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Abstract. Damage location estimation is a critical aspect of condition-based maintenance systems, particu-
larly in the context of electromechanical impedance monitoring. Various approaches have been developed
to estimate damage location, yet they often need more capability to assess the reliability of data collected
from sensor grids. In this paper, we introduce a novel method based on Sequential Gaussian Simulation
(SGS) to pinpoint damage locations on aluminum plates and create maps that illustrate the spatial uncer-
tainty associated with damage index values throughout the structure. Our proposed approach builds upon
the SGS method and encompasses the assessment of four different sensor grid configurations to investigate
how sensor spacing affects spatial uncertainty. The findings demonstrate the technique’s effectiveness in
accurately predicting damage positions. Moreover, by leveraging the uncertainty information generated,
we can identify specific areas necessitating careful attention, thus offering valuable insights for optimizing
sensor grid design.

Résumé. L’estimation de la localisation des dommages est un aspect critique des systèmes de maintenance
basés sur l’état, en particulier dans le contexte de la surveillance de l’impédance électromécanique. Diverses
approches ont été mises au point pour estimer la localisation des dommages, mais elles nécessitent souvent
davantage de capacités pour évaluer la fiabilité des données collectées à partir des grilles de capteurs. Dans
cet article, nous présentons une nouvelle méthode basée sur la simulation gaussienne séquentielle (SGS)
pour localiser les dommages sur les plaques d’aluminium et créer des cartes qui illustrent l’incertitude spa-
tiale associée aux valeurs de l’indice de dommage dans l’ensemble de la structure. L’approche proposée s’ap-
puie sur la méthode SGS et englobe l’évaluation de quatre configurations différentes de la grille de capteurs
afin d’étudier comment l’espacement des capteurs affecte l’incertitude spatiale. Les résultats démontrent
l’efficacité de la technique pour prédire avec précision les positions des dommages. De plus, en exploitant les
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informations d’incertitude générées, nous pouvons identifier des zones spécifiques nécessitant une attention
particulière, offrant ainsi des indications précieuses pour optimiser la conception de la grille de capteurs.

Keywords. Structural health monitoring, Electromechanical impedance-based method, Damage detection
and location, Sequential Gaussian simulation.

Mots-clés. Surveillance de la santé des structures, Méthode basée sur l’impédance électromécanique, Détec-
tion et localisation des dommages, Simulation gaussienne séquentielle.
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1. Introduction

The Electromechanical Impedance-based Structural Health Monitoring has been used for dam-
age identification in several structures and materials due to being a nondestructive, low-cost
method and capable of detecting small-scale phenomena [1, 2].

Several researchers have demonstrated the application of Integrated Structural Health Mon-
itoring (ISHM) effectively. Nomelini et al. [3], Maruo et al. [4], and Finzi Neto et al. [5] success-
fully employed ISHM for monitoring both aircraft structures and aluminum specimens, yielding
promising results. Furthermore, de Rezende et al. [6] and Cavalini Jr et al. [7] extended the appli-
cation of impedance-based methods to rotating machines. Their innovative approach involved
integrating deep learning models to detect damage present in these systems. These diverse ap-
plications encompass a wide range of topics, with many investigations centered explicitly around
the crucial stage of damage detection.

However, the description of damage involves more than just identifying it. Determining
where the damage is located is crucial so that maintenance efforts can be targeted effectively.
Knowing the location helps to make informed decisions about how to proceed with repairs or
other interventions.

Researchers have created multiple methods to predict the location of damage in a material.
One of these methods, known as the damage index approach, was developed by Kim et al. [8].
They conceived a metric that could indicate whether the damage was present and where it was
located by combining two measurements: the root-mean-square deviation (RMSD) obtained
from impedance-based measurements and the RMSD obtained from guided wave-based mea-
surements. Applying this new index could generate polynomial curves that accurately located
debonding in a carbon-fiber-reinforced polymer (CFRP) layer attached to a concrete beam. In
their experiments, they found that the peaks of these polynomial curves matched the positions
of the debonding in the material.

Cherrier et al. [9] employed Inverse Distance Weighting (IDW) to generate damage localization
maps for a beam and six plates made of composite material. They assigned weights based
on an acoustic attenuation coefficient. Using IDW, the researchers could forecast the probable
locations of damage using probability maps. On the other hand, the technique used by Cherrier
et al. [9] considers that the damage index values are inversely proportional to the damage’s
distance. Based on this concept, Castro et al. [10] developed an algorithm to indicate the
probability of damage in each pixel. The resulting probability depends, among others, on the
cross-correlation square difference (CCSD) index, weighted by a linear inverse distance between
each PZT patch and the analyzed pixel. The technique was applied to an aluminum plate, whose
results showed high probability values near the damage’s location.

Zhu et al. [11] used a combination of the direct coupling mechanical impedance (DCMI)
methodology for signatures extraction and a modified probability-weighted function to locate
damage in a honeycomb sandwich composite plate. After defining the optimal sensing radius of
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the PZT patch, the raw signatures were processed using the DCMI methodology and used to cal-
culate RMSD indexes. The probability-weighted algorithm could delineate the damage’s position
once the higher probabilities were located near the real location of the damage, especially in the
results obtained from the DCMI signatures.

The prediction of damage in a honeycomb sandwich composite plate was explored also in
Sikdar et al. [12]. Since conductance signatures are affected by PZT patches-debonding distance,
a debond index was formulated, reasoned by the differences in the experimental and numerical
conductance signatures. Maps of debonding’s probability were generated from the proposed
index, whose results showed good compatibility between estimated and real damage’s position.

Based on the spatial correlation among damage metric values in the sensor grid, Gonçalves
et al. [13] used the ordinary kriging (OK) method to estimate the location of damage in aluminum
plates. Four damage scenarios were considered. From the spatial information obtained by
semivariogram, the RMSD values were interpolated by OK, resulting in maps of RMSD values,
in which the higher ones were located at the respective damage positions.

The spatial correlation between damage metric values was also explored by Gonçalves
et al. [14]. The indicator kriging (IK) technique was used to estimate the damage’s probability
of occurrence. It considered five scenarios of sensor grids with different spacing. The probability
maps showed higher values located at the plate’s center, where the damage was positioned, being
possible to delineate the region of failure by the proposed approach.

Still, based on the relationship between damage metrics and distance from the damage,
Soman et al. [15] proposed an inverse implementation to preview the damage location in a glass
fiber-reinforced polymer (GFRP) plate. An analytical model was formulated, relating the damage
metric and the PZT patch-damage distance and relative angle, resulting in a dataset of damage
index. The experimental indexes were compared with the numerical ones, and the scenario with
the lowest mean absolute error (MAE) was defined as a representative to determine the damage
position. The results showed the method’s ability to estimate the damage’s location.

Wang et al. [16] proposed the use of three frequency intervals, based on finite element model
(FEM) results, to detect and locate a loosened bolt. The information collected was used in a
Support Vector Machine (SVM), resulting in a recognition accuracy of 81.25%, whereas using a
single interval resulted in a maximum accuracy of 65.5%.

Based on a FEM model of an aluminum beam, Fan and Li [17] compared the sparse and
Tikhonov regularization methods for damage location. The FEM was adjusted, and the frequency
shifts of the Conductance spectra’s resonance peaks were used in the regularization methods to
solve the inverse problem. The change in Young’s modulus was used as the damage index. The
sparse regularization could estimate the damage position in all scenarios considered, unlike the
Tikhonov regularization, which estimated the real position in just a few scenarios.

Even with this, the existing methods have limitations in that they solely focus on estimating
the damage’s location without offering insights into the reliability of the data collected from the
sensor grids, even in cases following the OK approach. Therefore, understanding the spatial
uncertainty associated with a sensor grid becomes imperative in designing an optimal sensor
arrangement.

Here, the concept of a sensor grid is related to data, computing, information, and knowledge
discovery management. In contrast, the sensor network concept is attributed to sensors’ logical
and physical connectivity [18].

This contribution presents an innovative approach rooted in Sequential Gaussian Simulation
(SGS). Its main objective is twofold: firstly, to estimate the location of known damage and,
secondly, to quantify the spatial uncertainty of the Root Mean Square Deviation (RMSD) indices
through an aluminum plate. This approach opens new perspectives for optimizing sensor grid
designs by offering a detailed uncertainty map. Furthermore, the impact of sensor spacing on
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spatial uncertainty is the subject of studies, where regular and non-regular sensor grids with
varying spacing are meticulously evaluated. Finally, the effectiveness of the SGS approach in
accurately estimating damage positions is subject to rigorous evaluation.

2. Theoretical backgrounds

This section presents concepts related to the techniques and tools used in this work. It includes
explanations of the Electromechanical Impedance method, Geostatistics, and the SGS method.

2.1. Electromechanical impedance

The Electromechanical Impedance (EMI) technique is based on the electromechanical coupling
between the monitored structure and a piezoelectric element, usually a PZT patch, attached to it.
Due to this interaction, the electrical impedance measured in the PZT patch’s terminals is related
to the mechanical impedance of the hosted structure, being a signature of its state [1, 19, 20].

The PZT patch-structure can be considered as a spring-mass-damper system of 1 degree of
freedom, whose formulation was presented by Liang et al. [21]. In this system, the PZT patch is
excited by a harmonic voltage signal resulting in an induced strain, affecting locally the structure.
Then, the dynamic response of this one is transferred back to the sensor, represented by an
electrical signal [19, 22].

The relation between the electrical impedance (ZE (ω)) and the structure’s mechanical
impedance (Zs (ω)) can be described by the mathematical model given by Equation (1) [21], which
varies along a frequency (ω) interval. In Equation (1), τ is the geometric constant of the PZT
patch; j, the imaginary unit; εT

33, the dielectric constant for a given mechanical stress T ; Zp is the
transducer’s mechanical impedance; d 2

3X , the dielectric constant, and; Y E
X X , the Young’s modulus

for a constant electric field E .

ZE (ω) = 1

jωτ

(
εT

33 −
Zs (ω)

Zs (ω)+Zp (ω)
d 2

3X Y E
X X

)−1

. (1)

The application of an AC voltage signal to the PZT patch with a frequency interval provides a
signature of the electrical impedance, which indicates the structural conditions due to the elec-
tromechanical coupling. Thus, any changes in the impedance signatures can indicate structural
integrity changes [20, 23].

Comparing the impedance signatures, usually their real parts (Resistance), at any moment
with those of the pristine state (baseline signature) allows the detection of damages. Based on
this, damage indexes were developed to indicate it quantitatively. Among them, the most used
is the Root Mean Square Deviation (RMSD), defined in Equation (2), and based on a Euclidean
norm [1, 24].

RMSD =

√√√√√∑ω f

k=ωi
[ZE (k)−Z 0

E (k)]2∑ω f

k=ωi
[Z 0

E (k)]2
. (2)

The RMSD index quantifies the changes in two signatures by calculating the square root of
the mean quadratic differences between the kth electrical impedances at a particular moment
(ZE (k)) and at the pristine condition (Z 0

E (k)), along a frequency interval defined by its lower (ωi )
and upper (ω f ) limits.

The quantification of damage metrics for a sensor grid provides crucial information for
damage assessment, allowing better decision-making regarding structure maintenance.
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Figure 1. Example of an experimental semivariogram.

2.2. On concepts of geostatistics

Geostatistics had its roots as an application of Georges Matheron’s Theory of Regionalized Vari-
ables [25–28] and was first developed to address geological and mining engineering problems,
and is widely used in these fields [29–32]. By gathering a finite number of samples, geostatistical
methods are employed to create geological models by interpolating the sample values. The in-
terpolation is based on analyzing the distribution and correlation of the sample values within the
study area.

The type of variables treated by geostatistical techniques exhibit spatial continuity within the
studied area. This continuity results in data points close to each other having similar values,
leading to reduced dissimilarities among them. Conversely, data points that are distant from
each other exhibit a higher contrast between the corresponding values [33].

This behavior implies that not only the variable’s values are used in the analysis but also
their relative positions. To quantify the spatial continuity, it is used the semivariogram function
(Equation (3)), which calculates half of the mean squared differences between two values (z(xi )
and z(xi +h)) separated by a vector h [34, 35].

γ(h) = 1

2N (h)

N (h)∑
i=1

[z(xi )− z(xi +h)]2. (3)

The calculation of the semivariogram for several classes of the distances h provides a quan-
tification of the spatial continuity along the direction under examination. Comparing the semi-
variogram values and corresponding distances yields an experimental semivariogram (Figure 1),
demonstrating a steadily increasing trend that denotes a decrease in continuity with increasing
separation distance between pairs of sample data [36].

For use in the estimation or simulation processes, it is necessary to fit the experimental semi-
variogram with theoretical functions, once the calculated semivariogram is a discrete function
with no semivariance values between two successive distance classes. Spherical, exponential,
and Gaussian mathematical models (Figure 2a) are commonly employed to fit the computed
semivariogram [36].

A typical semivariogram model has three parameters (Figure 2b) that define its shape: Nugget
Effect, Range, and Sill. The Nugget Effect represents a discontinuity at the origin of the semi-
variogram and indicates spatial variability occurring at a significantly smaller scale than the
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Figure 2. Some theoretical models for semivariogram fitting (a) and semivariogram model
with its properties (b).

data spacing. The Range refers to the distance beyond which no spatial correlation exists be-
tween sample pairs, while the Sill corresponds to the data variance along the vector’s h direc-
tion [37].

The semivariogram model derived from fitting is utilized in various geostatistical-based esti-
mation and simulation techniques, such as the SGS method.

2.3. Sequential Gaussian simulation

The SGS is a stochastic simulation method characterized to have a sequential nature, once the
simulation of a given point in the space is based on the sampled and previously simulated values
within the search neighborhood [35, 36].

The original random function (RF), which comprises a vector of the sampled values at the an-
alyzed domain, is transformed into a standard normal distribution before the implementation
of the SGS algorithm [33]. The use of another distribution, despite honoring the mean, vari-
ance, and semivariograms (for fundamental concepts, refer to Armstrong [38], Isaaks and Srivas-
tava [39], and Journel and Huijbregts [34]), results in the incorrect global distribution of simulated
values, which is not a problem in a Gaussian space [37].

The generation of a simulated value Y ∗
SGS(u) at a given node u is done initially by estimating

a value Y ∗
SK(u) by simple kriging (SK) method (Equation (4)) using the sampled and previously

simulated data at the uβ locations, which have, each one, a weight resulted from the solution of
the SK system [37, 40]. Once the Gaussian mean (m) is zero, the second term of the Equation (4)
is zero, keeping only the first one.

Y ∗
SK =

n∑
β=1

λβY (uβ)+m

(
1−

n∑
β=1

λβ

)
. (4)

From SK it’s obtained an estimated value Y ∗
SK(u) at a given node u and its associated kriging

variance (σ2
SK(u)), that are used for selecting a random residual (R(u)) from the Monte Carlo

simulation that yields a normal distribution with null mean and variance equal to the SK variance.
The residual is then, added to the SK estimate (Equation (5)), resulting in the simulated value
[33, 37, 41].

Y ∗
SGS(u) = Y ∗

SK(u)+R(u). (5)
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Figure 3. Maps depicting the positions of sensors under regular grid conditions (first row)
and non-regular grid conditions (second row). The red circle designates the location of the
actual damage.

The simulated value is added to the conditioning data to ensure that the covariance between
all of the simulated values is reproduced, thus, providing reproducibility of the input statistical
distribution and the covariance models, unlike the Kriging results, which is smoothed [42].

This process is repeated along the domain randomly to avoid artifacts, and each node is
visited only once, preserving those in the sampled locations [41], resulting in conditional-to-data
simulations. Once a different seed is used for each realization, providing different simulation
paths, it results in equiprobable scenarios, which can be used for spatial uncertainty analysis.

3. Materials and methods

The spatial uncertainty of damage metric values was initially evaluated using four regular grids,
whose data sets were obtained from Gonçalves et al. [14]. In this context, it was considered the
following spacings between sensors in the regular grids: (1) 9.09 cm × 9.09 cm (10 × 10 PZTs);
(2) 11.11 cm × 11.11 cm (8 × 8 PZTs); (3) 14.29 cm × 14.29 cm (6 × 6 PZTs), and; (4) 20.00 cm ×
20.00 cm (4 × 4 PZTs), all of them showed in Figure 3.

Based on the primary regular grids, the results derived from the SGS approach were also
analyzed under non-regular grid conditions. In each sensor grid scenario, 10.0% of the total
information was randomly removed, resulting in areas within the grid with no recorded data,
as shown in Figure 3.

In all scenarios of sensor spacing, the damage of the same severity was simulated in the center
of the square aluminum plate of 100 cm × 100 cm dimensions. In these cases, simulated damage
was done by adding mass corresponding to an M6 nut (3.1 g) glued to the center of the plate. The
procedures and tools used were consistent across all conditions and are detailed below, with the
corresponding flowchart shown in Figure 4.

Once the SGS algorithm need the data to be transformed into a Gaussian distribution, the
original input data was first transformed to a standard Gaussian distribution, which was done by
using the nscore module of the Pygeostat package for Python [43]. The Gaussian transformed
data was submitted to structural analysis by semivariograms with the aim of identifying the
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Figure 4. Flowchart of the executed steps.

preferential directions of continuity. The calculation and theoretical fitting of the semivariograms
were done using the GeostatsPy Python Package [44].

The resulting semivariogram fitting was the basis for generating the equiprobable realiza-
tions by SGS, executed in the sgsim algorithm adapted to Python language in the Pygeostat
package [43]. The generated realizations were conditional, as the simulated values at the nodes
with input data were equal to these, to reproduce the variable’s spatial continuity more properly.

The parameters used in the sgsim algorithm were the following: (1) file with data; (2) number
of the columns containing the X and Y coordinates and the variable to be simulated; (3) range of
the data to be considered in the simulations; (4) the lower and upper limits of the Gaussian dis-
tribution obtained by the nscore process; (5) random seed; (6) parameters of the grid-like model
used to store the realizations; (7) number of realizations to be generated; (8) the minimum and
maximum sample data and simulated nodes employed in each simulation; (9) semivariogram
fitting outcomes; (10) search ellipsoid parameters, and; (11) type of kriging to be used.

The input file comprised X and Y coordinates of each PZT patch in the first and second
columns, respectively, and normal score-transformed RMSD values in the last column. The
utilized format adhered to GeoEAS standards, as required by the sgsim process.

For the simulations, all the normal score-transformed RMSD values were considered to fully
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Figure 5. Calculated Jensen–Shannon values and theoretical fitting for the 9.09 cm ×
9.09 cm (a), 11.11 cm × 11.11 cm (b), 14.29 cm × 14.29 cm (c), and 20.00 cm × 20.00 cm (d)
sensor spacing grids.

map the entire structure instead of focusing on specific values.
The random seed is the first value initializing the simulations and corresponds to a large

odd integer. To ensure unbiased results, a seed was chosen from a random process for each
simulation.

To store the realizations, a model consisting of unit cells with dimensions of 4.00 cm × 4.00 cm
was utilized, resulting in a resolution of 4.00 cm. The dimensions of the specified cell were chosen
due to the following: (1) being smaller than all semivariogram ranges; (2) being a multiple of the
plate’s size, contributing to aligning the model with the plate’s dimensions, and (3) being smaller
than the sensor spacing in all scenarios evaluated.

The number of cells in each direction was determined by dividing the plate size along the
given axis by the corresponding unit cell dimension, resulting in a grid-like model with the same
dimensions as the monitored structure.

The number of realizations adopted was 91. This value was the highest number of realizations
among all sensor grid scenarios at which the variance of the RMSD values stabilizes. The stabi-
lization criteria were the value of 0.005 of the Jensen–Shannon distance calculated between the
variance’s statistical distribution of two sequential numbers of realizations. Figure 5 shows the
Jensen–Shannon calculated values and their respective theoretical fitting; the latter determines
the realization number at which the variance stabilizes.

The minimum and maximum sample data for the simulations were set as 1 and 6, respectively.
This selection ensures that the search neighborhood includes at least one PZT patch for node
simulation and no more than 6 PZT patches to reduce the impact of distant data that may affect
the local estimation. In addition, the number of simulated nodes used for a given node was set to
5 to further reduce the influence of distant data on the local estimation. The chosen values were
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utilized to simulate all scenarios to provide a comparative analysis.
Once the semivariogram is a quantitative description of the spatial continuity of the variable

being simulated, the dimensions and orientations of the search ellipsoid were set equal to the
corresponding range and directions of the semivariograms.

As stated in the section outlining the SGS methodology, the SK method was the fundamental
estimator in all simulations.

The realizations obtained for all scenarios had Gaussian distribution, reproducing the his-
togram and spatial continuity of the respective input data. Once each cell in the model had a
standard normal distribution of simulated RMSD values, it was calculated the lower limit of the
confidence interval (CI) for a significance level of 5.0%, which was converted to original values
through the Pygeostat package’s backtr process [43].

The lower limit of the CI was used to ensure that the lowest possible values for the mean, for
the considered significance level, would be used in the later steps.

To visualize only the region of the damage location, a threshold equal to the 95th percentile
was selected, as seen in Soman et al. [15]. In this way, each scenario had its specific threshold,
according to the RMSD sample data. From the selected threshold, binary variables were created
for the values of the confidence interval’s lower limit, according to Equation (6) so that the ones
indicate RMSD values higher than the specified threshold.

I95(x) =
{

1, if RMSD(x) > t95

0, otherwise.
(6)

In the Equation (6), I95(x) corresponds to the indicator variable at a location x; RMSD(x), the
lower limit for the RMSD values at a location x, and; t95, the specified threshold. The resulting
maps were used to analyze the ability of the approach to delineate the damage’s position in each
scenario.

Based on the indicator maps, which delineate the regions of possible damage occurrence, the
centroids of the areas with I95(x) equal to 1 were calculated, estimating the damage position. For
this purpose, the spatial coordinates of the binary values were obtained by means of the Pygeostat
package’s addcoord module [43], once these had no coordinate attributed to them. The centroids
obtained were compared to the actual damage position in each scenario of sensor spacing using
the Euclidean distance as the parameter.

In all scenarios, the RMSD spatial uncertainty U (x) at each location x was calculated as
the standard error (Equation (7)) of the 91 simulated values in each cell’s model since each
cell contains a statistical distribution of RMSD indexes. For its calculation (Equation (7)), the
standard deviation s(x) was previously defined at each location x, considering the number of
realizations (n).

U (x) = s(x)p
n

. (7)

The nature of the standard error, as this parameter provides a normalized value associated
with data variability, allows the mapping of areas with high variability, which provides several
possibilities in the design of sensor grids.

4. Results and discussions

The maps in Figure 6, which depict the confidence interval’s lower limit of the simulated RMSD
values, show a gradual change in values from high values near the center of the plate to low ones
at the borders, away from the damage, under both regular and non-regular grid conditions. As
the spacing between sensors increases, the RMSD values become smaller, which is expected.
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Figure 6. Maps showing the lower confidence interval limit of simulated RMSD values by
SGS under regular (first row) and non-regular (second row) grid conditions. A red circle
indicates the location of the actual damage.

Additionally, the area with relatively high index values increases, as seen in the scenario with a
spacing of 20.00 cm × 20.00 cm.

The resulting maps indicate that the random removal of PZT patches resulted in noticeable
changes in scenarios with fewer samples (14.29 cm × 14.29 cm and 20.00 cm × 20.00 cm).
However, PZT patch removal had a smaller impact in scenarios with more data, which was
anticipated due to the higher information available.

However, in all scenarios, it is possible to identify the presence of damage near the plate’s
center, as the highest values of RMSD are in this region, which makes the proposed approach
capable of mapping the area with the occurrence of damage, even in the scenario with a little
amount of information (4 × 4 PZT patches).

The results obtained with the SGS method (Figure 6) represent the sample data spatially,
meaning that regions with low sample values had lower simulated values and vice versa. This
behavior has been observed in other works that have employed SGS [45–50], where the simulated
values follow the spatial variability of the sample values.

The variation of simulated RMSD values along the plate based on the spatial distribution
of sample data supports the potential use of the method in other scenarios, including those
where damage is located at the border of the plate. In this regard, Gonçalves, Moura Junior and
Pereira [13] utilized Ordinary Kriging (OK), an alternative geostatistical approach, to interpolate
RMSD values on a square plate with border damage, resulting in favorable outcomes.

In spite of this fact, this topic is outside the scope of this study, which intends to introduce
potential applications of the SGS method in developing sensor grids for SHM. Subsequent
research studies could examine supplementary damage scenarios, encompassing multi-damage
situations, to evaluate the efficacy of the SGS method in detecting structural damage.

Figure 7 displays the lower limit values higher than the 95th percentile as green areas. The
binary values were calculated utilizing Equation (6) to delineate regions of damage occurrence.
According to the first two scenarios (10 × 10 and 8 × 8 PZT patches) under regular and non-
regular grid conditions, the green area encompasses the center of the plate, allowing the damage
location to be confidently delineated.

In contrast, the green area predominantly covers the center of the plate in the regular grid
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Figure 7. Maps showing binary variables associated with the threshold applied to the lower
limit of confidence intervals for simulated RMSD data for the regular (first row) and non-
regular (second row) data sets. The location of the actual damage is marked with a red
circle.

condition with 6 × 6 PZT patches, whereas the non-regular grid condition does not include the
plate’s center. For the 4 × 4 PZT patches scenario with a regular grid, the green area does not
cover the plate’s center, and the non-regular grid condition fails to highlight an estimation of the
damage location.

Also, Figure 7 indicates that the predicted area of damage shifts away from the center of the
plate as the spacing between the PZT patches increases, which can also be seen in Figure 8, where
the damage’s estimated location (purple circles), referred to as the centroids of the green areas in
Figure 7, becomes more distant from the plate’s center (red circles) as the sensor spacing widens.

Additionally, while it may be challenging to compare non-uniform conditions once samples
were removed randomly in each scenario, Figure 8 reveals a general trend of increased deviation
between predicted and actual locations as sensor spacing increased.

Also, the findings indicate that, typically, the distances from the actual damage location tended
to increase within the same spacing when eliminating PZT patches, and the damage location
could not be estimated for the 4 × 4 PZT patches scenario with non-regular grid conditions.

The findings above are detailed in Figure 9a, which displays the Euclidean distance between
the estimated and actual damage locations. As per the outcomes, the highest distance from the
actual damage, within the regular grid condition, was 14.14 cm, attributed to the 20 cm × 20 cm
sensor spacing, which represents an increase of 1350% about the lowest one (0.98 cm), attributed
to the 9.09 cm × 0.09 cm spacing.

Figure 9a indicates a general distance increase as the sensor spacing widens in the non-regular
grid condition. There is also an increase in distance within the same spacing category about the
regular grid status. This effectively summarizes the findings drawn from the maps mentioned
previously (Figures 7 and 8).

The 9.09 cm × 9.09 cm spacing scenario was an exception to this overall behavior. In this one,
removing samples reduced the distance from the actual damage, with a 15.6% reduction being
detected. It is possible that the random removal of some specific samples contributed to this
slight improvement in results, as the SGS method relies on the special continuity among sampled
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Figure 8. Maps showing the actual location of the damage (red circle) and the estimated
location (purple circle) calculated using the corresponding centroids on both uniform grid
(first row) and non-uniform grid (second row) conditions.

Figure 9. Distance between the estimated and actual damage positions (a) and percentage
of the distance between estimated and actual positions about each plate’s dimension for
both regular grid (b) and non-regular grid (c) conditions.
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Figure 10. Boxplots of the standard error for each sensor spacing and grid type.

points to provide the estimations.
Furthermore, the scenario that exhibited the most significant increase in distance after re-

moving samples was the 14.29 cm × 14.29 cm spacing, whereby the distance was augmented
by 27.7%. This suggests that scenarios with fewer samples could be more sensitive to reduced
available information. However, new research is needed to investigate this issue.

Despite the highest distance between the estimated and real damage’s location being relatively
high in value (14.14 cm), the decomposition of the distances along X and Y directions reveals that
even in the scenario with the most increased sensor spacing in the regular grid condition, the
distance along X and Y represents only 10.0% of the respective plate’s dimensions (Figure 9b).

Considering the non-regular grid status (Figure 9c), the deviation from the plate’s dimensions
in both directions was similar to that obtained with a regular grid configuration. However,
determining the damage location for a 20.00 cm × 20.00 cm spacing with a non-regular grid was
not feasible.

The results demonstrate that utilizing a consistent layout of sensors allows for reasonable
estimation of the damage location, even when operating with the maximum spacing scenario
considered (20.00 cm × 20.00 cm spacing). Conversely, non-regular grid arrangements face
limitations when processing sparse data. Nonetheless, after randomly eliminating PZT patch
data, further research is required to explore these issues in greater detail.

The absence of an estimation regarding the location of damage in the 4 × 4 PZT patches
with a non-uniform grid, using the lower bound of the confidence interval, can be ascribed to
an extended range of confidence intervals. This extension may have been caused by removing
samples that elevated variance among realizations.

The increasing trend in variance among realizations as the spacing between sensors increases
and samples are removed can be seen in Figure 10, which depicts the statistical distributions of
the standard error among realizations.

Once the variance, and then the standard deviation, is related to the standard error using
Equation (7), these are correlated so that the variance has the same behavior as the standard
error.

Considering the regular grid condition, the findings show that the standard error parameter
increases as the sensor spacing widens. In the scenario with the smallest spacing (9.09 cm ×
9.09 cm), the mean and maximum standard error values are 0.0275 and 0.0792, respectively.
As the sensor spacing increases from 9.09 cm × 9.09 cm to 11.11 cm × 11.11 cm, there is a
38.4% increase in the mean and a 52.9% increase in the maximum value. The differences in



Paulo Elias Carneiro Pereira et al. 33

Figure 11. Boxplots of the absolute difference in the standard error between the regular
and non-regular grid conditions.

mean and maximum values are even greater when compared to the 14.29 cm × 14.29 cm sensor
spacing, with mean and maximum values being 198.7% and 77.2% higher than the respective
ones in the 9.09 cm × 9.09 cm spacing. In the highest spacing scenario (20.00 cm × 20.00 cm),
the minimum standard error value was not zero, and lower values were classified as outliers,
unlike other scenarios.

Figure 10 shows that removing samples increased the uncertainty parameters for each cate-
gory of sensor spacing. However, since the sample removal was random in each scenario, com-
paring consecutive sensor spacing scenarios is difficult. Despite this limitation, there is an overall
increasing trend as the sensor spacing widens, as observed in the regular grid condition.

When comparing the average uncertainty parameter between the non-regular and regular grid
states, it is evident that the 11.11 cm × 11.11 cm spacing scenario was most affected by the sample
removal, as the average standard error increased by 91.9%. Since the samples were removed
randomly, removing a particular group of samples could have caused this behavior. In the other
scenarios, the average uncertainty increased by a similar magnitude.

The absolute difference in the standard error results between the irregular and regular grid
conditions (Figure 11) shows that the highest differences were also attributed to the 11.11 cm ×
11.11 cm spacing, whereas the 9.09 cm × 9.09 cm spacing was the less affected scenario, likely
due to the higher available information in the 9.09 cm × 9.09 cm sensor spacing.

Once samples have been removed randomly, it becomes difficult to compare different spacing
scenarios. However, a preliminary analysis indicates that removing samples generally does not
significantly affect conditions with a higher number of sensors. However, reducing the number
of sensors has a more significant impact on systems with limited information. This aspect must
be investigated in detail in future research.

The mapping of the spatial distribution of the absolute difference between the standard errors
of the non-regular and regular grid conditions (Figure 12) shows an overall increase in the uncer-
tainty parameter near the sites where the samples were previously located. This suggests that re-
moving PZT patches increases the spatial uncertainty of the damage index values in their vicinity.

The uncertainty map in Figure 13 displays an increase in parameter uncertainty for the regular
grid condition as the sensor spacing widens, resulting in the greatest standard error values in the
scenario with a 20.00 cm × 20.00 cm spacing. Additionally, removing samples within the same
spacing category increased the uncertainty, as discussed previously.

Figure 13 also highlights ring-shaped areas with higher uncertainty values for a given sensor
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Figure 12. Maps showing the absolute difference in standard error before and after sample
removal across the plate. A red circle indicates the location of the damage, while the gray
circles represent the positions of the PZT patches.

Figure 13. Maps showing the standard error results for both regular (first row) and non-
regular (second row) data sets. The location of the actual damage is marked with a red
circle.

spacing, indicating a high spatial variation of RMSD indexes in those regions. This may suggest a
transition zone from low to high RMSD values. Conversely, low uncertainty values in certain areas
suggest low spatial variability of the damage metric, indicating stable RMSD data in those regions.

The behavior described above is most evident when using a 9.09 cm × 9.09 cm and a 11.11 cm
× 11.11 cm sensor spacings. Standard error values are also low near the edges of the plate, where
damage metric values are uniformly low (as shown in Figure 3). However, as the RMSD values
gradually increase from the edges to the center of the plate, spatial variability in the damage
metric values becomes more pronounced, leading to higher standard error results.

According to the findings, the uncertainty maps help identify areas with high spatial variability
in the damage indexes. Based on the spatial uncertainty results, it may be inferred that there is a
lack of sensor information in these regions, making it challenging to locate damage accurately.

Alternatively, the spatial uncertainty results may be used to quantify the level of uncertainty
associated with a sensor grid. Therefore, the results obtained from the SGS approach can be a
valuable tool for designing sensor grids that consider uncertainty.
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5. Conclusions

This study discusses the effectiveness of the SGS method in identifying damaged positions within
an aluminum plate. The investigation involved analyzing four regular sensor grids with varying
sensor spacings. Additionally, the effect of sample removal was investigated for each scenario of
sensor spacing by randomly removing samples.

The results indicate that the method demonstrated proficiency in estimating damage loca-
tions for the regular grid condition, with the minimum and maximum distances between esti-
mated and actual damage being recorded at 0.98 cm and 14.14 cm, respectively. These measure-
ments correspond to the narrowest and widest sensor grids examined in the study.

Removing samples increases the deviations from the actual damage location in each scenario.
Additionally, under the non-regular grid conditions, predicting the damage location in the
20.00 cm × 20.00 cm spacing scenario was impossible using the lower limit of the confidence
interval approach.

This absence of damage prediction for the non-regular-based 20.00 cm × 20.00 cm sensor
spacing may be due to increased variance among realizations. This was confirmed by analyzing
the standard error distribution in each condition, which showed an overall increase with sample
removal for the same spacing class. Also, this increasing trend was most evident near the position
of the removed samples.

Additionally, the mapping of the standard error shows an overall increase in uncertainty as
the sensor spacing widens. This provides insight into the reliability of a sensor grid quantitatively.

Using the SGS method to map the spatial uncertainty of the damage index along the structure
provides valuable information for designing sensor grids that consider this parameter. This
information can be used to identify areas that require careful treatment, offering new insights
into the design of sensor grids.

The SGS method applied to the ISHM can provide several possibilities. Future research can be
focused on (1) determining an optimal sensor arrangement based on uncertainty information,
(2) investigating the capacity of the method to predict multiple damage positions, and (3) evalu-
ating the industrial application of the proposed approach.
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