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two retaining walls, with a road built on the top of the second backfill. The results of the c-phi reduction
procedure for the construction of first and second backfill are also compared to other analysis methods
classically used in geotechnics and to the results of finite element calculations.

Résumé. Cet article présente une implémentation de la procédure de réduction c-phi dans le code aux
éléments finis Cast3M. Cette procédure est d’abord validée sur un exemple simple de capacité portante d’une
semelle filante, puis utilisée pour évaluer le facteur de stabilité d’une structure géotechnique composée de
deux niveaux de remblai retenus par deux murs de soutènement, avec une route construite sur le dessus
du second remblai. Les résultats de la procédure de réduction c-phi pour la construction du premier et
du second remblai sont également comparés à d’autres méthodes d’analyse classiquement utilisées en
géotechnique et aux résultats des calculs par éléments finis.

Keywords. Implementation, C-phi reduction procedure, Code Cast3M, Stability factor, Geotechnical struc-
ture, Finite element calculations.

Mots-clés. Mise en œuvre, Procédure de réduction c-phi, Code Cast3M, Facteur de stabilité, Structure
géotechnique, Calculs par éléments finis.
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1. Introduction

For decades, the majority of slope stability analyses performed in practice still use traditional
limit equilibrium approaches involving methods of slices that have remained essentially un-
changed. This was not the outcome envisaged when Whitman and Bailey [1] set criteria for the
then emerging methods to become readily accessible to all engineers. The Finite Element Method
represents a powerful alternative approach for slope stability and retained wall analysis which
is accurate, versatile and requires fewer a priori assumptions, especially, regarding the failure
mechanism. Slope failure in the Finite Element model occurs “naturally” through the zones in
which the shear strength of the soil is insufficient to resist the shear stresses. Elasto-plastic anal-
ysis of geotechnical problems using the Finite Element (FE) Method has been widely accepted
in the research arena for many years; however, its routine use in geotechnical practice for slope
and retaining stability analysis still remains limited. The reason for this lack of acceptance is not
entirely clear; however, advocates of FE techniques in academe must take some responsibility.
Practising engineers are often sceptical of the need for such complexity, especially in view of the
poor quality of soil property data often available from routine site investigations [2–4]. Although
this scepticism is often warranted, there are certain types of geotechnical problem for which the
FE approach offers real benefits. The challenge for an experienced engineer is to know which
kind of problem would benefit from a FE treatment and which would not. In general, linear prob-
lems such as the prediction of settlements and strains, the calculation of flow quantities due to
steady seepage or the study of transient effects due to consolidation are all highly amenable to
solution by Finite Elements. Traditional approaches involving charts, tables or graphical methods
will often be adequate for routine problems but the Finite Elements approach may be valuable if
awkward geometries or material variations are encountered which are not covered by traditional
chart solutions.

The use of nonlinear analysis in routine geotechnical practice is harder to justify, because
there is usually a significant increase in complexity which is more likely to require the help of
a modelling specialist. Nonlinear analyses are inherently iterative in nature, because the material
properties and/or the geometry of the problem are themselves a function of the “solution”.
Objections to nonlinear analyses on the grounds that they require excessive computational
power, however, have been largely overtaken by developments in, and falling costs of, computer
hardware. Slope stability and retained wall represents an area of geotechnical analysis in which a
nonlinear FE approach offers real benefits over existing methods. As this paper will show, Slope
stability and retained wall analysis by elastoplastic Finite Elements is accurate, robust and simple
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enough for routine use by practising engineers. Perception of the FE method as complex and
potentially misleading is unwarranted and ignores the real possibility that misleading results can
be obtained with conventional “slip circle” approaches. The graphical capabilities of FE programs
also allow better understanding of the mechanisms of failure, simplifying the output from reams
of paper to manageable graphs and plots of displacements.

The objective of this work is the development of an elasto-plastic calculation method for the
prediction of the stability for the large geotechnical structures in interaction by Finite Element
technique thanks to with methodological and sophisticated programming from Cast3M code.
This work does not only concern the slope stability calculation, but the stability calculation of
bearing capacity, overturning and sliding of the layered backfill and the retaining walls by the
c-phi parameters reduction because it concerns several structures in interaction that encompass
the failure mechanisms of the majority of geotechnical structures. The paper describes several
standards in geotechnical practice of Finite Element retained wall and slope stability analysis
with comparison against other solution methods, including the influence of a free surface on
slope and layered backfill stability. Graphical output is included to illustrate displacements,
deformations, stresses and mechanisms of failure.

2. Traditional methods of slope stability analysis

Most textbooks on soil mechanics or geotechnical engineering will include reference to several
alternative methods of slope stability analysis. In a survey of equilibrium methods of slope
stability analysis reported by Duncan [5], the characteristics of a large number of methods were
summarized, including the ordinary method of slices [6], Bishop’s Modified Method [7], force
equilibrium methods (e.g. Lowe and Karafiath) [8], Janbu’s generalized procedure of slices [9],
Morgenstern and Price’s method [10, 11] and Spencer’s method [12]. Although there seems to be
some consensus that Spencer’s method is one of the most reliable, textbooks continue to describe
the others in some detail, and the wide selection of available methods is at best confusing to
the potential user. For example, the controversy was revisited by Lambe and Silva [13], who
maintained that the ordinary method of slices had an undeservedly bad reputation. A difficulty
with all the equilibrium methods is that they are based on the assumption that the failing soil
mass can be divided into slices. This in turn necessitates futher assumptions relating to side force
directions between slices, with consequent implications for equilibrium. The assumption made
about the side forces is one of the main characteristics that distinguishes one limit equilibrium
method from another, and yet is itself an entirely artificial distinction.

3. Finite elements method for slope and retaining walls stability analysis

Duncan’s review of FE analysis of slopes concentrated mainly on deformation rather than sta-
bility analysis of slopes; however, attention was drawn to some important early papers in which
elasto-plastic soil models were used to assess stability. Smith and Hobbs [14] reported results of
ϕu = 0 slopes and obtained reasonable agreement with Taylor’s [15] charts. Zienkiewicz et al. [16]
considered a c ′,ϕ′ slope and obtained good agreement with slip circle solutions. Griffiths [17,18]
extended this work to show reliable slope stability results over a wide range of soil properties
and geometries as compared with charts of Bishop and Morgenstern [19]. Subsequent use of the
FE method in slope stability analysis has added further confidence in the method [20–30]. Grif-
fiths [20] investigate the probability of failure of a cohesive slope using both simple and more
advanced probabilistic analysis tools. The influence of local averaging on the probability of fail-
ure of a test problem has been investigated. The advanced method, called the random finite ele-
ment method (RFEM), uses elastoplasticity combined with random field theory. For the authors,
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the RFEM method is shown to offer many advantages over traditional probabilistic slope stability
techniques, because it enables slope failure to develop naturally by seeking out the most critical
mechanism. Griffiths [20] reported that simplified probabilistic analysis, in which spatial vari-
ability is ignored by assuming perfect correlation, lead to unconservative estimates of the prob-
ability of failure. To avoid human error in the analyses criteria and find a unified mechanical ex-
planation for slope instability, a criterion has been proposed by Chengya [21]. For the author,
this criterion, of the stability is determined by identifying the positive or negative of the varia-
tional value. The Factor of safety of two and three dimensional slopes calculated by this crite-
rion are compared with those calculated by other criteria. The effect of mesh size on the accu-
racy of the results have been analyzed. The study made by Anindita [22] proposes a comparison
of Limit Equilibrium and Finite Element methods by numerical approach. The method devel-
oped by Dakshith [23] presents a numerical technique combining the scaled boundary finite el-
ement method and image-based meshing for slope stability analysis. Quad tree decomposition
has been applied to simultaneously generate meshes and consider the spatial variation of mate-
rial properties directly from the images through a mapping technique. The shear strength tech-
nique has been applied to evaluate the shear reduction factor of safety of the slope. Coal slopes
at Yallourn open-pit mine, Victoria, Australia was considered, forming the basis of a case study to
demonstrate the applicability of the method. Huang [24] extended the use of strength reduction
FEM to include the effects of unsaturated transient seepage and some primary numerical results
concerning the stability of an earth dam under rapid drawdown have been presented. A stabil-
ity analysis performed on the Yashigou earth dam in China was conducted by Huy [25]. Factor
of safety results were considered for vacuum dam, steady state water level and water level draw-
down using finite element stresses method analysis to compare the Morgenstern–Price method.
Jiang [26] has developed a slope stability analysis considering spatially variable shear strength
parameters using a non-intrusive stochastic finite element method. Zoa [27] conducted a finite
element analysis of a soft soil reinforced by an industrial nailing technique using a soft soil be-
havior model. He determined the main influential parameters. The probabilistic stability analy-
sis of an earth dam by stochastic finite element method based on field data has been performed
by Mouyeaux [28] for realistic prediction of the failure mechanism and seepages under this dam.
Recently, a hybrid stacking ensemble approach Navid [29] for enhancing the prediction of slope
stability. In this hybrid stacking ensemble, he used an artificial bee colony algorithm to find
out the best combination of base classifiers (level 0) and determined a suitable meta-classifier
(level 1) from a pool of 11 individual optimized machine learning algorithm. Finite element anal-
ysis was conducted in order to form the synthetic database for the training stage (150 cases) of
proposed model while 107 real field slope cases were used for the testing stage. The results by
the hybrid stacking ensemble were compared with that obtained by the 11 optimized machine
learning. The comparisons showed that a significant improvement in the prediction ability of
slope stability has been achieved by the hybrid stacking ensemble. A numerical model termed
as ISR3DNMM-GPS method has been developed by Yantao [30] for factor of safety calculation
and 3D failure surface determination involved in a 3D slope stability analysis. In this proposed
numerical model, an improved strength reduction technique (ISRT) which can avoid unreason-
able plastic zones appearing in the deep area of a slope has been implemented into 3D numer-
ical manifold method, and improved strength reduction based 3DNNM is developed. Duncan
mentions the potential for improved graphical results and reporting utilizing FE, but cautions
against artificial accuracy being assumed when the input parameters themselves are so variable.
Wong [31] gives a useful summary of potential sources of error in the FE modelling of slope stabil-
ity. Other important contributions in this area come from the work of Sloan [32] who published
the paper concerning the advances in stability analysis that combine the limit theorems of clas-
sical plasticity with finite elements to give rigorous upper and lower bounds on the failure load.
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He proposed a new development, which incorporates pore water pressures in finite-element limit
analysis and proposed of the new techniques for stability solutions including foundations, an-
chors, slopes, excavations and tunnels. Tschuchnigg [33] carried out a comparative study con-
cerning the strength reduction method and rigorous limit analyses which are based on collapse
theorems of plasticity.

Advantages of the finite element method

The advantages of a FE approach to slope stability analysis over traditional limit equilibrium
methods can be summarized as follows:

(a) No assumption needs to be made in advance about the shape or location of the failure
surface. Failure occurs “naturally” through the zones within the soil mass in which the
soil shear strength is unable to sustain the applied shear stresses.

(b) Since there is no concept of slices in the FE approach, there is no need for assumptions
about slice side forces. The FE method preserves global equilibrium until “failure” is
reached.

(c) If realistic soil compressibility data are available, the FE solutions will give information
about deformations at working stress levels.

(d) The FE method is able to monitor progressive failure up to and including overall shear
failure.

The developments which follow in this paper, are inspired by these important contributions
on this topic.

4. Methodogogy

After this literature review related to the problematic, the methodology adopted in this paper
consists first of all in describing the site location of the geotechnical structures design on the
geological and geomorphological aspects. Then the numerical modeling of the structures will be
approached by first validating the program for calculating the bearing capacity and settlement
of a strip footing placed on an elastoplastic soil whose analytical solutions are known. Then
the numerical modeling of the problem will be compared with that other software for the same
problem. The different calculation phases obeying the staged construction of these geotechnical
structures will be respected in our numerical modeling. Settlements will be analyzed at the
serviceability limit state and all other failure criteria at the ultimate limit state.

4.1. Presentation of the construction site of the geotechnical structures

The project site is located in the Douala city in Cameroon. It is very rugged with a steep incline.
The objective is to build a series of geotechnical structures to guarantee the stability of the road
whose projection from the level of the platform is at the top of slope. Figure 1 illustrates the
shadings of the contour lines of the site, the position and the direction in cross-section of the
geotechnical structures under investigation.

4.2. Geology of site project

In the Littoral region of Cameroon, the sedimentary rocks form low lying and gently undulating
hills along the western side of the Dibamba river. The strata have experienced tropical weather-
ing, which has resulted in the development of a lateritic residual soil profile. This type of rock
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Figure 1. Shadings of the contour lines of the site, the position and the direction in cross-
section of the geotechnical structures.

mass tropical leads to weathering profiles as presented by Fookes [34]. The material viewed at
site comprises Weathering Grade 6, as seen in the trial pit photograph from site, with possibly
weathering Grade 5 material encountered towards the base of deeper rotary boreholes [35, 36].
Below this material, the stratum may then transition more rapidly to weathered parent rock ma-
terial. This transition was not identified in the deepest exploratory boreholes that went 30 m be-
low ground level. In the exploratory holes observed there was no clear evidence for overlying
transported material, so material may be weathered in-situ.

4.3. Behaviour laws of subsoil, basement and backfill materials

The first step of the proposed approach consists in characterizing on the one hand the behaviour
of the natural materials constituting the structures whose stability is sought to be assessed by
choosing an elastoplastic law to represent them, and on the other hand in estimating in a relevant
way a value deterministic for each of the parameters of the constitutive law, which associated
with other variables, will constitute the input data of the Finite Element model. The choice of a
constitutive law depends on the mechanism to be modeled, the data available for the structures,
but above all on the precision sought and numerical considerations. We are interested in the
mechanisms that can lead structures under extreme stresses to failure. However, to calculate the
safety factor relating to the behavior of geotechnical structures by the Finite Element Method,
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Figure 2. Mohr–Coulomb and Drucker–Prager yield criteria.

the evaluation of the elastic deformations does not matter because it is the modeling of the
appearance and the evolution of the unstabilized plastic deformations which is important.
Among the laws at our disposal and described in Mestat [37], we present here two classic behavior
laws of the elastoplastic type: those of Mohr–Coulomb and Drucker–Prager. These two laws have
the advantage of depending on few parameters directly from triaxial and oedometric tests. They
allow a certain “economy” of data acquisition and management which are, in particular those
concerning the mechanical characterization of materials, relatively few in number and not very
varied on geotechnical projects.

The Mohr–Coulomb criterion is the first that was proposed for soils [37]. It is used for long-
term for frictional and cohesive soils. It is characterized by the relations:

F (σi j ) = (σ1 −σ3)− (σ1 +σ3)sinϕ−2c cosϕ≤ 0 (1)

G(σi j ) = (σ1 −σ3)− (σ1 +σ3)sinψ+ cste (2)

where c is the cohesion of the material, ϕ is the friction angle, and ψ is the dilatancy angle.
σ1 and σ3 represent the principal stresses (σ1 ≥ σ2 ≥ σ3). In the principal stress space, the
surface defined by the Mohr–Coulomb criterion is a hexagonal pyramid with axis (σ1 = σ2 = σ3)
(Figure 2b).

Analogies are possible between the Mohr–Coulomb and Drucker–Prager criteria (Figure 2). Re-
lations can be established between the parameters (α,γ,k) and (ϕ,ψ,c) in certain situations [37].
The Drucker–Prager criterion is written:

f (σ) =
√

J2 +αI1 −K ≤ 0 (3)

f (σ) =σe + sinαI1 −K ′ ≤ 0. (4)

The correspondence between the Mohr–Coulomb criteria and those of Drucker–Prager are as
follows [37]:

ALFA = ETA = 2
p

3sinϕ

9− sin2ϕ
, GAMMA = 2

p
3sinψ

9− sin2ψ
, K = K L = 6

p
3c ·cosϕ

9− sin2ϕ
. (5)

Moreover, the choice of a criterion must also be guided by the possible numerical difficulties of
implementing the criterion. Some constitutive laws, such as that of Mohr–Coulomb for example,
have a failure criterion comprising singular edges (Figure 2b), which can numerically result in
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convergence difficulties [28,38]. In view of the above, the Drucker–Prager model implemented in
the Cast3M Finite Elements code will be used in this paper to describe the elastoplastic behavior
of untreated materials.

4.4. Conceptual basis of the c-phi reduction procedure in Cast3M

The c-phi reduction procedure developed is used to determine the factor of safety in this part and
part 5. The concept of the strength reduction method is based:

Strength reduction method—Global safety factor concept: FOS

Rn = ∥ f −K (ϕk,mob,ck,mob,ψk,mob,σt ,mob) ·un∥ < ε (6)

tanϕk,mob = tanϕk

FOS
, ck,mob = ck

FOS
, tanψk,mob = tanψk

FOS
, σt ,mob = σt ,k

FOS
. (7)

Strength reduction method—Partial safety factor concept: FCUT, (γ)

Rn = ∥ f −K (ϕd ,mob,cd ,mob,ψd ,mob,σt ,d ,mob) ·un∥ < ε
tanϕd ,mob = FCUT · tanϕk

γϕ
, cd ,mob = FCUT · ck

γc
,

tanψd ,mob = FCUT · tanψk

γψ
, σt ,d ,mob = FCUT · σt ,k

γσ,t
(8)

where R represents the strength reduction method; f represents the total force mobilized during
shear failure of model stability; K is the matrix of design strength parameters as a function of
friction angle, dilatance angle and cohesion; Un is the displacement obtained during strength
failure as a function of design strength parameters and the total force mobilized. ε represents the
relative error of the method.

For the analysis of strength reduction method in ULS on Cast3M code, we have used a variable
FCUT (FaCtor UTilisation): this factor is the unknown in the stability computation step. In order
to use the partial safety concept with Cast3M, one has to reduce the strength parameters with a
prescribed partial safety factor to their design value. The model must be stable with this design
strength parameters of friction angle and cohesion. The design values of the friction angle and
cohesion are multiplied with FCUT and the model is recalculated. As long as there is convergence,
the value of FCUT can be reduced. For example, from 1.0 in steps of 0.01 and latter is the accuracy
of the solution. If FCUT gets very low, a certain part of the model plastifies and the convergence
gets lost, leading to the solution for the factor of utilization. We have using this brute force strategy
but if there was an response from PASAPAS or UNPAS in some of its variables on the convergence
quality, a more efficient and intelligent servo mechanism could be used for a bracketed search
with a lower and upper limit value focusing in to the final solution in few steps. In our brute
force algorithm, we have to count down and if the solution of FCUT is 0.32 for example, we
need 68 computational runs starting from 1.0 with step size 0.01 with successful convergence,
before we arrive at the solution. The failure and shadings are strongly influenced by the value
of FCUT. The closer we get to FCUT which makes the solution non-convergent, the clearer the
failure curve appears.

4.5. Validation of the elastoplastic calculation program on Cast3M: calculation of bearing
capacity and settlement of a strip footing

Before modeling the problem investigated in this paper, we propose to first validate the code
written on Cast3M for the elastoplastic calculation of the stability of geotechnical structures.
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Figure 3. Presentation of the geometry and the view of 2-D mesh of a strip footing.

Table 1. The characteristics of materials for calculation of the footing

Parameter Symbol Sandy clay Thick concrete Unit
Material model Model Mohr–Coulomb Linear elastic -

Type of behaviour Type Drained Non-porous -
Weight above phreatic level γunsat 16 24 kN/m3

Weight below phreatic level γsat 18 - kN/m3

Young’s modulus Eref 5×103 2×107 kN/m2

Poisson’s ratio ν 0.35 0.15 -
Cohesion c 5 - kN/m2

Friction angle ϕ 20 - °
Dilatancy angle ψ 0 - °

This is the calculation of the bearing capacity of a strip footing whose solution is known. Recall
that shortly after isotropic or anisotropic linear elasticity had been introduced into a computer
code by the Finite Element Method around 1965, computer scientists proposed algorithms
to deal with nonlinear behaviour laws (nonlinear elasticity of Duncan or the perfectly plastic
laws) [14, 39, 40]. These laws are developed by rheologists from tests carried out in the laboratory
(mainly triaxial and oedometric tests), and they make it possible to better represent the behaviour
of soils (appearance of irreversible deformations and rupture).

The plasticity (or failure) criteria are the basis for calculating the limit loads that can be borne
by soil masses [35, 41–45]. The Finite Element Method (the unknowns are the displacements
and the stresses) makes it possible, by carrying out an incremental calculation, to highlight the
value of the limit loads [46–52]. We cite here some contributions to the Finite Element study of
foundations on elastoplastic materials in plane strain [16–18, 46–49, 52–61].

Figure 3 shows the view of Cast3M 2-D mesh of a strip footing with B = 2 m on a 0.25 m thick
concrete on a frictional soil. The thickness of the soil layer is taken 4 m and the material behaviour
is represented by Drucker–Prager model for Cast3M [62] calculation and Mohr–Coulomb model
for Plaxis calculation (for comparison). The characteristics of material are presented in Table 1.
The phreatic level is located in the base of the strip footing.

The Cast3M elasto-plastic calculation is performed in 2-D plane strains. Two calculation
phases were carried out, the first phase concerns the simple elastoplastic calculation which
makes it possible to obtain the elastoplastic settlement according to the applied load as long
as convergence is ensured. The second phase concerns the calculation, the presentation of the
shear failure mechanism, the factor of safety as well as the bearing capacity of the strip footing by
strength parameters reduction c-phi method until failure (non-converging calculation).



494 Zoa Ambassa et al.

Figure 4. Horizontal displacements (m) at 5th incremental time in SLS of the strip footing
submitted at vertical pressure of 100 kPa.

Figure 5. Vertical displacements (m) at 5th incremental time in SLS of the strip footing
submitted at vertical pressure of 100 kPa.

Figures 4–9 present the displacements and vertical stresses (in phase 1) of the strip footing
submitted at vertical pressure of 100 kPa from elastoplastic analysis. Figure 4 clearly shows the
asymmetry of the horizontal displacements in the ground. The vertical displacements isobars
are higher under the foundation and gradually decrease until they cancel out as one move away
from the point of application of the vertical load (Figures 5 and 6). Figure 7 shows the load
displacement curve for the footing at top of thick concrete. The deformed mesh of the model
through Figure 8, represents the incremental displacements. The footing sinks following the ap-
plication of the load causing a heaving of the ground around the footing. The vectors of incremen-
tal displacements indeed provide the form of the kinematics failure; this is in agreement with the
theoretical results (rigid corner under the foundation (Figure 11)). The total displacement has

calculated by the formula: |Utotal| =
√

U 2
x +U 2

y .
In the calculation program, each load is applied in 20 increments. For 100 kPa, applied, the

pressure corresponding at the 5th increment is 25 kPa (Figures 5–7).
The input value of pressure is 100 kPa and the Factor of Safety reaches approximately 1.0101

(for a calculation carried out with very fine mesh of 1192 elements of the type TRI3 or TRI6).
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Figure 6. Shadings of total displacements (m) in SLS of the strip footing submitted at
vertical pressure of 100 kPa: (a) at 5th incremental time; (b) at full incremental time.

Therefore the failure stress is equal to 100 kPa × 1.0101 = 101.01 kPa. This bearing capacity value
should be compared with the reference analytical solutions of Vesic [63], Brinch-Hansen [64, 65],
Meyerhof [66, 67] and the solution obtained by the Plaxis software [68]. Given the formula for
analytical bearing capacity of a strip footing (Figure 11):

Figure 10 presents the calculation result of phase 2. The shear failure mechanism is clearly
represented through the shadings of displacements under the foundation. The calculation stops
automatically as soon as the solution is no longer convergent (plastification of the model).

Q f

B
= cNc + 1

2
γB ·Nγ (9)

Nq = eπ tanϕ · tan2 (
45+ 1

2ϕ
)

Nc = (Nq −1)cotϕ (10)

Nγ =


2(Nq +1)tanϕ=> (Vesic)

1.5(Nq −1)tanϕ=> (Brinch-Hansen)

(Nq −1)tan(1.4ϕ) => (Meyerhof).

(11)
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Figure 7. Load displacement curve for the footing.

Figure 8. Deformed incremental total displacements (m) at full time in SLS of the strip
footing submitted at vertical pressure of 100 kPa (displacements scaled by factor of 2).

Filling in given soil data:

Nq = eπ tan20 · tan2(55) = 6.4

Nc = (6.4−1)cot(20) = 14.83

Nγ =


2(6.4+1)tan(20) = 5.39 => (Vesic)

1.5(6.4−1)tan(20) = 2.95 => (Brinch-Hansen)

(6.4−1)tan(28) = 2.87 => (Meyerhof).

The effective weight of the soil: γ′ = γsat −γw = 18−10 = 8 kN/m2

Q f

B
= c ·Nc +0.5γ′B ·Nγ =


5∗14.83+0.5∗8∗2∗5.39 ≈ 117 kN/m2 => (Vesic)

5∗14.83+0.5∗8∗2∗2.95 ≈ 98 kN/m2 => (Brinch-Hansen)

5∗14.83+0.5∗8∗2∗2.87 ≈ 97 kN/m2 => (Meyerhof).
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Figure 9. Vertical stresses (Pa) in ULS of the strip footing submitted at vertical pressure of
100 kPa.

Figure 10. Shadings of shear displacements in ULS (m) and FOS (FOS = 1.0101) of the strip
footing submitted at vertical pressure of 100 kPa.

For the results in PLAXIS modeling, in addition to the mesh used in these calculations were
performed using a very coarse mesh with a local refinement at the bottom of the footing and
a very fine mesh. Fine meshes will normally give more accurate results than coarse meshes.
Instead of refining the whole mesh, it is generally better to refine the most important parts
of the mesh, in order to reduce computing time. Here we see that the differences are small
(when considering 15-noded elements), which means that we are close to the exact solution.
The accuracy of the 15-noded element is superior to the 6-noded element, especially for the
calculation of failure loads. The results of fine/coarse and 6-noded/15-noded analyses are given
below. Table 2 presents the results for the maximum load reached on a strip footing on the drained
sub-soil for different 2D and 3D meshes.
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Figure 11. Shear failure mechanism of a shallow foundation for theoretical results.

Table 2. Results for the maximum load reached on a strip footing for 2D (for Cast3M) and
different 2D and 3D meshes (for PLAXIS) and analytical solutions

Solver Mesh size Element
type

Number of
elements

Maximum
load (kN/m)

Failure load
(kN/m2)

PLAXIS Code

Very coarse mesh with local
refinements under footing

6-noded 79 281 146

Coarse mesh 6-noded 121 270 141
Very fine mesh 6-noded 1090 229 121

Very coarse mesh with local
refinements under the footing

15-noded 79 236 124

Coarse mesh 15-noded 121 248 130
Very fine mesh 15-noded 1090 220 116

Cast3M code Very fine mesh 3-noded 1192 - 101

Analytical
results

Vesic 117
Brinch-Hansen 98

Meyerhof 97

In this Table 2, the failure load for PLAXIS calculation has been calculated as:
Q f

B
= Maximumforce

B
+γconcrete ∗d = Maximumforce

2
+24∗0.25. (12)

From the above results of PLAXIS, it is clear that fine FE meshes give more accurate results. On
the other hand the performance of the 15-noded elements is superior over the performance of
the lower order 6-noded elements. Needless to say that computation times are also influenced by
the number and type of elements. The Cast3M results are generally in good agreement with the
analytical results of the collapse load. The bearing capacity obtained by our elastoplastic mod-
eling on Cast3M is 101 kPa very close to the Brinch-Hansen and Meyerhof reference solutions,
validating our calculation program very satisfactorily. For very fine mesh of the numerical model
of the footing, the difference between Plaxis and Cast3M results is 7% (Table 2). This gap comes
the difference between Drucker–Prager and Mohr–Coulomb materials. Drucker–Prager is the ad-
vanced ideal elasto-plasticity model by the number of parameters to determined. He is adequate
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Table 3. Results for the maximum load reached on a strip footing for different 2D meshes
in Cast3M (partial safety factors: γσt ) and analytical solutions

Solver Mesh size Element
type

Number
of

elements

Failure
load

(kN/m2)

FCUT γσt FOS (((F3-noded)−
(F6-noded))/

(F6-noded)) ×
100

Cast3M
code

Very coarse mesh with local
refinements under footing

3-noded 76 166.66 0.65 1.08 1.67 29.93

Coarse mesh 3-noded 120 138.89 0.65 0.90 1.39 14.59
Coarse mesh 3-noded 242 123.46 0.65 0.80 1.23 13.89

Fine mesh 3-noded 370 111.11 0.65 0.72 1.11 6.66
Very fine mesh 3-noded 1192 101.11 0.65 0.66 1.01 0.00

Very coarse mesh with local
refinements under the footing

6-noded 76 128.28 0.91 1.17 1.28 -

Coarse mesh 6-noded 120 121.21 0.91 1.10 1.21
Coarse mesh 6-noded 242 108.40 0.91 0.99 1.08

Fine mesh 6-noded 370 104.17 0.91 0.95 1.04
Very fine mesh 6-noded 1192 101.10 0.91 0.92 1.01

Analytical
results

Vesic 117 -
Brinch-Hansen 98

Meyerhof 97

to describe the sophisticated and realistic behaviour of geotechnical structure submitted by any
load by correcting the shortcomings of Mohr–Coulomb model which only includes five parame-
ters (Eref, ν, c, ϕ, ψ) determined directly from conventional triaxial tests.

The analysis on the mesh density and element type (TRI3 and TRI6) in Cast3M (Table 3)
show that, the difference between element type TRI3 and TRI6 results varies between 30 (for
the very coarse mesh with local refinements under footing) to 0% (for the very fine mesh). In
the developed procedure in this paper, when the mesh is very fine, the adjustment of the factor
FCUT (this factor is the unknown in the stability computation step. See part 4.4) makes it possible
to regulate numerical gap between the very coarse mesh effect to very fine mesh of the model.
Table 3 clearly shows the interest of this factor. For the very fine mesh with TRI3 element, it is
reduced progressively by step of 0.01 from 1 to 0.65 (35 steps) to obtain the same result with a
TRI6 element whose FCUT is reduced progressively from 1 to 0.91 (9 steps).

The code programming algorithm is made so that at the starting of the calculation a value
of FCUT = 1 is introduced. As the calculation evolves, this value is gradually reduced from
1 by steps of 0.01 until a value which allows to have the solution (end of convergence). The
global safety factor is therefore obtained automatically at the end of this calculation. It is not
necessary to introduce the partial safety factors. After calculation the global safety factor; the
partial safety factors are obtained automatically from FCUT adjusted during the calculation and
the FOS obtained according to Equation (8). The FOS is not equal to 1/FCUT, because the partial
safety coefficients are different from 1. It is also possible to introduce any value n of FCUT less
than 1 at the start of the calculation. If this calculation converges, the calculation time which was
necessary to reduce FCUT progressively up to n is gained and the calculation continues until the
final solution. The values of the partial safety coefficients have been inserted in Table 3.

5. Numerical analysis of retaining walls–slope stability and backfill

The materials used for the backfills come from two different quarries located a few kilometers
from the project area. Backfill 1 consits of greyish pozzolan with a strong granular predominance
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Figure 12. Detailed view of the 2D mesh and soil clusters of retaining walls and backfills.

with a low fines content. Backfill 2 is constituted by the Reddish clay gravel at gravelly sand with
a spread out grain size.

The numerical modeling of the retaining structures is made in 2D, plane deformations from
the Finite Elements Cast3M calculation code with triangular elements with 3 nodes (TRI3).
Figure 12 shows the 2D mesh view of the model and the borehole log with the altimetry of
the different backfills and the name of the sedimentary rocks involved. The boundary condi-
tions of the model are standard, i.e. blocking of all displacements at the bottom of the model
(Ux =U y = 0) and blocking of horizontal displacements on the left and right bound of the model
(Ux = 0).

In this paper, our analyze is performed at the Serviceability Limit State (SLS) for deformation-
based approach and the Ultimate Limit State analysis (ULS) for stress and strength-based ap-
proach. The forces generated by the self-weight of the soil are computed using a standard gravity
“turnon” procedure involving integrals over each element of the form:

p(e) = γ
∫

V e
N T d(vol) (13)

where N values are the shape functions of the element and the superscript e refers to the element
number. This integral evaluates the area of each element, multiplies by the total unit weight of the
soil and distributes the net vertical force consistently to all the nodes. These element forces are
assembled into a global gravity force vector that is applied to the FE mesh in order to generate
the initial stress state of the problem.

5.1. Materials model

Drucker–Prager model [69], ideal elasto-plasticity without hardening or softening, they constant
stiffness parameters are adjusted of strength parameters to the average of Mohr–Coulomb com-
pression and tension. Apart from unit weight gravity γ, Young Modulus E and Poisson’s ratio,
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Table 4. Materials properties of the model

Parameter Symbol Subsoil: thick
Sandy clay

Basement Concrete
retaining
wall 1 & 2

Backfill 1 Backfill 2 Unit

Material model Model Mohr–Coulomb Mohr–Coulomb Linear elastic Mohr–Coulomb Mohr–Coulomb -

Type of behaviour Type Drained Drained Non-porous Drained Drained -

Weight above
phreatic level

γunsat 20 20 25 20 20 kN/m3

Young’s modulus Eref 40×103 40×103 4×107 40×103 40×103 kN/m2

Poisson’s ratio ν 0.3 0.3 0.2 0.3 0.3 -

Cohesion c ′ 10 0.1 - 0.1 1 kN/m2

Friction angle ϕ′ 20 35 - 35 35 °

Dilatancy angle ψ 0 5 - 0 0 °

this model requires 8 additional parameters, some of which are deduced from the Mohr–
Coulomb model for its use in the F ·E Cast3M code. Its other parameters are as follows:

ALFA = ETA = 2
p

3sinϕ

9− sin2ϕ
(14)

BETA = MU = DELTA =
√

2

3
(15)

K = K L = 6
p

3c ·cosϕ

9− sin2ϕ
(16)

GAMMA = 2
p

3sinψ

9− sin2ψ
. (17)

In our computations on Cast3M, we have used a variable FCYS (FaCtor Yield Surface) for
the built in Drucker–Prager plasticity model. In order to adjust the Mohr–Coulomb strength
parameters to the circular cone of the Drucker–Prager failure surface (see Figure 2), different
strategies are known. The factor FCYS regulates the adjustment [70]. The value of 0.0 is tension,
1.0 is compression, 0.5 is their average. Other values would mean a weighted result and values
above 1.0 use the surface equality approach. Values below 0.0 default to 1.0 and the compression
adjustment. In this paper FCYS is fixed at 0.5. Table 4 presents the materials properties of the
model. BETA = MU = DELTA = p

2/3 is implementation specific for Drucker–Prager model in
Cast3M.

5.2. Analysis of problem phase by phase: staged construction

To know the contribution of each phase to the global stability, the displacements are calculated
at the Serviceability Limit State (SLS) and the Ultimate Limit State analysis (ULS) for stress and
strength. The solution strategy is based by treatment of the problem in 2-D plane strain (geometry
and mesh), the definition of soils and retaining walls and the definition of all external loads (self-
weight and charges) and the implementation of the construction phases by stepwise imposition
of loads. The following staged constructions are analyzed in Cast3M: the first phase is based on
the application of geostatic stress state in the subsoil and basement (stress adjustment or gravity
loading). In phase 2, the retaining wall construction 1 is realized. The layered backfill 1 is realized
in phase 3; the retaining wall construction 2 in phase 4; the 2nd layered backfill in phase 5;
the application of surface load for road construction following the GTR recommendation [71]
(regarded as variable) in phase 6 and the calculation of general stability of the construction in
phase 7.
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Figure 13. Horizontal displacements: Ux (m) in SLS of the model.

The “turn-on” procedure is described clearly according to the following calculation steps
[72, 73]: after generation of the mesh of the global model, the calculation of the elastic phase
is carried out in order to obtain the stresses and the elastic displacements in the structure. The
elastoplastic calculation is carried out PASAPAS in the code cast3M. Displacements are initialized
to zero at the beginning of each phase. Each construction stage of the structure corresponds to a
PASAPAS calculation phase in the cast3M code. In each phase, the parameters of the entire model
are inserted and the calculation results are logged in a table. The phase number corresponds to
the number of calculation tables. The results of each phase are recorded in the tables. From these
tables, the next phase begins with the previous phase.

5.3. Phase 0: elastic modeling in one phase

The purpose of the elastic calculation carried out is to obtain the stresses and displacements
throughout the model. The entire geotechnical structure is built in a single phase. The gravity
load are applied on the model. The objective of this part is to show the limits and insufficiencies
of a modeling of a geotechnical structure by using a model with elastic behavior. The results of
this part are to be compared with those of part 5.4 whose behavior model realistically describes
the behavior of geotechnical structures. Figures 13–16 present the displacements (in phase 0) of
the model from elastic analysis.

The interest of the computation of the elastic phase is to obtain displacements and stresses in
the model. The total displacement in the elastic calculation phase is 21 cm.

5.4. Drucker–Prager elasto-plastic modeling in staged construction

In this part, the stresses and displacements are calculated for each construction stage up to the
Serviceability phase.

5.4.1. Phase 1: elasto-plastic modeling

This phase is based on the application of geostatic stress state in the subsoil and basement
(gravity loading). The installation of the subsoil and basement causes the appearance of the
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Figure 14. Vertical displacements: U y (m) in SLS of the model.

Figure 15. Total displacements (m) in SLS of the model.

vertical, horizontal and total displacements of 3.22 cm due to gravity loading. Figures 17 and 18
present the total displacements and vertical stress (in phase 1) of the model from elastoplastic
analysis.

5.4.2. Phase 2: elasto-plastic modeling

In this phase 2, the retaining wall 1 is built. This phase begging after phase 1, the displace-
ments are initialized to zero in the model and is based on the application of geostatic stress
of the retaining wall 1 on drained sub-soil (gravity loading). Although displacements on the
basement and subsoil are controlled with the realization of this one with extra embankment
(over-elevation) whose thickness corresponds to the vertical displacement, the construction of
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Figure 16. Deformed of the total displacements (m) in SLS of the model (displacements
scaled by factor of 20).

Figure 17. Total displacements (m) in SLS of the subsoil and basement in phase 1.

the retaining wall 1, causes an appearance of settlements of 8.83 cm. Figures 19–21 present the to-
tal displacements, vertical plastic strains and vertical stress (in phase 2) of the model from elasto-
plastic analysis.

5.4.3. Phase 3: elasto-plastic modeling and the strength reduction method

5.4.3.1. Phase 3.1: elasto-plastic modeling. In this phase 3.1, the layered backfill 1 is realized.
This phase starts after phase 2, the displacements are initialized to zero in the model and is based
on the application of geostatic stress of the layered backfill 1 on drained sub-soil (gravity loading).
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Figure 18. Vertical stress (Pa) of the model in ULS (phase 1).

Figure 19. Deformed of the total incremental displacements (m) in SLS of the retaining
wall 1 on drained sub-soil (displacements scaled by factor of 20) in phase 2.

Figures 22–24 present the total displacements, plastic strains and vertical stress (in phase 3.1) of
the model from elastoplastic analysis. Although the displacements are reset to zero on the subsoil,
basement and on the retaining wall 1, the construction of layered backfill 1 generates a horizontal
displacement of the wall and the total displacements of 15 cm due to its own weight.

5.4.3.2. Phase 3.2: strength reduction method. This phase starts after phase 3.1, the displace-
ments are initialized to zero in the model. The analysis is based on the limit equilibrium of exter-
nal and internal forces in the model (gradual reduction of the mobilized strength). In the Cast3M
calculation code, the advanced solution is performed on recursive reduction of the mobilized
strength using a search strategy based on a convergence criterion. The part 4.4 describe the con-
cept of the strength reduction method developed in this paper. Phi-c reduction phase cannot be
used as a starting condition for another calculation phase because it ends in a state of failure.
Therefore it is advised to define all safety analyses at the end of the list of calculation phase and
to use the start from phase parameter as a reference to the calculation phase for which a safety
factor is calculated.
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Figure 20. Vertical plastic strains in SLS of the retaining wall 1 on drained sub-soil in
phase 2.

Figure 21. Vertical stress (Pa) of the model in ULS (phase 2).

Figure 22. Total displacements (m) in SLS of the model in phase 3.1.
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Figure 23. Vertical plastic strains in SLS in phase 3.1.

Figure 24. Vertical stress (Pa) of the model in ULS (phase 3.1).

The Factor of Safety calculation procedure is based on the calculation of a stable initial
stress and corresponding deformation state recursive reduction of the shear and tensile strength
until a convergence to a prescribed tolerance is still obtainable. The restrictions on suitable
material behaviour of Drucker–Prager, which is the ideal elasto-plasticity are considered. This
model is adequate to describe the sophisticated and realistic behaviour of geotechnical structure
submitted by any load. Figure 25 presents the total shear displacements (in phase 3.2) of the
model from c-phi reduction strength method (ULS, GEO-3). In this phase the Factor of Safety is
FOS = 1.5625. The duration of the calculation in this phase is 40 min.

The benefit of this intermediate calculation phase is to verify the stability of the structure
after the installation of the thick backfill before continuing with the other construction phases.
According to the result of this phase, the sliding FOS is equal to 1.56 guaranteeing the stability of
the structure despite the shear displacements of 71 cm which are canceled by the extra embank-
ment and the abutment of the retaining wall 1. In order to validate our elastoplastic calculation
program for the c-phi parameters reduction on Cast3M, the results of this part were compared
with those of other geotechnical software commonly used in industrial environments. For these
modeling with these other softwares, the behaviour of materials obeys the criterion of rupture of
Mohr–Coulomb. Several software or methods were used for the comparison of the results.

These include: ULS-Geo-3, failure kinematics with the code Flac2D (FDM); ULS-Geo-3, failure
kinematics with the code Tochnog (FEM); LEM, Limit Equilibrium Method; KEM, Kinematic
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Figure 25. (a) Shadings of shear total incremental displacements (m); (b) shadings of de-
formed of the total shear incremental displacements (m) in ULS of the model (displace-
ments scaled by factor of 0.25) in phase 3.2.

Element Method; Method of slices with circular slip surface (Bishop method); Method of slices
with polygonal slip surface (Janbu method) and Strength Reduction Finite Element Limit Analysis
(SR-FELA) [33] implemented in OPTUM G2 [74]. The results in Figure 26 show the shear failure
mechanisms of the structure. The comparative FOS values obtained for each method [9, 62, 68,
74–77] are summarized in Table 5. The FOS obtained in our calculation is 1.56. It is the same
value that is obtained for the other Finite Element calculation codes presented (TOCHNOG and
PLAXIS) in Table 5. This calculation phase 3.2 is very useful, because it makes it possible to know
whether the structure is stable before to continue construction. With this FOS = 1.56, the safety
of this part of the structure is guaranteed.

The limit equilibrium methods for assessing the stability of earth structures are now used
routinely in practice. In spite of this extensive use, the fundamentals of the methods are often
not that well understood and expectations exceed what the methods can provide. The fact and
implications that limit equilibrium formulations are based on nothing more than equations of
statics with a single, constant factor of safety is often not recognized. A full appreciation of the
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Figure 26. (a) Total displacements in Ultimate Limit State with the code Flac3D (FDM);
(b) total displacements in ULS with the code Tochnog (FEM); (c) ULS analysis with the
Limit Equilibrium Method (LEM); (d) ULS analysis with the Kinematic Element Method
(KEM); (e) ULS analysis with the method of slices (Bishop method); (f) ULS analysis with
the method of slices (e.g, Janbu method).

implications reveals that the method has serious limitations. The main limitation is the need to
guess the general form of the failure surface in advance, with poor choices giving poor estimates
of the failure load. In practice, the correct form of the failure surface is often not intuitively
obvious, especially for problems with an irregular geometry, complex loading, or complicated
stratigraphy [32, 33]. There are other shortcomings of the technique, as follows.

(a) The resulting stresses do not satisfy equilibrium at every point in the domain.
(b) There is no simple means of checking the accuracy of the solution.
(c) It is hard to incorporate anisotropy, discontiniuty and inhomogeneity.
(d) The analysis does not take into account the dilatancy of the materials and does not

directly obtain the stresses and displacements in the structure.
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Table 5. The comparison the results of different method [9, 62, 68, 74–77]

Solver Method FOS Deviation (%)

OPTUM G2 (2022) SR-FELA
1.5–1.6 (lower and upper bound) −3.22 to +3.22

1.55 ± 0.032 (exact solution) -
PLAXIS (2018) FEM 1.56 +0.65

TOCHNOG (2022) FEM 1.56 +0.65
FLAC (2019) FDM 1.63 +5.16

KEM KEM 1.58 +1.94
Bishop (Talren 2020) Slices 1.89 +21.94

Janbu Slices 1.44 −7.10
Cast3M FEM 1.56 +0.65

(e) The failing soil mass is divided into slices for the calculation. The accuracy of the result
depends on the width of each slice. A thin slice width allows to have a valid result.

(f) It is difficult to generalise the procedure from two to three dimensions.
(g) It is now possible to deal highly irregular porewater pressure conditions, a variety of

linear and nonlinear shear strength models, virtually any kind of slip surface shape,
concentrated loads, and structural reinforcement.

However, owing to the inherent assumptions of limit equilibrium analyses, this method does
not always furnish a unique factor of safety and it is therefore unsuitable for generating a
reference solution for assessing the accuracy of alternative methods. To use limit equilibrium
methods effectively, it is important to understand and comprehend the inherent limitations. The
c-phi reduction method has been used in Plaxis and Tochnog software. c-phi reduction is an
option available in Plaxis [68] to compute safety factors. In the phi-c reduction approach the
strength parameters tanϕ and c of the soil are successively reduced until failure of the structure
occurs. The total multiplier ΣM s f is used to define the value of the soil strength parameters at a
given stage in the analysis:

ΣM s f = tan(ϕ′
input)/tan(ϕ′

reduced) = c ′input/c ′reduced. (18)

SF = available strength/strength at failure = value of ΣM s f at failure. (19)

A feature to OptumG2 [74] is the ability to compute rigorous upper and lower bounds on
the factor of safety. This allows the user to bracket the exact solution from above and below.
More precisely, if we denote the exact solution by E and the lower and upper bounds by L and
U respectively, the following inequalities hold: L ≤ E ≤ U . Moreover, if we denote the mean
value of the upper and lower bounds by M = (L +U )/2, we may define an absolute error by
εabs = (M −L) = (U −M).

So that the exact solution may be expressed as:

E = M ±εabs [%]. (20)

The comparison of Cast3M result with different methods commonly used in geotechnics
and exact solution (gap: 0.65%) shows that the implementation of c-phi reduction method is
successful.

5.4.4. Phase 4: elasto-plastic modeling

In this phase 4, the retaining wall 2 is built on first layered backfill. This phase starts after
phase 3.1, the displacements are initialized to zero in the model and is based on the application
of geostatic stress (gravity loading) and the stresses add up from one phase to the following.
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Figure 27. Total displacements (m) in SLS of the model in phase 4.

Figure 28. Vertical plastic strains in SLS in phase 4.

Figures 27–29 present the total displacements, vertical plastic strains and vertical stress (in
phase 4) of the model from elastoplastic analysis. The construction of the retaining wall 2 above
the first layered backfill generates minor settlements on it without prejudice to the stability of the
structure.

5.4.5. Phase 5: elasto-plastic modeling

In this phase 5, the 2rd layered backfill is realized on first layered backfill. This phase starts after
phase 4, the displacements are initialized to zero in the model and is based on the application of
geostatic stress (gravity loading). Figures 30 and 31 present the total displacements and vertical
stress (in phase 5) of the model from elastoplastic analysis. The construction of the layered
backfill 2 above the first layered backfill, generates a negligible horizontal displacement of the
wall 2 and minor settlements on the latter without prejudice to the stability of the structure.
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Figure 29. Shadings of the vertical stress (Pa) of the model in ULS (phase 4).

Figure 30. Deformed of the total incremental displacements (m) in SLS of the model
(displacements scaled by factor of 320.0) in phase 5.

The thrust of the wall is controlled by the construction of an additional stop corresponding to
the projected horizontal displacement due to the thrust of the retaining wall 2.

5.4.6. Phase 6: elasto-plastic modeling

In this phase 6, the application of surface load for road construction following the GTR
recommendation [71] (20 kN/m2, regarded as variable in Figure 12) is realized on 2rd layered
backfill. This phase starts after phase 5, the displacements are initialized to zero in the model
and is based on the application of surface load and the stresses add up from one phase to the
following. Figures 32–35 present the total displacements, plastic strains and vertical stress (in
phase 6) of the model from elastoplastic analysis. The total displacements obtained are small
(0.56 cm), these are quickly canceled by the creation of extra embankment whose thickness is
equal to the provisional displacement of this phase.
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Figure 31. Shadings of the vertical stress (Pa) of the model in ULS (phase 5).

Figure 32. Shadings of the deformed of the total incremental displacements (m) in SLS of
the model (displacements scaled by factor of 320.0) in phase 6.

5.4.7. Phase 7: elasto-plastic modeling and strength reduction method

5.4.7.1. Phase 7.1: elasto-plastic modeling. In this phase 7.1, the entire geotechnical structure
is built in a single phase, there are no previous phases. The gravity load and surface load are
applied on the model. Figure 36 presents the total displacements (in phase 7.1) of the model
from elastoplastic analysis. The total displacement in a single phase is 49 cm. This calculation
is complementary in order to have the difference in term of displacements if the structure were
built in one phase. Which does not represent the practical reality. On the other hand, it is to be
compared with that of phase 0 (part 5.3), carried out in linear elastic behavior.
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Figure 33. Horizontal plastic strains in SLS in phase 6.

Figure 34. Vertical plastic strains in SLS in phase 6.

5.4.7.2. Phase 7.2: strength reduction method. In this phase 7.2, the gravity load and surface
load are applied on the model. This phase starts from phase 7.1. Figures 37 and 38 present the
horizontal displacements (in phase 7.2) and the shadings of shear total incremental displace-
ments of the model from c-phi strength reduction method (ULS, GEO-3) analysis and displayed
adequate failure kinematics. The factor of safety for this phase is equal to 1.72 guaranteeing the
stability of the geotechnical structure despite the shear displacements of 73 cm.

In this phase, Plaxis software has been used (using Mohr–Coulomb model for soils) for the
comparison of the results (Figure 39). The factor of safety for this phase obtained by Plaxis
software is equal to 1.61. The Cast3M results are generally in good agreement with the Plaxis
results of the factor of safety. The difference between the two safety factor values is 6.83%.
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Figure 35. Shadings of the vertical stress (Pa) of the model in ULS (phase 6).

Figure 36. Shadings of the total displacements (m) in SLS of the model in phase 7.1.

This gap can be justified by the fact that the very fine mesh of Plaxis only has 818 elements at
15-noded (not possible to refine beyond) whereas the global model of Cast3M has 1800 elements
TRI3.

Table 6 presents the results of the displacements and the Factor of Safety on the model phase
by phase. The displacements of the elasto-plastic calculation are higher compared to the elastic
calculation (Table 6). In this paper, our computations were carried out respecting the practical
phasing of construction of the geotechnical structures. The advantage of staged construction
is to know the displacements generated after the construction of each phase. This technique
makes it possible to build each phase by providing on the one hand the extra embankment whose
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Figure 37. Shadings of horizontal displacements (m) in ULS of the model in phase 7.2.

Table 6. Summary of the results of the displacements by phase

Calculation
phase

Description of phase Calculation
type

Total displace-
ment (cm)

Factor
of safety

Phase 0 Initialization of initial stresses Linear elastic 21 -

Phase 1 Application of geostatic stress in the
Subsoil and basement

Elasto-plastic 3.22 -

Phase 2 Application of geostatic stress of the
retaining wall 1

Elasto-plastic 8.83 -

Phase 3.1 Application of geostatic stress of the
layered backfill 1

Elasto-plastic 15 -

Phase 3.2 Gradual reduction of the mobilized
strength

c-phi reduction 71 1.56

Phase 4 Application of geostatic stress of the
retaining wall 2

Elasto-plastic 0.24 -

Phase 5 Application of geostatic stress of
layered backfill 2

Elasto-plastic 0.087 -

Phase 6 Application of the surface load Elasto-plastic 0.56 -

Phase 7.1 The gravity load and surface load are
applied on the model in single phase

Elasto-plastic 49 -

Phase 7.2. Gradual reduction of the mobilized
strength on the model

c-phi reduction 73 1.72

extra elevation corresponds to the provisional settlements of this phase and on the other hand
an additional buttress if necessary so the thickness corresponds to the provisional horizontal
displacement caused on the retaining wall.

After construction of the phase, the displacements are obtained and the structure returns to its
initial position of stability provided during the design. From this staged construction modeling,
it becomes easy to control and limit settlement according to the functional requirements of the
geotechnical structure.
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Figure 38. (a) Shadings of shear total incremental displacements (m); (b) shadings of de-
formed of the total shear incremental displacements (m) in ULS of the model (displace-
ments scaled by factor of 2) in phase 7.2.

The safety factor obtained after the construction of the entire geotechnical structure (phase 7)
is 1.72, therefore higher than the 1.56 obtained after the construction of backfill 1 (phase 3.2). This
increase is due to the fact that, backfill 2 has a cohesion value 10 times greater than that used
on backfill 1. These materials come from two different quarries. Backfill 1 consits of materials
with a strong granular predominance (greyish pozzolan) with a low fines content. Backfill 2 is
constituted by the materials with a spread out grain size (Reddish clay gravel at gravelly sand).
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Figure 39. Shadings of shear total incremental displacements (m) calculated by Plaxis.

6. Discussion

The implementation of a c-phi reduction procedure in Cast3M shows that this approach, which
is often used as a black box in geotechnical softwares, can be implemented in rigorous way. This
procedure is first validated on a simple example of bearing capacity of a strip footing and then
used to evaluate the stability factor of a geotechnical structure composed of two levels of backfill
retained by two retaining walls, with a road built on the top of the second backfill.

6.1. Footing results

Concerning the modeling results of the strip footing, the difference in the theoretical results
obtained (formulas (9) and (11)) is in agreement with the assumptions made for each method
for the parameter Nγ. The “exact” theoretical expression of Nγ is not known. Only the upper
and lower bounds have been determined in particular by Vesic [63], Brinch-Hansen [64, 65] and
Meyerhof [66, 67]. Brinch-Hansen [64–66] indicates its value of Nγ is a lower bound and that
the addition of the three bearing capacity terms, which does not correspond exactly to the real
failure mechanism, corresponds to an underestimation of the bearing capacity which is generally
less than 20%. It is also this lower bound modified, which is used in Meyerhof’s formula. For
the Vesic formula, the upper bound of Nγ is used. It indicates that the addition of the three
bearing capacity terms gives an approximative estimate with less than 10% error over the interval
15 <ϕ< 45°.

The bearing capacity value of 101 kPa obtained by Cast3M modelling with a very fine mesh
is regarded as the exact solution because included between the theoretical values obtained
respectively by the lower and upper bounds. For very fine mesh of the numerical model of the
footing (validation on a simple example of bearing capacity of a strip footing), the difference
between Plaxis and Cast3M results is 7% (Table 2). This gap comes the difference between
Drucker–Prager and Mohr–Coulomb materials. The analysis on the mesh density and element
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type (TRI3 and TRI6) in Cast3M (Table 3) shows that, the difference between element type
TRI3 and TRI6 results varies between 30 (for the very coarse mesh with local refinements under
footing) to 0% (for the very fine mesh). The results of Table 3 show clearly that the element type,
the mesh density and the convergence tolerances have a pronounced influence on the factor of
safety obtained from the displacement finite-element method. Therefore, the influence of these
parameters must be minimised by the use of high-order elements, very fine meshes and stringent
tolerances in order to obtain a realistic results.

6.2. Retained walls–slope stability results

The Factor of Safety calculation procedure is based on the calculation of a stable initial stress
and corresponding deformation state recursive reduction of the shear and tensile strength until a
convergence to a prescribed tolerance is still obtainable. With regard to the retained walls–slope
stability and backfill results at the phase 3.2 (part 5.4.3.2), the form of the failure surface obtained
from Bishop and Janbu methods is very different from the other methods (Figure 26). The same
is true for values of resulting safety factor (Table 5) which deviate from the value which taken
for reference 1.55, against 1.89 for Bishop and 1.44 for Janbu. The Factor of Safety obtained by
the FE methods (Cast3M, PLAXIS and TOCHNOG) is identical (1.56) and between the upper and
lower bounds of OPTUM G2 (1.5 and 1.6). On the other hand, the value of 1.58 obtained by the
Kinematic Element Method is an upper bounds and corresponds well to 1.55+0.03 obtained by
OPTUM G2 (Table 5). In view of these results, the Janbu method seems the most conservative.
The difference in the results obtained is in agreement with the initial assumptions made for each
method as follows.

(a) For the limit equilibrium analysis, the need to guess the general form of the failure surface
in advance makes it impossible to obtain a rigorous solutions. The poor choices giving
poor estimates of the failure load. In practice, the correct form of the failure surface
is often not intuitively obvious, especially for problems with an irregular geometry,
complex loading, or complicated stratigraphy [32]. The resulting stresses do not satisfy
equilibrium at every point in the domain. The analysis does not take into account the
dilatancy of the materials and does not directly obtain the stresses and displacements in
the structure. The failing soil mass is divided into slices for the calculation. The accuracy
of the result depends on the width of each slice.

(b) For the Kinematic Element Method, the theorem used is the approach of limit loads
by upper bounds. It consists in constructing kinematics respecting boundaries condi-
tions on displacements and in finding for each of them forces that are too great for
the resistance of the soil [51]. This method overcomes the limits of the slice method
in rigorous framework. It allows taking into account any geometries and stratigraohy,
all flow conditions, point or distributed overloads in any direction and any type of
reinforcement.

(c) The finite-difference analysis is based in the explicit Lagrangian calculation scheme. The
timestep of the calculation, the choice of the elements of the mesh and the numerical
convergence have a pronounced influence on the factor of safety obtained from this
method. Therefore, the influence of these parameters must be minimised by the use
very small timestep of the calculation, convenable elements and stringent tolerances to
obtain a realistic results.

(d) The finite-element analysis is routinely applied for assessing displacements, stresses and
strains for working load conditions, this technique is increasingly being used to calculate
ultimate limit states and, consequently, factors of safety. In the finite-element codes
the factor of safety is obtained by means of the strength reduction method; that is, an



520 Zoa Ambassa et al.

analysis is performed with mobilised strength properties for the friction angle and the
cohesion c, followed by an incremental decrease of tanϕ′ and c ′ (assuming a Mohr–
Coulomb failure criterion). This gives stress states that violate the strength criteria which
are resolved in an iterative manner using the same stress point algorithm employed for a
standard elasto-plastic analysis in finite-element codes, leading to a stress redistribution
in the system until equilibrium can no longer be established and failure is reached [32].
However, close inspection of the developed failure mechanism and displacements of
appropriate control points is required in order to avoid misinterpretation. It is well known
that the element type, the mesh discretisation and the convergence tolerances have a
pronounced influence on the factor of safety obtained from the displacement finite-
element method. Therefore, the influence of these parameters must be minimised by
the use of high-order elements, fine meshes and stringent tolerances in order to obtain
a realistic results. Our numerical modelling were made using a very fine mesh in Cast3M
models.

(e) The new emerging method so-called finite-element limit analysis (FELA) is particularly
powerful when both upper and lower bound estimates are calculated so that the true
collapse load is bracketed from above and below. The difference between the two bounds
then provides an exact measure of the error in the solution, and can be used to refine the
meshes until a suitably accurate estimate of the collapse load is found [32].

The originality of our computation method is based on the adjustment of the factor FCUT
allowing to regulate numerical gap between the very coarse mesh effect to very fine mesh of the
model.

7. Conclusion

For geotechnical problems: Serviceability Limit State (SLS), computations are based on the
deformation analysis. Ultimate Limit State (ULS): computations for stability analysis Strength
reduction method are a powerful numerical technique implementing different safety concepts.
It is argued that the Finite Element method of retaining wall and slope stability analysis is a more
powerful alternative to traditional limit equilibrium methods and its widespread use should now
be standard in geotechnical practice. Cast3M is an FE code dedicated mainly to the calculation of
structures. At present, from a methodical, rigorous and sophisticated computation, we manage
to solve complex geotechnical problems both at Serviceability Limit State (SLS) and the Ultimate
Limit State analysis (ULS) by respecting the functional requirements and the different stages
of construction allowing to have the overall stability which guarantees the durability of the
geotechnical structure in comfortable safety conditions. The results presented in this paper were
compared with those obtained by commercial industrial software dedicated to geotechnical
problems and by reference solutions testifying to the reliability of our rigorous computation from
the Cast3M code. A unique feature to Cast3M is the ability to compute rigorous factor of safety
and analyses deliver adequate failure kinematics. The main contributions of this paper are the
following:

• The implementation of a c-phi reduction procedure in Cast3M shows that this approach,
which is often used as a black box in geotechnical softwares, can be implemented in
rigorous way.

• The comparison with different methods commonly used in geotechnics shows that the
implementation of c-phi reduction method is successful.

• The originality of the method is based on the adjustment of the factor FCUT allowing
to regulate numerical gap between the very coarse mesh effect to very fine mesh of the
model.
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