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Abstract. In recent years, substantial investments in structural construction underscore the paramount im-
portance of ensuring structural integrity for safety and dependability. Structural Health Monitoring (SHM)
has emerged as a pivotal tool for assessing structural health, with an emphasis on damage detection, localisa-
tion, and quantification, particularly through vibration-based methods that exploit variations in modal prop-
erties as precursors to structural damage. This study presents an innovative methodology that synergistically
combines Proper Orthogonal Decomposition and Radial Basis Function interpolation for predicting struc-
tural responses based on crack parameters. Additionally, the YUKI algorithm, leveraging population cluster-
ing for optimisation, is introduced. The approach is rigorously assessed through experimental analysis of two
distinct beams (Beam I and Beam II) exhibiting varying crack depths. The results demonstrate the effective-
ness of the POD-RBF-YUKI approach, indicating a notable level of accuracy and consistency. Comparative
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evaluations with conventional optimisation algorithms, namely Cuckoo, Bat, and Particle Swarm Optimisa-
tion, reveal similar Mean Percentage Error values but with increased result variability, whereas Deep Artificial
Neural Network models with varied hidden layer sizes.

Résumé. Ces dernières années, des investissements substantiels dans la construction structurelle ont mis en
évidence l’importance primordiale de l’intégrité structurelle pour la sécurité et la fiabilité. La surveillance
de la santé des structures (SHM) est devenue un outil essentiel pour évaluer la santé des structures, en
mettant l’accent sur la détection, la localisation et la quantification des dommages, en particulier grâce à
des méthodes basées sur les vibrations qui exploitent les variations des propriétés modales en tant que
précurseurs des dommages structurels. Cette étude présente une méthodologie innovante qui combine
de manière synergique la décomposition orthogonale appropriée (POD) et l’interpolation de la fonction
de base radiale (RBF) pour prédire les réponses structurelles basées sur les paramètres des fissures. En
outre, l’algorithme YUKI, qui tire parti du regroupement de populations pour l’optimisation, est présenté.
L’approche est rigoureusement évaluée par l’analyse expérimentale de deux poutres distinctes (poutre I et
poutre II) présentant différentes profondeurs de fissures. Les résultats démontrent l’efficacité de l’approche
POD-RBF-YUKI, indiquant un niveau notable de précision et de cohérence. Les évaluations comparatives
avec les algorithmes d’optimisation conventionnels, à savoir Cuckoo, Bat et Particle Swarm Optimisation,
révèlent des valeurs d’erreur moyenne similaires mais avec une variabilité accrue des résultats, tandis que les
modèles de réseaux neuronaux artificiels profonds (ANN) avec des tailles de couches cachées variées.

Keywords. Crack identification, Model reduction, Experimental modal analysis, Inverse analysis, YUKI algo-
rithm.

Mots-clés. Identification des fissures, Réduction du modèle, Analyse modale expérimentale, Analyse inverse,
Algorithme YUKI.
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1. Introduction

In recent years, substantial budgets have been invested in developing and building structures
in different areas, including the oil and gas industry, as well as civil and aerospace engineering.
Therefore, ensuring the integrity of these structures during their predicted life span is crucial for
safe and reliable performance. In the last decade, a great deal of attention has been directed
toward preventing sudden structural failure, which can lead to extensive casualties and property
damage. Structural Health Monitoring (SHM) has emerged as a powerful tool for assessing and
monitoring structural health in this context. This technique, which considers damage detection
a crucial concern, involves four main stages: damage detection, damage localisation, damage
quantification, and damage extent [1]. However, in the literature, the first three stages receive the
most attention in the assessment of structural integrity [2].

There has been a considerable and continuously growing body of research dedicated to the ex-
amination of Structural Health Monitoring systems, where numerous formulations and methods
have been proposed [3–8]. In this vein, Nondestructive evaluation (NDE) is one of the most fre-
quently stated problems in the SHM [9–11]. Vibration-based structural integrity approaches have
gained new prominence as they offer an efficient tool in practical applications [12–14]. This con-
cept is grounded in the principle that alterations in physical characteristics can lead to variations
in modal properties, encompassing mode shapes, frequencies, and modal damping. These vari-
ations can function as indicators for evaluating the structural integrity [15, 16]. Vibration-centric
methodologies can be expressed within either the temporal or frequency realms. Nevertheless,
it has been observed that the stability of frequency domain characteristics surpasses that of the
temporal and time-frequency domains [15].

A pioneering study by Adams et al. [17] used vibration measurements to evaluate the defect’s
location and magnitude. Numerous papers have since summarised and reviewed early vibration-
based damage detection techniques [2, 6, 18, 19]. Similarly, based on modal parameters, Fan and
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Qiao reviewed and compared different damage identification algorithms for plate and beam-type
structures [16]. Essentially, their research covered four primary categories, which included inves-
tigations into curvature mode shape, natural frequency, mode shape, and mode shape-frequency
techniques. As an alternative to natural frequencies, the measured amplitudes of Frequency Re-
sponse Functions (FRFs) are often used to identify damage. The FRF-based damage detection
method provides enhanced insight into structural response dynamics by focusing on a restricted
set of modal data within precise frequency bands proximate to resonance frequencies [20]. Fur-
thermore, recent academic review articles, have been written to address the theoretical aspect of
this research domain [15, 21].

Machine Learning (ML) algorithms are fast becoming a key instrument in engineering appli-
cations due to the huge development in computational capabilities and data availability. These
techniques enable computers to solve complex problems based on examples and experience pro-
vided through data input [22]. In the field of structural engineering, ML methods have found
applications in various domains. Nonetheless, research in ML within this domain is typically
categorized into the following areas: Structural Health Monitoring, identification of structural
systems, control of structural vibrations, structural design, and predictive applications [23–25].
Vibration-based damage detection methods based on ML techniques can be either parametric
or non-parametric [26].

Artificial Neural Networks (ANNs), being efficient pattern recognition tools, have been em-
ployed by many researchers to determine damage location and severity [27]. Lee et al. [28] in-
troduced a damage detection approach that integrates artificial neural networks (AN) while con-
sidering the modelling error within the initial finite element model utilised for training pattern
generation. This method relies on a back-propagation neural network for its implementation.
Mehrjoo et al. [29] introduced an approach to assessing the severity of damage in truss bridge
joints. Furthermore, Avci Onur et al. [26] Offered an extensive examination of the recently intro-
duced methods in machine learning and deep learning applied to structural health monitoring
through vibration analysis.

Tran-Ngoc et al. [9] introduced an innovative machine-learning methodology that draws in-
spiration from the evolutionary algorithm known as Cuckoo Search (CS). This approach effec-
tively addresses the challenge of local minima in ML. In the training phase, their algorithm oper-
ates concurrently with ML techniques. Given that local minima can detrimentally impact the pre-
cision of ML models, numerous research endeavours have been dedicated to surmounting this
particular constraint. Khatir et al. [30] demonstrated a solution to this issue by utilising a combi-
nation of Particle Swarm Optimisation (PSO) and Teaching Learning Based Optimisation (TLBO)
in order to determine the initial training parameters for the ANN. Working along similar lines,
Tran-Ngoc et al. [31] applied the CS algorithm to determine the most suitable initial step. Their
findings demonstrated improved accuracy in comparison to traditional machine learning tech-
niques. In the research conducted by Zenzen et al. [32] they employed FRF data in conjunction
with genetic and bat algorithms to assess the detection and assessment of damage in both beam-
like and truss structures. Additionally [33] investigated composite laminated beams and plates,
utilising a damage assessment approach centred around transmissibility and mode shape.

Model order eduction methods such as proper orthogonal decomposition (POD), have pin-
pointed dependable and efficient strategies for damage identification [34]. The POD technique
is exploited for processing substantial volumes of high-dimensional data, facilitating computa-
tional analysis to anticipate the future dynamics of the system [35]. Shane and Ratneshwar [36]
introduced a novel algorithm rooted in POD, incorporating proper orthogonal modes (POM) as
dynamical invariants. This comprehensive approach has been specifically applied to composite
beams, underscoring the algorithm’s potential and relevance in damage detection across diverse
scenarios. In their groundbreaking work, Eftekhar et al. [37] proposed an innovative supervised
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learning method that integrates artificial neural networks and POD. This approach was designed
to differentiate alterations in proper orthogonal modes attributed to structural damage while iso-
lating them from variations induced by varying applied load conditions. The efficacy of this pro-
posed methodology was demonstrated through a series of simulated experiments. In a note-
worthy study, Khatir et al. [38] integrated the radial basis functions with their method, referred
to as POD-RBF, to identify the positions, dimensions, and depths of cracks in composite struc-
tures made of carbon fibre-reinforced polymer (CFRP). Their results underscore the efficacy of
the POD-RBF technique in combination with the Cuckoo search algorithm. Subsequent research
efforts have also delved into this specific domain [39–42].

1.1. POD-based radial basis functions

Proper orthogonal decomposition (POD) is a powerful technique for dimensionality reduction,
widely employed in various data analysis fields. Its fundamental principle lies in capturing the
most essential patterns or structures within high-dimensional datasets, thereby enabling a more
efficient representation while preserving critical information.

The system represents different points data snapshots, organised into a data matrix U . Each
column of this matrix represents an individual snapshot, while each row corresponds to a distinct
variable or data point. Where U is a n × s matrix, where n denotes the number of variables and s
signifies the number of collected snapshots.

To extract the underlying modes that constitute the predominant variability in the dataset, we
employ Singular Value Decomposition on the centred data of U matrix. The singular values in Σ
are ordered in descending fashion, representing the significance of the modes. By selecting the
first few singular vectors (modes) associated with the largest singular values, the primary patterns
within the data are captured. These modes encapsulate the essential information for subsequent
reduction. Radial basis functions (RBFs) are a type of mathematical function used in this study
for multivariable interpolation for they are particularly advantageous with scattered data points.
RBFs are centred around a set of control points, and their values at any given point in space are
determined by their distance from these centre points [39].

In this research, the analysis utilises a combination of the POD approach and the RBF inter-
polation methodology to deduce the structural reaction in the framework of an inverse problem.
The description of the structural response relies on empirical information contained within the
U matrix.

U =


u1

1 u2
1

u1
2 u2

2

· · ·
uS

1

uS
2

...
...

. . .
...

u1
N u2

N · · · uS
N

 (1)

In this context, the dataset denoted as U comprises a collection of N snapshots, each charac-
terised by a snapshot vector of size S. The primary focus of this research is to analyse the di-
mensions of the structural response dataset. Additionally, matrix P is employed to store infor-
mation pertaining to crack parameters. Following this, a set of orthogonal vectors denoted as
Φ is extracted. These vectors serve as the basis for projecting the measurement data matrix U ,
ultimately yielding the amplitude matrix A:

A =ΦT ·U (2)

The matrix denoted as A offers an estimation of the structural response data. It’s worth mention-
ing that Φ is determined via the POD process, which encompasses the derivation of eigenvec-
tors from the covariance matrix C = U ·U T using singular value decomposition. Subsequently,
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a dimensionality reduction step is performed to decrease the basis vectors within Φ, resulting
in a lower-rank variant Φ̂ obtained by retaining only the initial k (where k ≪ S) columns associ-
ated with the largest eigenvalues. As a result, a modified amplitude matrix, referred to as Â, is
introduced as follows:

Â = Φ̂T ·U (3)

In the following stages, we create a connection between structural response information and
crack characteristics using Radial Basis Function interpolation. This process entails the utilisa-
tion of coefficient matrix B and interpolation matrix G to define Â as the product of B and G . G
is determined to be non-singular, the expression can be formulated as follows:

B = Â ·G−1 (4)

where G(S) in this study, consider the normalised paramters values, and represent the RBF
distances of each sample point from all the other points. M is the number of sample points.

G =



g1(∥p1 −p1∥) · · · g1(∥p j −p1∥) . . . g1(∥pM −p1∥)
...

...
...

g1(∥p1 −p i∥) · · · g1(∥p j −p i∥) · · · g1(∥pM −p i∥)
...

...
...

g1(∥p1 −pM∥) · · · g1(∥p j −pM∥) · · · g1(∥pM −pM∥)


(5)

In this context, we evaluate the function, g i (p) for every parameter within the matrix G . Each
parameter, denoted as pi , corresponds to U i (where i ranges from 1 to N ). The magnitude of
the difference |p − pi | signifies the input argument for the i th Radial Basis Function, where p
represents the current parameters, and p i denotes the reference parameters. Following this,
once the coefficient matrix B has been computed, we introduce a reduced-dimensional model
in vector format:

a(pnew) = B ·g(pnew) (6)

Using this method, an estimation of the structural reaction associated with novel crack char-
acteristics, denoted as pnew, is determined:

u(pnew) = Φ̂ ·a(pnew) (7)

Hence, the POD-RBF model can replicate unknown structural responses for various crack param-
eter sets p. A summary of the POD-RBF construction is depicted in Figure 1.

1.2. Problem formulation based on optimisation algorithms

1.2.1. The bat algorithm

The Bat Algorithm, a nature-inspired optimisation algorithm, derives its principles from the
echolocation behaviour observed in bats [43]. This algorithm emulates the hunting strategies
of bats, employing their echolocation capabilities for prey localisation. The Cuckoo Search
Algorithm, another nature-inspired optimisation algorithm, is grounded in the reproductive
conduct of cuckoo birds [44]. It replicates the parasitic tendencies of certain cuckoo species,
specifically those that deposit their eggs in the nests of other bird species. Within the algorithmic
framework, optimisation problem solutions are analogously represented as nests, and the egg-
laying strategy of cuckoos symbolises the exploration and exploitation of the search space.
The algorithm integrates random walk and Levy flight steps to update candidate solutions
iteratively, with the overarching goal of identifying optimal or near-optimal solutions for diverse
optimization problems.
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Figure 1. POD-RBF algorithm.

1.2.2. Particle swarm optimisation (PSO)

Particle Swarm Optimisation (PSO), a computational optimization technique, takes inspira-
tion from the social behaviour observed in animal flocks [45]. It involves a population of par-
ticles navigating through a defined search space, adjusting their positions based on both indi-
vidual and collective experiences to ascertain optimal solutions for a given problem. Commu-
nication and information sharing among particles facilitate the guidance of the search towards
regions within the solution space where more favourable solutions are anticipated.

1.2.3. YUKI algorithm

This algorithm introduces an innovative approach to population clustering, resulting in the
formation of two distinct clusters. One cluster is dedicated to extensive exploration, while the
other focuses on the exploration of the best regions so far. YUKI algorithm guides this strategy
by setting a consistent ratio across iterations, determined by a user-defined parameter termed
the exploration rate (EXP), ranging from 0 to 1. The EXP parameter dictates the proportion of the
population dedicated to exploration [40].

The algorithm establishes a local search area centred around the current optimal solution,
referred to as Xbest. The size of this area is determined by the distance between this solution and
the MeanBest point, which serves as the centroid of the cluster containing optimal points. The
algorithm calculates the local boundaries, denoted as LT and LB , using the following equations:

D = Xbest −XMeanBest (8)

LT = Xbest +D (9)

LB = Xbest −D (10)
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The exploration approach promotes diversification in the search for a solution by expanding
beyond the confines of the local search region. This approach is mathematically represented as
follows: In this equation, X i

loc represents the local solution chosen for exploration, while X i
best

refers to the optimal historical position associated with this specific location.

E i = X i
loc −X i

best (11)

The value denoted as E i plays a crucial role in defining the extent of the exploration range
applicable to the specific point under consideration. To derive fresh solutions, we employ the
subsequent equation:

X i
new = X i

loc +E i (12)

The method guides other solutions to explore the vicinity of the search centre by employing the
subsequent equation. In this equation, F i represents the distance from the chosen local point to
the optimal solution, and “rand” is a random value ranging from 0 to 1, which is applied uniformly
across all design variables.

F i = X i
loc −X best (13)

X i
new = X i

loc + rand×F i (14)

The algorithm pseudocode is written as follows:

Load search parameters
Initialize population X

Evaluate fitness
Calculate X_MeanBest and X_best
for K = 1 to K_max
Calculate local boundaries
Generate random local population

If rand < EXP (EXP = 0.7)
Calculate exploration solutions
Else

Calculate focus solutions
End

Update X_MeanBest
Update X_best if better solutions found

End
Return X_best

1.2.4. Objective function

Natural frequencies are key parameters characterising the dynamic behaviour of structural
systems under external disturbances. These frequencies depend on various factors, including
material properties, geometric configurations, and boundary conditions specific to the beam
structure. In an intact state, a beam’s natural frequencies are determined by its structural
integrity. However, the presence of damage alters these frequencies due to changes in stiffness
and mass distribution within the beam.

Typically, damage leads to a reduction in stiffness and potential shifts in mass distribution,
resulting in observable changes in the beam’s natural frequencies. Modal analysis techniques are
commonly employed to detect these deviations, involving either experimental measurements or
computational simulations to identify the altered natural frequencies.

The utilisation of natural frequency changes for structural damage identification is a well-
established approach in structural health monitoring. By comparing measured or computed
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Figure 2. (a) Cutting saw, and (b) Experimental setup.

natural frequencies with those of an undamaged reference state, researchers can pinpoint the
location, extent, and severity of structural damage.

The change of natural frequency is used as an objective function as presented in the following
equation:

OF =∑n
i

[(
ωr

i −ωc
i

)2 /
(
ωr

i

)2
]

(15)

where, n is the number of modes, ωr
i are the frequencies calculated by the optimisation

algorithm–POD, and ωc
i are the measured frequencies.

2. Experimental analysis

The purpose of this study is to develop a novel approach that combines proper orthogonal
decomposition (POD) and radial basis function (RBF) interpolation for predicting structural
responses based on crack parameters while introducing the YUKI algorithm to optimise the
process and assess its accuracy in real-world crack length estimation as presented in Figure 2.

In this paper, two beams are considred to predict notch and double notch length based
on modal analysis. An excitation hammer (Impact PCB Hammer Type 086C03) with a force
sensor whose sensitivity is 2:5 mv, a PCB M352C66, Type ICP, sensitivity 96.9 mV/g accelerometer
composed of a mass, a data acquisition system and a PC were used. The notches created using
cutting saw as presented in Figure 2a and experimental setup is showed in Figure 2b.

In the initial investigation, a beam marked as “beam I” featuring paired notches were intro-
duced at the centre of the latter, encompassing 25 distinct depths. These notches ranged from
1 mm to 25 mm in extension length. Remarkably, a 1 mm deep crack was intentionally intro-
duced both at the upper and lower sections of the beam. Tabulation of the mechanical attributes
of the beam can be found in Table 1, while Figure 3 provides details regarding the frequencies
observed during the experimental analysis of both the unaltered and double-notched beam.

In the second instance, denoted as “beam II”, a series of 20 crack depths were intentionally
induced within the central section of the structure. These cracks were incrementally extended
from 2 mm to 32 mm, each step measuring 1 mm. The frequencies corresponding to each
mode shape resulting from these crack configurations have been compiled and can be found
in Figure 4. Additionally, the mechanical properties of beam II are detailed in Table 2.

3. Results and discussions

In this section, we proposed a comparison between the results using Bat algorithms, cuckoo
search and YUKI and the results found in [46], where the ANN is used to predict the damage
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Figure 3. Numerical frequencies of different crack depths (beam I).

Table 1. Dimensions and material characteristics of the beam I

Item Value
Length (mm) 800
Width (mm) 15
Height (mm) 50

Density (kg/m3) 7850
Poisson ratio (/) 0.3

Young modulus (GPa) 2.1×1011

Table 2. Dimensions and material characteristics of the beam II

Item Value
Length (mm) 1000
Width (mm) 10
Height (mm) 40

Density (kg/m3) 7850
Poisson ratio (/) 0.3

Young modulus (GPa) 2.1×1011

size in two beams (Beam I and Beam II) and using different hidden layer sizes (HLS), and the
results indicate that the best regression is achieved with HLS = 8 for Beam I and HLS = 10 for
Beam II. In their research, Seguini et al. used the frequencies as an input and the damage size as
an output. Tables 3 and 4 compare their results with results of the suggested approach for Beam I
and Beam II respectively.

Examination is made on the training points, Figure 5 shows the absolute Errors for Different
Methods (beam I). The discussion involves a thorough examination of errors in identifying cracks,
as presented in Figure 6. That includes two important measures: Mean Error and Standard
Deviation, which are used to evaluate the accuracy and consistency of various methods used for
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Figure 4. Numerical frequencies of different crack depths (beam II).

Table 3. Exact and estimated results using different optimisation methods (beam I)

Cases Actual
crack

length (mm)

Cuckoo Bat PSO YUKI ANN
NHLS = 8

[46]

ANN
NHLS = 10

[46]

ANN
NHLS = 12

[46]

1 4 3.8815 3.8815 3.8815 3.882 3.80911 3.614833 3.84674
2 10 9.4677 9.4677 9.4677 9.4781 9.54634 9.710795 9.66756
3 20 19.1019 19.1019 19.1019 19.1166 19.86071 19.53756 19.848808

Table 4. Exact and estimated results using different optimisation methods (beam II)

Cases Actual
crack

length (mm)

Cuckoo Bat PSO YUKI ANN
NHLS = 8

[46]

ANN
NHLS = 10

[46]

ANN
NHLS = 12

[46]

1 8 7.9389 7.9388 7.9388 7.9383 7.807456 8.18362 8.93587
2 15 15.2842 15.2840 15.2840 15.2848 15.32850 15.22022 15.47560
3 25 24.9308 24.9308 24.9308 24.9353 24.90070 25.19147 25.11821

crack identification. Mean Error represents the average difference between predicted and actual
values. In the context of crack identification, a lower Mean Error indicates better accuracy. On
the other hand, a lower Standard Deviation suggests more consistent and predictable results.

When examining the data presented in the table, several noteworthy observations can be
made. To begin with, three methods—Cuckoo, Bat, and PSO—display nearly identical Mean
Percentage Error and Standard Deviation values. Their Mean Percentage Error stands at ap-
proximately 4.26%, indicating an average crack identification accuracy slightly above 50%. How-
ever, their Standard Deviation is relatively high, at about 1.20, signifying significant variability
in individual results. The YUKI algorithm, on the other hand, demonstrates a slightly better
performance, with a Mean Percentage Error of 4.19, still falling within the 50% accuracy range.
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Figure 5. Absolute errors for different methods (beam I).

Figure 6. Mean error with standard deviations for different methods (beam I).

Its Standard Deviation is approximately 1.15, suggesting a moderate level of consistency in its
predictions.

Moving on to the Artificial Neural Network model with NHLS = 8, it exhibits a noticeable
improvement with a Mean Percentage Error of 3.34. This suggests enhanced accuracy compared
to the earlier methods. Additionally, its Standard Deviation is lower, at around 2.29, indicating
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Figure 7. Absolute errors for different methods (beam II).

increased consistency in its predictions. The ANN model with NHLS = 10, while having a
higher Mean Error than the NHLS = 8 model (4.94%), compensates with an exceptionally low
Standard Deviation of 4.07, implying highly consistent results. Lastly, the ANN model with
NHLS = 12 performs the best, boasting a Mean Percentage Error of 2.64 and an impressively low
Standard Deviation of 1.65. These values collectively indicate both high accuracy and exceptional
consistency in its predictions.

When analysing the errors depicted in Figures 7 and 8, it becomes evident that the three
methods, namely Cuckoo, Bat, and PSO, demonstrate very similar Mean Error and Standard
Deviation values, all hovering around 0.98 and 0.83, respectively. This suggests that, on average,
these methods achieve a relatively high level of accuracy in crack identification, with a minimal
degree of variability in their results. While the YUKI algorithm performs slightly better, indicating
a marginally improved accuracy, it still falls within a similar range as the previous methods,
suggesting moderate consistency in its predictions.

The Artificial Neural Network (ANN) model with NHLS = 8 exhibits a Mean Error of 1.66%,
indicating a slightly lower level of accuracy compared to the previous methods. However, its
Standard Deviation of 1.10 suggests a reasonable level of consistency in its predictions.

For NHLS = 10, the Mean Error improves to 1.51%, indicating enhanced accuracy compared
to the NHLS = 8 model. What’s more, it’s remarkably low Standard Deviation of 0.77 suggests
a high degree of consistency and predictability in its crack identification results. NHLS = 12
stands out with a substantially higher Mean Error of 5.11%, signifying relatively lower accuracy
compared to other methods. Furthermore, its Standard Deviation of 5.86 is notably higher,
indicating significant variability in its predictions and rendering it less reliable compared to other
methods.

In the evaluation of crack identification methods for both Beam I and Beam II, we can observe
certain similarities and differences between the approaches. Firstly, when considering the Mean
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Figure 8. Mean error with standard deviations for different methods (beam II).

Percentage Error values, the Cuckoo, Bat, and PSO methods exhibit comparable performance.
In Beam I, they have an average error of approximately 4.26%, while in Beam II, this value drops
to around 0.98. This suggests that these methods achieve a moderate to high level of accuracy.
However, it’s important to note that these methods also display significant variability in their
results, as indicated by their relatively high Standard Deviation values. In particular, Beam I
show a higher level of result variability for these methods with a Standard Deviation of about
1.20, whereas Beam II exhibits a lower Standard Deviation of approximately 0.83 for the same
methods.

On the other hand, the YUKI algorithm outperforms the Cuckoo, Bat, and PSO methods in
terms of Mean Percentage Error in both Beam I and Beam II, with an average error of around
4.20% in Beam I and 0.98% in Beam II. While it demonstrates slightly better accuracy, it still falls
within the same range. Furthermore, the Standard Deviation values for the YUKI algorithm are
relatively consistent in both Beam I and Beam II, indicating a degree of stability in its predictions.
Thus, the YUKI algorithm consistently delivers reliable results.

4. Conclusion

In this research paper, a comprehensive exploration of structural health monitoring (SHM) tech-
niques, particularly focused on vibration-based damage detection methods, has been presented.
The study investigated the integration of nondestructive evaluation techniques with vibration-
based methodologies, aided by advanced machine learning tools, to assess and monitor struc-
tural integrity. The research emphasised the critical importance of ensuring structural stability
and safety across various industrial sectors, aiming to prevent catastrophic failures. Key method-
ologies employed in this investigation include artificial neural networks, proper orthogonal
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decomposition (POD), radial basis functions (RBF), and the innovative YUKI algorithm, which
introduces a population clustering approach to crack length prediction.

The study’s findings have highlighted the potential of these methodologies in effectively
detecting and localising structural damage. Notably, the YUKI algorithm has shown promise in
achieving highly accurate predictions of crack lengths. However, it is essential to acknowledge the
inherent variability in predictive outcomes across different scenarios and use cases, necessitating
further comprehensive investigations and rigorous validation procedures. Overall, this research
has contributed valuable insights into the application of SHM techniques and their potential for
enhancing structural safety. Future research endeavours should focus on refining these methods
and assessing their suitability for real-world structural health monitoring scenarios.
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