients of the proposed regularization terms are:

∇Jreg,eq
b (U) := t dRb(U) ·M−1 ·Rb(U) (30)
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with

(dRb)i j :=


∫
Ω0

Grad(Ni ) :
∂P

∂F
: Grad(N j )dΩ0 if i body d.o.f.

0 if i boundary d.o.f.,

(31)

and
∇Jreg,eq

n/t (U) := t dRn/t (U) ·M−1
∂Ω0

·Rn/t (U) (32)

with

(dRn/t )i j :=


0 if i body d.o.f.∫
∂Ω0

Divs (Ni )
∂Fn/t

∂F
: Grad(N j )d∂Ω0 if i boundary d.o.f.

(33)

We propose to solve this problem using a Gauss–Newton method, which was shown to have good
convergence properties for the image correlation problem in the thorough compared analysis of
the performance of multiple variants of the method proposed in [32]. Details were given in [17] in
the context of the regularization term J reg,eq,cont (Equation (9)). The key point is that the Jacobian
associated to the image term only contains the image gradient product term, not the image
hessian term which usually degrades the convergence due to the double derivative of the noise; in
principle the second derivation of the regularization terms could be computed exactly, however
it is tedious and not necessary, so we employ the same approach as for the image term. Thus, at
each Newton iteration we solve the following linear system:

∆U |
(
(1−β)∇∇Jima +β∇∇Jreg

)
·∆U=−(

(1−β)∇Jima +β∇Jreg) , (34)

where

∇∇Jima :=
∫
Ω0

N ·
(
∂I

∂x
·

t∂I

∂x

)
· tNdΩ0, (35)

which corresponds to a mass matrix weighted by the deformed image gradients, and

∇∇Jreg,eq
b/n/t := t dRb/n/t ·M−1

Ω0/∂Ω0
·dRb/n/t . (36)

As a stopping criterion for the Newton iterations, we propose to simply use the relative displace-
ment with a prescribed tolerance, which is well adapted for the motion tracking problem:

err := ∥∆U∥
∥U∥ < tol. (37)

Nevertheless, in practice, we found that such Gauss–Newton iterations do not always converge
toward a solution for such a highly stiff problem. Indeed, they often lead to inverted elements,
for which the mechanical model cannot be evaluated. This is a situation the regularization is
supposed to prevent through the use of a proper energy potential with an infinite energy barrier
(for instance, the Ogden–Ciarlet–Geymonat has a − ln(J ) term, where J denotes the volume
change [33, 34]), but the Newton iterations can sometimes pass this energy barrier. Indeed, it is
possible, and it is actually the case for the Ogden–Ciarlet–Geymonat potential, that even though
the potential is only defined for non-inverted elements, the expression of its derivative is well
defined for inverted elements. This is a common issue in large deformation computation, which
is usually solved using adaptation time stepping [35,36]. However, it is not possible here because
the “time” increment is controlled by the image temporal discretization. Hence, we augment
the Newton iterations with a backtracking line search [37] that prevents the passing of energy
barriers.

Finally, the image series integrator is described in Algorithm 1, the nonlinear solver in Algo-
rithm 2, and the line search in Algorithm 3.

The richness of the displacement solution space is controlled by the finite element mesh
and interpolation degree. When using a coarse mesh, with many pixels per element, the mesh
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Initialisation
Read initial image I0

Instantiate finite element solution: U← 0
foreach frame index t = 1,2, . . . do

Read current image It

Compute current displacement: U← nonlinear_solver(I0, It )
end

Algorithm 1: Image series integrator. The nonlinear_solver is detailed Algorithm 2. Note
that in this basic version, the Newton iterations at frame t are naturally initialized with the
converged solution at frame t −1. A multi-level version is presented in Algorithm 4.

while err > tol do
Assemble residual, Jacobian: ∇J, ∇∇J
Compute solution increment: ∆U← linear_solver(∇J,∇∇J)

Update error: err ← ∥∆U∥
∥U∥

Compute relaxation: α← line_search(U,∆U)
Update solution: U←U+α ∆U

end

Algorithm 2: Nonlinear solver. In practice we use a tolerance of tol = 1%.

Initialisation
Compute initial energy: J0 ← J (U)
Initialise relaxation counter: k ← 0

while J > J0 do
Define current relaxation: α← f k

Compute current energy: J ← J (U+α ∆U)
Update relaxation counter: k ← k +1

end

Algorithm 3: Backtracking line search. In practice we use a backtracking factor of f = 0.5.
Here J refers to the full cost function, encompassing both the image and regularization
terms, as defined Problem (5).

itself acts as some kind of kinematical regularization, limiting the size of the displacement
solution space. Conversely, when solving for very fine meshes, for instance when elements reach
the size of the image pixels, convergence becomes problematic as the displacement solution
space becomes huge and there is very little information per element; in this case mechanical
regularization compensates for the lack of information, but it might not be enough to obtain
a robust convergence of the nonlinear iterations. Thus, multi-resolution is often necessary to
perform motion tracking on very fine meshes [9, 19], which consists in performing tracking
on successively refined meshes, initiating the nonlinear iterations of a given frame and given
refinement level by the converged solution obtained at the same frame but at the previous
refinement level, instead of the converged solution obtained at the same refinement level but
at the previous frame, as it is naturally the case in the single-refinement-level Algorithm 1. Since
two triangulations of the same geometric domain might not overlap, for instance if the domain
has a curved boundary, and especially if the triangulations have different characteristic sizes, one
cannot simply interpolate the displacement field from the coarse grid to the fine one. Instead we
propose to use a projection. The multi-resolution frame integrator is detailed in Algorithm 4.
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foreach refinement level k = 1,2, . . . do
Initialisation

Read initial image I0

Instantiate finite element solution Uk

foreach frame index t = 1,2, . . . do
Read current image It

if k > 1 then
Initialize displacement: Uk ←Uk−1

t

Compute current displacement: Uk ← nonlinear_solver(I0, It )
Save displacement: Uk

t ←Uk

end
end

Algorithm 4: Image series integrator with multi-resolution. Compared to the single-
refinement-level Algorithm 1, here the Newton iterations at frame t of refinement level k
are initialized with the converged solution at frame t of refinement level k −1.

In order to speed up the multi-resolution algorithm, pyramidal filtering can be applied to the
images, such that the tracking of successively refined meshes is performed on successively more
resolved images, until the final mesh is used to track the original high-resolution images [38];
however, for the sake of simplicity, here we use the full images at all mesh refinement levels.

These algorithms have been implemented in an open-source library [39] written in python and
based on the FEniCS [40, 41] and VTK [42] libraries. It is currently freely available online at https:
//gitlab.inria.fr/mgenet/dolfin_warp. We also provide the code to reproduce the results of this
paper under the form of jupyter notebooks [43]: static versions are given in the Supplementary
material of the paper while interactive versions are currently available online at https://mgenet.
gitlabpages.inria.fr/N-DEG-paper-demos/index.html.

2.6. Synthetic data

In order to establish the tracking performance of the proposed method, we generated synthetic
images corresponding to various objects (simple square, cardiac-like ring) and motions (rigid
translation and rotation, homogeneous compression and shear, cardiac-like contraction and
twist) with various noise levels. To focus on the regularization term itself, we limited ourselves
to highly resolved (though the impact of image resolution could be investigated as well [44]),
and textured (with used a tagged-MRI-like pattern, see [45]) images. The images occupy the
spatial domain 0;12 (arbitrary unit), the temporal domain 0;1 (arbitrary unit), are discretized with
100×100 pixels spatially and 21 frames temporally.

For the simple (analytical) motion of the square, we define the initial domain asΩt
0 := 0.1; 0.7×

0.2; 0.8 for the translation case and Ωr,c,s
0 := 0.2; 0.82 for the rotation, compression and shear

cases. The motion models are given by

x t (X , t ) := X + t D with D := (
0.2
0

)
xr (X , t ) := X0 +R · (X −X0) with X0 := (

0.5
0.5

)
, R :=

(+cos(θ) −sin(θ)
+sin(θ) +cos(θ)

)
, θ = tπ

4

xc (X , t ) := X0 +F c · (X −X0) with X0 := (
0.5
0.5

)
, F c :=

(p
1−2t0.2 0

0 1

)
xs (X , t ) := X0 +F s · (X −X0) with X0 := (

0.5
0.5

)
, F s := (

1 0.2
0 1

)
,

(38)

which represent a 0.2 (arbitrary unit) translation, a π/4 rad rotation, a 20% compression and a
20% shear, respectively.

https://gitlab.inria.fr/mgenet/dolfin_warp
https://gitlab.inria.fr/mgenet/dolfin_warp
https://mgenet.gitlabpages.inria.fr/N-DEG-paper-demos/index.html
https://mgenet.gitlabpages.inria.fr/N-DEG-paper-demos/index.html
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Then, for each case, the image generation consisted in the following steps: for each frame
(time t ), for each pixel (position x), the initial (i.e., first time frame) position of the pixel (X (x, t ))
was determined through inversion of the mappings (38) and the intensity was given by

I (x, t ) := I0(X (x, t )) with I0(X ) :=
√∣∣∣∣sin

(
πX

s

)∣∣∣∣ ∣∣∣∣sin

(
πY

s

)∣∣∣∣. (39)

Note that a more complex imaging model [44] could have been considered as well.
For the cardiac-like case, a ring (center X0 := (

0.5
0.5

)
, internal radius 0.2, external radius 0.4

(arbitrary units)) was defined, and an hyperelastic (neo-Hookean and Ogden–Ciarlet–Geymonat
potentials with unit Young modulus and 0.3 Poisson coefficient) finite element model with very
fine mesh (element size equal to the image pixel size) was run with prescribed displacement
applied to the internal (inward displacement of 0.1 and rotation of−π/4 rad) and external (inward
displacement of 0.05 and rotation of −π/8 rad) edges, mimicking the in-plane motion of a cardiac
slice. And to generate the images, we employed the following approach: for each time frame
(time t ) the reference mesh was warped by applying the computed displacement field, and
the displacement field was projected onto the image, such that for each pixel (position x) the
reference position of the pixel was computed as X (x, t ) = x −U (x, t ). Finally, the texture model
(39) was applied.

Noise was eventually added to the images, characterized by the signal-to-noise ratio (SNR).
The magnitude of the signal here is 1, and we added random Gaussian noise with zero mean
and standard deviation of 0.1, 0.2 and 0.3, corresponding to SNR of 10, 5 and 3.3, respectively.
Note that, like for the imaging model, more complex noise models, for instance including spatial
and/or temporal correlations [44], could have been considered.

3. Results and discussion

To establish the tracking performance of the proposed method (described in Section 2.3), we
now present tracking results on various synthetic images (described in Section 2.6), for various
regularization terms, namely elastic (Equation (7), continuous version of the equilibrium gap
(Equation (9)), discrete version of the equilibrium gap (Equation (12)) and discrete version of the
nonlinear equilibrium gap including surface traction regularization terms (Equations (12), (18),
(22) and/or (24))). For each regularization term, we considered both a small strain approximation
with a Hooke strain energy potential, and a large strain formulation with the neo-Hookean and
Ogden–Ciarlet–Geymonat potentials. For all models, we considered a unit Young modulus and
null Poisson ratio.

The tracking performance is evaluated in terms of a normalized tracking error defined as

err :=

√
1

T

∫ T

0

1

|Ω0|
∫
Ω0

∥U −U ex∥2

√
1

T

∫ T

0

1

|Ω0|
∫
Ω0

∥U ex∥2

, (40)

where U is the tracked displacement and U ex is the ground truth used to generate the images.

3.1. Rigid body motion

We start with simple rigid motions, namely pure translation and pure rotation. Figures 1 and 2
show normalized tracking error as a function of regularization strength β ∈ 0;1, for various levels
of image SNR and for various regularization terms. In the plots, dots represent noise realizations,
and lines represent their average.
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Figure 1. Translation case. (a) Normalized displacement error (40) as a function of regularization

strength (parameter β), for various levels of image noise, for various regularization terms (first

row: J reg,el (7); second row: J reg,eq,cont (9); third row: J reg,eq
b (12); fourth row: J reg,eq

b (12), J reg,eq
n

(18) and J reg,eq
t ,2D (22)), and for various constitutive laws (left column: small strain, Hooke law; right

column: large strain, neo-Hookean and Ogden–Ciarlet–Geymonat law). For such a simple motion,

basically all regularization terms allow to reduce the tracking error. (Continued on next page.)
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Figure 1 (cont.). (b) Tracking solutions for the discrete version of the nonlinear equilibrium
gap (12) including surface traction regularization (18) and (22), with regularization strength
β = 0.1, for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is
visually satisfying for all noise levels.

Let us first discuss the pure translation case, i.e., Figure 1. For noiseless images, the tracking
error is below 0.1% for all regularization terms and all regularization strengths. Increasing noise
level leads to an increase of both the tracking error mean and dispersion. For all considered
regularization terms, increasing the regularization strength decreases the mean error, though
the dispersion is little impacted. Basically, for such a simple motion, all regularization terms
perform rather well. This is explained by the fact that a rigid translation cancels all considered
regularization terms, allowing to filter noise-induced spurious motions without interfering with
the tracking itself.

One can see that elastic (first row in Figure 1a) and continuous equilibrium gap (second row in
Figure 1a) terms behave better than the discrete equilibrium gap terms (third and fourth rows in
Figure 1a). This is due to the fact that these terms basically prevent the mesh from deforming, or
from deforming in a non affine way, which is compatible with the exact solution here, hence the
good tracking performance. However, as we will see later, this constraint will prove problematic
for more complex motions.

Focusing on the regularization term introduced in this paper (third and fourth rows in Fig-
ure 1a), one can see that the error dispersion becomes significant for images with low SNR. This
is due to the fact that these terms represent a much lighter constraint on the displacement field,
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Figure 2. Rotation case. (a) Normalized displacement error (40) as a function of regulariza-
tion strength (parameterβ), for various levels of image noise, for various regularization terms
(first row: J reg,el (7); second row: J reg,eq,cont (9); third row: J reg,eq

b (12); fourth row: J reg,eq
b (12),

J reg,eq
n (18) and J reg,eq

t ,2D (22)), and for various constitutive laws (left column: small strain, Hooke
law; right column: large strain, neo-Hookean and Ogden–Ciarlet–Geymonat law). The linear
elastic regularization term interferes with the tracking because finite rotation lead to nonzero
infinitesimal strain, thus generating spurious elastic energy. (Continued on next page.)
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Figure 2 (cont.). (b) Tracking solutions for the discrete version of the nonlinear equilibrium
gap (12) including surface traction regularization (18) and (22), with regularization strength
β = 0.1, for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is
visually satisfying for all noise levels. (Continued on next page.)

solely enforcing that it is close to an equilibrium solution; this is, however, the very reason why
it performs well on basically any motion as we will see later. Nevertheless, one can also see that
adding the boundary traction terms (fourth row in Figure 1a), which penalizes the non smooth-
ness of the normal and tangential tractions at the edges, helps decreasing the tracking error mean
and dispersion compared to bulk terms only (third row in Figure 1a).

Let us now discuss the pure rotation case, i.e., Figure 2. For the nonlinear elastic (upper right
in Figure 2a) and all equilibrated (second, third and fourth rows in Figure 2a) regularization
terms, the conclusions are the same as for the pure translation case. For the linear elastic
regularization term (upper left in Figure 2a), however, the result is quite different. Indeed, if
increasing slightly the regularization strength allows to decrease the tracking error, increasing
it further completely degrades the tracking. This is due to the fact that finite rotations generate
nonzero infinitesimal strains, thus nonzero elastic energy; hence the algorithm, which tries to
minimize this energy, tends to underestimate rotations (see Figure 2c). This is not the case for
hyperelastic regularization (upper right in Figure 2a), as in the finite strain setting, rigid rotations
do not generate any strain. Interestingly, this is also not the case for other regularization terms
with linearized kinematics and behaviors (left column, second to fourth rows in Figure 2a),
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Figure 2 (cont.). (c) Tracking solutions for the linear elastic regularization term (7), with
regularization strength β = 0.8, for various noise levels: 0 (red), 0.1 (blue), 0.2 (green),
0.3 (purple). The linear elastic regularization term tends to reduce rotations because they
generate spurious elastic energy, which degrades the tracking.

because here the spurious strain induced by the finite rotation is homogeneous, hence the
associated stress is also homogeneous and thus equilibrated, i.e., it does not generate any
spurious equilibrium gap.

3.2. Nonrigid homogeneous deformation

We now consider nonrigid—though still homogeneous—deformations, namely compression
(Figure 3) and shear (Figure 4). Conclusions are the same as for rigid transformations for all
regularization terms based on the equilibrium gap principle (i.e., second, third and fourth rows
in Figures 3a and 4a), which perform very well. Regularization terms based on the elastic energy
(i.e., first row in Figures 3a and 4a) are, on the contrary, very problematic as they tend to prevent
the mesh from deforming. This illustrates very well the fact that such regularization terms should
not be used when tracking nonrigid deformations, as they interfere pathologically with the
tracking.

One can also notice that the continuous formulation of the equilibrium gap regularization
(second row in Figures 3a and 4a) seems to perform better than the discrete formulation (third
and fourth rows in Figures 3a and 4a); as we will see later, this is actually due to the fact that
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Figure 3. Compression case. (a) Normalized displacement error (40) as a function of regular-
ization strength (parameter β), for various levels of image noise, for various regularization terms
(first row: J reg,el (7); second row: J reg,eq,cont (9); third row: J reg,eq

b (12); fourth row: J reg,eq
b (12)

and J reg,eq
t ,2D (22)), and for various constitutive laws (left column: small strain, Hooke law; right

column: large strain, neo-Hookean and Ogden–Ciarlet–Geymonat law). The elastic regulariza-
tion terms interfere with the tracking because they basically prevent the mesh from deforming.
(Continued on next page.)
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Figure 3 (cont.). (b) Tracking solutions for the discrete version of the nonlinear equilibrium
gap (12) including surface traction regularization (22), with regularization strength β= 0.1,
for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually
satisfying for all noise levels. (Continued on next page.)

J reg,eq,cont (9) contains the equilibrium gap induced by the discretization in addition to the
equilibrium gap induced by the images, and tends to minimize it, i.e., to maintain the stress as
homogeneous as possible, which helps the tracking here because the exact solution has indeed
an homogeneous stress field, but which will prove highly pathological for non homogeneous
cases.

It is important to notice also that for the compression case, only the tangential term (22) was
included in the boundary traction terms (fourth row in Figure 3a). Indeed, the exact solution
has highly non-smooth tractions (which are nonzero on left and right edges, zero on bottom
and top edges), so that penalizing the surface gradient of the normal surface traction would not
make sense. Similarly, in the shear case, only the normal term (18) was included in the boundary
tractions terms (fourth row in Figure 4a).

3.3. Nonrigid heterogeneous deformation

Let us now consider more realistic images, mimicking cardiac tagged magnetic resonance imag-
ing slices. Tracking results are presented in Figure 5. Elastic regularization (first row of Figure 5a)



448 Martin Genet

Figure 3 (cont.). (c) Tracking solutions for the elastic regularization term (7), with regular-
ization strength β= 0.8, for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple).
The elastic regularization terms tends to prevent the mesh from deforming, which degrades
the tracking.

has the same limitation as for homogeneous deformations, in that it tends to prevent the mesh
from deforming and thus interferes with the tracking. Interestingly, the continuous formula-
tion of the equilibrium gap principle (second row of Figure 5a) presents similar limitations,
though somewhat weaker for large regularization strengths. This can be explained by the fact
that this “energy” contains the equilibrium gap induced by the finite element discretization, thus
it tends to minimize the discretization error, i.e., it tends to force the mesh to deform homo-
geneously, which was compatible with the ground truth of the simple examples of Sections 3.1
and 3.2, but not in more realistic cases. The discrete version of the equilibrium gap principle
(third and fourth rows of Figure 5a), on the other hand, which characterizes the equilibrium gap
induced by the motion itself but not the one induced by the discretization thanks to the pro-
jection step, does not have such pathological behavior, and allows the reduce the tracking error
basically for all regularization levels. One can see that the nonlinear version (based on the finite
strain framework and neoHookean and Ogden–Ciarlet–Geymonat potentials) performs slightly
better than the linear version (based on the infinitesimal stain framework ant the Hooke law).
Also, the surface traction regularization terms (fourth row in Figure 5a) help reducing the track-
ing error mean and dispersion compared to the tracking with the bulk term only (third row in
Figure 5a).
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Figure 4. Shear case. (a) Normalized displacement error (40) as a function of regularization
strength (parameter β), for various levels of image noise, for various regularization terms (first
row: J reg,el (7); second row: J reg,eq,cont (9); third row: J reg,eq

b (12); fourth row: J reg,eq
b (12) and

J reg,eq
n (18)), and for various constitutive laws (left column: small strain, Hooke law; right col-

umn: large strain, neo-Hookean and Ogden–Ciarlet–Geymonat law). The elastic regularization
terms interfere with the tracking because they basically prevent the mesh from deforming.
(Continued on next page.)
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Figure 4 (cont.). (b) Tracking solutions for the discrete version of the nonlinear equilibrium
gap (12) including surface traction regularization (18), with regularization strength β= 0.1,
for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually
satisfying for all noise levels. (Continued on next page.)

3.4. Impact of mesh size

We now investigate in details the impact of mesh size on tracking. Indeed, there is a fundamen-
tal trade-off between the richness of the motion model and the robustness of the tracking—the
finite element discretization of the tracking already represents some kind of “kinematical” regu-
larization, in the sense that the mesh controls the size of the finite dimensional functional space
of the displacement field. Figure 6 (cont.) shows tracking results for the cardiac-like problem, for
various mesh sizes (from 0.1, which corresponds to the characteristic size of the image texture,
like in the previous examples, to 0.1/24 = 0.00625, which is smaller than the image pixel), for vari-
ous levels of noise (0 and 0.1) and regularization strengths (0 and 0.1), and for two different mesh
refinement strategies: either we simply track the images with the different meshes independently
(left in Figure 6 (cont.)a), or we track with successively refined meshes while initializing the track-
ing at a given mesh refinement level with the converged solution of the previous mesh refinement
level (right in Figure 6 (cont.)a). First, one can see that directly tracking images with fine meshes
is impossible—mechanical regularization helps a little in some cases, but not enough to obtain
satisfying solutions. Thus, to obtain fine solutions, one needs to perform multi-resolution. How-
ever, one can also see that multi-resolution is not enough, and mechanical regularization is nec-
essary to obtain fine solutions.
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Figure 4 (cont.). (c) Tracking solutions for the elastic regularization term (7), with regular-
ization strength β= 0.8, for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple).
The elastic regularization terms tends to prevent the mesh from deforming, which degrades
the tracking.

4. Conclusion

In this paper, we introduced a consistent formulation, in the nonlinear large deformation setting,
of the discrete equilibrium gap principle, and used it as a regularization for the large motion
tracking problem. This principle enforces that the tracked motion corresponds to the motion
of a body in equilibrium with some tractions applied on its boundary. We also introduced a
novel regularization of the boundary tractions involved in the equilibrium gap principle, which
naturally applies to both the finite and infinitesimal strain settings.

In summary, we validated our approach by generating images representing various motions
and with different signal-to-noise ratios, and then running our motion tracking algorithm with
various regularization terms and regularization strengths. Basically we concluded that the finite
strain framework is necessary when large motion—especially large rotation—is involved. We
showed that elastic regularization interferes pathologically with nonrigid motion tracking, and
should essentially not be used in such cases. In the case of heterogenous motion, which is the
most representative of actual applications of motion tracking [46,47], we also concluded that our
previous “continuous” formulation of the equilibrium gap principle interferes with the tracking,
while our new “discrete” formulation performs well. Finally, we also showed that, combining
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Figure 5. Cardiac-like case. (a) Normalized displacement error (40) as a function of regulariza-
tion strength (parameter β), for various levels of image noise, for various regularization terms
(first row: J reg,el (7); second row: J reg,eq,cont (9); third row: J reg,eq

b (12); fourth row: J reg,eq
b (12), J reg,eq

n

(18) and J reg,eq
t ,2D (22)), and for various constitutive laws (left column: small strain, Hooke law; right

column: large strain, neo-Hookean and Ogden–Ciarlet–Geymonat law). The elastic regulariza-
tion terms interfere with the tracking because they basically prevent the mesh from deforming.
(Continued on next page.)
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Figure 5 (cont.). (b) Tracking solutions for the discrete version of the nonlinear equilibrium
gap (12) including surface traction regularization terms (18) and (22), with regularization
strengthβ= 0.1, for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking
is visually satisfying for all noise levels. (Continued on next page.)

multi-level resolution and our mechanical regularization, we were able to track rather large
motion with a displacement discretization as fine as the image discretization itself, so that all
features of the images motion can be tracked.

In order to promote open and reproducible science, the general motion tracking algorithm as
well as all regularization terms have been implemented in an open-source finite element motion
tracking library [39] (currently at https://gitlab.inria.fr/mgenet/dolfin_warp), and the specific
code to reproduce the results of this paper is also freely available [43] (in the supplementary file
and currently at https://mgenet.gitlabpages.inria.fr/N-DEG-paper-demos/index.html).

There are multiple limitations to our current approach, at various levels. The formulation of
the equilibrium gap principle introduced here only considers a single homogeneous domain,
which might be limiting when tracking motion of highly heterogeneous structures such as
diseases organs [8,48]. In such case, one might need to extend the formulation to multiple zones.
Another option would be to estimate the material parameters of the mechanical model used
for the regularization term at the same time as the tracking [49]. Actually, the equilibrium gap
principle could also be used as a cost function for direct (i.e., without the need for a resolution
of the direct mechanics problem) material parameter estimation from displacement measured
by any method—the small stain formulation has already been used successfully [18], but in large

https://gitlab.inria.fr/mgenet/dolfin_warp
https://mgenet.gitlabpages.inria.fr/N-DEG-paper-demos/index.html
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Figure 5 (cont.). (c) Tracking solutions for the continuous version of the nonlinear equi-
librium gap regularization term (9), with regularization strength β = 0.8, for various noise
levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). The continuous version of the nonlinear
equilibrium gap regularization term tends to prevent the mesh from deforming non homo-
geneously (which generates a discretization-induced equilibrium gap), which degrades the
tracking.

strain only the virtual fields method has been used, which represents an approximation of the
equilibrium gap method as it only satisfies the equilibrium in a weak sense for a selected member
of test functions [50].

Another limitation, especially in terms of applications, is that the performance of the method
comes at a significant computational cost, limiting its use notably in the clinics. Thus, our method
could be used to generate ground truth and/or validation data for machine learning algorithms,
which could then perform tracking almost instantaneously. This is an active field of research
today [51–54].

An important perspective of our motion tracking algorithm is toward low resolution images,
which have been proven to drastically impact the tracking quality [55]. One option is to combine
images from multiple modalities and combine the strength of both images [44]. Another option
to consider is to introduce a model of the imaging modality (e.g., MRI [56]), in order to control
the bias induced by the image discretization. Thus, by combining models of the imaging process
and the mechanical deformation, we will be able to perform high quality tracking even with low
quality images.
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Figure 6. Caption continued on next page.
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Figure 6 (cont.). Cardiac-like case, impact of mesh size. (a) Normalized displacement error
(40) as a function of mesh size, for various levels of image noise, for the discrete version of
the nonlinear equilibrium gap (12) including surface traction regularization terms (18) and
(22), with various regularization strength. (b) Tracking solutions for the discrete version of
the nonlinear equilibrium gap (12) including surface traction regularization terms (18) and
(22), with regularization strength β= 0.1.
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[21] E. Berberoğlu, C. T. Stoeck, P. Moireau, S. Kozerke, M. Genet, “Validation of finite element image registration-
based cardiac strain estimation from magnetic resonance images”, Proc. Appl. Math. Mech. 19 (2019), no. 1, article
no. e201900418.

[22] C. Xi, C. Latnie, X. Zhao, J. L. Tan, S. T. Wall, M. Genet, L. Zhong, L. C. Lee, “Patient-specific computational analysis of
ventricular mechanics in pulmonary arterial hypertension”, J. Biomech. Eng. 138 (2016), no. 11, article no. 111001.

[23] H. Zou, S. Leng, C. Xi, X. Zhao, A. S. Koh, F. Gao, J. L. Tan, R.-S. Tan, J. C. Allen, L. C. Lee, M. Genet, L. Zhong, “Three-
dimensional biventricular strains in pulmonary arterial hypertension patients using hyperelastic warping”, Comput.
Methods Programs Biomed. 189 (2020), article no. 105345.
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