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Abstract. Although renewable energies are beneficial to reduce carbon emissions, its intermittent character-
istics may result in power-supply issues in distribution grid. Battery energy storage system is generally re-
garded as an effective tool to deal with them. On the other hand mathematical modelling, numerical simu-
lation, optimization and control theory are nowadays of paramount importance to handle this kind of prob-
lems and related issues. In this paper we present a methodology for the development of bidding strategies
and real-time control for electricity producers in a competitive electricity marketplace. Firstly, a stochastic
model of a wind power plant with battery storage is stated in the framework of stochastic differential equa-
tions (SDE). Then, a stochastic control problem with state constraints is introduced and the corresponding
optimality conditions involving the Hamilton–Jacobi–Bellman equation are deduced. For this purpose, ad-
vantage is taken from the fact that optimal control problems for stochastic ordinary differential equations
(SDE) can be equivalently formulated as optimal control problems for deterministic partial differential equa-
tions (PDE), namely, the corresponding Fokker–Planck equation.

Résumé. Bien que les énergies renouvelables permettent de réduire les émissions de carbone, leurs carac-
téristiques intermittentes peuvent entraîner des problèmes d’approvisionnement en électricité dans les ré-
seaux de distribution. Le système de stockage d’énergie par batterie est généralement considéré comme un
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outil efficace pour y remédier. D’autre part, la modélisation mathématique, la simulation numérique, l’op-
timisation et la théorie du contrôle sont aujourd’hui d’une importance capitale pour traiter ce type de pro-
blèmes et les questions connexes. Dans cet article, nous présentons une méthodologie pour le développe-
ment de stratégies de soumission et de contrôle en temps réel pour les producteurs d’électricité sur un mar-
ché de l’électricité concurrentiel. Tout d’abord, un modèle stochastique d’une centrale éolienne avec sto-
ckage sur batterie est présenté dans le cadre des équations différentielles stochastiques (EDS). Ensuite, un
problème de contrôle stochastique avec des contraintes d’état est introduit et les conditions d’optimalité cor-
respondantes impliquant l’équation de Hamilton–Jacobi–Bellman sont déduites. À cette fin, on tire parti du
fait que les problèmes de contrôle optimal pour les équations différentielles ordinaires stochastiques peuvent
être formulés de manière équivalente comme des problèmes de contrôle optimal pour les équations aux dé-
rivées partielles déterministes, à savoir l’équation de Fokker–Planck correspondante.

Keywords. Renewable energy plant, optimal energy biddings, stochastic control, Fokker–Planck equation,
Hamilton–Jacobi–Bellman equation.

Mots-clés. Installations d’énergie renouvelable, offres d’énergie optimales, contrôle stochastique, équation
de Fokker–Planck, équation de Hamilton–Jacobi–Bellman.
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1. Introduction

Renewable energy sources are growing quickly all over the world thanks to both environmen-
tal and geopolitical concerns [1]. Many renewable power sources (wind, solar, tidal) are natu-
rally controlled and hence, being intermittent or variable, it is often difficult to predict their out-
put [2]. This means that, in areas where there is a high proportion of generation capacity pro-
vided by renewable sources, those tasked with balancing supply and demand are faced to new
problems to the solution of which stochastic mathematical modelling and optimization can sig-
nificantly contribute [3]. Indeed, the stochastic production obtained from some of these renew-
able sources poses technical and economic challenges due to the introduction of great uncer-
tainties into the operation and planning of the power systems. Although a traditional solution
to the intermittency of wind generation has been primarily based on improving grid intercon-
nection, as wind penetration becomes more and more important new solutions have had to be
proposed. Energy storage is identified as one of the potential solutions to handle this issue [4].
In fact, power plants including wind farms and energy storage systems are playing an increasing
role which makes their offering nonnegligible in some markets. From the perspective of wind
farm-energy storage systems, this paper proposes an integrated mathematically based strategy
of day-ahead offering and real-time operation policies to maximize their overall profit [5, 6].

For this purpose, stochastic control [7, 8] is the chosen mathematical framework. Firstly, the
wind power plant is modelled by a system of three stochastic differential equations (SDE). The
state variables are the instantaneous values of wind velocity, electricity price and energy in the
battery, and the control is the discharge/charge power of the battery. An objective function is
introduced taking into account the total revenue along the time interval of optimization, and
the energy in the battery at the end of the process. Since the energy in the battery needs to
be kept within certain limits depending on its capacity, the optimal control problem involves
constraints on the state which makes it more difficult as the Hamilton–Jacobi–Bellman equation
is not enough for optimality conditions. In order to analyze and numerically solve this problem
we take advantage of the fact that it can be equivalently formulated as an optimal control problem
with state constraints for a deterministic partial differential equation, namely, the Fokker–Planck
equation (see, for instance, [9, 10]).
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2. Statement of the problem

The penetration of renewable energy source(RES) have been growing globally, encouraged by
environmental and low-carbon energy policies. Due to the volatility and uncertainty of renew-
able energy output, it is very difficult to bid in the market. To solve this problem, combining
wind power(WP) (and/or photovoltaic(PV)) with power storage units to form a virtual power
plant(VPP) is an effective path to stabilize the output deviation and promote renewable energy
consumption. The final goal of this paper is twofold:

• to determine the optimal offers in the electricity market auctions in order to maximize
the revenue of the plant,

• to control the plant in real time.

In what follows, a stochastic model for a wind power plant with a generic storage device like a
battery system will be introduced. Then, based on that model, a stochastic control problem will
be stated and solved.

2.1. Notations

Firstly, let us introduce the following notations:

• s ∈ [0,T ] is time (h).
• Πs is the spot price of electricity at time s (e.g.,e/MWh) (stochastic process).
• vs is the velocity of wind (m/s) (stochastic process).
• Es is the energy in the battery at time s (e.g., MWh) (stochastic process).
• Pbat ,s is the power delivered by the battery at time s (MW). For convenience, it is taken as

the control function in the mathematical formulation. Sign convention: Pbat ,s is positive
in discharge and negative in charge.

• Pwi nd ,s is the power produced by the wind park at time s (MW)(stochastic process). We
have

Pwi nd ,s = P̂ (vs ),

where P̂ (v) is a deterministic function. In [11] one can find the following formula:

P̂ (v) = Pr



0 if v ≤ vcut−i n ,
v3 − v3

cut−i n

v3
r − v3

cut−i n

if vcut−i n ≤ v ≤ vr ,

1 if vr ≤ d ≤ vcut−o f f ,

0 if v ≥ vcut−o f f ,

(1)

where
– Pr (W) is the rated power,
– vcut−i n (m/s) is the cut-in wind velocity
– vr (m/s) is the rated wind velocity
– vcut−o f f (m/s) is the cut-offwind velocity

• The rated power can be computed by the formula

Pr = 1

2
CperρπR2v3

r 10−6 (MW), (2)

where R is the radius of the turbine (m), ρ is the air density (kg/m3) and Cper is a
coefficient of performance of the turbine (nondimensional).

• Pg r i d ,s is the power sold (positive) or bought (negative) at time s (MW) (stochastic
process). It satisfies

Pg r i d ,s = Pwi nd ,s +Pbat ,s = P̂ (vs )+Pbat ,s (3)
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2.2. Mathematical model

The following stochastic model for a wind power plant is a slight modification of that introduced
in [12]. It consists of two mean-reversion-like SDE for wind velocity and spot electricity price,
respectively, and a bucket model for the energy contain in the battery system:

(1) State equation:

d vs = κv

(
θv (s)+ 1

κv

dθv

d s
(s)− vs

)
d s +σv,v vs dBv,s +σv,Πvs dBΠ,s , (4)

dΠs = κΠ
(
θΠ(s)+ 1

κΠ

dθΠ
d s

(s)−Πs

)
d s +σΠ,vΠs dBv,s +σΠ,ΠΠs dBΠ,s , (5)

dEs =−Pbat ,s d s +σE ,E Es dBE ,s (6)

• Functions of time, θv (m/s) and θΠ (e/MWh) are given
• Constant parameters κv (h−1) and κΠ (h−1) are given
• Bv,s and BΠ,s and BE ,s are standard Brownian motions
• Let us define matrix Σ as

Σ(v,Π,E ) =


σv,v v σv,Πv 0

σΠ,vΠ σΠ,ΠΠ 0

0 0 σE ,E E

 , (7)

where constants σi , j , i , j = v,Π,E are measured in h1/2.
• Initial conditions: v0 = v0, Π0 = Π0, E0 = E 0, where v0 (m/s), Π0 (e/MWh) and

E 0 (MW) are given random variables.
• Objective function: it is the expected revenue (e), namely,

J (Pbat ) = E

[∫ T

0
Πs

(
P̂ (vs )+Pbat ,s

)
d s + g (ET )

]
, (8)

where g : R→ R is a given deterministic function (e). The last term allows us, for
instance, to penalize the loss of energy in the battery at the end of the process, i.e.,
at time T . For instance, if g (x) =βx then it is the price of the energy contained in the
battery at terminal time T , assuming that the unit cost at this time is β (e/MWh).

(2) State constraints: at each time s ∈ [0,T ], the value of the energy contained in the battery
has to be kept between two extreme values:

Emi n ≤ Es ≤ Emax . (9)

Usually, Emi n = 0 and Emax is the capacity of the battery. This state constraint is
reformulated in the style of chance constraint programming: it is imposed that this
constraint holds with a probability greater than some parameter α ∈ (0,1]:

P (Emi n ≤ Es ≤ Emax ) ≥α. (10)

Another alternative is

Emi n ≤ E[Es ] ≤ Emax . (11)

The optimal control problem consists in finding a control Pbat ,s maximizing the objective
function (8) under the constraints

• On the control: Pbat ,mi n ≤ Pbat ,s ≤ Pbat ,max ,
• On the state: P (Emi n ≤ Es ≤ Emax ) ≥α, (or Emi n ≤ E[Es ] ≤ Emax ).

Notice that, in practice, Pbat ,mi n < 0 so |Pbat ,mi n | > 0 is the maximum battery charge
power while Pbat ,max > 0 is the maximum battery discharge power.
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2.3. Remarks

By using the stochastic control theory we shall determine the optimal control in a feedback
form. For this purpose, the Hamilton–Jacobi–Bellman(HJB) equation of Dynamic Programming,
which is a nonlinear backward partial differential equation, needs to be stated and solved. More
precisely, by solving the HJB equation one can find off-line a deterministic feedback function

P̌bat : (s, v,Π,E ) ∈ [0,T ]×R3 → P̌bat (s, v,Π,E ) ∈R
such that the optimal control at time s is given by

Pbat ,s = P̌bat (s, vs ,Πs ,Es ) (12)

This feedback function, P̌bat , allows us to determine and implement the optimal control
in real time, s, from the values of the state at this time. Notice that while P̌bat (s, v,Π,E ) is a
deterministic function, Pbat ,s as defined in (12) is a stochastic process, since it is the composition
of a deterministic function and a vector stochastic process.

Regarding the bids at electricity auctions, what should we do? Firstly, we notice that the
feedback function above can be computed off-line before real time. Thus, it can be known before
the time at which the auction takes place. The problem is that, at that time we do not know the
values of the stochastic variables at later time s, namely, vs ,Πs and Es so we cannot take

Pg r i d ,s = P̂ (vs )+ P̌bat (s, vs ,Πs ,Es )

as the optimal bid in the electricity auction. However, a reasonable and straightforward choice
is the following: the bid for time s is taken as the expectation of the stochastic process Pg r i d ,s .
Recall that this expectation can be computed by the formula,

Pg r i d (s) = E
[
Pg r i d ,s

]= ∫
R3

(
P̂ (y1)+ P̌bat (s,y)

)
ϕ(s,y)dy (13)

where ϕ(s,y) denotes the joint probability density function of the state (vs ,Πs ,Es ) which can be
computed by solving the Fokker–Planck equation (see below).

3. The Fokker–Planck equation

The Fokker(1914)–Planck(1917) (also called forward Kolmogorov(1931)) equation (see, for in-
stance, [13,14]) is a linear partial differential equation whose solution is the joint probability den-
sity function (pdf) of the vector stochastic process Xt ,x

s which satisfies the following Itô’s stochas-
tic differential equation (SDE):

dXt ,x
s = b

(
s,Xt ,x

s

)
d s +Σ(

s,Xt ,x
s

)
dBs , (14)

Xt ,x
t = x. (15)

Let us denote by
ϕ(s, .) : y ∈Rn →ϕ(s,y) ∈R

the joint probability density function (pdf) of the random vector Xt ,x
s , s ∈ [t ,T ]. Then ϕ is a

solution of the following linear partial differential equation, called the Fokker–Planck (or forward
Kolmogorov) equation:

∂ϕ

∂s
+div

(
b(s,y)ϕ

)
− 1

2
divdiv

(
Σ(s,y)ΣT(s,y)ϕ

)
= 0, y ∈Rn , s ∈ [t ,T ]. (16)

It can be obtained by using the Euler–Bernstein approximation of (14) and the Itô’s lemma (see,
for instance, [13, Th. 11.6.1] where some results on existence of solution are given).

An initial condition at time t is needed to solve this equation, namely, the pdf ϕ(t ,y) of the
initial random vector Xt ,x

t .
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Let us recall that if Ys is a d-dimensional stochastic process defined by Ys = F(s,Xt ,x
s ), F being

a given deterministic function from [t ,T ]×Rn →Rd , then the expectation of Ys is given by

E[Ys ] =
∫
Rn

F(s,y)ϕ(s,y)dy.

On the other hand, we notice that the optimization problem for the renewable energy plant
described above falls within the following general stochastic control framework:

• The state of the system, Xt ,x
s is governed by the SDE valued in Rn :

dXt ,x
s = b

(
s,Xt ,x

s ,us
)

d s +Σ(
s,Xt ,x

s

)
dBs ,

Xt ,x
t = x,

where us is the control, u ∈U , U being a set of functions,

U = {u : [t ,T ] → U| u measurable} ,

and U is a compact set in R.
• Bs is a d-dimensional Brownian motion.
• b is a vector field and Σ is a tensor field; both are given.
• The gain or objective function (sometimes also called cost to go) is

J (t ,x,u) = E

[∫ T

t
f
(
s,Xt ,x

s ,us
)

d s + g
(
Xt ,x

T

)]
The goal is to maximize the objective function over the admissible set of controls U and under
the chance state constraint,

P
(
Xt ,x

s ∈A
)≥α a.e. s ∈ [t ,T ],

where A is a convex subset of Rn , or alternatively,

E
[
Xt ,x

s

] ∈A .

Remark 1. In the present paper we follow the approach of the Dynamic Programming Principle
leading to the Hamilton–Jacobi–Bellman equation. However, as it is well-known, in deterministic
control theory there is another classical approach to characterize the optimality, namely, the so-
called maximum principle, introduced by L. Pontryagin and collaborators in the case of ordinary
differential equations and later extended to partial differential equations by J.L. Lions [15]. It
can be formally obtained from the HJB equation, also for optimal control of SDE, by using Itô’s
Lemma and defining

Yt ,x
s := grad v

(
s,Xt ,x

s

)
and Zt ,x

s := (
grad grad v

)
Σ

(
s,Xt ,x

s

)
,

where v is the solution of the HJB equation. For the state constraint (20) it consists of the
following equations:

dXt ,x
s = b

(
s,Xt ,x

s ,us
)

d s +Σ(
s,Xt ,x

s

)
dBs ,

Xt ,x
t = x,

dYt ,x
s =−

(
grad f

(
s,Xt ,x

s ,us
)+grad b

(
s,Xt ,x

s ,us
)T

Yt ,x
s + tr

(
gradΣ

(
s,Xt ,x

s

)T
Zt ,x

s

)
−µ(s)

)
ds

+Zt ,x
s dBs ,

µ(s) ∈ ∂χA

(
E

[
Xt ,x

s

])
,

Yt ,x
T = grad g

(
T,Xt ,x

T

)
,

us = argmin
u∈U

{
f
(
s,Xt ,x

s ,u
)+b

(
s,Xt ,x

s ,u
) ·Yt ,x

s

}
This forward-backward system of SDE can be solved by combining Montecarlo with deep learn-
ing methods similar to those recently introduced (see [16]) for solving high-dimensional nonlin-
ear PDEs. These methods are an interesting alternative to those based on the Fokker–Planck and
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Hamilton–Jacobi–Bellman equations proposed below in the present paper. Their main advan-
tage is that they do not suffer from the curse of dimensionality.

Remark 2. As mentioned before for the particular case of the renewable plant, the stochastic
control theory gives us the optimal control in feedback form, i.e., as a function of the state of the
system:

us = ǔ
(
s,Xt ,x

s

)
(17)

where ǔ is a deterministic function that can be computed off-line. Thus, us is also a stochastic
process and therefore, from the point of view of the real time implementation, that is, in order to
determine the control to be applied at time s, one needs not only to compute the deterministic
function ǔ, but also to measure the state of the system at time s.

Now, consider the case where we want to determine the optimal control a priori, i.e., before
the process starts. This is the case, for instance, if we try to determine the optimal biddings to the
electricity auctions for the day-ahead. Then, a logical choice is to take the bid for time s as the
expectation of the optimal stochastic control, i.e, the following deterministic function:

u(s) = E[us ] =
∫
Rn

ǔ
(
s,y

)
ϕ(s,y)dy,

where ϕ(s,y) is the pdf of the stochastic process Xt ,x
s which, as said above, can be computed by

solving the Fokker–Planck equation (16) associated to the SDE that models the plant.

4. Reformulating the stochastic optimal control via the Fokker–Planck equation

Now, we will see that, by using the pdf, ϕ(s,y), as state of the system, the above stochastic
optimal control problem can be rewritten as a deterministic optimal control problem for a system
governed by a linear partial differential equation, namely, the Fokker–Planck equation.

Indeed, firstly we notice that by using ϕ(s,y) one can compute the expectation appearing
in the cost function. Secondly, we look for a deterministic optimal control function, which is
nothing but the feedback function:

ǔ : [t ,T ]×Rn →R.

Then, the cost function J can be rewritten as follows:

J(ǔ) =
∫ T

t

∫
Rn

f
(
s,y, ǔ(s,y)

)
ϕ(s,y)dyd s +

∫
Rn

g (y)ϕ(T,y)dy. (18)

Thirdly, by using again function ϕ, the chance constraint can be written as one of the following
two alternatives:

Constraint 1: ∫
A
ϕ(s,y)dy ≥α, s ∈ [t ,T ], (19)

Constraint 2: ∫
Rn

yϕ(s,y)dy ∈A . (20)

Therefore, we are led to analyze the following deterministic optimal control problem with state
constraints:

max
ǔ∈U

J(ǔ), (21)∫
A
ϕ(s,y)dy ≥α,

(
or

∫
Rn

yϕ(s,y)dy ∈A

)
, s ∈ [t ,T ]. (22)

where U = {ǔ : [t ,T ]×Rn →R,measurable and such that ǔ(s,y) ∈ U a.e. }.
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Recall that the state of the system is the scalar function ϕ(s,y) and the state equation is the
Fokker–Planck equation which is now written in a weak form:

∫
Rn

∂ϕ

∂s
(s,y)v(y)dy−

∫
Rn
ϕ(s,y)b

(
s,y, ǔ(s,y)

) ·grad v(y)dy

+
∫
Rn

1

2
div

(
Σ(s,y)Σ(s,y)Tϕ(s,y)

)
·grad v(y)dy = 0, (23)

ϕ(t ,y) =ϕt (y). (24)

The initial condition, ϕt , is the joint pdf of the initial random vector Xt ,x
t .

Two features of this problem are worth emphasizing, as they have important consequences on
its first-order optimality conditions:

(1) The state equation (i.e., the Fokker–Planck equation) is linear with respect to its main
unknown, the pdf ϕ.

(2) The cost function depends linearly on the state ϕ.

However, we notice that the mapping giving the state, ϕ, from de control, ǔ, is in general
nonlinear. Therefore, in general the problem (21), (22) is not a standard linear-quadratic optimal
control problem with state constraints.

5. Optimality conditions

The goal is to write first order optimal conditions for the above deterministic optimal control
problem. In this article, they will be formally obtained by introducing a Lagrangian function
involving Lagrange multipliers associated with state constraints. The latter will not only corre-
spond to the constraint on the state but also to the state equation itself. These two constraints
have associated Lagrange multipliers that will be denoted by µ(s) (19) or µ(s) (20), and v(s,y),
respectively. Indeed, as usual, it turns out that the Lagrange multiplier v(s,y) associated to the
state equation is the adjoint state of the deterministic optimal control problem. Firstly, the state
equation (i.e., Fokker–Planck) together with its initial condition is rewritten in an equivalent weak
form by integrating (23) in time from t to T :

∫ T

t

∫
Rn

∂ϕ

∂s
(s,y)v(s,y)dyds −

∫ T

t

∫
Rn
ϕ(s,y)b

(
s,y, ǔ(s,y)

) ·grad v(s,y)dyds

+
∫ T

t

∫
Rn

1

2
div

(
Σ(s,y, )Σ(s,y)Tϕ(s,y)

)
·grad v(s,y)dyds = 0,

Integrating by parts in time the leftmost term and using the initial condition we get,

∫
Rn

v(T,y)ϕ(T,y)dy−
∫
Rn

v(t ,y)ϕt (y)dy−
∫ T

t

∫
Rn

∂v

∂s
(s,y)ϕ(s,y)dyds

−
∫ T

t

∫
Rn
ϕ(s,y)b(s,y, ǔ(s,y)) ·grad v(s,y)dyds

+
∫ T

t

∫
Rn

1

2
div

(
Σ(s,y, )Σ(s,y)Tϕ(s,y)

)
·grad v(s,y)dyds = 0.
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Finally, for the state constraint (19), the Lagrangian function is defined as

L (ǔ,ϕ, v,µ) =
∫ T

t

∫
Rn

f
(
s,y, ǔ(s,y)

)
ϕ(s,y)dyd t +

∫
Rn

g (y)ϕ(T,y)dy

−
∫
Rn

v(T,y)ϕ(T,y)dy+
∫
Rn

v(t ,y)ϕ(t ,y)dy+
∫ T

t

∫
Rn

∂v

∂s
(s,y)ϕ(s,y)dyds

+
∫ T

t

∫
Rn
ϕ(s,y)b

(
s,y, ǔ(s,y)

) ·grad v(s,y)dyds

−
∫ T

t

∫
Rn

1

2
div

(
Σ(s,y, )Σ(s,y)Tϕ(s,y)

)
·grad v(s,y)dyds

−
∫ T

t
µ(s)

(∫
A
ϕ(s,y)dy−α

)
d s.

(25)

Recall that ϕ(t ,y) =ϕt (y) is given.
The first order optimality conditions are,

∂L

∂v

(
ǔ,ϕ, v,µ

)
(v̂) = 0 ∀ v̂ , (26)

∂L

∂ϕ

(
ǔ,ϕ, v,µ

)
(ϕ̂) = 0 ∀ ϕ̂, (27)

∂L

∂µ

(
ǔ,ϕ, v,µ

)
(µ̂−µ) ≤ 0 ∀ µ̂≤ 0, (28)

∂L

∂ǔ

(
ǔ,ϕ, v,µ

)
(û − ǔ) ≤ 0 ∀ û ∈U . (29)

The equation (26) yields the state equation, that is the Fokker–Planck equation (23), and the initial
condition (24). Equation (27) characterizes the Lagrange multiplier v (that is, the adjoint state):∫

Rn

∂v

∂s
(s,y)ϕ̂(y)dy+

∫
Rn

b
(
s,y, ǔ(s,y)

) ·grad v(s,y)ϕ̂(y)dy

− 1

2

∫
Rn

grad v(s,y) ·div
(
Σ(s,y)Σ(s,y)Tϕ̂(y)

)
dy

+
∫
Rn

f
(
s,y, ǔ(s,y)

)
ϕ̂(y)dy−µ(s)

∫
A
ϕ̂(y)dy = 0,

(30)

v(T,y) = g (y). (31)

Equation (28) characterizes the Lagrange multiplier associated with the chance constraint. It is
equivalent to

µ(s) ∈ ∂χ[0,∞)

(∫
A
ϕ(s,y)dy−α

)
a.e. s in [t ,T ], (32)

where, in general, χK denotes the indicator function of the closed convex set K and ∂χK

denotes its subdifferential (see, for instance, [17]). In its turn, equation (32) is equivalent to the
three equations,

(1)
∫
A ϕ(s,y)dy ≥α (primal constraint)

(2) µ(s) ≤ 0 (dual constraint)
(3) µ(s)(

∫
A ϕ(s,y)dy−α) = 0 (complementary slackness condition).

In the case of chance constraint (20), the last term in the Lagrangian function (25) has to be
replaced by

−
∫ T

t

(
µ(s) ·

∫
Rn

yϕ(s,y)dy
)

ds

and, accordingly, the last term in the adjoint state equation (30) by

−µ(s) ·
∫
Rn

yϕ̂(y)dy.
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Moreover, in that case, equation (28) is equivalent to

µ(s) ∈ ∂χA

(∫
Rn

yϕ(s,y)dy
)

. (33)

Finally, equation (29) is the first order optimality condition for the maximization problem,

max
û∈U

L (û,ϕ, v,µ).

Notice that

ǔ = argmax
û∈U

L (û,ϕ, v,µ)

if and only if

ǔ = argmax
û∈U

Φ(û,ϕ, v)

where

Φ(û,ϕ, v) =
∫ T

t

∫
Rn

f
(
s,y, û(s,y)

)
ϕ(s,y)dyds +

∫ T

t

∫
Rn

b
(
s,y, û(s,y)

) ·grad v(s,y)ϕ(s,y)dyds.

Moreover, since there are no derivatives of û in the above function Φ and ϕ is a postive
function, the optimization problem can be solved as a set of uncoupled optimization problems,
one for each (s,y) ∈ [t ,T ]×Rn . In other words, ǔ = argmax

û∈U
Φ(û,ϕ, v) if and only if

ǔ(s,y) = argmax
u∈U

ζ
(
s,y,u,grad v(s,y)

)
where ζ(s,y,u,p) := f (s,y,u)+b(s,y,u) ·p. Therefore, the adjoint state equation can be rewritten
as follows:∫

Rn

∂v

∂s
(s,y)ϕ̂(y)dy− 1

2

∫
Rn

grad v(s,y) ·div
(
Σ(s,y)Σ(s,y)Tϕ̂(y)

)
dy

−µ(s)
∫
A
ϕ̂(y)dy+

∫
Rn

max
u∈U

{
f (s,y,u)+b(s,y,u) ·grad v(s,y)

}
ϕ̂(y)dy = 0, (34)

v(T,y) = g (y). (35)

Notice that for µ(s) = 0 (i.e., without state constraints), equation (34) is nothing but the second
order Hamilton–Jacobi–Bellman equation for the stochastic control problem. The mathematical
analysis of these equations relies upon the notion of viscosity solution (see, for instance, [18]). In
the case with state constraints, its unknowns are functions v(s,y) and µ(s). We also notice that it
is a backward nonlinear partial differential equation. Its strong form is

∂v

∂s
(s,y)+max

û∈U

{
f (s,y, û)+b(s,y, û) ·grad v(s,y)

}
+ 1

2
Σ(s,y)Σ(s,y)T ·grad grad v(s,y)−µ(s)IA (y) = 0 in Rn , s ∈ [t ,T ], (36)

v(T,y) = g (y) in Rn . (37)

For the chance constraint (20), the term with the Lagrange multiplier in (34) has to be replaced

by −µ(s) ·
∫
Rn

yϕ̂(y)dy and in (36) by −µ(s) ·y.

On the other hand, let us recall that in the theory of the Hamilton–Jacobi–Bellman equation
the function

H(s,y,p) := max
u∈U

ζ
(
s,y,u,p

)
,

where ζ(s,y,u,p) := f (s,y,u)+b(s,y,u) ·p, is called the Hamiltonian.
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Remark 3. If µ(s) (or µ(s)) were known (of course, this is the case when there are no state
constraints), then equation (36) with (37) could be solved for v independently of the other
optimality conditions, since the pdf ϕ does not appear in it. In other words, the Fokker–Planck
equation would not need to be solved.

However, if there are state constraints, then the Lagrange multiplier is not known a priori so
that either equation (32) or equation (33) have to be solved. The drawback is that both equations
involve the pdf, ϕ, and hence the Fokker–Planck equation must also be solved. Summarizing,
under state constraints the whole set of optimality conditions has to be solved.

On the other hand, sometimes the above maximization problem for u can be explicitly solved
in terms of grad v , in which case the adjoint state equation, that is, the Hamilton–Jacobi–Bellman
equation becomes an usual partial differential equation, in general fully nonlinear. This is the
case of the application considered in the present paper.

We summarize the optimality system for the stochastic optimal control problem with chance
constraint (19) by writing the state and adjoint state equations in strong form

∂ϕ

∂s
+div

(
b

(
s,y, ǔ(s,y)

)
ϕ(s,y)

)
− 1

2
divdiv

(
Σ(s,y)Σ(s,y)Tϕ(s,y)

)
= 0, (38)

ϕ(t ,y) =ϕt (y), y ∈Rn , (39)

∂v

∂s
(s,y)+max

u∈U

{
b(s,y,u) ·grad v(s,y)+ f (s,y,u)

}
+ 1

2
Σ(s,y)Σ(s,y)T ·grad grad v(s,y)−µ(s)IA (y) = 0, (40)

v(T,y) = g (y), y ∈Rn , (41)

µ(s) ∈ ∂χ[0,∞)

(∫
A
ϕ(s,y)dy−α

)
, (42)

ǔ(s,y) = argmax
u∈U

{
b(s,y,u) ·grad v(s,y)+ f (s,y,u)

}
. (43)

In the case of chance constraint (20), (40) and (42) have to be replaced by

∂v

∂s
(s,y)+b

(
s,y, ǔ(s,y)

) ·grad v(s,y)+ f
(
s,y, ǔ(s,y)

)
+ 1

2
Σ(s,y)Σ(s,y)T ·grad grad v(s,y)−µ(s) ·y = 0,

and µ(s) ∈ ∂χA (
∫
Rn yϕ(s,y)dy), respectively.

6. Numerical solution: algorithm of multipliers

From now on we consider the general stochastic optimal control problem including the state
constraint. In this case, the full optimality system has to be solved. Numerical solution of this
system first requires discretizations both in time and in space. Then, an optimization algorithm
has to be used. We propose two nested iterations:

• the outermost concerns the state constraint, i.e., updating the Lagrange multiplier µ(s)
(or µ(s))

• the innermost involves the solution of a nonlinear programming problem with only
bound constraints on the control.

For the outer loop a Lagrange multipliers algorithm is introduced below. This kind of algo-
rithms have been extensively used for solving nonlinear partial differential equations (see [19],
the review paper [20] and references therein). In the present paper, the approach followed is
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more directly inspired by [21]. It is based on the following result, the proof of which is straightfor-
ward:

Lemma 4. Let G be a (possibly multivalued) maximal monotone operator in a Hilbert space H .
The following statements are equivalent

(1) g ∈G(h),
(2) g =Gλ(h+λg),

for any positive real number λ, where Gλ is the Yosida approximation of G, that is,

Gλ =
I − JG

λ

λ
,

JG
λ

:= (I −λG)−1 being the resolvent operator of G.

In the particular case where G = ∂χK , i.e., G is the subdifferential of the indicator function of
a convex set K , we have JG

λ
= PK , where PK is the projection on the convex set K ; then,

Gλ =
I −PK

λ
.

In order to introduce the algorithm of multipliers, the first step is to use the previous Lemma
to replace the inclusion

µ(s) ∈ ∂χ[0,∞)

(∫
A
ϕ(s,x)dx−α

)
by the equivalent equality

µ(s) = (
∂χ[0,∞)

)
λ

(∫
A
ϕ(s,x)dx−α+λµ(s)

)
.

We have (
∂χ[0,∞)

)
λ (y) = I −P[0,∞)

λ
=− 1

λ
y−,

where y− = max{−y,0}. Notice that λ needs not to be a small number.
Hence, the optimality system can be rewritten as

∂ϕ

∂s
(s,y)+div

(
b

(
s,y, ǔ(s,y)

)
ϕ(s,y)

)
− 1

2
divdiv

(
Σ(s,y)Σ(s,y)Tϕ(s,y)

)
= 0,

ϕ(t ,y) =ϕt (y),

∂v

∂s
(s,y)+b

(
s,y, ǔ(s,y)

) ·grad v(s,y)+ f
(
s,y, ǔ(s,y)

)
+ 1

2
Σ(s,y)Σ(s,y)T ·grad grad v(s,y)−µ(s)IA (y) = 0,

v(T,y) = g (y),

µ(s) =−
[

1

λ

(∫
A
ϕ(s,y)dy−α

)
+µ(s)

]−
,

ǔ(s,y) = argmax
u∈U

{
b(s,y,u) ·grad v(s,y)+ f (s,y,u)

}
,

s ∈ [t ,T ], y ∈Rn

which leads to the following iterative algorithm:

(1) k = 0, µ0(s) ≤ 0 is given
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(2) k > 0, µk−1(s) is known, then compute vk , ǔk by solving the optimal control problem
without state constraints characterized by the following Hamilton–Jacobi–Bellman equa-
tion:

∂vk

∂s
(s,y)+

[
b

(
s,y, ǔk (s,y)

)
·grad v(s,y)+ f

(
s,y, ǔk (s,y)

)
+1

2
Σ(s,y)Σ(s,y)T ·grad grad vk (s,y)

]
−µk−1(s)IA (y)

vk (T,y) = g (y), y ∈Rn ,

ǔk (s,y) = argmax
û∈U

[
b

(
s,y, û

) ·grad vk (s,y)+ f
(
s,y, û

)]
(3) Compute ϕk by solving the Fokker–Planck equation

∂ϕk

∂s
(s,y)+div

(
b

(
s,y, ǔk (s,y)

)
ϕk (s,y)

)
− 1

2
divdiv

(
Σ(s,y)Σ(s,y)Tϕk (s,y)

)
= 0,

ϕk (t ,y) =ϕt (y).

(4) Update µ(s):

µk (s) =−
[

1

λ

(∫
A
ϕk (s,y)dy−α

)
+µk−1(s)

]−
In order to solve the optimal control problem in the previous item (2), an optimization algorithm
allowing bound constraints on the control variables should be used (the inner loop).

In the case, of the state constraint (20), the iterative algorithm is the following one:

(1) k = 0, µ0(s) ≤ 0 is given
(2) k > 0, µk−1(s) is known, then compute ϕk , vk , ǔk by solving the optimal control prob-

lem without state constraints corresponding to the following Hamilton–Jacobi–Bellman
equation:

∂vk

∂s
(s,y)+

[
b

(
s,y, ǔk (s,y)

)
·grad vk (s,y)+ f

(
s,y, ǔk (s,y)

)
+ 1

2
Σ(s,y)Σ(s,y)T ·grad grad vk (s,y)

]
−µk−1(s) ·y,

vk (T,y) = g (y), y ∈Rn ,

ǔk (s,y) = argmax
û∈U

[
b

(
s,y, û

) ·grad vk (s,y)+ f
(
s,y, û

)]
.

(3) Compute ϕk by solving the Fokker–Planck equation

∂ϕk

∂s
(s,y)+div

(
b

(
s,y, ǔk (s,y)

)
ϕk (s,y)

)
− 1

2
divdiv

(
Σ(s,y)Σ(s,y)Tϕk (s,y)

)
= 0,

ϕk (t ,y) =ϕt (y).

(4) Update µ(s):

µk (s) = (I −PA )

λ

(∫
Rn

yϕk (s,y)dy+λµk−1(s)

)
=µk−1(s)+ 1

λ

∫
Rn

yϕk (s,y)dy− 1

λ
PA

(∫
Rn

yϕk (s,y)dy+λµk−1(s)

)
,

where PA is the Euclidean projection on the closed convex set A ⊂Rn .

Remark 5. Since the approach considered in this paper is based on partial differential equations
with as many space variables as components of the state of the system, it suffers from the curse
of dimensionality, a concept introduced by Richard Bellman in the 1950s. Indeed, the use of
standard deterministic numerical discretization methods becomes prohibitive even for quite
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small dimensions. Fortunately, Monte Carlo techniques based on representations of the solution
of semilinear PDEs as expectations of the solution of backward stochastic differential equations
(BSDE), see [22], avoid the curse of dimensionality. Furthermore, recent developments [23]
that combine these representations with the use of artificial neural networks, have completely
changed the landscape. Nowadays, high-dimensional PDEs with thousands of variables can be
solved, something unthinkable less than a decade ago. This opens the way to a multitude of new
applications, in particular to optimal control problems.

7. Application to the wind power plant

In the previous section we have described an algorithm of multipliers to solve the equivalent
deterministic control problem with state constraints. Now, the goal is to apply this algorithm to
the example of the renewable plant with battery. Let us recall the stochastic control problem for
the plant:

• State: Xs = (vs ,Πs ,Es )T. Control: us = Pbat ,s .
• Initial time: t = 0. Initial state: the random vector Xt = (v0,Π0,E0)T.

(Recall that this initial condition is needed only to solve the Fokker–Planck equation for
the pdf, ϕ)

• Vector field b:

b(s,y,u) =


κv

(
θv (s)+ 1

κv

dθΠ
d s (s)− y1

)
κΠ

(
θΠ(s)+ 1

κΠ

dθΠ
d s (s)− y2

)
−u

 .

• Noise: Bs = (Bv,s ,BΠ,s ,BE ,s )T.
• Tensor field Σ:

Σ(s,y) =
σv,v y1 σv,Πy1 0
σΠ,v y2 σΠ,Πy2 0

0 0 σE ,E y3

 .

• Objective function: f (s, vs ,Πs ,Es ,u) =Πs (P̂ (vs )+Pbat ,s ), g (ET ) =βET .
That is, f (s,y,u) := y2(P̂ (y1)+u), g (y) =βy3.

• Admissible control set: U = {u : Pbat ,mi n ≤ u ≤Pbat ,max }.
• A = {y ∈R3 : Emi n ≤ y3 ≤ Emax }.
• The Hamiltonian function can be easily obtained analytically:

H
(
s,y, û,p) = max

û∈U

[
b

(
s,y, û

) ·p+ f
(
s,y, û

)]
= max

û∈U

[
b1p1 +b2p2 − ûp3 + y2

(
P̂ (y1)+ û

)]
= max

û∈U

[
(−p3 + y2)û

]+b1p1 +b2p2 + y2P̂ (y1)

=Ψ(y2, p3)+b1p1 +p2b2 + y2P̂ (y1),

where

Ψ(y2, p3) =


Pbat ,mi n(−p3 + y2) if −p3 + y2 < 0,

0 if −p3 + y2 = 0,

Pbat ,max (−p3 + y2) if −p3 + y2 > 0.
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Notice thatΨ is a nonlinear function of p3. Finally, the HJB equation to be solved is

∂v

∂s
(s,y)+κv

(
θv (s)+ 1

κv

dθv

d s
(s)− y1

)
∂v

∂y1
(s,y)

+κΠ
(
θΠ(s)+ 1

κΠ

dθΠ
d s

(s)− y2

)
∂v

∂y2
(s,y)

+ 1

2

(
σ2

v,v +σ2
v,Π

)
y2

1
∂2v

∂y2
1

(s,y)+ (
σv,vσΠ,v +σv,ΠσΠ,Π

)
y1 y2

∂2v

∂y1∂y2
(s,y)

+ 1

2

(
σ2
Π,v +σ2

Π,Π

)
y2

2
∂2v

∂y2
2

(s,y)+ 1

2
σ2

E ,E y2
3
∂2v

∂y2
3

(s,y)+Ψ
(

y2,
∂v

∂y3
(s,y)

)
+ y2P̂ (y1)−µ(s)IA (y) = 0,

v(T,y) =βy3.

Notice that if

meas

{
(s,y) ∈ [0,T ]×Rn : − ∂v

∂y3
(s,y)+ y2 = 0

}
= 0,

then the optimal control is bang-bang:

Pbat ,s = P̌bat (s,y)

= argmax
û∈U

[
(−p3 + y2)û

]=


Pbat ,mi n if −p3 + y2 < 0,[
Pbat ,mi n ,Pbat ,max

]
if −p3 + y2 = 0,

Pbat ,max if −p3 + y2 > 0.

In general, since p(s,y) = grad v(s,y), then

Pbat ,s ∈ F

(
− ∂v

∂E
(s, vs ,Πs ,Es )+Πs

)
,

where F is the maximal monotone graph,

F (r ) =


Pmi n if r < 0,

[Pmi n ,Pmax ] if r = 0,

Pmax if r > 0.

Remark 6. Assuming g (y) = βy3, we have v(T,y) = βET at terminal time s = T and then
∂v
∂y3

(T,y) = β. Therefore, given β which is a data of the control problem we have two
possibilities (recall thatΠT is the price of electricity at time T ):
(1) Either ΠT < β, i.e., the price of the electricity in the market at time T is lower than

the a priori estimated price of the electricity contained in the battery at time T . Then
Pbat (T ) = Pbat ,mi n , that is, the optimal strategy is to charge the battery at the highest
rate (recall that −Pbat ,mi n is the maximum charge power of the battery).

(2) Or ΠT > β, i.e., the price of the electricity in the market at time T is higher than the
a priori estimated price of the electricity contained in the battery at time T . Then
Pbat (T ) = Pbat ,max that is, the optimal strategy is to discharge the battery at the
highest rate (recall that Pbat ,max is the maximum discharge power of the battery).

7.1. The algorithm of multipliers

In the case of the state constraint (19) the algorithm of multipliers becomes,
(1) k = 0, µ0(s) is given
(2) k > 0, µk−1(s) is known, then compute ϕk , vk , ǔk by solving the optimal control

problem without state constraints:
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(a) Solve for vk (s,y) the HJB equation,

∂vk

∂s
(s,y)+κv

(
θv (s)+ 1

κv

dθv

d s
(s)− y1

)
∂vk

∂y1
(s,y)

+κΠ
(
θΠ(s)+ 1

κΠ

dθΠ
d s

(s)− y2

)
∂vk

∂y2
(s,y)

+ 1

2

(
σ2

v,v +σ2
v,Π

)
y2

1
∂2v

∂y2
1

(s,y)+ (
σv,vσΠ,v +σv,ΠσΠ,Π

)
y1 y2

∂2v

∂y1∂y2
(s,y)

+ 1

2

(
σ2
Π,v +σ2

Π,Π

)
y2

2
∂2v

∂y2
2

(s,y)+ 1

2
σ2

E ,E y2
3
∂2v

∂y2
3

(s,y)+Ψ
(

y2,
∂v

∂y3
(s,y)

)
+ y2P̂ (y1)−µk−1(s)IA (y) = 0,

vk (T,y) =βy3.

(b) Compute the feedback control: ǔk (s,y) ∈ F (− ∂vk

∂y3
(s,y)+ y2).

(c) Solve the Fokker–Planck equation for ϕk

∂ϕk

∂s
(s,y)+ ∂

∂y1

(
κv

(
θv (s)+ 1

κv

dθv

d s
(s)− y1

)
ϕk

)
+ ∂

∂y2

(
κΠ

(
θΠ(s)+ 1

κΠ

dθΠ
d s

(s)− y2

)
ϕk

)
− ∂

∂y3

(
ǔk (s,y)ϕk

)
− 1

2

∂2

∂y2
1

((
σ2

v,v +σ2
v,Π

)
y2

1ϕ
k
)

− ∂2

∂y1∂y2

((
σv,vσΠ,v +σv,ΠσΠ,Π

)
y1 y2ϕ

k
)
− 1

2

∂2

∂y2
2

((
σ2
Π,v +σ2

Π,Π

)
y2

2ϕ
k
)
− 1

2

∂2

∂y2
3

(
σ2

E ,E y2
3ϕ

k
)
= 0,

ϕk (t ,y) =ϕt (y), y ∈Rn .

(3) Update µ(s) as µk (s) =−[ 1
λ (

∫
A ϕk (s,y)dy−α)+µk−1(s)]−.

In the case of the state constraint (20), the term involving the Lagrange multiplier in the HJB
equation should be replaced by -µk−1(s)·y while in step (3), the update of the multiplier should be

µk (s) =µk−1(s)+ 1

λ

∫
Rn

yϕk (s,y)dy− 1

λ
PA

(∫
Rn

yϕk (s,y)dy+λµk−1(s)

)
.

8. Numerical results

In this section we show some numerical results obtained for the stochastic control problem
defined in § 2.2 by using the algorithm of multipliers described in § 7.1.

8.1. Data

Firstly, the employed data are listed. Some of them have been taken from [12].

• Parameters for functions θv and θΠ: κv = 0.1 h−1 and κπ = 0.04 h−1

• θv (s) = θ̄v (1+αv sin(γ(s +ψv )))
with θ̄v = 8 m/s, αv = 0.375, γ=π/12 h−1, ψv = 2 h−1

• Function θΠ(s) has been taken as the hourly electricity price for December 21, 2022
of the Iberian market (MIBEL) (see https://www.omie.es/es/market-results/daily/
daily-market/daily-hourly-price?scope=daily&date=2022-12-21). In fact, we have taken
an interpolation spline of this step function of hourly prices. Plots of curves θv and θΠ
can be seen in Fig. 1.

• Parameters for function P̂ v in (1): vr = 13 m/s, vcut−o f f = 25 m/s, vcut−i n = 4 m/s,
Cper = 0.5, ρ = 1.29 kg/m3, R = 24 m.

https://www.omie.es/es/market-results/daily/daily-market/daily-hourly-price?scope=daily&date=2022-12-21
https://www.omie.es/es/market-results/daily/daily-market/daily-hourly-price?scope=daily&date=2022-12-21
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Figure 1. Functions θv and θΠ. The latter is a spline interpolation of the step function of
hourly prices of electricity on December 21, 2022, in the Iberian market.

• Constants in matrix Σ (in h−1/2): σv,v = 0.2, σv,Π = 0, σΠ,v = 0.01, σΠ,Π = 0.075, σE ,E = 0.1.
• Bounds for energy content in battery: Emi n = 0 MWh, Emax = 4 MWh.
• Bounds for battery charge/discharge: Pbat ,mi n =−1 MW, Pbat ,max = 1 MW.
• In chance constraint (19): α= 0.8
• In cost function: g (x) =βx with β= θΠ(T ) e/MWh.
• Initial conditions for the SDE model: joint normal distribution of mean vector and

variance matrix

x̄ =
θv (0)
θΠ(0)

2

 and V0 =
0.226 0 0

0 8.560 0
0 0 0.01

 ,

respectively. Variance matrix is taken so that each state variable has an initial standard
deviation equal to the 5% of the correspondent initial mean value.

8.2. Results

The problem has been solved by using the algorithm of multipliers described in § 7.1 with initial
null value for the Lagrange multiplier.

Both the Fokker–Planck and the Hamilton–Jacobi–Bellman equations have been discretized in
time by the Euler implicit scheme, and in space using continuous piecewise linear finite elements
on a tetrahedral mesh.

The computational domain is (−30,50)× (−40,220)× (−30,40). It has been adjusted for the
integral of the solution of the Fokker–Planck equation has integral equal to 1. We have taken a
structured mesh of 21×66×36 nodes. The time interval is (0,24) (one day) and the time step is
1 h.

We include several figures to illustrate the numerical results. We distinguish two sets corre-
sponding to the two formulations of the constraints, namely, (10) and (11).

All figures concern the optimal solution. The left (resp. the right) of each figure corresponds to
the state constraint (10) (respectively, (11)). Firstly, Fig. 2, Fig. 3, and Fig. 4 show ten realizations
and the expectations of the three components of the process state: wind velocity, price, and
energy content of the battery. Moreover, Fig. 2 and Fig. 3 include their respective θ functions.



18 Alfredo Bermúdez and Iago Padín

Similarly, in Fig. 5 the ten optimal controls corresponding to the above realizations, that is the
discharge/charge power of the battery, can be seen. We emphasize its bang-bang character. The
expectation of the control is also shown.
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Figure 2. Ten realizations and expectation of wind velocity.
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Figure 3. Ten realizations and expectation of the price.

Fig. 6 shows the expectations of the stochastic processes P̂ (vs ) (instantaneous wind power),
Pbat ,s (instantaneous battery discharge/charge power), Pg r i d ,s (instantaneous power to the grid)
andΠs (instantaneous electricity price).

Fig 7 includes the expectation along the time, s, of the energy content in the battery, Es , and
the electricity price Πs . Notice that the energy content in the battery is kept between the stated
bounds, namely, 0 and 4 MWh. Moreover, the bounds for the control Pbat ,s , i.e., −1 and 1 are also
respected.

Fig. 8 shows the hourly power bid for the day-ahead electricity auction. In order to offer capac-
ity firming, i.e., constant power along each hour, the bid has been obtained by computing the av-
erage power from the expectation of the control (see Remarks in § 2.3, particularly formula (13)).
We can observe that the plant buys energy from the grid to charge the battery during some time
intervals in which the price of electricity is the lowest. Moreover, it sells electricity when the price
is high.
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Figure 4. Ten realizations and expectation of energy content in the battery.
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Figure 5. Ten realizations and expectation of the control function (battery discharge/-
charge power).

0 5 10 15 20 25
Time (h)

4

3

2

1

0

1

2

Po
we

r (
M

W
)

40

60

80

100

120

140

160

180

Pr
ice

 o
f e

le
ct

ric
ity

 (
/M

W
h)

E[P(v)]
E[Pbat]
E[Pgrid]
E[ ]

(a)

0 5 10 15 20 25
Time (h)

4

3

2

1

0

1

2

Po
we

r (
M

W
)

40

60

80

100

120

140

160

180

Pr
ice

 o
f e

le
ct

ric
ity

 (
/M

W
h)

E[P(v)]
E[Pbat]
E[Pgrid]
E[ ]

(b)

Figure 6. Expectations along the time of stochastic processes P̂ (vs ) (instantaneous wind
power), Pbat ,s (instantaneous battery discharge/charge power), Pg r i d ,s (instantaneous
power to the grid) andΠs (instantaneous electricity price).
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Figure 7. Expectations along the time of the energy content in the battery, Es , and the spot
electricity priceΠs .
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Figure 8. Optimal hourly power bid to the day-ahead electricity auction (capacity firming).
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Figure 9. Caseβ= 0. (a): Expectations along the time of stochastic processes P̂ (vs ) (instan-
taneous wind power), Pbat ,s (instantaneous battery discharge/charge power), Pg r i d ,s (in-
stantaneous power to the grid) and Πs (instantaneous electricity price). (b): Expectations
along the time of the energy content in the battery, Es , and the spot electricity priceΠs .
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Finally, the optimal control problem has been solved for β = 0, that is, we do not care about
the energy content of the battery at the end of the process, i.e., at time T . The state constraint (20)
has been considered, namely, (11). Results are shown in Fig. 9 and Fig. 10. Note that, contrary to
what happens in the case where β is not null (see Fig. 7b), the expectation of the energy content
in the battery at time T is null since there is no incentive to not to sell all the available energy. We
also notice the difference in the optimal hourly power bids in the last hours (compare Fig. 10 to
Fig. 8b).
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Figure 10. Case β = 0. Optimal hourly power bid to the day-ahead electricity auction
(capacity firming).

9. Conclusion

This paper deals with the use of stochastic control theory to determine the optimal bids to the
day-ahead electricity auctions and also to find the optimal feedback control for the plant in real
time. Since the problem involves state constraints due to the limited battery capacity, it has
been solved by reformulating it as a deterministic optimal control problem for the Fokker–Planck
PDE. The adjoint state equation of this control problem is a nonlinear Hamilton–Jacobi–Bellman
equation of the second order including a Lagrange multiplier to handle the state constraint. The
equation to determine this Lagrange multiplier involves the probability density function of the
state of the original stochastic problem, which is solution of the Fokker-Planck equation. As
a consequence, the optimality conditions involve a coupled forward-backward system of PDEs
and not only the usual Hamilton–Jacobi–Bellman equation. A realistic numerical test is included
which shows a good qualitative behaviour of the solution.
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