
Comptes Rendus

Mécanique

Julien Coatléven

Network element methods for linear elasticity

Published online: 11 December 2023

https://doi.org/10.5802/crmeca.231

Part of Special Issue: The scientific legacy of Roland Glowinski

Guest editors: Gregoire Allaire (CMAP, Ecole Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France), Jean-Michel Coron (Laboratoire Jacques-Louis Lions, Sorbonne
Université) and Vivette Girault (Laboratoire Jacques-Louis Lions, Sorbonne Université)

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mécanique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1873-7234

https://doi.org/10.5802/crmeca.231
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mécanique
Published online: 11 December 2023
https://doi.org/10.5802/crmeca.231

The scientific legacy of Roland Glowinski / L’héritage scientifique de Roland
Glowinski

Network element methods for linear elasticity
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Abstract. We explain how to derive a network element for the linear elasticity problem. After presenting
sufficient conditions on the network for the validity of a discrete Korn inequality, we also propose several
variations of the presented method and in particular we explain how it can be used on meshes to derive
schemes that remain stable while keeping the stencil as compact as possible. Numerical examples illustrate
the good behavior of the method, in both the mesh-based and truly meshless contexts.

Résumé. Nous expliquons comment contruire une méthode « éléments de réseau » pour le problème de
l’élasticité linéaire. Après avoir présenté des conditions suffisantes sur le réseau de discrétisation pour qu’une
inégalité de Korn discrète soit satisfaite, nous détaillons plusieurs variantes de la méthode proposée et
en particulier nous expliquons comment elle permet aussi d’obtenir des schémas basés sur des maillages
qui demeurent stables tout en maintenant le stencil aussi compact que possible. Nous illustrons le bon
comportement de la méthode à la fois sur maillage et dans le cas complètement sans maillage.

Keywords. Meshless methods, Linear elasticity, Variational methods.
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1. Introduction

For complex and/or deformable geometries, numerically solving challenging mechanical prob-
lems involves generating costly polygonal or polyhedral meshes to enable the use of classi-
cal discretization methods. A first idea to circumvent time consuming meshing is the fictitious
domain method popularized by the work of Glowinski (see [1, 2]). Since they have the poten-
tial of considerably alleviating the computational bottleneck of mesh generation and dynamic
adaptation, meshless methods still represent nowadays another promising alternative to the
more classical mesh-based numerical methods such as finite differences, finite elements and
finite volume methods. Roughly speaking, most meshless methods fall into two main families:
collocation based methods and variational methods that uses meshfree basis functions. The
main difficulty with strong form collocation methods is avoiding ill-conditioning of the final
system to be solved, despite the many progress accomplished for instance for smooth particle
hydrodynamics (SPH, [3, 4]), reproducing kernel particle methods (RPK, [5]), generalized finite
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differences (GFD, [6]), moving least-square based methods (see [7–9]) or methods based on ra-
dial basis functions (see [7,10–12]). In contrast, methods based on meshfree basis functions such
as the diffuse element method (see [13]), the element free Galerkin method (see [14, 15]), parti-
tion of unity based methods (see [16, 17]) theoretically inherit the built-in stability of weak form
variational methods, however numerical integration of those basis functions can severely deteri-
orate their theoretical stability (see [7, 16]). The popular meshless local Petrov–Galerkin (MLPG,
see [18, 19]) is an attempt to circumvent those numerical instabilities. For a general review on
meshless methods and of recent progress made on them, we refer the reader to [20].

The recently introduced network element method (NEM) of [21] is a meshfree variational
method that belongs to a third, less developped category of meshfree methods based soleley
on a point cloud and a point connectivity, without any mesh at any stage of the method, not
even for numerical integration. This point cloud and its connectivity of course form the net-
work giving its name to the method. The literature on network based methods being mainly fo-
cused on finite volume like, strong form methods (see [22–27]), the NEM represents an attrac-
tive alternative as like methods based on meshfree basis functions, it inherits the stability of
the variational approach. Moreover, thanks to its network based formulation, no numerical in-
tegration is required and thus stability is never a numerical issue (see [21]). Introduced on the
Poisson problem, it has since been extended to heterogeneous and anisotropic diffusion reac-
tion problems, either in non-conservative (see [28]) or conservative (see [29]) formulations. A
convergence theory as well as error estimates were presented in [30]. The main practical chal-
lenge originally posed by the NEM was the computation of the so-called network geometry, i.e.
of the family of weights that allows to derive polynomial reconstruction operators from the de-
grees of freedom. The original method for geometry generation of [21] was non-linear, how-
ever a linear bypass has been proposed in [31] along with fast network generation algorithms
giving birth to a sufficiently fast network element workflow that competes with other meshfree
methods.

The objective of the present article is the extension of the network element method to the
more complex system of linear elasticity. As the network underlying the NEM generalizes in some
sense the notion of mesh, if applied on a mesh it will also offer alternatives to existing first order
methods for linear elasticity on mesh with general cell geometries, such as the first order virtual
element method (see [32, 33]) or hybrid finite volume like methods (see [34–36]). Without any
attempt at being exhaustive, let us nevertheless mention that linear elasticity problems have
been of course investigated with both strong and weak form meshless methods (see [9, 37–39]),
up to considering fretting [40] or fracture [41, 42] problems. For a quite recent review we refer
the reader to [43]. All those methods are potentially subject to some numerical instabilities: the
main advantage of the NEM for linear elasticity is, as in the case of diffusion problems, that its
variational, numerical integration free nature will provide stability in the classical way: through a
discrete counterpart of Korn’s inequality.

The paper will be organized as follows: after recalling the notions of discretization network
and associated network geometry on which the NEM is built, we propose a sufficient condi-
tion on networks that allow to establish a discrete counterpart of Korn’s inequality. Building on
it for the derivation of the stabilization term of the method, we then present a network element
method for linear elasticity and establish its well-posedness. We then also present a flux based
version that is conservative in terms of numerical tractions as well as mesh-based implemen-
tations of both the non-conservative and conservative NEMs for linear elasticity, that are inter-
esting per se as they coincide with or are alternatives to existing mesh-based numerical meth-
ods. Finally, we present some numerical results on challenging problems of the literature, that
illustrates the good behavior of the NEM for linear elasticity, even in the quasi-incompressible
limit.
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2. Discretization networks and approximate geometries

In this section, we recall for the reader’s convenience the notions of discretization network and
associated approximate network geometry of [31] that where originally introduced in [21].

Let Ω be an open bounded connected subset of Rd , d ∈ N \ {0}, with boundary ∂Ω = Ω \Ω
assumed to be at least Lipschitz. For any x ∈ Rd and any r > 0, we denote B(x,r ) the open
ball of radius r centered at x for the usual euclidean norm |x|2 = ∑d

i=1 x2
i . Following [21, 25–27],

a discretization network N of Ω is defined from two sets of points PT and PF , by setting
N = {T ,F }:

(H1) The set of cells T is a set of pairs K = {xK ,rK }, with xK ∈ PT inside Ω and rK a strictly
positive real number, for any K ∈T . We denote hK = 2rK .

(H2) The set of interfaces, denoted F , is a set of pairs σ = {xσ,Tσ}, with xσ ∈ PF and Tσ a
subset of T . It is subdivided into two subsets, the set of boundary interfaces Fext and
the set of interior interfaces Fint. The set of boundary interfaces Fext is such that for all
σ ∈ Fext, xσ is a point in ∩K∈TσB(xK ,rK )∩∂Ω. The set of interior interfaces Fint is such
that for all σ ∈Fint, xσ is a point in ∩K∈TσB(xK ,rK )∩Ω.

(H3) Ω⊂⋃
K∈T B(xK ,rK ). For all (K1,K2) ∈T 2 such that K1 ̸= K2, xK1 ̸= xK2 .

(H4) To any K ∈T , we associate a Lipschitz open set ΩK ⊂ B(xK ,rK ) such that Ω⊂⋃
K∈T ΩK .

For any K ∈ T such that ∂Ω∩ΩK ̸= ;, there exists σ ∈ Fext such that K ∈ Tσ. For any
(K ,L) ∈T 2 such thatΩK ∩ΩL ̸= ;, there exists σ ∈F such that (K ,L) ⊂Tσ.

For any K ∈T , we denote FK = {σ ∈F | K ∈Tσ} the set of interfaces of K , implying that for any
σ ∈ F the set Tσ denotes the cells connected to the interface σ and satisfies Tσ = {K ∈ T | σ ∈
FK }. We denote BK = B(xK ,rK ), h = maxK∈T hK and Pk (Rd ) the set of polynomials of order k. A
network is said to be admissible if for any cell K ∈T the set (xσ)σ∈FK is unisolvent for first order
polynomials.

Important and obvious examples of discretization networks are mesh based discretization
networks. Indeed, if M is a mesh, if we identify T with the set of cells of the of mesh M and
F with the set of its faces (resp. its vertices), then choosing xK to be the barycenter of each cell
K ∈ T and xσ to be the barycenter of each face σ ∈ F (resp. the position of each vertex), and
finally choosing for each cell K the open set ΩK to coincide with cell K we get an admissible
discretization network.

A network geometry is defined as a set of coefficients:

G =
(
(mK )K∈T , (ηK ,σ)K∈T ,σ∈FK , (ε0,i

K )K∈T ,1≤i≤d , (ε1,i j
K )K∈T ,1≤i , j≤d , (εi

σ)σ∈Fint,1≤i≤d

)
.

The discrete measures (mK )K∈T are said to be admissible if and only if they satisfy

mK > 0 for all K ∈T and
∑

K∈T

mK = |Ω|, (1)

where |Ω| denotes the Lebesgue measure ofΩ, while the approximate consistency properties are
given by ∑

σ∈FK

ηi
K ,σ = mK ε

0,i
K ∀K ∈T , ∀1 ≤ i ≤ d , (2)

and ∑
σ∈FK

ηi
K ,σ(x j

σ−x j
K ) = mK (δi j +ε1,i j

K ) ∀K ∈T , ∀1 ≤ i , j ≤ d , (3)

where δi j is the Kronecker symbol, and the approximate compatibility (or conservation) proper-
ties by ∑

K∈Tσ

ηi
Kσ = εi

σ ∀σ ∈Fint, ∀1 ≤ i ≤ d . (4)
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The geometric approximation error is measured through the constants θA > 0 and p ≥ 1 such
that:

|ε0,i
K | ≤ θA hp

K ∀K ∈T , ∀1 ≤ i ≤ d , and |ε1,i j
K | ≤ θA hp

K ∀K ∈T , ∀1 ≤ i , j ≤ d , (5)

and
|εi
σ| ≤ θA min

K∈Tσ

mK hp
K ∀σ ∈Fint, ∀1 ≤ i ≤ d . (6)

We say that a network geometry is admissible if it satisfies (2)–(4) and the family of measures is
admissible.

3. A basic network element method for linear elasticity

The aim of this section is to introduce the network element method discretization of a basic linear
elasticity problem with constant Lamé coefficients. After introducing our model problem, we
detail the set of degrees of freedom and the discrete reconstruction operators associated with the
network element method. We then propose a discrete variational formulation, and next establish
a discrete Korn inequality that naturally induces the stability of our variational formulation. We
conclude this section by providing implementation details.

3.1. Model problem

We consider the simplest possible linear elasticity model problem, i.e. the case of constant Lamé
coefficients, set onΩ:

−divσ(u) = f , (7)

with f ∈ L2(Ω)d and

σ(u) = 2µϵ(u)+λdivu Id and ϵ(u) = 1
2

(∇u+∇uT )
and divσ=

d∑
i=1

d∑
j=1

∂x jσi j ei , (8)

where Id is the identity matrix in dimension d . For the sake of simplicity again, we complement it
with homogeneous Dirichlet boundary conditions, i.e. u = 0 on ∂Ω. The weak solution associated
to (7)–(8) is the unique u ∈ H 1

0 (Ω)d such that

a(u,v) = 2µ
∫
Ω
ϵ(u) : ϵ(v)+λ

∫
Ω

divu divv =
∫
Ω

f ·v for all v ∈ H 1
0 (Ω)d , (9)

where we recall that A : B = tr(AT B) =∑d
i=1

∑d
j=1 Ai j Bi j .

3.2. Degrees of freedom and network element operators

Let N be an admissible discretization network, endowed with an admissible network geometry
G . To N is associated the following space of degrees of freedom, which is simply a vector valued
version of the original NEM dof space of [21]:

X d
N =

{
(uσ)σ∈F | uσ ∈Rd ∀σ ∈F

}
,

and denote U = (uσ)σ∈F . To account for homogeneous Dirichlet boundary condition, we also
consider:

X d
N ,0 =

{
U ∈ X d

N | uσ = 0 for all σ ∈Fext

}
,

and we define the local set of degrees of freedom associated to a cell by:

X d
N ,K =

{
(uσ)σ∈FK | uσ ∈Rd ∀σ ∈FK

}
.
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Of course, for any U ∈ X d
N

, we denote UK = (uσ)σ∈FK . To any cell K ∈ T , we associate the local
d-dimensional reconstruction operatorΠd

K defined by:∣∣∣∣∣Π
d
K : X d

N ,K 7−→ P1(Rd )d

UK −→ Πd
K (UK ) =M d

K (UK )+∇d
K (UK ) (x−xK ),

(10)

where ∣∣∣∣∣∣∣
∇d

K : X d
N ,K 7−→ P0(Rd )d

UK −→ ∇d
K (UK )i j =

1

mK

∑
σ∈FK

ui
ση

j
K ,σ,

(11)

and

M d
K (UK ) = ∑

σ∈FK

γK ,σuσ,

with the (γK ,σ)σ∈FK form a barycentric interpolation of xK from the (xσ)σ∈FK :

xK = ∑
σ∈FK

γK ,σxσ where
∑

σ∈FK

γK ,σ = 1.

We further define the discrete divergence operator by setting:∣∣∣∣∣∣∣∣
DIVK : X d

N ,K 7−→ P0(Rd )

UK −→ DIVK (UK ) = 1

mK

d∑
i=1

∑
σ∈FK

ui
ση

i
K ,σ.

(12)

Notice that component-wise, the operatorsΠd
K , ∇d

K and M d
K are identical to the usual scalar NEM

operatorsΠK , ∇K and MK of [21], i.e., denoting U i
K = (

ui
σ

)
σ∈FK

and U i = (
ui
σ

)
σ∈F :

Πd
K (UK )i =ΠK (U i

K ) and ∇d
K (UK )i =∇K (U i

K ) and M d
K (UK )i =MK (U i

K ).

Also notice that ∇Πd
K (UK ) = ∇d

K (UK ) by construction, thus we will use both notations inter-
changeably. Finally, we denote:

ϵK (UK ) = 1
2

(
∇d

K (UK )+∇d
K (UK )T

)
, (13)

which is of course intended to be an approximation of ϵ(u).

3.3. Approximation by the network element method

The discretization by the network element method consists in finding a solution U ∈ X d
N ,0 of

ah(U ,V ) = lh(V ) for all V ∈ X d
N ,0, (14)

where for the right-hand side assuming that f K is an approximation of f at xK we define the linear
form lh : X d

N
7−→R by setting:

lh(V ) = ∑
K∈T

mK f K ·M d
K (V K ), (15)

while

ah(U ,V ) = ∑
K∈T

aK
h (UK ,V K ) with aK

h (UK ,V K ) = aK
µ,h(UK ,V K )+aK

λ,h(UK ,V K ), (16)

where the discrete bilinear form aK
µ,h : X d

N ,K ×X d
N ,K 7−→Rmimics the term 2µ

∫
Ωϵ(u) : ϵ(v) and is

given by
aK
µ,h(UK ,V K ) = 2µmK ϵK (UK ) : ϵK (V K )+ sK (UK ,V K ), (17)
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where sK is a positive symmetric bilinear form on X d
N ,K ×X d

N ,K , such that

sK (UK ,V K ) = 2µmK h−2
K

∑
σ∈FK

∑
σ′∈FK

Sσ,σ′
K (uσ−Πd

K (UK ) (xσ)) · (vσ′ −Πd
K (V K ) (xσ′ )), (18)

where SK = (Sσ,σ′
K )σ,σ′∈FK can be any symmetric positive definite matrix independent of the

geometry G associated to the network, such that there exists S∗ > 0 and S∗ > 0 for which, for
any K ∈T and any (ξσ)σ∈FK ∈Rcard(FK ):

S∗
∑

σ∈FK

|ξσ|2 ≤
∑

σ∈FK

∑
σ′∈FK

Sσ,σ′
K ξσξσ′ ≤ S∗ ∑

σ∈FK

|ξσ|2.

The second discrete bilinear form aK
λ,h : X d

N ,K × X d
N ,K 7−→ R this time mimics λ

∫
Ωdivu divv and

is defined by
aK
λ,h(UK ,V K ) =λmK DIVK (UK )DIVK (V K ) . (19)

3.4. A discrete Korn inequality

At the continuous level existence and uniqueness of a solution of the variational problem (9) is a
consequence of the celebrated Korn inequality, valid for any u ∈ H 1(Ω)d withΩ at least Lipschitz
(see for instance [44]):

∥∇u∥2
L2(Ω)d×d ≤CK ,Ω

(
∥u∥2

L2(Ω)d +∥ϵ(u)∥2
L2(Ω)d×d

)
, (20)

where CK ,Ω only depends on d and Ω. To derive a stable numerical method, we need a discrete
counterpart of Korn’s inequality relating ϵK (UK ) and ∇d

K (UK ). It is well known that this requires
to correctly manage the set of rigid body motions:

RM(Rd ) =
{

v ∈P1(Rd )d | ∇v =−∇vT
}

. (21)

To this end, we need to add the following assumption on the network:

(H5) For any (K ,L) ∈ T 2, if FK ∩FL ̸= ; then the set (xσ)σ∈FK ∩FL is unisolvent for RM(Rd ).
Moreover, the set (xσ)σ∈Fext is unisolvent for RM(Rd ).

As we will utlimately deal with a NEM equivalent of piecewise H 1 functions, similarly to what
is done for meshes (see [45]) our discrete norm must moreover take into account jumps on cell
interfaces for a discrete Korn inequality to hold. This leads to the following result:

Lemma 1 (Discrete Korn’s inequality). Assume that (H5) holds. Then, there exists CK ,N > 0
independent of h such that for any U ∈ X d

N
we have:∑

K∈T

mK |∇d
K (UK ) |2

≤ CK ,N
∑

K∈T

mK

(
|ϵK (UK ) |2 +h−2

K

∑
σ∈FK

∣∣∣uσ−Πd
K (UK ) (xσ)

∣∣∣2 +h−2
K

∑
σ∈FK ∩Fext

|uσ|2
)

. (22)

Proof. We proceed by contradiction. If the result does not hold true, then for any n ∈ N there
exists Un ∈ X d

N
such that:∑

K∈T

mK |∇d
K

(
Un

K

) |2 > n
∑

K∈T

mK

(
|ϵK

(
Un

K

) |2 +h−2
K

∑
σ∈FK

∣∣∣un
σ−Πd

K

(
Un

K

)
(xσ)

∣∣∣2 +h−2
K

∑
σ∈FK ∩Fext

∣∣un
σ

∣∣2

)
.

We define Ũ
n

by setting

ũi ,n
σ = ui ,n

σ∑
K∈T

mK |∇d
K

(
Un

K

) |2 for all σ ∈F ,



Julien Coatléven 7

thus leading to
∑

K∈T mK |∇d
K

(
Ũ

n
K

) |2 = 1 and

∑
K∈T

mK

(
|ϵK

(
Ũ

n
K

) |2 +h−2
K

∑
σ∈FK

∣∣∣ũn
σ−Πd

K

(
Ũ

n
K

)
(xσ)

∣∣∣2 +h−2
K

∑
σ∈FK ∩Fext

∣∣ũn
σ

∣∣2

)
< 1

n
.

The set X d
N

being finite dimensional, it is compact and thus we can extract a strongly convergent
sub-sequence from (Ũ

n
)n∈N, still denoted (Ũ

n
), with limit Ũ . Then, by construction:

∑
K∈T

mK

(
|ϵK

(
ŨK

) |2 +h−2
K

∑
σ∈FK

∣∣∣ũσ−Πd
K

(
ŨK

)
(xσ)

∣∣∣2 +h−2
K

∑
σ∈FK ∩Fext

|ũσ|2
)
= 0,

which implies that ϵK (ŨK ) = 0 for all K ∈T and thusΠd
K (ŨK ) is a rigid body motion for all K ∈T .

Moreover ũσ = Πd
K (ŨK )(xσ) for all K ∈ T and all σ ∈ FK , which using (H4) and (H5) implies

that all the Πd
K (ŨK ) are equal to the same rigid body motion Πd

K (ŨK ) = a+Rv ·x with Rv a anti-
symmetric matrix. Finally, as ũσ = 0 for allσ ∈Fext and a+Rv ·xσ = ũσ, we get thatΠd

K (ŨK ) = 0 for
all K ∈T and ũσ = 0 for allσ ∈F . Thus, in particular ∇d

K (ŨK ) = 0 for all K ∈T , which contradicts∑
K∈T mK |∇d

K

(
ŨK

) |2 = 1.
To conclude the proof, we use a scaling argument. For any β> 0, consider the set Ω̂(β) =β−1Ω

obtained through the variable change x̂ = β−1x, and the associated network N̂ (β) such that
x̂K = β−1xK , ĥK = β−1hK and m̂K = β−d mK for all K ∈ T , x̂σ = β−1xσ for all σ ∈ F , and finally
η̂K ,σ =β1−dηK ,σ for all K ∈T and all σ ∈FK . Notice that:

∇̂d
K (UK )i j = 1

m̂K

∑
σ∈FK

ui
ση̂

j
K ,σ = β1−d

β−d mK

∑
σ∈FK

ui
ση

j
K ,σ =β∇d

K (UK )i j ,

leading to |∇̂d
K (UK ) |2 = β−2|∇d

K (UK ) |2, |ϵ̂K (UK ) |2 = β−2|ϵK (UK ) |2 and Π̂d
K (UK )(x̂σ) =

Πd
K (UK )(xσ). Now, on Ω̂(β) and N̂ (β), we deduce from the first part that:∑

K∈T

m̂K |∇̂d
K (UK ) |2

≤ CK ,N̂ (β)

∑
K∈T

m̂K

(
|ϵ̂K (UK ) |2 + ĥ−2

K

∑
σ∈FK

∣∣∣uσ− Π̂d
K (UK ) (x̂σ)

∣∣∣2 + ĥ−2
K

∑
σ∈FK ∩Fext

|uσ|2
)

,

leading to, gathering the above scaling results:∑
K∈T

β−d mKβ
2|∇d

K (UK ) |2

≤ CK ,N̂ (β)

∑
K∈T

β−d mK

(
β2|ϵK (UK ) |2 +β2h−2

K

∑
σ∈FK

∣∣∣uσ−Πd
K (UK ) (xσ)

∣∣∣2 +β2h−2
K

∑
σ∈FK ∩Fext

|uσ|2
)

,

and thus CK ,N ≤CK ,N̂ (β) for all β (and in particular β= h), which concludes the proof. □

For our model problem with Dirichlet boundary conditions, we obtain the following obvious
corollary:

Corollary 1 (Discrete Korn’s first inequality). Assume that (H5) holds. Then there exists CK ,N >
0 independent of h such that for any U ∈ X d

N ,0, we have:

∑
K∈T

mK |∇d
K (UK ) |2 ≤CK ,N

∑
K∈T

mK

(
|ϵK (UK ) |2 +h−2

K

∑
σ∈FK

∣∣∣uσ−Πd
K (UK ) (xσ)

∣∣∣2
)

.
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3.5. Stability properties of the network element method for linear elasticity

Let us recall the quality parameters of the discretization network and geometry (see [21, 30]):

θΠ = sup
K∈T

sup
σ∈FK

hK

∣∣∣∣ηK ,σ

mK

∣∣∣∣ and θM = sup
K∈T

sup
σ∈FK

|γK ,σ| and θF = max
K∈T

card(FK ),

and

θT = sup
K∈T

max

( |BK ∩Ω|
mK

,
mK

|BK ∩Ω|
)

,

and we denote Sd
1 = |B(0,1)| the volume of the unit ball in dimension d . We endow the space of

degrees of freedom X d
N

with the bilinear forms

(U ,V )0 =
∑

K∈T

(U ,V )0,K and (U ,V )1 =
∑

K∈T

(U ,V )1,K ,

and the associated norm ∥U∥2
0 = (U ,U)0 and semi-norm |U |21 = (U ,U)1. where

(U ,V )0,K = mK M d
K (UK ) ·M d

K (V K )+ ∑
σ∈FK

mK (uσ−M d
K (UK )) · (vσ−M d

K (V K )),

and

(U ,V )1,K = ∑
σ∈FK

mK h−2
K (uσ−M d

K (UK )) · (vσ−M d
K (V K )).

Next, we define:

(U ,V )X = (U ,V )0 + (U ,V )1 and ∥U∥2
X = (U ,U)X ,

which are obviously a scalar product and its associated norm on X d
N

, making X d
N

a Hilbert space.
From [21, 30], we know that there exists some C∇(θF ,θΠ,θA )2 > 0 (simply denoted C∇ in the
remaining of the paper for simplicity) such that for any U ∈ XN :( ∑

K∈T

mK

∣∣∣∇d
K (UK )

∣∣∣2
)1/2

≤C∇(θF ,θΠ,θA )∥U∥X , (23)

immediately implying that:( ∑
K∈T

mK |ϵK (UK )|2
)1/2

≤C∇(θF ,θΠ,θA )∥U∥X . (24)

The following result establishes the stability of the NEM for linear elasticity:

Theorem 1. Assume that (H5) holds. There exists γa > 0 depending only on CK ,N , S∗, µ, θF such
that for any U ∈ X d

N ,0

ah(U,U) ≥ γa
∑

K∈T

∑
σ∈FK

mK h−2
K |uσ−M d

K (UK )|2. (25)

Moreover, there exists Ca > 0 depending only on S∗, µ, λ, θF , θΠ and θA such that for any
(U,V) ∈ X d

N
×X d

N

ah(U,V) ≤Ca

( ∑
K∈T

∑
σ∈FK

mK h−2
K |uσ−M d

K (UK )|2
)1/2 ( ∑

K∈T

∑
σ∈FK

mK h−2
K |vσ−M d

K (VK )|2
)1/2

. (26)

Proof. By construction, we have:

aK
h (U ,U) ≥ aK

µ,h(U ,U) = 2µmK |ϵK (UK ) |2 +2µmK h−2
K S∗

∑
σ∈FK

∣∣∣uσ−Πd
K (UK ) (xσ)

∣∣∣2
.
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Using the discrete Korn inequality of corollary 1, we see that:∑
K∈T

µmK |ϵK (UK ) |2 +µmK h−2
K S∗

∑
K∈T

∑
σ∈FK

∣∣∣uσ−Πd
K (UK ) (xσ)

∣∣∣2

≥ µ

CK ,N
min(1,S∗)

∑
K∈T

mK

∣∣∣∇d
K (U)

∣∣∣2
,

leading to:

ah(U ,U) = ∑
K∈T

aK
h (U ,U) ≥ ∑

K∈T

µmK |ϵK (UK ) |2 +µS∗
∑

K∈T

∑
σ∈FK

mK h−2
K

∣∣∣uσ−Πd
K (UK ) (xσ)

∣∣∣2

+ µ

CK ,N
min(1,S∗)

∑
K∈T

mK

∣∣∣∇d
K (U)

∣∣∣2
.

Using the identity

(a −b)2 ≥ ρ

1+ρ a2 −ρb2 ∀ (a,b) ∈R2, ∀ρ >−1,

we see that, for all ρ >−1∣∣∣uσ−Πd
K (UK ) (xσ)

∣∣∣2 ≥ ρ

1+ρ
∑

σ∈FK

|uσ−M d
K (UK )|2 −ρθF |∇d

K (UK )|2.

Gathering the previous results, we get:

ah(U ,U) ≥ ∑
K∈T

µmK |ϵK (UK ) |2 + µρS∗
1+ρ

∑
σ∈FK

mK h−2
K |uσ−M d

K (UK )|2

+
(

min(1,S∗)

CK ,N
−ρθF S∗

)
µmK

∣∣∣∇d
K (U)

∣∣∣2
,

and the first result follows with:

ρ = min(1,S∗)

CK ,N θF S∗
and γa = µS∗ min(1,S∗)

CK ,N θF S∗+min(1,S∗)
.

The second result is an immediate consequence of estimates (23) and (24) and Cauchy–Schwarz
inequality (see [21, 28, 30] for details in the scalar case). □

If Ω satisfies the cone condition then using (H4) and applying the results of [21, 30] componen-
twise and summing, we know that a discrete Poincaré inequality holds for the ∥ · ∥X and ∥ · ∥0

norms. Existence, uniqueness and stability of the discrete solution is consequently an obvious
consequence of Lax–Milgram’s lemma.

3.6. Matrix formulation

By definition, we have:

mK ϵK (UK ) : ϵK (V K ) = 1

4mK

∑
σ∈FK

∑
σ′∈FK

d∑
i=1

d∑
j=1

(
ui
σ′η

j
K ,σ′ +u j

σ′η
i
K ,σ′

)(
v i
ση

j
K ,σ+ v j

ση
i
K ,σ

)
= 1

2mK

∑
σ∈FK

∑
σ′∈FK

d∑
i=1

ui
σ′v

i
σ

(
d∑

j=1
η

j
K ,σ′η

j
K ,σ

)

+ 1

2mK

∑
σ∈FK

∑
σ′∈FK

d∑
i=1

d∑
j=1

u j
σ′v

i
ση

i
K ,σ′η

j
K ,σ.

Thus, we get:

aK
µ,h(UK ,V K ) = ∑

σ∈FK

d∑
i=1

( ∑
σ′∈FK

d∑
j=1

AK ,µ
σ,i ,σ′, j u j

σ′

)
v i
σ,
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where

AK ,µ
σ,i ,σ′, j =

µ

mK

(
ηi

K ,σ′η
j
K ,σ+δi j

(
d∑

k=1
ηk

K ,ση
k
K ,σ′

))
.

Meanwhile, we have:

mK DIVK (UK )DIVK (V K ) = 1

mK

∑
σ∈FK

∑
σ′∈FK

(
d∑

j=1
u j
σ′η

j
K ,σ′

)(
d∑

i=1
v i
ση

i
K ,σ

)
,

leading to:

aK
λ,h(UK ,V K ) = ∑

σ∈FK

d∑
i=1

( ∑
σ′∈FK

d∑
j=1

AK ,λ
σ,i ,σ′, j u j

σ′

)
v i
σ where AK ,λ

σ,i ,σ′, j =
λ

mK
ηi

K ,ση
j
K ,σ′ .

Finally, since:

uσ−Πd
K (UK ) (xσ) = ∑

σ′′∈FK

(
δσσ′′ −γK ,σ′′ − 1

mK
ηK ,σ′′ · (xσ−xK )

)
uσ′′ = ∑

σ′′∈FK

yσK ,σ′′uσ′′ ,

and

vσ′ −Πd
K (V K ) (xσ′ ) = ∑

σ′′′∈FK

(
δσ′σ′′′ −γK ,σ′′′ − 1

mK
ηK ,σ‘′′ · (xσ′ −xK )

)
vσ′′′ = ∑

σ′′′∈FK

yσ
′

K ,σ′′′vσ′′′ ,

where we have denoted

yσK ,σ′′ = δσσ′′ −γK ,σ′′ − 1

mK
ηK ,σ′′ · (xσ−xK ) and yK ,σ′′ = (yσK ,σ′′ )σ∈FK ,

we see that: ∑
σ∈FK

∑
σ′∈FK

Sσ,σ′
K (uσ−Πd

K (UK ) (xσ)) · (vσ′ −Πd
K (V K ) (xσ′ ))

=
d∑

i=1

∑
σ∈FK

∑
σ′∈FK

∑
σ′′∈FK

∑
σ′′′∈FK

Sσ,σ′
K yσK ,σ′′ y

σ′
K ,σ′′′u

i
σ′′v

i
σ′′′ ,

leading to (notice that we have inverted the role of the pairs of indices (σ,σ′) and (σ′′,σ′′′)):

sK (UK ,V K ) = ∑
σ∈FK

d∑
i=1

( ∑
σ′∈FK

d∑
j=1

SK ,µ
σ,i ,σ′, j u j

σ′

)
v i
σ,

where we have denoted:

SK ,µ
σ,i ,σ′, j = 2µδi j mK h−2

K yT
K ,σSK yK ,σ′ whereSK = (Sσ

′′,σ′′′
K )σ′′,σ′′′∈FK and yK ,σ = (yσ

′′
K ,σ)σ′′∈FK .

Thus, introducing the matrixAK = (AK
σ,i ,σ′, j )1≤i , j≤d ,(σ,σ′)∈FK ×FK defined by

AK
σ,i ,σ′, j = AK ,λ

σ,i ,σ′, j + AK ,µ
σ,i ,σ′, j +SK ,µ

σ,i ,σ′, j ,

and rewriting the right hand side as:

lh(V ) = ∑
K∈T

d∑
i=1

∑
σ∈FK

LK
σ,i vσ,i with LK

σ,i = mK f i
KγK ,σ,

we see that (14) is equivalent to solving:∑
K∈T

d∑
i=1

d∑
j=1

∑
σ∈FK

∑
σ′∈FK

AK
σ,i ,σ′, j u j

σ′v
i
σ = ∑

K∈T

d∑
i=1

∑
σ∈FK

LK
σ,i v i

σ, (27)

complemented by the boundary conditions ui
σ = 0 and v i

σ = 0 for any σ ∈Fext and any 1 ≤ i ≤ d .
Following [21] to get an even more familiar version of this system, let us introduce the square
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matrix A of size d card(F ) as well as F ∈ XN such that and for any σ,σ‘ ∈ Fint ×F and any
1 ≤ i , j ,≤ d :

Aσ,i ,σ′, j =
∑

K∈Tσ∩Tσ′
AK
σ,i ,σ′, j and Fσ,i =

∑
K∈Tσ

LK
σ,i ,

and for any σ,σ‘ ∈Fext ×F and any 1 ≤ i , j ≤ d :

Aσ,i ,σ′, j = δσ′,σ and Fσ,i = 0.

Problem (14) is then equivalent to solving the linear system

AU = F .

Consequently both the assembly of the system or the treatment of the boundary degrees of free-
dom can be performed in a finite element fashion, looping over all cells K ∈T and incrementally
constructing the global system.

4. Flux based and mesh based versions

In this section, we explore variations around our network element method for linear elasticity. We
propose a flux based version of our NEM and provide possible implementations for mesh based
discretization networks. In particular, we explore mesh based networks with interfaces related
to faces and show how to obtain a compact stencil method, to be compared with the method
of [35].

4.1. A flux based version

Following [29], we can derive a flux based alternative formulation by enriching the set of degrees
of freedom with cell unknowns:

X d
N =

{(
(uK )K∈T , (uσ)σ∈F

) | uK ∈Rd ∀ K ∈T and uσ ∈Rd ∀σ ∈F
}

,

with of course

X d
N ,0 =

{
U ∈ X d

N | uσ = 0 for all σ ∈Fext

}
,

and

X d
N ,K =

{(
uK , (uσ)σ∈FK

) | uK ∈Rd and uσ ∈Rd ∀σ ∈FK

}
.

The modifications of the network element method consist in choosing M d
K (UK ) = uK as

well as:

∇d
K (UK )i j =

1

mK

∑
σ∈FK

(ui
σ−ui

K )η j
K ,σ and DIVK (UK ) = 1

mK

d∑
i=1

∑
σ∈FK

(ui
σ−ui

K )ηi
K ,σ.

The remaining steps for defining the flux based formulation are then exactly the same as for (14),
using (17)–(19) and (15). A careful look at the difference between the two formulations reveals
that the flux formulation mainly consists in replacing any term ui

σ by ui
σ − ui

K in the discrete
gradients ∇d

K and ϵK . A straigthforward computation thus leads to:

aK
h (UK ,V K ) =

d∑
i=1

∑
σ∈FK

(
d∑

j=1

∑
σ′∈FK

AK
σ,i ,σ′, j (uσ′, j −u j

K )

)
(vσ,i − v i

K ),

with the very same definition for AK
σ,i ,σ′, j as before except that we now have:

yσ
′′

K ,σ = δσ′′σ−
1

mK
ηK ,σ · (xσ′′ −xK ),
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as the coefficient γK ,σ disappears thanks to the new definition of M d
K . Naturally, we define flux

functions by setting:

FK ,σ,i (UK ) =
d∑

j=1

∑
σ′∈FK

AK
σ,i ,σ′, j (u j

K −uσ′, j ), (28)

and problem (14) can now be rewritten, taking one degree of freedom equal to one and all the
others equal to zero:∣∣∣∣∣∣∣∣∣∣∣

∑
σ∈FK

FK ,σ,i (UK ) = f i
K for all K ∈T and all 1 ≤ i ≤ d ,∑

K∈Tσ

FK ,σ,i (UK ) = 0 for all σ ∈Fint and all 1 ≤ i ≤ d ,

ui
σ = 0 for all σ ∈Fext and all 1 ≤ i ≤ d .

(29)

4.2. Mesh based discretizations

As announced in the introduction, the proposed scheme is also interesting in the case of mesh
based discretization, thanks to our direct analogy between meshes and networks. We consider
two ways of identifying meshes with networks, using some subfaces of the faces or directly the
vertices of the mesh.

4.2.1. Interfaces from faces

Given a mesh M of Ω, as explained in Section 2 the most natural analogy between meshes
and networks consists in identify T with the set of cells of the mesh and F with the set of faces
of the mesh, and moreover assuming that xK is the barycenter of cell K and xσ is the barycenter
of face σ. Doing so we identify the pair K = {xK ,rK } of the network definition with the open set
K corresponding to a cell of the mesh M , and the same holds for interfaces and faces. Then, an
admissible discrete geometry is simply given by

mK = |K | for any K ∈T and ηK ,σ = |σ|nK ,σ for any K ∈T and any σ ∈FK , (30)

where |K | and |σ| denotes the Lebesgue measures of cell K and face σ, and nK ,σ the unit normal
to face σ, outgward for K . Using this analogy, the definition of the scheme is now the same
for mesh based discretizations as for networks. Unfortunately, for many meshes hypothesis
(H5) will not be satisfied and even if (H5) is only a sufficient condition it is well known that
the discrete Korn inequality (22) will not hold true (see for instance [35]). A remedy for this is
proposed in [35] and consists in adding for any interface σ ∈ F a jump term on the first order
polynomial (Πd

K (UK ))K∈T , thus requiring integration of first order polynomials onσ. This cannot
be straightforwardly extended in the network element context, which is the reason why here
we propose another remedy that has the advantage of maintaining a compact stencil. Its main
drawback being that the number of interfaces will increase.

Momentarily denoting with an index M the mesh sets for clarity, for any mesh face σM ∈
FM ,int, we introduce a set S FσM

of at least d subfaces such thatσM =∪ f ∈S FσM
f . In dimension

2 it simply consists in splitting each face from its barycenter into two sub-segments, while in
dimension 3 if the face is star-shaped, which will generally be the case, one can also split it into
the usual triangles by joining the face barycenter and its edges. Setting S FσM

= {σM } for any
boundary face σM ∈ FM ,ext and denoting S FM = ∪σM ∈FM

S FσM
, we now identify the set of

interfaces F with the set of mesh subfaces S FM . Then, denoting FK = ∪σM ∈FM ,K S FσM
, the

set of subfaces of cell K , we can now define:

mK = |K | for any K ∈T and ηK ,σ = |σ|nK ,σ for any K ∈T and any σ ∈FK , (31)
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whereσ ∈F now coincides with a mesh subface f ∈S FM , to obtain a mesh based discretization
network that satisfies (H5). The discrete gradient and divergence operators then coincide with the
classical hybrid gradient and divergence operators:

∇d
K (UK )i j =

1

|K |
∑

σ∈FK

|σ|ui
σn j

K ,σ and DIVK (UK ) = 1

|K |
d∑

i=1

∑
σ∈FK

|σ|ui
σni

K ,σ.

Compared to existing approaches for face based first order discretizations of linear elasticity
problems on meshes, the main interest of our formulation lies in the stabilization term that
only involves the interfaces of a cell, avoiding the need to enlarge the stencil of the method to
recover stability contrary to the alternative first order approaches of the literature also based on
the hybrid gradient of [35]. The drawback is that we have more unknowns in our final linear
system than for the approach of [35]. Also notice that by adding buffer variables located at the
quadrature points of the additional jump term of the formulation of [35], one could rewrite the
scheme of [35] on a stencil as compact as ours, increasing the number of unknowns in a similar
way than in our case.

Finally, it is obvious that one can also enrich the set of degrees of freedom with cell centered
unknowns in the mesh based context, defining again M d

K (UK ) = uK and proceeding as in the
previous section, to obtain a small stencil, unconditionally stable flux based formulation for
mesh based discretizations (note that there is no real need to modify the discrete gradient and
divergence in this cas, as

∑
σ∈FK |σ|nK ,σ = 0).

Remark 1. Notice that our results are not in contradiction with those of [35]: indeed, in [35] it was
established that no discrete Korn’s inequality for a discrete norm equivalent to ∥ · ∥X can exists if
the interfaces are defined as mesh faces in general, as depending on the mesh configuration there
might exists non zero piecewise rigid body motions with value zero for norm ∥ · ∥X and on the
boundary. Here, as our interfaces based on subfaces satisfy (H5), this not possible: any piecewise
rigid body motion that cancels the corresponding subface based norm ∥ · ∥X is in fact a single
body motion over the whole domain with zero value on the boundary, and is thus zero.

4.2.2. Interfaces from vertices

As was also explained in Section 2, given a mesh M ofΩ another very natural analogy between
meshes and networks consists in again identifying T with the set of cells of the mesh but this
time identifying F with the set of vertices of the mesh, and moreover assuming that xK is the
barycenter of cell K and xσ is position of vertex σ. In this case, the consistency conditions (2), (3)
and conservation property (4) on the ηK ,σ’s are exactly satisfied, i.e. without the error terms, by
the coefficients gK ,s of the vertex averaged schemes (VAG) of [46]. Thus, setting:

mK = |K | for any K ∈T

and
ηK ,σ = gK ,s for any K ∈T and σ ∈FK corresponding to vertex s, (32)

we obtain an admissisble network geometry. Denoting VK the set of vertices of cell K , the
discrete gradient and divergence operators then coincide with the VAG gradient and divergence
operators:

∇d
K (UK )i j =

1

|K |
∑

s∈VK

ui
s g j

K ,s and DIVK (UK ) = 1

|K |
d∑

i=1

∑
s∈VK

ui
s g i

K ,s .

If the gK ,s are computed using virtual element techniques as in [47], then the resulting scheme co-
incides with the first order virtual element scheme for linear elasticity of [33]. Once again one can
obtain a flux based formulation by adding cell centered unknowns, setting again M d

K (UK ) = uK .
In this case, if the gK ,s are computed using virtual element techniques as in [47] we obtain a flux
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based first order virtual element scheme for linear elasticity. More generally, for coefficients gK ,s
satisfying the requirements of VAG schemes, we obtain VAG linear elasticity schemes, flux based
or not. Finally, notice that for vertices condition (H5) is automatically satisfied, providing another
point of view on the reason why for face based schemes one needs to add extra stabilization terms
while this is not necessary for vertex based schemes.

5. Error estimates

Many theoretical frameworks are available in the literature to establish error estimates for consis-
tent approximations of symmetric and coercive problems. Without trying to be exhaustive, one
could use for instance the classical two-point flux finite volume theory (see [48]), the theory of
discontinuous Galerkin methods (see [49]), or the more recent gradient discretization framework
(see [50]). For the diffusion problem which can be seen as the scalar version of our linear elas-
ticity problem, details for the network element method can be found in [28, 30]. Apart from the
technicalities arising from the fact that we do not necessarily have an underlying mesh, the main
difficulty of the analysis lies in establishing a weak consistency estimate for the discrete gradient.
However as we have already noticed, our vector operators coincide component-wise with their
scalar counterparts:

Πd
K (UK )i =ΠK (U i

K ) and ∇d
K (UK )i =∇K (U i

K ) and M d
K (UK )i =MK (U i

K ).

As the scalar versions have all the desired strong consistency properties it is clear that our vector
ones will also satisfy the vector counterparts. Thus reproducing the proofs of [28, 30] it is equally
clear that one can establish similar results for the linear elasticity problem. Unfortunately, even
to simply state those results precisely, we need to recall some definitions linked to the network
element framework. This is the reason why we start this section by recalling some notations and
results from the network element framework, and then ends it by our general error estimates for
which we establish the weak consistency estimate of the discrete gradient of vectors.

5.1. Quadrature families and network element interpolation

In [30], a family of functions (ψK )K∈T is called a quadrature family if and only if for any K ∈ T ,
ψK ∈ L∞(Rd ) and:∫

Ω
ψK = mK ,

∑
K∈T

ψK = 1 for a.e x ∈Ω, suppψK ⊂BK = B(xK ,ρK ) ⊃ BK . (33)

For any x ∈Rd , we denote

T B
x = {K ∈T | x ∈BK } and ηψ = sup

x∈Rd
card(T B

x ), (34)

κψ = max

(
max
K∈T

ρK

rK
,max

K∈T

rK

ρK

)
and Mψ = max

K∈T
∥ψK ∥L∞(Ω). (35)

True functions are reconstructed on Rd andΩ from the dofs using the ψK ’s through:

Πd
T (U) = ∑

K∈T

ψK M d
K (U) and ∇d

T (U) = ∑
K∈T

ψK ∇d
K (U) and Πd

N (U) = ∑
K∈T

ψKΠ
d
K (UK ).

Given a quadrature family ψT = (ψK )K∈T , a family of functions ζT = (ζK )K∈T is called a family
of weights adapted toψT if and only if for any K ∈T , ζK ∈ L∞(Rd ) and:∫

Ω
ζK = mK , for a.e x ∈Ω, supp ζK ⊂BK , Mζ = max

K∈T
∥ζK ∥L∞(Ω). (36)
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AsΩ is assumed Lipschitz, using Stein’s extension theorem [51] we also know that there exists an
operator E such that for any k ≥ 0, there exists CE ,k > 0 such that for any v ∈ H k (Ω), Ev ∈ H k (Rd ),
Ev = v inΩ and

|Ev |H k (Rd ) ≤CE ,k |v |H k (Ω),

and if v ∈ H 1
0 (Ω), then Ev = 0 in Rd \Ω. We define the operator III : H 1(Ω) 7−→ XN by setting

III (v) = (Iσ(v))σ∈F where:

Iσ(v) = 1

|Bσ|
∫

Bσ
Ev for any σ ∈F , (37)

and to anyσ ∈F is associated a radius rσ > 0 such that Bσ ⊂BK , where we denote Bσ = B(xσ,rσ),
as well as:

θI = max

(
sup
K∈T

sup
σ∈FK

rσ
rK

,

(
inf

K∈T
inf
σ∈FK

rσ
rK

)−1
)

and we of course denote III K (v) = (Iσ(v))σ∈FK . We also introduce the operator III 0 : H 1
0 (Ω) 7−→

XN

I 0
σ(v) =

∣∣∣∣∣∣∣
1

|Bσ|
∫

Bσ
Ev for any σ ∈Fint

0 for any σ ∈Fext.

(38)

For vectors v ∈ H 1(Ω)d (resp. tensors in σ ∈ H 1(Ω)d×d ), we of course denote III (v) = (III (v i ))1≤i≤d

(resp. III (σ) = (III (σi j ))1≤i , j≤d ) i.e. the operator III applied component by component, the same
being done for vectors v ∈ H 1

0 (Ω)d and operator III 0.

5.2. Statement of the error estimates

We can now state our main error estimation result:

Proposition 1. Let (N ,G ) be a discretization network and associated admissible geometry for
which (H5) holds, and let U be the solution of the associated problem (14). Then, ifψT = (ψK )K∈T

is a quadrature family and ζT = (ζK )K∈T is a family of weights adapted to ψT we have the
following error estimates:

∥U−III 0(u)∥X ≤CEh(u, f ), (39)

and
∥u−Πd

T (U)∥L2(Ω) ≤CEh(u, f ) and ∥∇u−∇d
T (U)∥L2(Ω) ≤CEh(u, f ), (40)

where the constant C > 0 depends on u, µ, λ, d, θF , θT , θΠ, θA , θM , Mζ, Mψ, κψ, ηψ, θI , CK ,N

andΩ but not on h, and where the abstract error is given by

Eh(u, f ) =
( ∑

K∈T

∥ϵK (III 0(u))−ϵ(u)∥2
L2(BK ∩Ω)d×d

)1/2

+
( ∑

K∈T

∥M d
K (III 0(u))−u∥2

L2(BK ∩Ω)d

)1/2

+
( ∑

K∈T

∥DIVK (III 0(u))−div(u)∥2
L2(BK ∩Ω)

)1/2

+
( ∑

K∈T

h−2
K ∥Πd

K (III 0(u))−u∥2
L2(BK ∩Ω)d

)1/2

+
( ∑

K∈T

∥IK (σ(u))−σ(u)∥2
L2(BK ∩Ω)d×d

)1/2

+
( ∑

K∈T

∑
σ∈FK

∥Iσ(σ(u))−σ(u)∥2
L2(BK ∩Ω)d×d

)1/2

+hp +E S
h (ζT ,u, f ),
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where

E S
h (ζT ,u, f ) =

( ∑
K∈T

∫
BK ∩Ω

|ζK | | fK − f |2
)1/2

+
( ∑

K∈T

∫
BK ∩Ω

|ζK |
∣∣∣DIV d

K (III (σ(u)))−div(σ(u))
∣∣∣2

)1/2

,

and

IK (σ(u)) = 1

|BK ∩Ω|
∫
BK ∩Ω

σ(u) ∀ K ∈T ,

and

DIV d
K (III (σ)) = 1

mK

d∑
i=1

d∑
j=1

∑
σ∈FK

Iσ(σi j )η j
K ,σei = 1

mK

∑
σ∈FK

Iσ(σ)ηK ,σ.

Moreover, for any K ∈T

∥u−M d
K (U)∥L2(BK ∩Ω)d ≤CEh(u, f ) and ∥∇u−∇d

K (U)∥L2(BK ∩Ω)d×d ≤CEh(u, f ). (41)

As announced at the beginning of this section, the proof of proposition 1 is a straightforward
adaptation of its counterpart in the scalar case [28, 30]. Those proofs in turn can be mostly con-
sidered to coincide with well established frameworks, apart from the network element additional
difficulty of requiring quadrature families to bridge the gap between the dof space and the func-
tional spaces. However a key point is that in the network element framework, the second term
of E S

h (ζT ,u, f ), which measures in some sense the weighted error on the strong from of prob-
lem (7) cannot be eliminated by a careful choice of I , contrary to what happens in general for
mesh-based discretizations for which the discrete divergence is equal to the projection of the ex-
act divergence on constant functions.The origin of this additional term is the following weak con-
sistency estimate for the discrete gradient, which is the only part of the proof of proposition 1 we
will detail here as it is the only true difference with the scalar case:

Lemma 2 (Weak consistency estimate). Let (N ,G ) be an admissible network, and associated
admissible geometry. For any V ∈ XN ,0 and any σ ∈ H(div,Ω), any quadrature family ψT =
(ψK )K∈T and any family of weights ζT = (ζK )K∈T adapted toψT , we denote:

R(ψT ,ζT ,σ,V) =
∫
Ω
σ : ∇d

T (V)+ ∑
K∈T

∫
BK ∩Ω

ζK div(σ) ·M d
K (V). (42)

Then, there exists C > 0 depending on σ, d, θF , θT , θΠ, θA , θM , Mζ, Mψ, κψ, ηψ, θI and Ω but
not on h such that ∣∣R(ψT ,ζT ,σ,V)

∣∣≤CE R
h (ζT ,σ)∥V∥X , (43)

where

E R
h (ζT ,σ) =

( ∑
K∈T

∥IK (σ)−σ∥2
L2(BK ∩Ω)d×d

)1/2

+
( ∑

K∈T

∑
σ∈FK

∥Iσ(σ)−σ∥2
L2(BK ∩Ω)d×d

)1/2

+hp

+
( ∑

K∈T

∫
BK ∩Ω

|ζK |
∣∣∣DIV G

K (III (σ))−div(σ)
∣∣∣2

)1/2

. (44)

Proof. We start by writing∑
K∈T

∫
BK ∩Ω

ζK div(σ) ·M d
K (V )

= ∑
K∈T

∫
BK ∩Ω

ζK

(
div(σ)−DIV d

K (III (σ))
)
·M d

K (V )+ ∑
K∈T

∑
σ∈FK

(Iσ(σ)ηK ,σ) ·M d
K (V ),
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since by definition:∫
BK ∩Ω

ζK =
∫
Ω
ζK = mK and DIV d

K (III (σ)) = 1

mK

∑
σ∈FK

Iσ(σ)ηK ,σ.

As vσ = 0 for any σ ∈Fext and using the approximate conservation properties
∑

K∈Tσ
ηK ,σ = εσ of

the geometry, we get:∑
K∈T

∑
σ∈FK

(Iσ(σ)ηK ,σ) ·M d
K (V ) = ∑

K∈T

∑
σ∈FK

(Iσ(σ)ηK ,σ) · (M d
K (V )−vσ)+ ∑

σ∈Fint

(Iσ(σ)εσ) ·vσ,

then we get: ∫
Ω

div(σ) ·Πd
T (V ) = ∑

K∈T

∫
BK ∩Ω

ζK (div(σ)−DIVK (III (σ))) ·M d
K (V )

+ ∑
K∈T

∑
σ∈FK

(
(Iσ(σ)−IK (σ))ηK ,σ

) · (M d
K (V )−vσ)

− ∑
K∈T

∑
σ∈FK

(IK (σ)ηK ,σ) ·vσ+
∑

σ∈Fint

(Iσ(σ)εσ) ·vσ

+ ∑
K∈T

mK (IK (σ)ε0
K ) ·M d

K (V ),

using this time the zero order approximate consistency property:∑
σ∈FK

ηK ,σ = ε0
K .

Notice that:

− ∑
K∈T

∑
σ∈FK

(IK (σ)ηK ,σ) ·vσ =− ∑
K∈T

∑
σ∈FK

d∑
i=1

d∑
j=1

IK (σi j )η j
K ,σv i

σ =− ∑
K∈T

mK IK (σ) : ∇Πd
K (V ).

Consequently, we have using the definition of ∇d
T

(V ):∫
Ω

div(σ) ·Πd
T (V ) = ∑

K∈T

∫
BK ∩Ω

ζK (div(σ)−DIVK (III (σ))) ·M d
K (V )

+ ∑
K∈T

∑
σ∈FK

(
(Iσ(σ)−IK (σ))ηK ,σ

) · (M d
K (V )−vσ)

− ∑
K∈T

mK IK (σ) : ∇Πd
K (V )+ ∑

σ∈Fint

(Iσ(σ)εσ) ·vσ

+ ∑
K∈T

mK (IK (σ)ε0
K ) ·M d

K (V )

= ∑
K∈T

∫
BK ∩Ω

ζK (div(σ)−DIVK (III (σ))) ·M d
K (V )

+ ∑
K∈T

∑
σ∈FK

(
(Iσ(σ)−IK (σ))ηK ,σ

) · (M d
K (V )−vσ)

+
∫
Ω

∑
K∈T

ψK (σ−IK (σ)) ·∇Πd
K (V )

−
∫
Ω
σ : ∇d

T (V )+ ∑
σ∈Fint

(Iσ(σ)εσ) ·vσ+
∑

K∈T

mK (IK (σ)ε0
K ) ·M d

K (V ),
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and thus:

R(ψT ,ζT ,σ,V ) = ∑
K∈T

∫
BK ∩Ω

ζK (div(σ)−DIVK (III (σ))) ·M d
K (V )

+ ∑
K∈T

∑
σ∈FK

(
(Iσ(σ)−IK (σ))ηK ,σ

) · (M d
K (V )−vσ)

+
∫
Ω

∑
K∈T

ψK (σ−IK (σ)) : ∇Πd
K (V )

+ ∑
σ∈Fint

(Iσ(σ)εσ) ·vσ+
∑

K∈T

mK (IK (σ)ε0
K ) ·M d

K (V ).

We rewrite this last identity R(ψT ,ζT ,σ,V ) = R1+R2+R3+R4+R5 with obvious notations. Using
Cauchy–Schwarz inequality we get that:

|R1| ≤C

( ∑
K∈T

∫
BK ∩Ω

|ζK | |DIVK (III (σ))−div(σ)|2
)1/2

∥V ∥0.

Still using Cauchy–Schwarz inequality, we get

|R2| ≤
∑

K∈T

∑
σ∈FK

hK |ηK ,σ|
mK

mK h−1
K |Iσ(σ)−IK (σ)||M d

K (V )−vσ|

≤ θΠ

( ∑
K∈T

∑
σ∈FK

mK |Iσ(σ)−IK (σ)|2
)1/2 ( ∑

K∈T

∑
σ∈FK

mK h−2
K |M d

K (V )−vσ|2
)1/2

≤ θΠM 1/2
ψ

( ∑
K∈T

∑
σ∈FK

∥Iσ(σ)−σ∥2
L2(BK ∩Ω)d×d

)1/2

∥V ∥X .

Now, since

|R3| ≤
( ∑

K∈T

∫
BK ∩Ω

|ψK ||σ−IK (σ)|2
)1/2 ( ∑

K∈T

(
1

mK

∫
Ω
|ψK |

)
mK ∥∇Πd

K (V )∥2

)1/2

,

as Ω is Lipschitz and satisfies the cone condition with angle τ and radius r , defining δ> 0 as the
smallest real number such that for any K ∈T :

δ−1rK ≤ min(r,rK ) ≤ δrK , (45)

we easily get:

1

mK

∫
Ω
|ψK | ≤ MψθT

Sd
1κ

d
ψδ

d

|C (0,τ,1)| as
|BK ∩Ω|

mK
≤ θT

|BK |
|BK ∩Ω| ≤ θT

Sd
1κ

d
ψδ

d

|C (0,τ,1)| , (46)

with Sd
1 = |B(0,1)| the volume of the unit ball, from which we deduce:

|R3| ≤C∇

(
M 2
ψθT Sd

1κ
d
ψδ

d

|C (0,τ,1)|

)1/2 ( ∑
K∈T

∥IK (σ)−σ∥2
L2(BK ∩Ω)d×d

)1/2

∥V ∥X .

Next, using the convention εσ = 0 for σ ∈Fext, we have:

|R4| =
∣∣∣∣∣ ∑
σ∈F

∑
K∈Tσ

(Iσ(σ)εσ) ·vσ
card(Tσ)

∣∣∣∣∣
≤ θA hp

( ∑
K∈T

∑
σ∈FK

mK

card(Tσ)
|Iσ(σ)||vσ−M d

K (V )|+ ∑
K∈T

mK |M d
K (V )|

( ∑
σ∈FK

1

card(Tσ)
|Iσ(σ)|

))
,

and using Cauchy–Schwarz inequality, this leads to:

|R4| ≤ θA hp (h|V |X +|V |0)

( ∑
K∈T

∑
σ∈FK

mK |Iσ(σ)|2
)1/2

.
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Then, notice that by definition of BK , we have:

|Iσ(σ)|2 ≤ |BK |
|Bσ||BK |

∫
BK

|E(σ)|2 ≤ θd
I

|BK |
∫
BK

|E(σ)|2.

As :
mK

|BK | =
mK

|BK ∩Ω|
|BK ∩Ω|
|BK | ≤ θT

|BK |
|BK | ≤ θT ,

we consequently get:

|R4| ≤ η1/2
ψ θ1/2

T θ1/2
F θd/2

I θA hp (h|V |X +|V |0)CE ,0∥σ∥L2(Ω)d×d .

Finally, we have using Cauchy–Schwarz inequality that:

|R5| ≤ θA hp |V |0
( ∑

K∈T

mK |IK (σ)|2
)1/2

≤ θ1/2
T ηd/2

ψ θA hp |V |0|∥σ∥L2(Ω)d×d ,

as (mK /|BK ∩Ω|) ≤ θT (|BK ∩Ω|/|BK ∩Ω|) ≤ θT . Gathering the estimates on the Ri ’s, we do
obtain that there exists C > 0 such that |R(ψT ,ζT ,σ,V )| ≤CE R

h (ζT ,σ)∥V ∥X . □

Proceeding exactly as in the scalar case (see [30]), one could easily establish that for any v ∈
H 1(Ω)d :

∥v−M d
K (III K (v))∥L2(BK ∩Ω)d ≤C hK |Ev|H 1(BK )d , (47)

for any v ∈ H 2(Ω)d :

∥∇v−∇d
K (III K (v))∥L2(BK ∩Ω)d×d ≤C (hK +hp

K )∥Ev∥H 2(BK )d , (48)

and
∥v−Πd

K (III K (v))∥L2(BK ∩Ω)d ≤C (h2
K +hp+1

K )∥Ev∥H 2(BK )d , (49)

for any v ∈ H 2(Ω)d×d

∥div v−DIV d
K (III K (v))∥L2(BK ∩Ω)d ≤C (hK +hp

K )∥Ev∥H 2(BK )d×d , (50)

for any v ∈ H 1(Ω)d

∥v−Πd
T (III (v))∥L2(Ω)d ≤CE ,1C (h +hp )∥v∥H 1(Ω)d , (51)

for any v ∈ H 2(Ω)d

∥∇v−∇d
T (III (v))∥L2(Ω)d×d ≤CE ,2C (h2 +hp )∥v∥H 2(Ω)d , (52)

and
∥v−Πd

N (III (v))∥L2(Ω)d ≤CE ,2C (h2 +hp+1)∥v∥H 2(Ω)d , (53)

where the constants C > 0 in the above result can vary from line to line but only depend on the
quality parameters θA , θT , θF , θM , θΠ, η, ηψ, Mψ, Cψ, θI and not on h. The same results hold
when replacing III by III 0 if v ∈ H 1

0 (Ω)d . This immediately implies that the interpolation terms
of estimates (39) and (40) will have the expected behavior regarding the regularity of the exact
solution (provided p ≥ 1), leading to the same convergence order as mesh based methods. For
the extra term E S

h (ζT ,u, f ) specific to the NEM, the regularity assumption leading to an optimal
error estimate is more subtle. The first thing to notice is that for f we need more regularity than
L2(Ω)d , which is in fact the same as for approximating the right-hand side in the case of mesh-
based methods. Thus assuming that f has enough regularity (say f ∈ H 1) we see that thanks
to the weights ζT we can cancel the extra error where u does not have the required regularity
(say u ∈ H 3), for instance near the boundaries or where f is not regular enough. However, if the
global order of convergence is preserved by doing so should ζT cancel in too many places this
would increase the constant Mζ and consequently the overall constant involved in estimates (39)
and (40).

Finally, let us mention that if the constants involved in the above estimates as well as the extra
term E S

h (ζT ,u, f ) depend on the quadrature and weight families ψT and ζT , they hold for any



20 Julien Coatléven

pair (ψT ,ζT ). Such pairs are mainly a theoretical ingredient useful to bridge the gap between
X d

N
and L2(Ω)d : in practice they are never computed and not even chosen. Thus, we could had

a minimum over all the pairs (ψT ,ζT ) in estimates (39) and (40). If necessary, the constants
corresponding to ψT can be estimated using the derivation of ψT given in [30] that is used
there to establish the existence of quadrature families (and which can be adapted to ζT ). This
derivation directly relates ηψ, Mψ and Cψ to the other quality parameters.

6. Numerical exploration

6.1. Standard materials

From [36] onΩ= [0,1]2 we consider the sinusoidal analytic solution:

ui =
d∏

k=1
sin(4πxk ) for all i = 1. . .d with λ=µ= 1,

with right-hand side:

f =−divσ(u) =
d∑

i=1
64π2

d∏
k=1

sin(4πxk )ei −
d∑

i=1

∑
j ̸=i

32π2 cos(4πx j )cos(4πxi )e j ,

as well as the exponential analytic solution from [34]:

ui = exp

(
cos

(
d∑

j=1
Ci j x j

))
with λ=µ= 1 and C=

(
1 1

2 −1

)
,

and second member:

f = −divσ(u)

=
d∑

j=1

(
d∑

i=1
2Ci j Ci i

(
cos

(
d∑

m=1
Ci m xm

)
− sin2

(
d∑

m=1
Ci m xm

))
exp

(
cos

(
d∑

m=1
Ci m xm

)))
e j

+
d∑

j=1

(
d∑

i=1
C 2

j i

(
cos

(
d∑

m=1
C j m xm

)
− sin2

(
d∑

m=1
C j m xm

))
exp

(
cos

(
d∑

m=1
C j m xm

)))
e j

The discretization networks for domain Ω are generated using the method of [31] that relies
on the node generator of [52], using the interface enrichment technique described in [31] to
ensure that hypothesis (H5) is satisfied. The obtained cell nodes are displayed on the left side of
Figure 1. On the right side of this figure, we also display a distorted version of the same network
as described in [31], that we will use to assess the robustness of the NEM for linear elasticity with
respect to network distortion. The network geometries are of course generated by solving the
linear system introduced in [31], and we set p = 1.

Convergence curves for the sinusoidal and exponential test cases are displayed on Figures 2
and 3, while approximate convergence orders computed from those curves are gathered in
Table 1, for both the basic NEM and its flux based counterpart (CNEM). For comparison pur-
poses, on the same figures we display convergence curves and orders for the first order virtual
element method (VEM) [33] and its flux based counterpart (CVEM) computed as explained in
Section 4.2.2 using the approach of [47], both applied on a Delaunay mesh sequence of the unit
square. Notice that on this simplicial mesh, the virtual element method degenerates into a P1 fi-
nite element scheme. We see on those results that the NEM and the flux based CNEM perform
particularly well, leading to optimal convergence rates.
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Figure 1. Cell nodes in dimension 2: left reference cloud, right distorted cloud (reproduced
from [31]).

Figure 2. Convergence curves for the sinusoidal test case.

Table 1. Approximate orders of convergence

Sinusoidal Exponential
NEM 2.07 2.27

CNEM 2.31 2.30
NEM distorted 2.11 2.08

CNEM distorted 2.41 2.24
VEM 2.00 2.01

CVEM 2.08 2.09
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Figure 3. Convergence curves for the exponential test case.

6.2. Quasi-incompressible materials

The aim of this subsection is to assess the robustness of the NEM with respect to quasi-
incompressibility. To this end, we consider the following test case from [36] on Ω = [0,1]2 with
ν ∈ {0.25,0.4995,0.4999995} and

µ= 1 and ν= λ

2(λ+µ)
,

ux = cos

(
2π

λ
x

)
sin

(
2πy

)
and uy = sin(2πx)cos

(
2π

λ
y

)
,

with second member:

f x = 4π2
(
µ+ 1

λ
+ 2µ

λ2

)
cos

(
2π

λ
x

)
sin

(
2πy

)+4π2
(
1+ µ

λ

)
cos(2πx)sin

(
2π

λ
y

)
,

f y = 4π2
(
µ+ 1

λ
+ 2µ

λ2

)
sin(2πx)cos

(
2π

λ
y

)
+4π2

(
1+ µ

λ

)
sin

(
2π

λ
x

)
cos

(
2πy

)
.

Similarly to the observations of [36], from Figure 4 we recover the fact that theP1 finite element
(i.e. the first order VEM scheme) suffers when λ grows. For λ≈ 10×106 (ν= 0.4999995) numerical
locking is observed, true convergence being only recovered for very small h. The NEM and CNEM
outperforms the VEM scheme in this situation on the regular point cloud, however if convergence
is maintained on the distorted point cloud the initial error on coarse networks is much larger
than even for the locking VEM scheme. In the moderate regime λ ≈ 10× 103 ( ν = 0.4995), the
NEM and CNEM clearly outperforms the VEM scheme, even on the distorted point cloud, while
in the neutral regime λ= 1 (ν= 0.25) we recover results similar to the previous analytic test cases.
Notice that the network generation algorithm from [31] produces well connected networks, with
each cell node connected to all its immediate neighbors. Thus we have in general card(FK ) > d+1
which probably explains why the NEM avoids numerical locking: there is enough degrees of
freedom per cell to represent accurately divergence free displacements.
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Figure 4. Convergence curves for incompressible analytical test case.

Table 2. Approximate orders of convergence on Delaunay meshes

Sinusoidal Exponential
NEM 2.09 2.14

CNEM 2.09 2.09
VEM 2.00 2.01

CVEM 2.08 2.09

6.3. The NEM for linear elasticity as a subface-based scheme on meshes

To conclude this numerical section, we display on Figures 5 and 6 and on Table 2 a comparison
of convergence curves between the VEM schemes and the small stencil, subface-based NEM
scheme described in Section 4.2.1, for the sinusoidal and exponential analytic test cases.

We see that the proposed small-stencil mesh-based NEM schemes are perfectly stable and
convergent, and thus are a competitive alternative to the hybrid scheme proposed in [35].
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Figure 5. Convergence curves for the sinusoidal test case.

Figure 6. Convergence curves for the exponential test case.

7. Conclusion and perspectives

We have presented an extension to the system of linear elasticity of the meshless network element
method. Its stability relies on a sufficient condition on the network’s connectivity that is easily
enforced using existing network generation algorithms. We have then presented a modified
version that enjoys a finite volume like flux formulation. Used in a mesh-based context, the
NEM schemes also offer small stencil alternatives to existing first order face based schemes,
at the expense of using unknowns associated with at least d subfaces of each face instead of
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one unknown per face. Numerical results illustrate the good behavior of the method, even on
distorted networks or in the incompressible limit.
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