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Abstract. Particulate composites are considered here as multiphase composite in which the interfaces are
imperfect. When the interface mechanical properties are those of a linear elastic material, the minimum
of potential and complementary energy is used in order to obtain bounds of effective elastic modulus of
the composite. Test displacements or stress fields are build and characterized using Green’s functions of
a comparison homogeneous body, polarization fields and extension of the classical Lippmann–Schwinger
equations. Then when spatial distribution of phases are known, in particular for isotropic distribution of
phases or patterns, a generalization of Hashin–Shtrikman principle is obtained and lower and upper bounds
are proposed.

Résumé. Les composites particulaires sont composés d’une matrice à renforts particulaires, dans cette note
les interfaces entre phases sont considérées imparfaites. Lorsque les propriétés mécaniques de l’interface
sont celles d’un matériau élastique linéaire, les principes de minimum de l’énergie potentielle ou com-
plémentaire sont utilisés afin d’obtenir des bornes sur les modules effectifs d’élasticité du composite. Des
champs de déplacements ou des champs de contrainte admissibles sont construits et caractérisés à l’aide
des fonctions de Green d’un corps homogène de comparaison, utilisant des champs de polarisation et une
extension des équations classiques de Lippmann–Schwinger à des champs discontinus. Ensuite, lorsque la
distribution spatiale des phases est connue, en particulier pour une distribution isotrope des phases ou des
motifs, une généralisation du principe de Hashin–Shtrikman est obtenue et des bornes inférieures et supé-
rieures du comportement effectif sont proposées.
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1. Introduction

The determination of effective properties of non homogeneous solid requires micro-mechanical
analysis.

Powerful variational methods have been developed in order to derive bounds for the overall
modulus, combining an adequate statistical description of the space distribution of phases and
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the local mechanical properties of each phases [1–4]. For such methods, the interface between
phases is assumed generally perfect. For the point of view of mechanical properties, a perfect
interface is a material surface across which both the displacement and stress vector are continu-
ous. To capture interphases properties models replace them by a zero-thickness interface models
or using graded materials properties are reduced by some Taylor’s expansion [5–7]. Many papers
are devoted to establish averaged properties for particulate composite with imperfect interface
giving estimation of the overall properties [7–10]. Bounding can be obtained using morpholog-
ical patterns [11, 12] with graded interfaces, but for thin interfaces with discontinuities of dis-
placements or stresses bounds of Voigt or Reuss type on patterns are easily obtained [8] and with
isotropic spatial distribution only lower bounds are proposed [13,14]. For thermal conductivity a
lot of papers have discussed the interface behaviour and the possibility of bounding the thermal
conductivity [9, 10].

It is pointed out that, apart using morphological patterns with graded interfaces with linear
properties, the influence of spatial distribution of inclusion is not taking account on the overall
moduli. This article proposes extension of classical bounding methods in elasticity of the
effective behaviour of a multiphase media to situation of imperfect interfaces between phases
described by linear constitutive behaviour on discontinuities, taking account of isotropic spatial
distribution of phases. After of a short presentation of a composite with linear elastic interfaces,
the displacement solution is given in terms of an integral equation with given discontinuities.
Using this description and the definition of averaging process, under isotropic spatial distribution
of phases, an estimation of the gobal moduli of the composite is obtained by solving problems
of homogeneous inclusions and composite patterns embedded in an homogeneous comparison
material. Optimal comparison materials are then determined in order to obtain bounds for the
global moduli, with the definition of a generalized Hashin–Shtrikmann formulation.

2. Description of the composite

A composite is a medium with n different phases bonded across interface. To describe the
arrangement of the phases indicator functions are introduced:{

x ∈Ωr , φr (x) = 1

x ∉Ωr φr (x) = 0
(1)

The phase r is linear elastic with modulus Cr ; the local modulus inside the composite is given by

C(x) =∑
r
φr (x)C(r ) (2)

In order to describe particular situations as spherical inclusions embedded in a matrix, the
number of correlation functions associated to such situation is very large, direct description
is more powerful, the notion of phase is then replaced by the definition of patterns λ,λ =
1, . . . , N . Each pattern λ is defined by a geometrical domain Dλ inside which the geometry of
homogeneous constituent phases is known [11, 12]. The number of patterns λ is Nλ and the
volume occupied by all patterns λ is

Ωλ =
Nλ∑
i=1

D i
λ = NλDλ (3)

A point y of D i
λ

has a relative position x to the center X i
λ

with a local behaviour defined by

y = x +X i
λ, Cλ(y) =∑

r
φλr (x)Cr (4)
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The whole domain is decomposed into n phases and N different patterns:

Ω=
(⋃

r
Ωr

)(
N⋃
λ=1

(
Nλ⋃
i=1

D i
λ

))
(5)

We can introduce the proportion of phases and the proportion of pattern :

1−α=
∑

r Ωr

Ω
,α=∑

λ

NλDλ

Ω
(6)

and the volume fraction of phase r , and volume fraction of pattern λ

cr = Ωr

Ω
, cλ =

NλDλ

Ω
(7)

Then 
x ∈⋃

r
Ωr C(x) =∑

r
φ(r )Cr

y = x +X i
λ
∈⋃

i

⋃
λ

D i
λ C(y) =∑

r

∑
λ

φλr (x)Cr
(8)

This article is decomposed in three parts, first the problem of equilibrium of a composite
is investigated with the help of polarization fields, then for isotropic distributions of phases or
patterns, an estimation of the global behaviour is obtained. Second, the problem of equilibrium
is extended to imperfect interfaces with addition of new specific polarization fields, and an
estimation of the global behaviour is obtained. Finally, using solutions of composite inclusion,
with optimal polarization fields and the classical bounding of potential energy, an optimal
reference medium is defined and then bounds of the modulus of composite medium. The case
of anti-plan shear or of conduction is given as an example.

3. On imperfect interface

In many situations, the interface is not perfectly bonded due to the presence of local defect. Many
papers are concerned with the physics and the mechanics of the interfaces. Let us consider here
an interface with elastic properties, the interface is a surface across which both displacement and
stress vector are discontinuous.

Along the interface So , displacement is discontinuous and is decomposed as a sum of a jump
and an average

u+ = ū + 1

2
|[u]|S , u− = ū − 1

2
|[u]|S , |[u]|S = u+−u− (9)

Consequently, ū = vαAα + w N is defined only on the surface, (vα, w) are functions of surface
coordinates (Xα,α= 1,2, see Apppendix B.2) ; Aα are local tangent vectors and N normal vector
at a point of the surface So :

u± = lim
z→0±

u(x + zN ) (10)

The strain εs along So is the symmetric part of displacement gradient

∇ū =
(
∇̄βvα−wKα

β

)
Aα⊗ Aβ+ (∇̄βw + vαKαβ

)
N ⊗ Aβ

2εs =∇ū +∇T ū
(11)

For particulate composite, interface So for one inclusion is closed. The strain power along So is
described by a second order symmetric tensor Σs

P s =−
∫

S
Σs : ∇ū∗ dS−

∫
S

T.
∣∣∣∣[u∗]∣∣

S
dS (12)

after integration by part

P s =
∫

S
DivΣs .ū∗ dS−

∫
S

T.
∣∣[u∗]∣∣

S
dS (13)
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and for the overall system, applying the principle of virtual work

P i nt +P s +Pe = 0, P i nt =−
∫
Ω
σ : ε

(
u∗)

dΩ, Pe =
∫
∂Ω

Td.u∗ dS (14)

the conditions of static equilibrium of the whole system are obtained:

divσ= 0, overΩ, σ.n = Td , along ∂Ω

0 = |[σ]|S .N +DivΣs , σ̄.N = T, along S
(15)

The components of Σs are (Σαβ =Σβα, Qα)

Σs =ΣαβAα⊗ Aβ+Qα (N ⊗ Aα+ Aα⊗N ) (16)

and

DivΣs =
(
∇̄βΣαβ+QβKα

β

)
Aα+

(
∇̄γQγ+KαβΣ

αβ
)

N (17)

Remark 1. When Qα = 0 we recover the expression proposed by many authors [13–15].

3.1. Strain surface energy and potential energy of the system

The surface strain energy φ is assumed to be a convex function of (|[u]|S ,εs (ū)) as

φ
(|[u]|S ,εs (ū)

)
(18)

and the state equations for the interface are now:

T = ∂φ

∂|[u]|S
, Σs = ∂φ

∂εs
(19)

By duality, the complementary energy associated with this potential is given by

φ∗(T,Σs ) = min
v ,εs

(
T.v +Σs : εs −φ(v ,εs )

)
(20)

The total potential energy and the complementary energy for prescribed displacement over
∂Ω are

E (u) =
∫
Ω

w(ε(u)) dΩ+
∫

S
φ

(|[u]|S ,εs(ū)
)

dS

E ∗(σ) =
∫
Ω

w∗(σ) dΩ+
∫

S
φ∗(T,Σs ) dS−

∫
∂Ω

n.σ.ud dS
(21)

where u are kinematically admissible fields

u ∈ K .A =
{

u|u = ud over ∂Ω
}

(22)

and σ statically admissible fields

σ ∈ S.A = {
σ|divσ= 0, n.σ̄= T, n.|[σ]|S +DivΣs = 0

}
(23)

Remark 2. σ = rotr rotl Ξ satisfies divσ = 0 whatever is a symmetric second order tensor Ξ;
rotational definition is given in A2. Introducing in the complementary energy, the tensor α:

α= ∂w∗

∂σ
=S :σ (24)

by integration by part, we obtain locally

rotl rotr (α) = 0 (25)

that is the compatibility conditions to define a displacement u satisfying

α= ε(u) = ∂w∗

∂σ
=S :σ. (26)
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The minimum of complementary energy gives∫
S

n.|[σ.u]|S dS+
∫

S

∂φ∗

∂T∗ .|[u]|S +
∂φ∗

∂Σs
∗ : εs(ū) dS+

∫
∂Ω

n.σ.
(
u −ud

)
dS = 0 (27)

and then we recover the dual equations for the equilibrium position

u = ud , |[u]|S =
∂φ∗

∂T
, εs (ū) = ∂φ∗

∂Σs
(28)

3.2. Integral formulation with discontinuous fields

An homogeneous elastic medium with modulus Co is introduced together with internal stresses
p such that

σ=Co : ε(u)+p , p =C(x)−Co (29)

To build test fields, we assume that the fields p ,U ,Σs are known. The equilibrium state with
discontinuous fields on interface So is to determine the displacement u which satisfies the set of
local equations (PB)

• compatibility

2ε(u) =∇u +∇T u (30)

• the constitutive law,

σ=Co : ε+p (31)

• the local discontinuities along So

|[u]|S =U , n.|[σ]|S +divΣs = 0 (32)

• the equilibrium

0 = divσ (33)

• the boundary conditions

u = ud over ∂Ω (34)

The displacement solution of (PB) is in K .A and the associated stressσ is in S.A. They can be used
to define bounds with applying theorem of minimum of potential energy and complementary
energy.

A representation of the displacement u solution of (PB) can be given in terms of Green’s
function Go :

∂

∂y j
Co

p j kl

∂

∂yl
Go

i k (x, y)+δi pδ(x − y) = 0 Go
i j (x, y) = 0,∀ y over ∂Ω. (35)

Consider an homogeneous elastic body with modulus Co the displacement satisfies the integral
equation:

u = εo .x +
∫
Ω

Go .div p dΩ−
∫

S
n.Σ.U dS+

∫
S

Go.divΣs dS (36)

where Σ=Co : ∇Go , and the strain becomes:

ε= εo −
∫
Ω
Γo : p dΩ+

∫
Sλ

n.Co : Γo.U dS−
∫

Sλ
Γo :Σs dS (37)

Where we have taking account of∫
Ω

Go div p dΩ=
∫
Ω

Go
ip

∂ppj

∂xj
dΩ=−

∫
Ω
Γo

ipjqpjq dΩ, Γo
ipjq =

∂2Go
ip

∂xj∂xq
(38)
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3.3. Application to a particulate composite in an homogeneous matrix

For spherical particulate composite, the fields (p ,U ,Σs ) are defined on each pattern Dλ by
the same fields Pλ,Uλ,Σs

λ, and p = pr in homogeneous phase r . Introducing two averaging
processes, the average value for an homogeneous phase ∗r and average field f λM (x) of f on
pattern Dλ

εr = 1

Ωr

∫
Ωr

ε(x)φr (x) dΩ, ελM(x) = 1

Nλ

∑
i
ε
(
x+Xi

λ

)
(39)

Applying these averaging processes on the integral representation (37), the interaction between
two homogeneous phases, two families of pattern, and between one phase and one pattern must
be evaluated.

For isotropic spatial distribution of phases and patterns two by two, we have [11]:

1

Ωs

1

Ωr

∫
Ω

∫
Ω
Γo(x, y)φr (x)φs (y) dΩx dΩy = δs

rE

Γoλ
M

r
= FλM

r
=∑

i

∫
Ω

∫
Dλ

Fo
(
x, y +Y λ

i

)
dΩy dΩx =

∫
Ω

∫ ∞

Ro

∫
Su(R)

F(x,u) dSu = 0

Γoλ
M
µ

M = NλΓo(x, y)δλµ+
∑

i

∑
j

∫
Dλ

∫
Dµ

Fo
(
x − y, X λ

i −Y µ

j

)
dΩx dΩy

= NλΓo(x, y)δλµ+
∫ ∞

R=Ro

∫
Su (R)

∫
Dλ

∫
Dµ

Fo(x − y,u) dΩx dΩy dSu = NλΓo(x,y)δλµ

(40)

where Su(R) is the spherical surface of radius R : Su(R) = {u|∥u∥ = R}.
Using these properties, the average strain field on an homogeneous phase satisfies

εr +E : pr = εo (41)

and

ελM (x)+
∫

Dλ

Γo(x − y) : Pλ(y) dΩ+
∫

Sλ
n.

(
Co : Γo)

.Uλ dS+
∫

Sλ
Γo(x,y) :Σs

λ(y) dS = εo (42)

ελM is obtained as the solution of an inhomogeneous inclusion with imperfect interface embed-
ded in an homogeneous matrix, and submitted to internal stresses Pλ. The displacement, solu-
tion of this problem, is discontinuous as Uλ on Sλ, and that the stress vector is discontinuous as
DivsΣs . The local mean displacement ūλ

M , then εs (ū)λM and also σ̄λM are known.
Applying the averaging process on the constitutive law for p ,Uλ,Σs

λ we have

pr = (Cr −Co)εr , Pλ(x) = (
C(x)−Co)

: ελM (x)

|[u]|SλM =Uλ, TλM = T λ = k s : Uλ = σ̄λM .n

Σλs = K s : εs

(
ūλ

M

) (43)

With the notation

< p > (x) =
{

pr , if x ∈Ωr ,

Pλ(x), if x ∈ Dλ

(44)

and

< ε> (x) =
{
εr if x ∈Ωr

ελM (x) if ∀ X i
λ

, x +X i
λ
∈ D i

λ

(45)

The dependency on x should be omitted in the following.
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When the interface is perfect, the classical problem used in [11] is recovered. For imperfect
interface, the constitutive laws of the interface are taken into account as

Uλ =Uλ
M k s .Uλ = TλM , TλM = T λ = ∂φ

∂U

0 = n.
∣∣∣[σλM ]∣∣∣

S
+DivΣs

λ
(46)

3.4. Estimation of the global behavior

Now, the global mean strain and mean stress are evaluated as the usual way, taking account of
possible discontinuities:

E = 1

Ω

(∫
Ω
ε dΩ−

∫
S

{|[u]|S ⊗n
}

s dS

)
, Σ= 1

Ω

(∫
Ω
σ dΩ−

∫
Sλ

{
n.|[σ]|S ⊗x

}
s dS

)
(47)

that is

E =∑
r

crε
r +∑

λ

cλ

∫
Dλ

ελM (x) dΩx −
∫

Sλ

{
Uλ⊗n

}
s

dS

Σ=∑
r

crσ
r +∑

λ

cλ

∫
Dλ

σλM (x) dΩ+
∫

Sλ
Σs dS

(48)

By elimination of εo , an estimation of the compliance is obtained:

Σ=Cest : E (49)

3.5. Properties of the fields solution of the integral formulation

The discontinuity of displacement is imposed, the local value T(x + X i
λ

) defined on Sλi at point
x + X i

λ
fluctuates around the mean value TλM = T λ, by the same reasoning, the dual quantity

ε(ū)(x +X i
λ

) associated to Σs (x +X i
λ

) fluctuates around the average value ε(ūλ
M ).

However, it can be noticed that using the classical relation between the overall strain, and the
overall stress we can estimate the homogeneous value for the particulate composite, whatever is
Co .

For Co being extremely soft or rigid, we recover the bounds of Voigt and Reuss for particular
composite with imperfect interface.

Another interesting case is to consider that φ is decomposed into two contributions

φ(U ,Σs ) = 1

2
U .k.U + 1

2
Σs .K .Σs (50)

For k rigid, then U = 0, if K = 0, there is no contribution of Σs .
Assume K = 0 then the displacement is discontinuous, choosing Uλ = 0, permits to say that an

upper bound is obtained with the perfect interface. But the lower bounds is not associated to the
stress field associated to this solution, because the value ofφ∗ in that case can not be determined,
because no information can be given on T.

By duality, when k is rigid, a lower bounds is obtained with perfect interface, because, we can
chooseΣs

λ = 0 but the associated strain field εs can not be evaluate and thenφ is not determined.
This fact is encountered for the particular interface used in [13, 14] and only one HS type

bounds is obtained. To obtain the two bounds, a new scheme is proposed based on a generalized
Hashin–Shtrikmann formulation.
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4. On bounding of the global properties

The solution of equilibrium of the particulate composite satisfies the bounding with respect to
the potential energy of the body and the complementary energy of the body:

∀σ∗,∀ u∗−
∫
Ω

w∗ (
σ∗)

dΩ−
∫

S
φ∗

(
σ̄∗.n,

∣∣[σ∗]∣∣
S

.n
)

dS+
∫
∂Ω

n.σ∗.ud dS

≤−
∫
Ω

w∗(σ) dΩ−
∫

S
φ∗ (

σ̄.n, |[σ]|S .n
)

dS+
∫
∂Ω

n.σ.ud dS

=
∫
Ω

w(ε) dΩ+
∫

S
φ

(|[u]|S ,ε(ū)
)

dS

≤
∫
Ω

w
(
ε∗

)
dΩ+

∫
S
φ

(∣∣[u∗]∣∣
S

,ε
(
ū∗))

dS

(51)

Then, consider now the displacement u∗ solution of the integral equation (Eq. (37)) associated
to the averaging process (Eq. (43)). This field satisfies the condition to be used in (Eq. (51)) and
also σ∗ =Co : ε(u∗)+p are valuable to be used too. We have∫

Ω
σ∗ : ε∗ dΩ=

∫
∂Ω

n.σ∗⊗u∗ dΩ−
∫

So

n.
∣∣[σ∗.u∗]∣∣

S
dS (52)

The discontinuities are decomposed into two contributions

n.
∣∣[σ∗.u∗]∣∣

S
= T ∗.

∣∣[u∗]∣∣
S
+n.

∣∣[σ∗]∣∣
S

.ū∗ = T ∗.Uλ−DivΣs .ū∗, T ∗ = n.σ̄∗ (53)

Then by integration and summation on the patterns, the macroscopic stress Σ∗ satisfies∫
Ω
σ∗ : ε∗ dΩ=ΩE :Σ∗+

∫
So

n.σ̄∗.Uλ dS+
∫

So

DivΣs .ū∗ dS

=ΩE :Σ∗+
∫

So

n.σ̄∗.Uλ−Σs : εs
(
u∗)

dS

Σ∗ = 1

Ω

∫
∂Ω

(
n.σ∗⊗x

)
s dS

(54)

4.1. On upper bound

With these fields, the free energy for the field u∗ takes the value

2w
(
ε∗

)= ε∗ :C : ε∗ = ε∗ :
(
C−Co)

: ε∗+ε∗ :Co : ε∗ = ε∗ :
(
C−Co)

: ε∗+ε∗ :
(
σ∗−p

)
(55)

and by integration

2
1

Ω

∫
Ω

w
(
ε∗

)
dΩ= 1

Ω

∫
Ω
σ∗ : ε∗ dΩ+ 1

Ω

∫
Ω
ε∗ :

(
C−Co)

: ε∗−p : ε∗ dΩ (56)

As pointed below, the last term becomes
1

Ω

∫
Ω

p : ε∗ dΩ= c
〈

p
〉

:
〈
ε∗

〉= c
〈
ε∗

〉
:
(
C−Co)

:
〈
ε∗

〉
(57)

and we obtain

2
1

Ω

∫
Ω

w
(
ε∗

)
dΩ= 1

Ω

∫
Ω
σ∗ : ε∗ dΩ+ 1

Ω

∫
Ω

(
ε∗−〈

ε∗
〉)

:
(
C−Co)

:
(
ε∗−〈

ε∗
〉)

dΩ (58)

As
1

Ω

∫
Ω
σ∗ : ε∗ dΩ= E :Σ∗− 1

Ω

∫
So

T : Uλ+Σs
λ : εs

(
u∗)

dS (59)

and finally the total potential energy

2W
(
u∗)= E :Σ∗+ 1

Ω

∫
Ω

(
ε∗−〈

ε∗
〉)

:
(
C−Co)

:
(
ε∗−〈

ε∗
〉)

dΩ&

+ 1

Ω

∫
So

Uλ.k s .Uλ−T λ : Uλ+εs
(
u∗)

: K s : εs
(
u∗)−Σs

λ : εs
(
u∗)

dS
(60)
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We know that
T λ = k s .Uλ, Σs

λ = K s : ε
(
u∗)

λ
M = K s :

〈
εs

(
u∗)〉

(61)

then the potential energy for the trial field is reduced to

2W
(
u∗)= E :Σ∗+ 1

Ω

∫
Ω

(
ε∗−〈

ε∗
〉)

:
(
C−Co)

:
(
ε∗−〈

ε∗
〉)

dΩ

+ 1

Ω

∫
So

(
εs

(
u∗)−〈

εs
(
u∗)〉)

: K s :
(
εs

(
u∗)−〈

εs
(
u∗)〉)

dS
(62)

The quantity

Q
(
Co)= ∫

Ω

(
ε∗−〈

ε∗
〉)

:
(
C−Co)

:
(
ε∗−〈

ε∗
〉)

dΩ

+
∫

So

(
εs

(
u∗)−〈

εs
(
u∗)〉)

: K s :
(
εs

(
u∗)−〈

εs
(
u∗)〉)

dS
(63)

can not be directly evaluated, but we can choose Co in order to have Q(Co) ≤ 0, consequently for
such a Co an upper bound for the potential energy is obtained. It is pointed out that an optimal
value Co exists, because Q(0) > 0 and Q(∞) < 0.

By a similar reasoning, a lower bound is given considering the complementary energy.

4.2. A lower bound

Now, let us consider the complementary energy

W ∗ (
σ∗)= ∫

Ω
w∗ (

σ∗)
dΩ+

∫
So

φ∗ (
n.σ̄∗,Σs

)
dS−

∫
∂Ω

n.σ∗.ud dS (64)

2w∗ (
σ∗)=σ∗.Sσ∗ =σ∗ :

(
S−So)

:σ∗+σ∗ :So :σ∗ (65)

and
σ∗ :So :σ∗ =σ∗ :

(
ε∗+So : p

)
(66)

Let us consider Q= (S−So)−1(
σ−p :So :Q

)
:
(
S−So)

:
(
σ−Q :So : p

)
&

=σ∗ :
(
S−So)

:σ∗+p :So :σ∗+σ∗ :So : p −p :So :Q :So : p (67)

as
So :Q :So = (

So −S+S)
:Q :So =−So +S :Q :So =−So + (

Co −C)−1 (68)

we obtain finally(
σ−p :So :Q

)
:
(
S−So)

:
(
σ−Q :So : p

)
=σ∗ :

(
S−So)

:σ∗+σ∗ :So : p +p :So :
(
σ∗−p

)−p :
(
C−Co)−1 : p (69)

the two last terms cancel due to the relation (p = (C−Co) :< ε∗ >). In conclusion

2W ∗ (
σ∗)

=
∫
Ω
σ∗ : ε∗ dΩ−2

∫
∂Ω

n.σ∗ .ud dS+
∫

So

T ∗.k−1
s .T ∗+Σs .K −1

s .Σs dS

=−ΩE :Σ∗−
∫

So

T ∗.Uλ+T ∗.k−1
s .T ∗ dS+

∫
Ω

(
σ−p :So :Q

)
:
(
S−So)

:
(
σ−Q :So : p

)
dΩ

(70)

In conclusion when

Q∗ (
So)

=
∫
Ω

(
σ−p :So :Q

)
:
(
S−So)

:
(
σ−Q :So : p

)
dΩ+

∫
So

(
T ∗−T λ

)
.k−1

s .
(
T ∗−T λ

)
dS ≤ 0 (71)
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The value of W ∗ gives a lower bound of the potential energy of the particulate composite. The
optimal value of So exists because : Q∗(0) > 0 and Q∗(∞) < 0.

The inequalities Q ≤ 0,Q∗ ≤ 0 are those obtained for classical Hashin–Shtrickman bounding,
for perfect interfaces whose characteristics are K s = 0,k s =∞.

4.3. On bounding fluctuations of displacement on patterns

To obtain bounds, it is necessary to give information on the displacement on each pattern with
imperfect interface using the integral equation.

Consider the pattern D i
λ

the displacement u(x +X λ
i ) is determined by

u
(
x +X λ

i

)
= u

(
X λ

i

)
+uλ(x)+u′(x) (72)

where uλ is the displacement solution of the pattern problem, this displacement satisfies(
u

(
x +X λ

i

)
−u

(
X λ

i

))
λ
M = uλ(x) (73)

It is noticed that u′ is continuous on the interface, and the associated stress vector is continu-
ous too.

Let us consider the two inequalities, let us decompose them in terms of uniform inclusions
and composite inclusion with imperfect interfaces, we can impose these inequalities on all
contributions separately.

Classical conclusions are obtained for uniform inclusions, we must consider a comparison
material with the maximum value or the minimum value of component. For isotropic case the
moduli are (

k+
o ,µ+

o

)= (
maxkr ,maxµr

)
,

(
k−

o ,µ−
o

)= (
minkr ,minµr

)
(74)

But on pattern, with imperfect interface, it is necessary to determine Co with respect to the
inequalities. To obtain the optimal comparison material, the fluctuation u′(x) is decomposed in
terms of Fourier series in 2D or spherical functions in 3D ; the associated fields, displacement and
stress vector are continuous on interface So , the discontinuities being satisfied by the solution
defined on the pattern uλ with given imperfect interfaces.

With such a decomposition, the inequalities obtained with each terms of the Fourier series
must be satisfied.

The process of bounding is then shown on the problem of anti-plane shear. The solution
is given in two step : first, the solution of uniform circular inclusion in a uniform matrix,
and solution of composite with linear elastic interface are determined ; the second step is
the bounding of the fluctuations by Fourier analysis which gives the values of the optimal
comparison materials for the upper and lower bounds.

5. An example

We consider the problem of anti-plane-shear for which the displacement is

u =W (r,θ)ez , ∇W = ∂W

∂r
er + 1

r

∂W eθ
∂θ

(75)

and the state of stress is given by

σ= ez ⊗q+q⊗ez , q = K .∇W (76)

finally the problem to solve is reduced to

∆W = 0, q = K (x)∇W, inΩ

q.n = Q.n, along ∂Ω
(77)
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The particulate composite is made of cylindrical inclusions of radius a with properties K2 embed-
ded in a matrix of modulus K1. K2,Ko are isotropic. We assumed that Q = Qex . The minimum
distance between two inclusions is 2Re , then the composite is modelled as a family of composite
cylindrical inclusions with radius Re , in proportion co and a matrix with proportion cm .

The interface has characteristics k s ,K s as previously. Then we must solve two problems
of cylindrical inclusion embedded in the comparison material, one for the matrix, one for the
pattern.

5.1. A uniform cylindrical inclusion

On the cylindrical inclusion of radius a, the solution satisfies

W (r,θ) = A1r cosθ,r ≤ a, W (r,θ) =
(

Aor +bo
a2

r

)
cosθ, r ≥ a (78)

u is continuous at r = a and the flux too, that is

K1∇u(a).er = Ko∇u(a).er (79)

and the condition

Ko∇u(∞) =Qo ex (80)

We obtain

A1 = 2Qo

Ko +K1
, Qo = AoKo ,bo = Ko −K1

Ko +K1
(81)

5.2. On a composite cylindrical inclusion

On the pattern, we have W (r,θ) = w(r )cosθ, q.er = q(r )cosθ, f = a2

R2
e

w(r ) = A2r, r ≤ a

w(r ) =
(

A1r +b1
a2

r

)
a ≤ r ≤ Re

w(r ) =
(

Aor +bo
R2

e

r

)
, r ≥ Re

(82)

On the boundary a, w and q are discontinuous

2w̄ = (A2 + A1 +b1) a

2q̄ = K2 A2 +K1 (A1 −b1)

2ks |[w]|S = 2ks a (A1 +b1 − A2) = K2 A2 +K1 (A1 −b1)

|[q]|S = K1 (A1 −b1)−K2 A2 = K s

2a
(A2 + A1 +b1)

(83)

and the continuity of w, q at r = Re

Ao +bo = A1 +b1 f , Ko (Ao −bo) = K1
(

A1 −b1 f
)

(84)

With the notation K̄s = K s

2a
, k̄s = 2ak s and ∆= 2K1(K̄s − k̄s )

A1 =− A2

∆
α, b1 =− A2

∆
β (85)

with

α= 2K1K2 +2K̄s k̄s +
(
K̄s + k̄s

)
(K1 +K2) β= 2K1K2 −2K̄s k̄s + (K1 −K2)

(
K̄s + k̄s

)
(86)
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and finally with the condition at r =∞
2Ko Ao = (

α(Ko +K1)+ f β(Ko −K1)
) A2

∆

A1 = 2Ko Aoα

α(Ko +K1)+ f β(Ko −K1)

b1 = 2Ko Aoβ

α(Ko +K1)+ f β(Ko −K1)

(87)

Using the relation (48), an estimation of the global modulus is obtained. Now, choosingCo+,Co−
in order to satisfy the inequalities Q,Q∗ respectively, upper and lower bounds are determined.

5.3. Determination of fluctuations

We have now to solve the problem on fluctuations, developed in Fourier series.
W (r,θ) = A2r n cos(nθ), r ≤ a

W (r,θ) =
(

A1r n +b1
a2n

r n

)
cos(nθ), a ≤ r ≤ Re

(88)

The continuity of fields at r = a determines (A2, A1,b1) for a given W = W (Re )
Rn

e

W = A1 +b1 f n , A2 = 2K1W

δ
, A1 = K1 +K2

δ
W , b1 = K1 −K2

δ
W (89)

where δ= K1 +K2 + f n(K1 −K2). With these constants, we can evaluate Q(Ko),Q∗(1/K o)

5.4. Evaluation of Q(Ko) and Q∗(1/Ko)

The energy of fluctuation is

q = Q(Ko)

2nπR2n
e

= (K2 −Ko)A2
2 f n + (K1 −Ko)

(
1− f n)(

A2
1 +b2

1 f n)+K s a A2
2n f n ≤ 0,∀ n (90)

that is

q
δ2

W 2 = (K2 −Ko)4K 2
1 f n + (K1 −Ko)

(
1− f n)(

(K1 +K2)2 + f n(K1 −K2)2)+K s an f n4K 2
1 ≤ 0 (91)

Denoting KM = max(K1,K2),Km = min(K1,K2), we can choose Ko such that

qδ2

W 2 ≤ (KM −Ko)
(
4K 2

1 f n + (
1− f n)

(K1 +K2)2 + f n(K1 −K2)2
)
+ K̄s max

(
n f n)

4K 2
M ≤ 0 (92)

As
4K 2

m ≤ 4K 2
1 f n + (

1− f n)(
(K1 +K2)2 + f n (K1 −K2)2 )≤ 4K 2

M (93)

we obtain

Ko ≥ K +
o = KM + K̄s

K 2
M

K 2
m

max
(
n f n)

(94)

By the same reasoning based on Q∗, we have

q∗ = Q∗

2nπR2n
e

= n f n

k̄s
K 2

2 A2
2 + f n

(
1

K2
− 1

Ko

)
K 2

2 A2
2 +

(
1− f n)( 1

K1
− 1

Ko

)
K 2

1

(
A2

1 +b2
1 f n)≤ 0 (95)

then
q∗δ2

W 2 ≤ n f n

k̄s
K 2

2 4K 2
1 +

(
f n4K 2

2 + (
1− f n)(

(K1 +K2)2 + f n (K1 −K2)2))(
1

Km
− 1

Ko

)
(96)

then if Ko satisfies
1

Ko
≥ 1

K −
o

= 1

Km
+ 1

k̄s

K 2
M

K 2
m

maxn f n (97)
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q∗ ≤ 0. If the interface is perfect, the classical values K +
o = max(K1,K2),K −

o = min(K1,K2) are
recovered.

Remark: As f < 1,∃ p, p f p ≥ n f n ,∀ n ; therefore p ≥ 1 satisfies p−1
p ≤ f ≤ p

p+1 .
The two proposed values are given as possibilities, numerically for given f more accurate value

can be found.

6. Conclusion

Bounding the global behaviour of a particulate composite has been investigates when interface
between phases are imperfect. When the behaviour of interface is an elastic layer, bounding
methods are applied using classical theorem of minimum of potential energy or complementary
energy. For isotropic distribution of phases for particulate composite, the problem is solved in
order to determine estimation of global behavior using the property of a generalized Lippman–
Schwinger equation taking account of discontinuities of displacement and stress-vector, based
on a comparison homogeneous material and polarization fields. In this model pattern approach
is useful.

Finally upper and lower bounds are obtained for an optimal choice of the reference medium.
When the interface is perfect, Hashin–Shtrickman type bounds are recovered.

Fiber reinforced composite case is given as a first example of application of the method.

Appendix A. Green’s functions

A.1. Laplacian Problem

Notations :

r = ∥x − y∥, e j = r,i = yi −xi

r
, r,i j = 1

r

(
δi j −ei e j

)
(98)

2D:

G(x, y) =− 1

4πKo
log(r ), Γ(x, y)i j = Ei jδ(x, y)+Fi j

Ei j = 1

2Ko
δi j ,Fi j = 1

4πKor

(
δi j −2ei e j

) (99)

3D:

G(x, y) =− 1

4πKo

1

r
, Γ(x, y)i j = Ei jδ(x, y)+Fi j

Ei j = 1

3Ko
δi j ,Fi j = 1

4πKor 2

(
δi j −3ei e j

) (100)

A.2. Plane strain elasticity

Gk
i (x, y) = 1

8πµ

(
ei ek − (3−4ν)δi k logr

)
(101)

Σi
kl =− 1

4π r

(
2ei e j ek + (1−2ν) (δki el +δl i ek −δkl ei )

)
(102)

The traction on surface with normal vector n is T i
l =Σi

kl nk , and the singular part is (κ=λ+µ)

2µEi j kl =− κ

κ+µδi jδkl +
κ+2µ

κ+µ Ii j kl (103)
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A.3. Tridimensional elasticity

Gk
i (x, y) = 1

16πµ(1−ν) r
(ek ei + (3−4ν)δi k ) (104)

Σk
i j =− 1

8π(1−ν) r 2

(
3ei e j ek + (1−2ν)

(
δki e j +δ j k ei −δi j ek

))
(105)

Resultant value at a point x inside (outside) a sphere S of the traction∫
S

T k
i dSy =

∫
S
Σk

ijnj dSy =−δik
ω(S)

4π
(106)

with ω(S) = 0 if x ∈ S, ω(S) = 4π otherwise.

Γi k j l = Ei k j lδ(x − y)+Fi k j l , 3κ= 3λ+2µ

Ei k j l =
1

15µ

(
− 3κ+µ

3κ+4µ
δi kδ j l +9

κ+2µ

3κ+4µ
Ii k j l

)
Fi j kl =− 1

8πµ(3κ+4µ)r 3

(
−6µIi j kl +

(
3κ+µ)

δi jδkl −3
(
3κ+µ)(

ei e jδkl +ek elδi j
)

+15(3κ+µ)ei e j ek el −6(3κ−2µ)
(
ei ekδ j l

)
(i j )(kl )

)
(107)

Let Ji j kl = 1
3δi jδkl , I=K+J then

E=αJ+βK, α= 1

3κ+4µ
, β= 3

5µ

κ+2µ

3κ+4µ
(108)

Appendix B. Differential geometry

B.1. Derivation along a surface

The derivation of quantities along a surface is not directly the classical derivation, we must take
into account of that the local frame is changing with its position on the surface.

Consider a surface S, any point M on the surface has local coordinates Xα,α = 1,2, and the
tangent plane at point M to the surface by vectors Aα with normal vector N

Aα = ∂M

∂Xα
, N ∥A1 ∧ A2∥ = A1 ∧ A2 (109)

In this local frame
∂Aα

∂X β
= Γγ

αβ
Aγ+KαβN (110)

where Γ are the Christoffel symbol, and K the curvature tensor, with properties

dS =p
gdX1dX2, g = ∥A1 ∧ A2∥ , Γ

γ
γα = 1p

g

∂
p

g

∂Xα
(111)

The covariant derivative of Aα is given by

∇̄Aα = ∂Aα

∂X β
−Γγ

αβ
Aγ (112)

For a vector V defines on the surface S,

V =V αAα+W N (113)

we have
∇V =

(
∇̄βV α−W Kα

β

)
Aα⊗ Aβ+

(
∇̄βW +V αK β

α

)
N ⊗ Aβ (114)

In the same spirit, the divergence of a second order symmetric tensor Σ defined by

Σ=ΣαβAα⊗ Aβ+Tα (Aα⊗N +N ⊗ Aα) (115)
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is
DivΣ=

(
∇̄βΣαβ+T βKα

β

)
Aα+∇̄βT β+KαβΣ

αβ (116)

where

∇̄γΣαβ = ∂Σαβ

∂X γ
+Γβ

γλ
Σαλ+ΓαγλΣβλ (117)

B.2. Rotational of a second order tensor

The rotational of a vector v is associated to the adjoin vector of ∇v T −∇v , that is in cartesian
coordinates

rot v = Ri e i , Ri = εi j k
∂vk

∂x j
(118)

where εi j k is the alternate tensor εi j k = 1 or −1, following that i j k is a odd or even permutation,
or in general system of coordinates

rot v =∇∧v , rot v =∇ j v i e i ⊗
(
e j ∧ek

)
(119)

The rotational of a second order tensor must be specified right or left considering the tensor as a
vector with coordinates with fixed left indices or right indices, as

T = Ti j e i ⊗e j ,

{
rotl T =∇k Ti j e i ⊗ (

e j ∧ek
)

rotr T =∇k Ti j
(
e i ∧ek

)⊗e j
(120)

And consequently

rotr rotl T =∇l∇k Ti j

(
e i ∧e l

)
⊗

(
e j ∧ek

)
(121)

For the strain ε, rotr rotl ε = 0 is the condition of compatibility of the strain to ensure the
existence of a field u such that 2ε = ∇u +∇T u. Then for all symmetric second order tensor Ξ
and any u ∫

Ω
Ξ : rotr rotl ε dΩ= 0 =

∫
Ω

rotl rotlΞ : ∇u dΩ+B.C (122)

then σ= rotl rotl Ξ is divergence free.
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