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Abstract. In this paper, we apply the exact controllability concept for time-harmonic electromagnetic scatter-
ing. The problem is presented in terms of the differential forms, and the discrete exterior calculus is utilized
for spatial discretization. Accordingly, the physical properties of the problem are maintained. Despite we con-
sider time-harmonic problems, we concentrate on transient wave equations treated by the exact controllabil-
ity approach. Essentially, we use a controlled variation of the asymptotic approach with periodic constraints,
in which the time-dependent equation is simulated in time, until the time-harmonic solution is reached.

Résumé. Dans cet article, nous appliquons le concept de contrôlabilité exacte à la dispersion électromagné-
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1. Introduction

Wave equations are important for modeling acoustic, elastic, electromagnetic, and quantum
mechanical systems in different fields of science, engineering, and technology. There has recently
been growing interest in differential form -based approaches for considering wave equations
(see, e.g., [1–3]). There are several reasons why the framework is a good alternative for the
traditional vector field presentation. The metric-free nature of the differential forms allows the
construction of differential operators that are independent of the coordinate system [4]. Further,
the discrete spaces and exact differential operators can be constructed to mimic their continuous
counterparts (see, e.g., [5, 6]). This property also implies that certain properties of the system,
such as, energy, are conserved, provided that the scheme is stable.

In this study, we consider time-harmonic electromagnetic waves. We present the Maxwell
equations as a first-order system in terms of the differential forms (see, e.g., [7]) for electromag-
netic scattering problems. That is, instead of the vector presentation E = (E1,E2,E3) for the elec-
tric field, we present a 1-form Ẽ = E1d x1+E2d x2+E3d x3, where d is the exterior derivative. Fur-
ther, the electric flux density is considered, instead of the vector D = (D1,D2,D3), as a 2-form
D̃ = D1d x2 ∧d x3 +D2d x3 ∧d x1 +D3d x1 ∧d x2, where ∧ is a generalization of the cross product,
known as the wedge product or exterior product. We also present a 1-form H̃ for the magnetic
field and a 2-form B̃ for the magnetic flux density.

For the spatial discretization, the discrete counterparts of the variables presented as differen-
tial forms are appointed at geometric objects such as points, lines, surfaces, and volumes. We
apply, in particular, the discrete exterior calculus (DEC) following the groundwork presented by
Marsden and his group [8] and pioneered for electromagnetics simulations by Bossavit and Ket-
tunen [9]. This construction provides, e.g., the conservation of energy, the elimination of non-
physical modes, and exact differential operators at the discrete level [10]. The other related ap-
proaches include the finite integration technique (FIT), the discrete geometric approach, and
mixed finite element techniques with Nédélec and Raviart–Thomas elements (see [11] and the
references therein).

From a mathematical point of view, it is convenient to use a four-dimensional (three spatial
dimensions and one temporal dimension) space–time presentation. The framework also allows
the application of the generalized theories proposed in [12,13]. Still, the four-dimensional system
leads to large numerical systems that also require sophisticated computational grids. To demon-
strate how the conventional three-dimensional problem is inherited from the generalized wave
model, we first present the four-dimensional background at the modeling phase and go on to
proceed in time with three-dimensional spatial discretization. Earlier we have presented a nu-
merical scheme for transient electromagnetics with the DEC and high-quality grids [14, 15]. In
this paper, we systematically apply and test these techniques for simulating time-harmonic elec-
tromagnetic scattering.

We follow the exact controllability concept (see, e.g., [16]) and solve the time-harmonic prob-
lem by using the model presented in the time domain. This concept has a history dating back to
the early 1990s, when Glowinski et al. (see [17–19]) first considered a numerical method based on
it. Its first application in three-dimensional electromagnetics was, to our knowledge, presented
in the INRIA report [20]. The drawback of the approach was that it used H 1-conforming finite
elements, rendering it applicable only to limited classes of problems due to spurious modes that
can arise in the numerical solution. Additional computational costs are due to the second-order
formulation of the Maxwell’s equations that was used, leading to slower convergence and the
need for preconditioning of the minimization process, since the energy space is not of L2-type.

To improve the methodology, Glowinski and Rossi [21] considered the wave equation as a first-
order system, and they derived the associated exact controllability scheme. The main benefit of
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their approach is that the system’s energy space, where the minimization is realized, is of L2-type,
and the minimization converges without preconditioning. The drawback, however, is the need
to use mixed methods (e.g. Raviart–Thomas finite elements [22]) in discretizing the problem.
Recently, a first-order form based on a discontinuous Galerkin method was developed for the
three-dimensional Maxwell case [23].

Instead of using mixed finite elements, another approach, based on DEC, started to progress
with the PhD thesis of Räbinä [24]. The idea for his thesis arose from the theoretical article [25].
Räbinä also considered exact controllability techniques for the computation of time-harmonic
waves. Several improvements for the time integration of the Maxwell’s system, such as adaptive
local time-stepping, harmonic Hodge star approximation, and spatial tilings inspired by crystal-
lography, were then introduced in [14]. In [15], the DEC approach was further generalized to a
class of wave problems covering acoustics, elastodynamics, electromagnetism, and even quan-
tum mechanics (the Weyl equation). Further applications in quantum mechanics were then con-
sidered in [26–28]. The systematization of scientific software development covering fundamen-
tal conservation laws was sketched in [29], and a generic category-theoretic framework of space–
time linear wave phenomena was finally proposed by [30] in 2022. Such formalisms allow, e.g.,
moving and deforming computational domains [29]. Another research track considers higher-
order discrete exterior calculus involving higher order Whitney forms and novel Hodge star for-
mulations [31–33].

The exact controllability approach was extensively studied in the late 2000s and early 2010s
by Mönkölä et al. In particular, higher-order spectral element discretizations and fluid-structure
interaction problems were considered in [34–36]. The approach was recently extended to three-
dimensional visco-elastic equations [37]. Essentially, the approach is a controlled variation of
the asymptotic approach with periodic constraints, in which the time-dependent equation is
simulated in time until the time-harmonic solution is reached. The time discretization is realized
with a staggered leapfrog-type scheme with asynchronous time steps (see, [14,38,39]). In practice,
the residual of the exact controllability algorithm defines at each iteration how far the solution is
from a periodic one. It also gives an an impulse to the system to accelerate the convergence rate.
Roughly speaking, the number of computational operations grows linearly with the number of
degrees of freedom involved in the spatial discretization.

The rest of this article is organized as follows. In Section 2, we present the four-dimensional
differential form formulation. The model is simplified into separate time and space dimensions
in Section 3, where we also carry out discretization. To eliminate discretization errors, we ad-
just the scheme for time-harmonic problems with spatial and temporal corrections. This type of
strategy has been used to improve the accuracy of time discretization in electromagnetics, e.g., by
Ma and Chen [40] and Appelö et al. [41]. The spatial correction term is derived within the discrete
exterior calculus that we use for space discretization, and the temporal correction term arises
from adapting the leapfrog time discretization to time-harmonic equations. Nevertheless, both
correction terms can be encapsulated into discrete Hodge operators. In Section 4, we focus on a
time-harmonic problem and consider how it can be solved efficiently in the time domain with the
exact controllability method. The problem is reformulated as a least-squares optimization prob-
lem that is solved by the conjugate gradient algorithm. In Section 5, we apply the approach to
three-dimensional electromagnetic scattering problems and test the performance of the method
with several types of computational meshes. The concluding remarks are presented in Section 6.

2. Model

We consider a linear combination of the differential forms in the four-dimensional Euclidean
space (x0, x1, x2, x3)T as F̃ = ũ1+ũ2d x0+ũ3d x1+ũ4d x2+ũ5d x3+ũ6(d x0∧d x1)+ũ7(d x0∧d x2)+
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ũ8(d x0∧d x3)+ũ11(d x2∧d x3)+ũ10(d x3∧d x1)+ũ9(d x1∧d x2)+ũ14(d x0∧d x2∧d x3)+ũ13(d x0∧
d x3∧d x1)+ ũ12(d x0∧d x1∧d x2)+ ũ15(d x1∧d x2∧d x3)+ ũ16(d x0∧d x1∧d x2∧d x3), where the
coefficients ũi , i = 1, . . . ,16 are scalar-valued. The basis 1-forms are the coordinate differentials
d x0, d x1, d x2, and d x3, and higher order basis k-forms, k = 2,3,4, are constructed as exterior
products of k basis 1-forms, such that, d xi ∧d xi = 0 and d xi ∧d x j =−d x j ∧d xi . This formulation
allows us to present a set of linear models with the first-order differential operator in a short form,

(d+δ)F̃ = J̃ , (1)

where d = ∑3
i=0(d xi∂i ∧) is the exterior derivative, δ is the coderivative of d, and J̃ is a source

term presented as a linear combination of the differential forms. Accordingly, Equation (1) is
equivalent to the system

−∂0 ∇·
−∂0 ∇·

−∂0 −∇× ∇
−∂0 −∇× ∇

∇ ∇× −∂0

∇ ∇× −∂0

∇· −∂0

∇· −∂0





ũ15

ũ16

ũ3

ũ6

ũ11

ũ14

ũ1

ũ2


=



−b̃16

b̃15

−b̃6

b̃3

−b̃14

b̃11

−b̃2

b̃1


, (2)

where

ũ3 :=
ũ3

ũ4

ũ5

 , ũ6 :=
ũ6

ũ7

ũ8

 , ũ11 :=
ũ11

ũ10

ũ9

 , and ũ14 :=
ũ14

ũ13

ũ12

 ,

and

b̃3 :=
b̃3

b̃4

b̃5

 , b̃6 :=
b̃6

b̃7

b̃8

 , b̃11 :=
b̃11

b̃10

b̃9

 , and b̃14 :=
b̃14

b̃13

b̃12

 .

We interpret ∂0 as a time derivative and ∇, ∇·, and ∇× as three-dimensional gradient, di-
vergence, and curl operators, respectively. By the choice ũ1 = ũ2 = ũ15 = ũ16 = 0, rows 1, 2, 5,
and 6 of Equation (2) give the complete set of the Maxwell equations with the magnetic field
strength ũ3 = (H1, H2, H3)T , the electric field strength ũ6 = (E1,E2,E3)T , the magnetic flux density
ũ11 =−(B1,B2,B3)T , and the electric flux density ũ14 = (D1,D2,D3)T , respectively. The magnetic
current density is −b̃14, the electric current density is −b̃11, and magnetic and electric charges
are modeled by −ũ15 and −ũ16. A Maxwell-like system is also obtained from rows 3, 4, 7, and 8 of
Equation (2).

We return to Equation (1) and consider

F̃ = H̃ +d x0 ∧ Ẽ − B̃ +d x0 ∧ D̃ , (3)

J̃ = − J̃E −d x0 ∧ J̃H − J̃ρH −d x0 ∧ J̃ρE − J̃B −d x0 ∧ J̃D − J̃ρD −d x0 ∧ J̃ρB , (4)

where respectively, electric and magnetic field strengths are represented by spatial 1-forms Ẽ =
E1d x1 +E2d x2 +E3d x3 and H̃ = H1d x1 + H2d x2 + H3d x3, electric and magnetic flux densities
and electric and magnetic current densities by spatial 2-forms D̃ = D1d x2 ∧d x3 +D2d x3 ∧d x1 +
D3d x1 ∧ d x2, B̃ = B1d x2 ∧ d x3 + B2d x3 ∧ d x1 + B3d x1 ∧ d x2, J̃E = JE1(d x2 ∧ d x3) + JE2(d x3 ∧
d x1) + JE3(d x1 ∧ d x2), and J̃H = JH1(d x2 ∧ d x3) + JH2(d x3 ∧ d x1) + JH3(d x1 ∧ d x2), and elec-
tric and magnetic charges, ρE and ρH , by spatial 3-forms J̃ρE = ρE (d x1 ∧ d x2 ∧ d x3) and
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J̃ρH = ρH (d x1 ∧d x2 ∧d x3). Further, in Equation (3), there are also source forms for current den-
sities and charges corresponding to the dual components of the electric and magnetic ones, re-
ferred to with subscripts B and D , respectively. From the choices made above, we get from Equa-
tion (1) to the differential form formulations

dH̃ −∂0D̃ =− J̃E ,
d x0 ∧ (dẼ −dB̃) =−d x0 ∧ J̃H ,

−d x0 ∧dB̃ =−d x0 ∧ J̃ρH ,
−d x0 ∧dD̃ =−d x0 ∧ J̃ρE ,

(5)


−⋆ (d x0 ∧dH̃) =−⋆ (d x0 ∧ J̃ρB ),
−⋆ (d x0 ∧dẼ) =−⋆ (d x0 ∧ J̃ρD ),

⋆(d x0 ∧ (dB̃ −dẼ)) =−⋆ (d x0 ∧ J̃D ),
⋆(dD̃ −∂0H̃) =−⋆ J̃B ,

(6)

where ⋆ is the Hodge star operator. The systems (5) and (6) are dual to each other, and in
what follows, we proceed with Equation (5) in separate space and time dimensions. For further
information on differential forms in electromagnetics, the reader is referred to, e.g., [42–44] and
the references therein.

3. Discretization

The quality of the discrete model, based on the structure of the computational grid, has a signif-
icant impact on the efficiency of the method. As presented in [14], we generate partly-structured
non-uniform polygonal grids imitating the close packing in crystal lattices and discretize the op-
erators in the spatial domain with the DEC.

We discretize the three-dimensional spatial domain by a pair of primal and dual grids. The
elements of a grid are called k-cells, where k = 0,1,2,3 is the dimension of the cell. Basically, a
k-cell is an oriented, convex, polygon style object, and it is defined in a recursive manner by a
list of k −1-cells. A 0-cell (node) is a vertex. A 1-cell (edge) is defined as a line segment between
two 0-cells and oriented from the first to the second node of the list. A 2-cell (face) is a convex
polygon surrounded by a finite set of edges. The boundary edges are presented with counter-
clockwise orientation, also providing, the orientation of the face element. A 3-cell (body) is a
convex polyhedron surrounded by a finite set of faces. The grid construction has a crucial role in
the accuracy of the method.

In practice, we generate a partly structured grid that consists of structured areas separated
by unstructured ones. The approach allows us to model boundaries as accurately as with fully
unstructured grids, and it is also possible to modify element sizes inside the domain. The grid
generation is based on the Delaunay triangulation (see [45]). With the help of a Voronoi diagram,
it is possible to create sophisticated polyhedral grids to fill the structured parts of the grid. By
maintaining the number of unstructured elements at a relatively low level, the grid generation
process is considerably sped up. By constructing the dual elements that are orthogonal to the
corresponding primal elements, we get diagonal discrete Hodge operators, providing a significant
saving in computing time.

3.1. Discrete differential forms

The discrete differential k-forms (k-cochains) are variables associated by the de Rham map with
the k-cells in the grid (see, e.g., [24, 46]) that, in the three-dimensional construction, are 1-cells
(edges) and 2-cells (faces). We denote the i th edge of the grid by ei , i = 1, . . . ,ne , and the j th face
by f j , j = 1, . . . ,m f , and the corresponding dual elements by f ∗

i and e∗j , respectively. Accordingly,
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the components of the vector-valued discrete differential 1-forms E and H , presenting the
discretized electric and magnetic fields and associated with the primal and dual edges, are

Ei =
∫

ei

Ẽ , H j =
∫

e∗j
H̃ , i = 1, . . . ,ne , j = 1, . . . ,m f . (7)

Respectively, D and B present the discretized electric and magnetic fluxes, such that,

Di =
∫

f ∗
i

D̃ , B j =
∫

f j

B̃ , i = 1, . . . ,ne , j = 1, . . . ,m f , (8)

are the discrete differential 2-forms associated with the dual and primal faces of the grid ele-
ments. Also, the vectors for source forces, JE and JH , are considered as discrete differential 2-
forms

JEi =
∫

f ∗
i

J̃E , JH j =
∫

f j

J̃H , i = 1, . . . ,ne , j = 1, . . . ,m f , (9)

associated with the dual and primal faces.
The relation between the discrete 1-forms E and H and discrete 2-forms D and B is presented

by the constitutive equations
D =⋆ϵE , B =⋆µH , (10)

where the discrete Hodge star operators ⋆ϵ and ⋆µ cover the material properties, permittivity ϵ
and permeability µ, respectively, and the metric properties of the space or coordinate system. In
this paper, the discrete Hodge star operators are diagonal matrices based on the orthogonality of
the primal and dual elements and defined as

⋆α = | f |
|e|| f ⋄ e|

∫
f ⋄e

αne ·ne d v, (11)

where ne is the unit orientation vector of edge e, and f ⋄ e is a convex hull including both e
and f . The i th diagonal component of ⋆ϵ is composed by setting α = ϵ,e = ei , and f = f ∗

i in
Equation (11). The j th diagonal component of ⋆µ is composed by setting α = µ,e = e∗j , and
f = f j in Equation (11).

The key component of the discrete exterior calculus is the discrete exterior derivative, or
incidence matrix, d representing the neighboring relations and relative orientations of the primal
edges and faces. We use the notation d1 to emphasize that in this case, the discrete exterior
derivative operates discrete 1-forms. The matrix entry, d1 j i , is non-zero if and only if the edge
ei is included in the boundary of the face f j . Further, the non-zero entries have the value ±1,
indicating the relative orientation defined by counter-clockwise circulation.

With the notations presented above, the electromagnetic system after space discretization in
a three-dimensional domainΩ is

⋆ϵ
∂E

∂t
−d T

1 H =−JE , inΩ× [0,τ], (12)

⋆µ
∂H

∂t
+d1E =−JH , inΩ× [0,τ], (13)

with the initial conditions, E(0) and H(0), set at the initial time 0. The final state is considered at
the final time τ. By denoting

M=
(
⋆ϵ 0

0 ⋆µ

)
, K=

(
0 −d T

1
d1 0

)
, (14)

we can write Equations (12)–(13) with the initial conditions as

(M∂0 +K)

(
E
H

)
=−

(
JE

JH

)
, inΩ× [0,τ], (15)(

E(0)
H(0)

)
=

(
E 0

H 0

)
, inΩ, (16)
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the solution of which, at time t , is(
E(t )
H(t )

)
= e−tM−1K

(
E 0

H 0

)
−

∫ t

0
e−(t−s)M−1KM−1

(
JE (s)
JH (s)

)
ds, (17)

where

e−tM−1K = I +
(

0 ⋆−1
ϵ d T

1 t
−⋆−1

µ d1t 0

)
+

(
0 ⋆−1

ϵ d T
1 t

−⋆−1
µ d1t 0

)2

2!
+

(
0 ⋆−1

ϵ d T
1 t

−⋆−1
µ d1t 0

)3

3!
+

(
0 ⋆−1

ϵ d T
1 t

−⋆−1
µ d1t 0

)4

4!
+ . . .

=
(

cos

((
⋆−1

ϵ d T
1 ⋆−1

µ d1

) 1
2

t

)
⋆−1

ϵ d T
1

(
⋆−1

µ d1⋆−1
ϵ d T

1

)− 1
2

sin

((
⋆−1

µ d1⋆−1
ϵ d T

1

) 1
2

t

)
−⋆−1

µ d1

(
⋆−1

ϵ d T
1 ⋆−1

µ d1

)− 1
2

sin

((
⋆−1

ϵ d T
1 ⋆−1

µ d1

) 1
2

t

)
cos

((
⋆−1

µ d1⋆−1
ϵ d T

1

) 1
2

t

)
)

. (18)

The derivative of the total energy

d

dt
E (E , H) = E T⋆ϵ∂0E +H T⋆µ∂0H =−(E T JE +H T JH ) (19)

is obtained by multiplying Equation (15) from the left by (E T H T ). The right-hand side of Equa-
tion (19) includes the source functions set on the absorbing boundary or layer, such as the Silver–
Müller boundary condition [47] or perfectly matched layer (PML) [48]. By assuming them to be of
the forms JE =⋆σE E and JH =⋆σH H , where σE and σH present the electric and magnetic con-
ductivities, respectively, we get (d/dt )E (E , H) = −(E T⋆σE E + H T⋆σH H) ≤ 0, implying that the
energy is conserved or dissipated as the waves are absorbed from the domain. The total energy
of the electromagnetic system is

E (E , H) = 1
2 (E T⋆ϵE +H T⋆µH). (20)

3.2. Spatial harmonic correction

To improve the accuracy of the simulations involving time-harmonic waves with the time-
dependence of the form eiωt , where ω is the angular frequency and i is the imaginary unit, we
formulate spatially harmonic corrections for the discrete Hodge operators. Since the electromag-
netic wave speed is c = 1/

p
µε, we can present time t as distance multiplied by

p
µε. From this

basis, the concept of spatial correction is based on obtaining the components of E and H in Equa-
tion (7) by integrating over Êeiωt and Ĥeiωt , with complex-valued Ê and Ĥ , instead of integrating
over Ẽ and H̃ . Respectively, in Equations (8) we integrate over ϵi Êeiωt and µ j Ĥeiωt , instead of D̃
and B̃ , to obtain the components of D and B . Accordingly, by minimizing the squared norm of
errors based on the constitutive equations, we find spatially harmonic discrete Hodge star oper-
ators ⋆spat

ϵ and ⋆spat
µ to satisfy the constitutive equations. These are diagonal matrices with the

diagonal components

⋆spat
ϵi

=⋆ϵiκi , i = 1, . . . ,ne , ⋆spat
µ j

=⋆µ j κ
∗
j , j = 1, . . . ,m f , (21)

where the spatial correction terms, κi and κ∗j , are

κi =

 1− κ f ∗
5 + κ2

f ∗
56

1− κ f ∗
10 − κe

120 +
κ2

f ∗
280 + κ f ∗κe

1680 + κ2
e

22,400

 , κ∗j =

 1− κ f

5 + κ2
f

56

1− κ f

10 − κe∗
120 + κ2

f

280 +
κ f κe∗
1680 + κ2

e∗
22,400

 ,

with κe = ω2ϵµ|ei |2, κ f ∗ = ω2ϵµr 2
f ∗

i
, κe∗ = ω2ϵµ|e∗j |2, and κ f = ω2ϵµr 2

f j
and the squared radii of

the faces f ∗
i and f j , r 2

f ∗
i

and r 2
f j

, respectively (see [14, 24]). Respectively,

⋆spat
σEi

=⋆σEi
κi , i = 1, . . . ,ne , ⋆spat

σH j
=⋆σH j

κ∗j , j = 1, . . . ,m f . (22)

The larger the grid elements, the more advantages are gained by replacing ⋆ϵ by ⋆spat
ϵ , ⋆µ by

⋆spat
µ , ⋆σE by ⋆spat

σE
, and ⋆σH by ⋆spat

σH
in time-harmonic simulations.
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3.3. Exact time-stepping

For time-harmonic waves, we assume that E k+(1/2) = Re(Ê exp(−iω(t k + (∆t/2)))) and H k =
Re(Ĥ exp(−iωt k )), where Ê and Ĥ are complex-valued, to eliminate the approximation error
of the time discretization. Essentially, for uniform space discretization, we multiply M by the
correction factor ((2∆t/ω)sin(ω∆t/2))−1 and K by the correction factor (cos(ω∆t/2s))−1, where
s is the timestep size factor. For non-uniform space discretization, we obtain the exact time
stepping scheme with the following update formulas:

E k+ 1
2 = E k− 1

2 +
(

1
2
ω sin ω∆t

2s

⋆spat
ϵ + 1

2cos ω∆t
2s

⋆spat
σE

)−1 (
d T

1 H k − 1

cos ω∆t
2s

⋆spat
σE

E k− 1
2 +F k

1

)
,

(23)

H k+1 = H k +
(

1
2
ω sin ω∆t

2s

⋆spat
µ + 1

2cos ω∆t
2s

⋆spat
σH

)−1 (
d1E k+ 1

2 − 1

cos ω∆t
2s

⋆spat
σH

H k +F
k+ 1

2
2

)
,

(24)

where k = 0, . . . , N −1. The use of the varying timestep size factor s in non-uniform time-stepping
is described in [49].

For simplicity, we present the system of Equations (23)–(24) with the initial conditions as

S(e,U (e)) :=



I
C D

C D

. . .
. . .

C D

C D





U 0

U 1

...

...
U N−1

U N


−



I
0
...
...
0
0


e+



0
F 0

...

...
F N−2

F N−1


= 0, (25)

where U k = (E k−(1/2), H k )T = (E(t k − (∆t/2)), H(t k ))T , t k = t 0 + k∆t , k = 0, . . . , N , U =
(U 0, . . . ,U N )T , and I is the identity matrix. The initial conditions are e = (e0,e1)T = (E−(1/2), H 0)T ,
F k = (F k

1 ,F k+(1/2)
2 )T , and k = 0, . . . , N −1, and the matrix blocks C and D are given by

C =


( 1
∆t ⋆

har
ϵ + 1

2⋆
har
σE

)−1
⋆har

σE
− I −( 1

∆t ⋆
har
ϵ + 1

2⋆
har
σE

)−1
d T

1

0
(

1
∆t ⋆

har
µ + 1

2⋆
har
σH

)−1
⋆har

σH
− I

 , (26)

D =

 I 0(
1
∆t ⋆

har
µ + 1

2⋆
har
σH

)−1
d1 I

 , (27)

where

⋆har
ϵ = ∆t

2
ω sin ω∆t

2s

⋆spat
ϵ = κi∆t

2
ω sin ω∆t

2s

⋆ϵi , ⋆har
µ = ∆t

2
ω sin ω∆t

2s

⋆spat
µ =

κ∗j ∆t

2
ω sin ω∆t

2s

⋆µ j , (28)

⋆har
σE

= 1

cos ω∆t
2s

⋆spat
σE

= κi

cos ω∆t
2s

⋆σEi
, ⋆har

σH
= 1

cos ω∆t
2s

⋆spat
σH

=
κ∗j

cos ω∆t
2s

⋆σH j
, (29)

are the discrete harmonic Hodge operators that include both the spatial and temporal correc-
tion to improve the accuracy of time-harmonic simulations. Furthermore, the structure of Equa-
tion (25) is exactly the same as if we had done the conventional leapfrog time discretization. That
is, replacing the discrete harmonic Hodge operators with the conventional Yee’s Hodge operators
(without correction terms), we get the the conventional leapfrog time discretization of the system
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discretized in the space domain by the discrete exterior calculus. Accordingly, it is also straight-
forward to update an existing computer code with the correction terms. Based on Equation (25),
we can solve the system’s state at time t 0 + k∆t as U k = −D−1(CU k−1 +F k−1) for k = 1, . . . , N .
Thus, by denoting Q=−D−1C , the final state is

U N =QNU 0 −QN−1D−1F 0 −QN−2D−1F 1 · · ·−QD−1F N−2 −D−1F N−1. (30)

4. Exact controllability scheme

Our main interest is in the solution of the time-harmonic problem

(−Miω+K)

(
Ê
Ĥ

)
=−

(
ĴE

ĴH

)
, inΩ, (31)

whereω is the angular frequency and i is the imaginary unit. That is, the solution of Equation (31)
is periodic in time with a fixed frequency f = ω/2π. At first sight, it would be tempting to solve
such a problem in the frequency domain by strictly following Equation (31). In principle, the
other alternative is the asymptotic approach, i.e., integration in the time domain. If there are non-
convex scatterers involved in the simulations, the plain time integration converges slowly towards
a time-harmonic solution. This issue is tackled by the exact controllability method pioneered by
Bristeau et al. [16, 18], which is essentially a controlled version of the asymptotic approach with
periodic constraints. In what follows, we harness the exact controllability method to accelerate
the convergence rate of the asymptotic approach.

4.1. Semidiscrete approach

We consider the time period τ = 2π/ω. By definition, the initial solution of a time-harmonic
problem is equal to the solution after one time period. Therefore, based on the semidiscrete
presentation for the final state in Equation (17), we can write(

E(τ)
H(τ)

)
−

(
E(0)
H(0)

)
=Ce+ f = 0, (32)

where C= (e−τM−1K − I ), I is an identity matrix, e = (E 0, H 0)T is the initial condition, and

f =−
∫ τ

0
e−(τ−s)M−1KM−1

(
JE (s)
JH (s)

)
.

The final state (E(τ), H(τ))T is a function of initial conditions. In practice, we can catch the
solution of Equation (31) by solving the corresponding linear system

Ce =−f, (33)

where C is a non-symmetric and non-self-adjoint coefficient matrix. By multiplying (33) by the
adjoint of the coefficient matrix C∗, we get a linear system

C∗Ce =−C∗f, (34)

which has the symmetric and positive definite coefficient matrix. By applying, instead of the
standard inner product, the weighted inner product defined as 〈A,B〉 = AT MB , where M is
symmetric and positive definite matrix, we get the linear system

C∗MCe =−C∗Mf. (35)
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4.2. Fully discrete approach

Also at the fully discrete level the exact controllability scheme for computing a time-harmonic
solution involves finding such initial conditions that the solution after one time period coincides
with the initial conditions. Hence, after time-discretization, we use Equation (30) to present the
solution after one time period, set it equal to the initial solution, i.e.,

U N −U 0 = (QN − I )U 0 −QN−1D−1F 0 −QN−2D−1F 1 · · ·−QD−1F N−2 −D−1F N−1 = 0, (36)

and formulate the obtained equation as a linear system

(QN − I )e =
N−1∑
i=0

(Qi D−1F (N−1)−i ), (37)

where e is the initial condition minimizing the absolute value of U N −U 0, thereby giving the
solution of the corresponding time-harmonic problem. We then multiply Equation (37) on the
left by (QN − I )T M to get a linear system

Ae = b, (38)

where

A = (QN − I )T M(QN − I ), (39)

b = (QN − I )T M
N−1∑
i=0

(Qi D−1F (N−1)−i ). (40)

In principle, if the coefficient matrix and the right-hand side vector in Equation (38) (respec-
tively, in Equation (35)) are known explicitly, the linear system could be solved by a direct method,
such as LU decomposition. However, we are considering three-dimensional problems for which
it is challenging to find decompositions with a low number of non-zero elements. Also getting
the matrix entries, requiring solving the time-dependent problem, is computationally expensive.
Thus, iterative methods are preferred over the direct ones. For the sake of computational effi-
ciency, we proceed to formulate an optimization problem that has its solution equal to the solu-
tion of Equation (38).

Remark 1. To obtain Equation (38), we essentially multiply Equation (37) by (QN − I ) using the
weighted inner product defined as

〈A,B〉 = AT MB , (41)

where M is a symmetric (or Hermitian) and positive definite matrix. The norm, corresponding
to the inner product, is defined as ∥A∥ =

p
AT MA. By this inner product, the total energy of the

system (see Equation (20)) can be written as

E (U ) = 1
2 〈U ,U 〉 = 1

2∥U∥2, (42)

and it is preserved by the wave operator.

4.3. Minimization problem

We equivalently reformulate the problem as a least-squares optimization problem,

min J (e), (43)

where the cost function J (e) is the energy of the error between the final state and initial state,

J (e) = E (U N −e) = 1
2 (U N −e)T M(U N −e) = 1

2 eT Ae−bT e+c, (44)

where A and b are provided by Equations (39) and (40), and

c= 1

2

N−1∑
i=0

(Qi D−1F (N−1)−i )T M
N−1∑
i=0

(Qi D−1F (N−1)−i ). (45)
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The matrix A is symmetric and positive definite. Further, J (e) is convex and has a minimum at
the point where the first derivative, the gradient of J (e), is zero. Since the minimum value of the
functional J (e) is obtained at e∗ = argmine∈Rm+n J (e), such that ∇J (e∗) =Ae∗−b= 0, minimizing
Equation (44) is equivalent to solving the linear system (38), and the minimum value of the
functional is J (e∗) = mine∈Rm+n J (e) =−bT A−1b/2+c.

The Newton and quasi-Newton methods, steepest descent, and conjugate gradient method
are iterative methods suitable for solving unconstrained optimization problems. Since we are
looking forward to solving large problems, the feasible optimization algorithms are restricted to
the methods with small memory requirements. Since the Hessian matrix of J (e) is ∇2 J (e) =A and
is not straightforwardly available, we neglect the Newton-type methods requiring the Hessian
matrix or its approximation. Thus, we continue to consider how we can construct the gradient of
the cost function with a computationally efficient procedure.

4.4. Gradient

The gradient of the cost function J is formulated by the adjoint equation technique as

dJ (e,u(e))

de
= ∂J (e,u)

∂e
−zT ∂S(e,u)

∂e
, (46)

where the partial derivative of the cost function (44) with respect to the initial condition is

∂J (e,u)

∂e
=M(e−U N ), (47)

and z = (z0, z1)T is the solution of the adjoint state equation,(
∂S(e,u)

∂u

)T

z =
(
∂J (e,u)

∂u

)T

. (48)

Further, z includes the adjoint variables zk = (z0
k , z1

k )T = (z0(t k − (∆t/2)), z1(t k ))T for timesteps
k = 0, . . . , N . By Equation (44), we solve the right-hand side of Equation (48); that is,

∂J (e,u)

∂uk
=

{
M(U N −e), if k = N ,
0, otherwise.

(49)

Based on Equation (48), we now present the adjoint equation corresponding to the state equa-
tion (25) as a system 

I C T

DT C T

DT C T

. . .
. . .

DT C T

DT





Z 0

Z 1

...

...
Z N−1

Z N


=



0
0
...
...
0

M(U N −e)


, (50)

where Z k is the vector of the adjoint state variables z0
k and z1

k for k = N , . . . ,0. To solve
Equation (50), we start with

Z N = (DT )−1M(U N −e), (51)

continue by computing

Z k =
(

z0
k

z1
k

)
=−(DT )−1C T Z k+1, (52)

at each time step k = N −1, . . . ,1, and finally get the solution

Z 0 =−C T Z 1. (53)
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To formulate the gradient of the cost function, we need, in addition to the solution of the adjoint
state equation, the partial derivative of the state equation with respect to the initial condition. By
Equation (25), we get ∂S(e,u)/∂e = (−I ,0,0, . . . ,0)T , implying zT (∂S(e,u)/∂e) =−z0. Consequently,
by Equation (46), the gradient of the discretized cost function (44) is

dJ (e,u(e))

de
=M(e−U N )+Z 0. (54)

4.5. Conjugate gradient algorithm

The conjugate gradient (CG) method, which provides a well-suited optimization algorithm for
problems with quadratic objective functional and linear state equations, is a standard choice for
the exact controllability approach. We use a starting point e0 and a A-conjugate set of vectors of
successive directions {w0,w1, . . . ,wN̂−1}. Since the vectors w0,w1, . . . ,wN̂−1 form the basis, we can
write the vector representing the move from e0 to the minimum point e∗ as a linear combination
of these vectors, such that,

e∗ = e0 +
N̂−1∑
i=0

ηi wi = ek +
N̂−1∑
i=k

ηi wi , (55)

where ηi , i = 0, . . . , N̂ −1 are scalars. Multiplying Equation (55) by (w j )T A, substituting b for Ae∗,
and eliminating the cross terms based on A-conjugacy gives

ηi = −(wi )
T

gi

(wi )T Awi
, (56)

where gi = Aei −b is the gradient of J at point ei . Since gi −gi−1 = A(ei −ei−1), we compute the
gradient by gi = gi−1 +ηi−1Awi−1. The first search direction is chosen to be the direction of the
steepest descent w0 = −∇J (e0). The new direction is determined as a linear combination of the
steepest descent direction and the previous direction by using the scaling factor γi . Hence, we
get the following algorithm:

Algorithm 1. CG algorithm

Set the initial value e0 = (e0
0,e0

1)T .

Compute the gradient g0 =Ae0 −b.

Set w0 =−g0.

Set c0 =−(w0,g0), c1 = c0, and i = 1.

Repeat until
√

c1
c0

< ε
Compute the gradient update vi−1 =Awi−1.

Compute ηi−1 = c1
(wi−1,vi−1)

.

Update the control vector ei = ei−1 +ηi−1wi−1.

Update the residual vector gi = gi−1 +ηi−1vi−1.

Set vi =−gi .

Compute γi−1 = 1
c1

, c1 =−(vi gi ), and γi−1 = c1γ
i−1.

Update minimizing direction wi = vi +γi−1wi−1.

Set i = i +1,

where i refers to the number of iterations, ε is the stopping criterion, and
p

c1/c0 is the relative
Euclidean norm of the residual. The values of the control variables e at the i th iteration are
denoted by ei

0 and ei
1.
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Figure 1. The vertex positions and primal and dual cells of the selected grid types [14, 15].

5. Numerical experiments

In this section, we demonstrate the accuracy of the method and show its performance for a non-
convex domain. In both test cases, the interior of a three-dimensional obstacle is discretized
by the six different grid types that we used earlier in transient wave simulations (see Figure 1
and references [14, 15, 27]). The grid types are cubic, face-centered cubic (FCC), body-centered
cubic (BCC), A15, C15, and Z. The boundary of the obstacle is discretized by triangles and space
between the boundary, and the interior grid is constructed by Voronoi tessellation. The boundary
elements are also optimized by the HOT method [50] to improve element quality. Within each of
the grid types, we have run the tests with several mesh resolutions. Both the conventional Yee’s
discrete Hodge operator and the one adapted to time-periodic problems are considered to show
the advantage of the harmonic corrections. In [15], we showed that the energy is conserved in the
time integration also at the discrete level. The residual of the controllability algorithm defines at
each iteration how far the solution is from a periodic one. The CG iterations were continued until
the relative norm of the residual was smaller than 10−5. The simulations were run by an algorithm
implemented in C++ programming language. The CPU times are considered as computed on
Intel Xeon E5-2670 processors at 2.6 GHz.

5.1. Convex obstacle

We begin by demonstrating the performance of the method with a convex obstacle that is a
sphere of radius 2.5. Inside the sphere we have setµ= 1,σE = 0.032,σH = 0. The boundary surface
is stretched in a radial direction, so that a 1.7 thick layer is generated outside the sphere forming
an enlarged domain of radius 4.2. The 1.5 thick PML is initialized on the outermost part of the
enlarged domain using the conductivities σE and σH for the outgoing wave by the relation

σE

ϵ
= σH

µ
= 0.5x, (57)

where x is the distance from the inner interface of the layer.
The incident wave is a fully polarized plane wave with angular frequency ω = 2π propagat-

ing in the direction of the positive x1-axis. The simulation solutions are observed at the inner
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Figure 2. Relative error of the Mueller matrix, integrated over all scattering directions.

boundary of the PML at the radius 2.7. To report the accuracy of the method, the near-field so-
lution is transferred to far-field scattering results by applying a near-field to far-field transforma-
tion [51, 52]. The far-field scattering data are applied to produce the Mueller matrix [53] charac-
terizing how a material interacts with electromagnetic waves and providing information about
scattering intensities and polarization in all scattering directions. The accuracy is evaluated by
comparing the Mueller matrix solution with the analytical Mie scattering solution [54]. Figure 2
illustrates the relative error of the Mueller matrices compared to the exact Mie solution for each
grid type with five different mesh resolutions (numbers of elements per wavelength). We see that
the harmonic correction improves the accuracy of the method with all the grid types. The most
accurate results, obtained with the C15- and Z-grids and harmonic correction with respect to
space and time, are almost an order of magnitude more accurate than the least accurate results
obtained with the cubical grid and conventional Yee’s discrete Hodge operator.

5.2. Non-convex obstacle

In the second test, we use the Stanford bunny [55] as a non-convex obstacle (see Figure 3). Inside
the bunny, we set ϵ = 4 and µ = 1, while the media surrounding the bunny is modeled with
ϵ = 1 and µ = 1. The bunny, with height 6.173 (from ear tip to the ground), length 5.265, and
depth 4.782, is centered in a rectangular prism of height 9.453, length 9.508, and depth 8.107.
The outermost layer, of thickness 1.5, of the rectangular prism features the PML condition of
Equation (57). In the interior of the obstacle, we constructed for each grid type a set of grids with
varying resolution. Outside the obstacle, we used a regular grid with an edge length of one tenth
of the wavelength. As an incident wave, we used a circularly polarized plane wave propagating in
the direction of the positive x1-axis.

The simulation result is illustrated in Figure 3. The red, green, and blue components in the
illustration present the x1, x2, and x3 components of the electric field, respectively. There can
be seen a little over five scattering waves in the horizontal direction inside the bunny, which
is in good agreement with the wavelength and the bunny’s width. To assess the accuracy, the
reference solution is computed with the BCC grid with 40 elements per wavelength, and the
results of the electric and magnetic wave components compared with the reference solution are
shown in Figure 4. Again, we observe a significant difference between the errors computed with
the conventional Yee’s discrete Hodge operator and with the harmonic Hodge operator. When the
harmonic Hodge operator is used, the cubical grid is the most inaccurate, but there are only slight
differences in accuracy between the other grid types.

In the last examples, we used the BCC type bunny mesh with 50,190 nodes, 269,621 edges,
and 403,215 faces to compare the control method with the asymptotic approach and to consider
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Figure 3. The Stanford bunny object is illustrated on the left-hand side. The x1–x3 plane
cross-section of the interior scattered field is illustrated on the right-hand side.

Figure 4. Relative error of the interior scattered fields.

the number of iterations required by the control method with increasing angular frequency. In
these tests, we truncated the bunny by applying the Silver–Müller boundary condition without
additional absorbing layers. We found that despite each iteration of the control method involves
solving both the state and adjoint state equations, it remains more efficient than the asymptotic
approach (see Figure 5). This is because the number of iterations required by the control method
is less than half of the number of time periods needed for the asymptotic approach to achieve the
accuracy level of the stopping criterion of the control method. Figure 6 shows the convergence of
the control method at four different angular frequencies. The number of iterations increases with
the angular frequency.

6. Conclusion

We presented a four-dimensional origin of the electromagnetic wave problem and derived from
it a differential form formulation where the spatial and temporal variables are separated. We
completed the discretization in space by the discrete exterior calculus. Since our main focus was
on time-harmonic problems, to improve the accuracy, we applied an exact time-stepping scheme
and a harmonic correction on the Hodge operator matrices used at the discrete level. In principle,
we used a transient wave solver with space and time discretization adapted to time-periodic
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Figure 5. Comparison of CPU usage between the exact controllability method and the
asymptotic approach at various angular frequencies.

Figure 6. Number of iterations of the exact controllability method at various angular
frequencies.

problems. We further accelerated the convergence to the time-harmonic solution by using the
exact controllability approach realized by the conjugate gradient method. The energy norm is
a weighted L2-norm, and we minimize the discrete quadratic functional spanned by a diagonal
mass matrix. Thus, the conjugate gradient algorithm operates in an L2-type Hilbert space, and
no preconditioning is needed. The numerical results demonstrate the accuracy improvements of
the harmonic corrections. They also show the capability of the exact controllability method with
the chosen discretization strategies in non-convex domains.
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