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1. Introduction

In this paper, we study the lower bounds for the blow-up time of a class integro-differential
problem of parabolic type with variable reaction

ut −∆u +
∫ t

0
g (t − s)∆u (x, s)ds = |u|p(x)−2 u, in Ω× (0,T ) ,

u(x, t ) = 0, on ∂Ω× (0,T ) ,

u(x,0) = u0(x), in Ω,

(1)

where Ω is a bounded domain with smooth boundary in RN (N ≥ 1), T ∈ (0,∞], the initial value
u0 ∈ H 1

0 (Ω), p : Ω → (1,∞) measurable function, g : R+ → R+ is a nonincreasing C 1 function
(memory kernel) satisfying some additional conditions to be specified later.

In mathematical point of view, equations of the types (1) with variable exponent (or variable
source) are usually referred to as equations with nonstandard growth conditions. Under certain
conditions on the initial data and certain ranges of exponents, the existence, uniqueness, and
other qualitative properties of solutions for parabolic and hyperbolic equations with variable
nonlinearity have been studied by many authors (see [1–10] and references therein). These types
of problems appear in many modern physical and engineering models such as electrorheolog-
ical fluids (smart fluids), fluids with temperature-dependent viscosity, nonlinear viscoelasticity,
filtration processes through a porous media, image processing, nuclear science, chemical reac-
tions, heat transfer, population dynamics, biological sciences, etc., and have attracted a great deal
of attention in the literature. More applications and details on the subject can be found in [11–17]
and the references therein.

Problem (1) arises from many important mathematical models in engineering and physical
sciences. For example, in the study of heat conduction in materials with memory, the classical
Fourier’s law is replaced by the following form (cf. [18])

q =−d∇u −
∫ t

−∞
g (x, t − s)u (x, s)ds, (2)

where q is proportional to the temperature differences per unit length, u is the temperature,
d is the diffusion coefficient and g is a relaxation kernel. Here (2) means that q is not linearly
dependent on ∇u. Then substituting Fourier’s law (2) into the conservation of heat law, we can
deduce

ut −∆u +
∫ t

0
g (t − s)∆u (x, s)ds = |u|p−2u, in Ω× (0,T ) , (3)

which is the linear form of (1) for p(x) = p for all x ∈Ω. Results concerning the controllability of
Equation (3) are given in [19, 20]. In recent years, semilinear parabolic problems

ut −∆u +
∫ t

0
g (t − s)∆u (x, s)ds = |u|p−2 u, in Ω× (0,T ) ,

u(x, t ) = 0, on ∂Ω× (0,T ) ,

u(x,0) = u0(x), in Ω

(4)

with a memory term associated with the Laplace operator and source term with Dirichlet type
condition in the different cases of the values of the memory kernel, specifically when g = 0 or
g > 0, have been studied by many authors. By assuming suitable conditions on g , p, and u0,
using some known theorems in the mathematical literature, the global existence in time, blow-
up in finite time, the asymptotic behavior, and a lower bound for the blow-up time of the unique
weak solution have been discussed. When g = 0, problem (4) has been studied by various authors
and several results of global and nonglobal existence, have been established. For instance, in
the early 1970s, Levine [21] introduced the concavity method and proved that solutions with
negative energy blow-up in finite time. Later, this method was improved by Kalantarov and
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Ladyzhenskaya [22] to accommodate more general situations. Ball [23] also studied (4) with
f (u,∇u) instead of |u|p−2u and established a nonglobal existence result in bounded domains.
Recently, for problem (4), Payne et al. [24, 25] obtained both the lower and the upper bounds for
blow-up time when the blow-up occurs.

When the viscoelastic term g is positive, in [26], Messaoudi concerned with the finite-time
blow-up of solutions for the initial boundary value problem (4), where g : R+ → R+ is a bounded
C 1 function, p > 2, and Ω is a bounded domain of RN (N ≥ 1), with a smooth boundary ∂Ω.
Under suitable conditions on g and p, the author proved a blow-up result for certain solutions
with positive initial energy.

Tian [27] considered the problem (4) with g : R+ → R+ is a bounded C 1 function, p > 2,
and Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary, T ∈ (0,+∞], the initial value
u0 ∈ H 1

0 (Ω). For N ≥ 1, by using the differential inequality technique, the author obtained a
lower bound for blow-up time of the solution if blow-up occurs. Also, established a new blow-
up criterion and gave an upper bound for blow-up time of the solution under some conditions
on p, g ,u0.

In [28], the author generalized the results obtained by Tian in [27] using |u|p(x)−2u instead
of |u|p−2u. Using energy methods, the author obtained a lower bound for blow-up time of the
solution if blow-up occurs. Furthermore, assuming the initial energy is negative established a new
blow-up criterion and gave an upper bound for blow-up time of the solution to the problem (1).

In our this paper, we study some global existence results and give sufficient conditions on
the variable reaction p(·), memory term g for the lower bounds at the time blow-up in L2 of the
problem (1). We extend the value range of the p in the conditions given in [27] and [28].

2. Main results and proofs

In this section, we list and recall some well-known results and facts from the theory of Sobolev
spaces with a variable exponent (for details, see [29, 30]).

Let p :Ω→ (1,∞) be a measurable function. We introduce p− and p+ such that

1 < p− := essinf p(x)
x∈Ω

≤ p(x) ≤ p+ := esssup p(x)
x∈Ω

<∞. (5)

Throughout this paper,Ω is considered to be a bounded domain of RN , with a smooth bound-
ary ∂Ω, assuming that p(·) is a measured function on Ω and satisfies the following logarithmic
continuity condition (see [29]):∣∣p (x)−p

(
y
)∣∣≤ Clog∣∣log

∣∣x − y
∣∣∣∣ for all x, y ∈ Ω,

∣∣x − y
∣∣< 1

2
, Clog > 0. (6)

We denote Lp(·)(Ω) the set of measurable real-valued functions u on Ω such that

ρp(·) (u) =
∫
Ω
|u (x)|p(x) dx <∞.

The variable exponent space Lp(·)(Ω) equipped with the Luxemburg norm

∥u∥p(·) = inf
{

a > 0,ρp(·)
(u

a

)
≤ 1

}
,

is a Banach space and it is called variable exponent Lebesgue space.
Next, we denote Lp (Ω) by Lp and H 1

0 (Ω) by H 1
0 , the usual Sobolev space. The norm and inner

of Lp (Ω) are denoted by ∥u∥Lp (Ω) := ∥u∥p
(
1 ≤ p ≤∞)

and H 1
0 (Ω) is the closure of C∞

0 (Ω) with
respect to the equivalent norm ∥u∥H 1

0
= ∥∇u∥2.
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2.1. Global existence

In this section, we first show the global existence result for N ≥ 1. The main idea of this section is
the comparison principle. Let ϕ(x) satisfies the following elliptic problem:

−∆ϕ= 1, x ∈Ω; ϕ(x) = 1, x ∈ ∂Ω.

By using the result in [31], we can see that the above nonlinear problem has an unique
solution, and the following inequalities hold:

M := max
x∈Ω

ϕ(x) <+∞, ϕ(x) > 1, x ∈Ω; ∇ϕ ·ν< 0, x ∈ ∂Ω.

We assume that:
(G) The memory kernel g :R+ →R+ is a C 1

(
R+)

function satisfying

g (t ) ≥ 0, g ′ (t ) ≤ 0 and 1−
∫ ∞

0
g (s)ds = l > 0.

Theorem 1. Let u be a nonnegative solution of the problem (1) , memory kernel g satisfies (G),
and function p satisfies the conditions (5) and ( 6). If 1 < p (x) <∞ for all x ∈Ω, u remains globally
bounded.

Proof. Let 1 < p (x) <∞ for all x ∈Ω. Define

u = Aϕ(x),

where

A ≥ max

{(
l

M p+

) 1
p+−1

, max
x∈Ω

u0(x),1

}
.

It can be checked that

∆u +up(x) −
∫ t

0
g (t − s)∆u (x, s)ds ≤ −A+M p+

Ap+ + A
∫ ∞

0
g (ξ)dξ

≤ −A+M p+
Ap+ + A (1− l ) =−l A+M p+

Ap+

≤ ut = 0,

in Ω× (0,T ) and u ≥ 0 on ∂Ω× (0,T ), and u(x,0) ≥ u0(x) in Ω. By the comparison principle, u(x)
is a bounded supersolution of (1). The proof of Theorem 1 is completed. □

2.2. Blow-up in finite time for any initial data

In this section, we derive a lower bound for T if the weak solution u(x, t ) of (1) blows up in finite
time T . We start with a local existence result for the problem (1), which is a direct result of the
existence theorem by [32, 33].

Theorem 2. For all u0 ∈ H 1
0 (Ω), problem (1) possesses a weak solution u on [0,T0] satisfying:

u ∈Cω

(
[0,T0];W 1,2 (Ω)

)∩C
(
[0,T0];Lp(·) (Ω)

)∩W 1,2 (
[0,T0];L2 (Ω)

)
,

where T0 ∈ (0,T ] is a suitable number and Cω (X ) the set of all real functions defined on X such
that their growths are tempered by the modulus of continuity ω with ω (0) = 0, ω (ε) > 0 for ε> 0.

The energy functional corresponding to problem (1) is

E (t ) = 1

2

(
g ◦∇u

)
(t )+ 1

2

(
1−

∫ t

0
g (s)ds

)
∥∇u∥2

2 −
∫
Ω

1

p(x)
|u|p(x) dx, (7)
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where (
g ◦∇u

)
(t ) =

∫ t

0
g (t − s)

∫
Ω
|∇u (t )−∇u (s)|2 dxds

=
∫ t

0
g (t − s)∥∇u (t )−∇u (s)∥2

2 ds. (8)

Lemma 3. Let u(x, t ) be a nonnegative solution of the problem (1), then E is a nonincreasing
function on [0,T ].

Proof. We define as f (x, s) = |s|p(x)−2 s and F (x, s) = ∫ s
0 f (x,ζ)dζ for all x ∈Ω . Multiplying ut (x, t )

on both sides of (1) and integrating over Ω, we can obtain∫
Ω

u2
t (x, t )dx =

∫
Ω
∆u (x, t )ut (x, t )d x −

∫
Ω

ut (x, t )

(∫ t

0
g (t − s)∆u (x, s)ds

)
dx

+
∫
Ω

ut (x, t ) f (x,u)dx

=
∫
Ω

f (x,u)ut dx −
∫
Ω
∇u∇ut dx +

∫
Ω

(∫ t

0
g (t − s)∇u (s)∇ut (t )ds

)
dx

= − d

dt

(
1

2

∫
Ω
|∇u|2 dx

)
+ d

dt
F (x,u)dx

+ d

dt

(∫ t

0
g (t − s)

∫
Ω
∇ut (t )∇u (s)dxds

)
.

The last term of the right-hand side of the above equality can be rewritten as∫ t

0
g (t − s)

∫
Ω
∇ut (t )∇u (s)dxds = −1

2

d

dt

(∫ t

0
g (t − s)

∫
Ω
|∇u (t )−∇u (s)|2 dxds

)
+ 1

2

d

dt

(∫ t

0
g (s)ds

∫
Ω
|∇u (t )|2 dx

)
+ 1

2

d

dt

(∫ t

0
g ′ (t − s)

∫
Ω
|∇u (t )−∇u (s)|2 dxds

)
− 1

2
g (t )

∫
Ω
|∇u (t )|2 dx.

Combining the above two equalities with (7) and (8), we see that

E ′ (t ) =−1

2
g (t )∥∇u (t )∥2 + 1

2

(
g ′ ◦∇u

)
(t )−

∫
Ω

u2
t dx ≤ 0,

for smooth solutions. Thus E(t ) is a nonincreasing function on [0,T ], which implies that E(t ) ≤
E(0). The same result can be established for strong solutions for almost every t , by a standard
density argument. The proof of the Lemma 3 is completed. □

Now, we give a sufficient condition for the nonnegative solution of problem (1) to blow-up in
L2-norm and establish a lower bound for the blow-up time.

Theorem 4. Let u(x, t ) be a nonnegative solution of problem (1) in a bounded domain Ω ⊂ RN

and u0 ∈ H 1
0 (Ω) such that ∥u0∥2 ̸= 0, function p satisfies the condition (5) and g satisfies condition

(G). We define ϕ (t ) as following

ϕ (t ) =
∫
Ω

u2dx.

(i) If N ≥ 3 and

1 < p−, p+ < 2N −3

N −2
,
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then a lower bound for the time of blow-up for any solution which blows up in L2 norm is given by∫ +∞

∥u0∥2

dξ

K4ξ
3(N−2)
3N−8 +K3

≤ T, (9)

where ∥u0∥2 = ∫
Ωu2

0dx and K3, K4 are positive constants which will be stated later.
(ii) If N = 1, 2 and

1 < p−, p+ < 4,

then a lower bound for the time of blow-up for any solution which blows up in L2 norm is given by∫ +∞

∥u0∥2

dξ

K5ξ
2

4−p+ +K3

≤ T,

where K3 is the constant in (9) and K5 is a positive constant which will be stated later.

Remark 5. Let g satisfies condition (G). Parameter p had given as

2 < p < 2+ 4

N
, N ≥ 3 or 2 < p < 4, N = 1,2

in [27] and function p(·) had given as

2 < p− ≤ p+ < 2+ 4

N
, N ≥ 3 or 2 < p− ≤ p+ < 4, N = 1,2

in [28] to obtain blow-up in finite time T for problem (4) and (1) respectively.

Our in this paper, we extend the value range of the p in the conditions given in [27] and [28].

Proof of Theorem 4. (i) Let N ≥ 3. By multiplying the equation in (1) by u(x, t ), integrating by
parts over Ω, one obtains that

ϕ′(t ) = 2
∫
Ω

u (x, t )ut (x, t )dx

= 2
∫
Ω

u

(
∆u −

∫ t

0
g (t − s)∆u (x, s)ds +|u|p(x)−2 u

)
dx

= −2

(
1−

∫ t

0
g (s)ds

)
∥∇u (t )∥2

2 +2
∫
Ω
|u|p(x) dx + I , (10)

where

I = 2
∫ t

0
g (t − s)

∫
Ω
∇u (t ) (∇u (s)−∇u (t ))dxds.

Furthermore, by the condition (5), we derive∫
Ω

up(x)dx =
∫
Ω∩{x:u≥1}

up(x)dx +
∫
Ω∩{x:u<1}

up(x)dx

≤
∫
Ω

up+
dx +|Ω| . (11)

Then by (10) and (11), we obtain

ϕ′(t ) ≤ −2

(
1−

∫ t

0
g (s)ds

)
∥∇u (t )∥2

2 +2
∫
Ω

up+
dx + I +K0

≤ −2l ∥∇u (t )∥2
2 +2

∫
Ω

up+
dx + I +K0,

where

K0 = 2 |Ω| > 0.
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By Hölder’s inequality and the condition (G), we know

|I | ≤ 2l
∫ t

0
g (s)ds ∥∇u (t )∥2

2 +
1

2l

(
g ◦∇u

)
≤ 2l (1− l )∥∇u (t )∥2

2 +
1

2l

(
g ◦∇u

)
.

From (7), (8) and Lemma 3, we have

1

2l

(
g ◦∇u

) = 1

l

[
E(t )− 1

2
∥∇u (t )∥2

2

(
1−

∫ t

0
g (s)ds

)
+

∫
Ω

1

p(x)
up(x)dx

]
≤ 1

l
E(0)− 1

2
∥∇u (t )∥2

2 +
1

l p−

∫
Ω

up+
dx +K1, (12)

where

K1 =
|Ω|
l p− > 0.

From (10) and (12), we obtain

ϕ′(t ) ≤ −2l ∥∇u (t )∥2
2 +2

∫
Ω

up+
dx +2l (1− l )∥∇u (t )∥2

2

+ 1

l
E(0)− 1

2
∥∇u (t )∥2

2 +
1

l p−

∫
Ω

up+
dx +K2

≤ −2l ∥∇u (t )∥2
2 +2l (1− l )∥∇u (t )∥2

2 +
1

l
E(0)

− 1

2
∥∇u (t )∥2

2 +
2l p−+1

l p−

∫
Ω

up+
dx +K2

= −4l 2 +1

2
∥∇u (t )∥2

2 +K
∫
Ω

up+
dx +K3, (13)

where

K = 2l p−+1

l p− > 0,

K2 = K0 +K1,

and

K3 = K2 + 1

l
E(0) with max

{
1

l
E(0),0

}
≥ 0.

By using the Hölder and Young inequalities we get

K
∫
Ω

up+
dx ≤ K

(∫
Ω

u
2N−3
N−2 d x

)a1

|Ω|a2

≤ a1K
∫
Ω

u
2N−3
N−2 dx +a2 |Ω| , (14)

where

a1 = (N −2)p+

2N −3
, a2 = 1− 2(N −2)p+

2N −3
.

We now make use of Schwarz’s inequality to the first term on the right hand side of (14) as follows:

a1K
∫
Ω

u
2N−3
N−2 dx ≤ a1K

(∫
Ω

u2dx

) 1
2
(∫
Ω

u
2(N−1)

N−2 dx

) 1
2

≤ a1K

(∫
Ω

u2dx

) 3
4
(∫
Ω

u2∗dx

) 1
4

, (15)

where 2∗ = (2N /N −2). Next, by using the Sobolev inequality (see [34]), for N ≥ 3, we get

∥u∥2∗ ≤ B ∥∇u∥2 , ∀u ∈ H 1
0 (Ω), (16)
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where

B =
(

1

N (N −2)π

)1/2
(

N !

2Γ
( N

2 +1
))1/N

> 0,

is the best constant in the Sobolev inequality. By inserting the (16) to the last inequality in (15),
we have

a1K
∫
Ω

u
2N−3
N−2 dx ≤ a1K B

N
2(N−2)ϕ

3
4 (t )∥∇u (t )∥

N
2(N−2)
2 . (17)

Now, we can use the Young inequality to inequality (17) and we get

a1K
∫
Ω

u
2N−3
N−2 dx ≤ a1K (3N −8)

4(N −2)
B

N
2(N−2)

(
4ε (N −2)

3N −8

)− N
3N−8

ϕ
3(N−2)
3N−8 (t )

+a1K ε∥∇u (t )∥2
2 . (18)

Combining (13), (14) and (18), we have ε is a positive constant to be determined later:

ϕ′(t ) ≤ −4l 2 +1

2
∥∇u (t )∥2

2 +
a1 (3N −8)K

4(N −2)
B

N
2(N−2)

(
4ε (N −2)

3N −8

)− N
3N−8

ϕ
3(N−2)
3N−8 (t )

+a1K ε∥∇u (t )∥2
2 +K3. (19)

If we choose ε> 0 stated in (19) such that

ε= 1+4l 2

2a1K
,

then we obtain the ordinary differential inequality

ϕ′(t ) ≤ K4ϕ
3(N−2)
3N−8 (t )+K3, (20)

where

K4 = a1 (3N −8)K

4(N −2)
B

N
2(N−2)

(
2
(
1+4l 2

)
(N −2)

a1K (3N −8)

)− N
3N−8

> 0.

An integration of the differential inequality (20) from 0 to t , we obtain the following inequality∫ ϕ(t )

ϕ(0)

dξ

K4ξ
3(N−2)
3N−8 +K3

≤ t ,

which with lim t→T −ϕ(t ) =+∞ implies that∫ +∞

ϕ(0)

dξ

K4ξ
3(N−2)
3N−8 +K3

≤ T,

where ϕ(0) = ∫
Ωu2

0 (x)dx. Note that 3(N −2)/(3N −8) > 1(N ≥ 3), hence the left-hand side of the
above inequality is finite.

(ii) Let N = 1,2. Now, recall the Sobolev embedding H 1
0 (Ω) ,→ L∞(Ω) which provide the

inequality
∥u∥∞ ≤ B ∥∇u∥2 , ∀u ∈ H 1

0 (Ω), (21)

where B > 0 is the best constant of the Sobolev embedding. Using (21) and Hölder’s inequality to

∥u∥p+
p+ which is in (13), we show that

∥u∥p+
p+ = ∥u∥2 ∥u∥p+−2

∞ =ϕ(t )∥u∥p+−2
∞

≤ ϕ(t )B p+−2 ∥∇u∥p+−2
2 . (22)

Now, by using Young’s inequality to (22), we have for all ε> 0,

∥u∥p+
p+ ≤ 4−p+

2

(
2ε

p+−2

)− p+−2
4−p+

ϕ(t )
2

4−p+ +ε∥∇u∥2
2 . (23)
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From (13) and (23), we have

ϕ′(t ) ≤ −4l 2 +1

2
∥∇u (t )∥2

2 +K
∫
Ω

up+
dx +K3

= −4l 2 +1

2
∥∇u (t )∥2

2 +
(
4−p+)

K

2

(
2ε

p+−2

)− p+−2
4−p+

ϕ(t )
2

4−p+

+εK ∥∇u∥2
2 +K3.

Let us choose ε> 0 such that

ε= 4l 2 +1

2K
.

Then we obtain the ordinary differential inequality

ϕ′(t ) ≤ K5ϕ(t )
2

4−p+ +K3, (24)

where

K5 =
(
4−p+)

K

2

(
4l 2 +1

K
(
p+−2

) )− p+−2
4−p+

> 0.

By integration of the differential inequality (24) from 0 to t , we obtain the following inequality∫ ϕ(t )

ϕ(0)

dξ

K5ζ
2

4−p+ +K3

≤ t ,

which with lim t→T −ϕ(t ) =+∞ implies∫ +∞

ϕ(0)

dζ

K5ζ
2

4−p+ +K3

≤ T

with p+ ∈ (2,4) and N = 1, 2. Thus the Theorem 4 is proved. □
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