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Abstract. Three Finite Volume schemes are proposed in this note to satisfy the maximum principle for the
mass fraction y, solution of an unsteady balance equation, including a relative velocity between phases and
a source term. The continuous maximum principle is examined first. Then, linear implicit discrete schemes
are detailed in a multi-dimensional and unstructured framework.

Résumé. Dans cette note, trois schémas Volumes Finis sont proposés pour respecter le principe du maximum
du titre massique, solution d’'une équation de bilan instationnaire, incluant un déséquilibre en vitesse avec
une vitesse relative non nulle et un terme source. Le principe du maximum continu est d’abord étudié puis
les schémas discrets linéaires implicites sont détaillés dans un cadre multi-dimensionnel non structuré.
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1. Introduction

We consider in this note an unsteady mass balance equation for the mass fraction y in a
two-phase flow model, including a relative velocity between phases, such as the drift-flux
model [ZuberFindlay]. The maximum principle for the mass fraction has been widely in-
vestigated, either for diffusive problems (see among others [fvca]) or in hybrid convection-
diffusion problems (see among others [Frolkovic, gastaldo2, gastaldo:hal-00308838,
larrouturou:inria-00075479, LipnikovSvyatskiyVassilevsk]). Most of the time, a null relative
velocity is considered in the convective flux model. In the sequel, we focus on a system involving
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two mass balance equations with a relative velocity (see also [gastaldo2, gastaldo:hal-00308838])
and a source term.

Once the continuous maximum principle has been examined in Section 2, three distinct linear
Finite Volume schemes complying with the discrete maximum principle with no (or with a weak)
restriction on the time step are proposed in Section 3. Eventually, numerical simulations were
used to assess the accuracy of the schemes described in Section 4. The proposed schemes can be
used in a broader framework, such as two-phase flow models.

2. Governing equations for the model
2.1. System of equations

A flow characterized by a density p and a flow rate q is studied on a domain Q, over a period [0, T].
The boundary of Q is noted I'. The outward unit normal is noted nr. Then

I'=T,ul_urly, (1

where :
I, ={xeT,qx 1) -nr <0},
I'_={xeTl,qx,1)-nr>0}, 2)
Iy =1{xel,qx, 1) -nr=0}.

This study focuses on the evolution of the mass fraction y of a species in this flow. The species
evolves according to a flow rate qg = q + (1 - y)q,, where the relative velocity between phases
u, [ZuberFindlay] is used in the relative flow rate q, = pu,. The mixture velocity is defined by u :=
q/p. The mass fraction y tends to return to the equilibrium y after a characteristic relaxation time
7. With this modeling, the quantity py follows a conservation law that is associated with the total
mass conservation law. These equations are provided below (see also [gastaldo:hal-00308838]
for a similar system).

a_p +y.q:0’
9(py) ” y-y @
=AY (ya) + Y- [y (1-Y)ar) = p

Given the definition of the relative flow rate, the boundary I" can also be split according to the
sign of the flow rate q: = q+ (1 -2y)q;:
r=T%urturs, 4)
where :
I = {xeT, q¢-nr <0},
¢ = {xeT, q¢-nr >0}, 5)
I8, ={xeT, q;-nr =0}.
The four parameters q,q;, y and 7t are given functions:

e q(x, 1): the mixture flow rate, given by a momentum conservation equation or provided
as input data,

e q,(x, 1): the relative flow rate, provided as input data. It is often given with a drift-flux
closure law related to the other parameters,

e j(x,1) € [0,1]: the equilibrium mass fraction, reached after a characteristic relaxation
time 7(x, ) > 0. y and 7 are obtained through closure laws.
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This system of equations must be completed by the initial conditions for the mass fraction and
density: y(x,t=0) = yp(x), p(x, £ =0) = po(X), and by suitable boundary conditions for the mass
fraction (and also for the density onT';).

2.2. Continuous maximum principle

Property 1 (Continuous maximum principle): For the density p(x, £) > 0, assume initial con-
dition such that y(x, t = 0) € [0,1] and boundary conditions such that y(x € Fi, 1) € [0,1], with
Fi ={xeTl,(q+(1-2y)q;) -nr < 0}. Consider closure laws for source terms such that y(x, ) € [0, 1]
and 7(x, t) > 0. If the quantity (1 -2y)V-q, +2q, - Vy)/p is bounded on Q x [0, T], then the mass
fraction y(x, t) solution of (3) lies in [0,1] on Q x [0, T1].

Using the same methodology as [gastaldo:hal-00308838] and [lewandowski], the proof of this
property is given in Appendix A. We recall that the positivity of the density is ensured as long as
the divergence of the mixture velocity uis bounded and the incoming flow has a positive density
px eI, ) >0. In the following, the focus shifts to the mass fraction governing equation with
unknown y. A discrete Finite Volume scheme for the density p will be assumed (see equation (9)).

Remark 1. To ensure the continuous maximum principle for the mass fraction y and positivity
of the density p, two different input boundaries I'y and Fi are considered in the most general
case. For our numerical applications, we consider co-current flows entering the domain; hence,
the phase velocities have the same sign, such that

ug = u+(1-yur
u =u-yuy ’

ug - uy >0 with { (6)

Hence, noting that

q=p(yug+(1-yuy),

(7)
q¢ = p((1 = y)ug + yu),

we obtain at once q¢-q = p2(y(1—-y)(ug—u)? +ug-u;) = 0butalso T4, =T, T =T, and € =T_.

3. Numerical method

The domain Q is discretised in N cells: Q = U;¢1,n7Q;. The time interval [0, T is also discretised
in Ny intervals so that:

°=0;Vnel0,NJ], "' =t"+At"and T= ) Ar". 8)
i€0,N;]

The continuous equations are integrated on each cell i between time ¢" (superscript n) and
time t"*! (superscript n+ 1). We denote with a superscript * data taken at an intermediate state
t*, which is either t”* or t**1. The explicit or implicit choice is decided according to the desired
properties of the scheme. The following notations are used:

* 0! the approximate value of  on cell i at time step 7,
e w; the volume of cell i,
e jev(i) the neighbors of cell i,
¢ §;j the surface of the intersection of cell i with its neighbor cell j,
* n;; the normal unit vector of the surface S;; outward cell i,
*

*q;= q;,*j -n;; the normal mixture flow rate between cells i and j,
. (qr);‘j = (qr);.*j -n;;j the normal relative flow rate between cells i and j,
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* (g9)j; = g;; + A= y{)(qr);; the normal gas flow rate between cells i and j. The explicit
choice for y!'. will result in a linear numerical scheme. The spatial discretisation for the
mass fraction ylf’j at interface ij is detailed in the sequel.

Here, q i (respectively (q,)} j) is an estimation of the flow rate q (respectively q,) at interface ij at
time ¢* € [¢", ("],

3.1. Finite Volume Discretisation

Finite Volume methods are well adapted to treat conservation issues and maintain physi-
cal properties within valid bounds. Focusing on the system of mass balances (3), we recall
that [gastaldo:hal-00308838] introduced a non linear implicit scheme (with respect to y), which
guarantees the discrete maximum principle with no restriction on the time step, even if some
non-zero relative velocity is accounted for. Here, we first propose a linear implicit scheme with
some restrictions on the time step to comply with the discrete maximum principle. Then, two
other linear implicit schemes satisfying the maximum principle without any condition on the
time step are presented.

The Finite Volume scheme for total mass conservation is assumed to be

wi(pf™ - pf)+ A" Y Sijqi;=0. 9
Jjev()
Turning to the mass fraction equation, the following choices were made :
¢ The unsteady term is decomposed into two parts:

opy n+l n
n — — .
At fw,« ar dQ—((py)i (0y); )wl

=p} (v =y oty (o] - p})wi , using (9). (10)
—_—
=—A" ) Sijaj;
jev(
« The mass fraction is implicit in the source term
- “H# (z+l
pudQ = pﬁ%wi 11
wi T i
where ¢ € [¢", t"*1] such that

pf >0,
yielo1, 12)

‘[? > 0.

In the sequel, we will use: p% = p”, ¥ =y and 77 = 77",

« Turning to convection contributions, two different methods are used. The first method
simply considers the total convection: V- (yq) + V- (y(1-)q,) = V- (yqg). The scheme
using this method is nicknamed QG and is detailed in the sequel. It introduces a
condition on the time step to preserve the maximum principle. The second method
treats mixture convection and relative convection separately. Two different schemes are
detailed: the QRd and QRq scheme. The latter two schemes approximate the non-linear
convection so that the problem is well posed and the discrete mass fraction remains
within physical bounds [0, 1] regardless of the time step.

In the sequel, the following notation is used for the sign of

1ifz=0
23582 =10 ifz<0 -
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To simplify notations,

sg;j = sg(q;.“j) ,sg‘fj = sg((qg)?j) and sglfj = sg((qr);‘j) are used.

3.2. Global Scheme with QG Scheme

3.2.1. Definition of QG scheme

For gas flow rate convection, a standard implicit upwind scheme is used [EYMARD2000713].
With QG scheme, the global scheme is written with the sign convention for each cell Q;:

1 * 1
piowi(yi™ =yl =" Y Sijai; viT
Jjev()
J—/n _ yn+1 (13)
* 1 1 i i
+A" Z Sij(dg)}; {sgiji’” + (1 —sgfj) vy } =At"plw; ——"—.
jev(d) i
The mass fraction yl.”j atinterface ij involved in the gas flow rate (gy) ;fj = q;‘j +(1- yl.”j) (qr);‘j is
approximated using an upwind scheme based on the mixture flow rate g It

~

n o *
n {J’i if 4;;20, (14)

=Yy if gt
¥ if q;; <0.
Other consistent choices can be made as long as yl.”j €1[0,1].

3.2.2. Discrete maximum principle

We now examine whether if the discrete mass fraction remains within [0, 1] on the N cells using
this scheme.

Property 2 (Maximum principle for the mass fraction with QG scheme): Assume that the phys-
ical parameters are such that 7} > 0,y € [0,1],k € [1,N]. If the initial conditions are that
Y ke [[l,N]],y,’c" € [0,1], then the global scheme with QG ensures that y;’“ remains in [0,1],
Vi€ [1, N], when the time step At" verifies, V i € [1, N]:

AVALIAY 2

+— Sii|l1=y|(gr); =0. (15)
T p?wij;y(i) l]( ”) el

(-3 +(-77)

Remark 2. The condition on the time step is automatically verified when q, = 0.

Proof. Using equation (13) obtained for each cell i € [1, N], the system can be expressed in
matrix form.

A = (aij),
AY" =Bwith V(i,/) € [1,NI*>, { B= (b), (16)
Y = (y1).

The discrete system for Y = 1 — Y can also be expressed as follows:

AY""!' =B=Ax1-Bwith V (i, ) € [1, N]?, = (aij) = (aij), a7



86  Gauthier Lazare, Qingging Feng, Philippe Helluy, Jean-Marc Hérard, Frank Hulsemann and Stéphane Pujet

We also introduce the quantity A;(A) on each cell by A;(A) = |a;il — X je i laijl- Note that
Ai(A) = A;(A). The coefficients of the matrix system and the quantity A; are

(ag);; g_qij
or ey

At" .
— +At
T; Jjev() wi

aiji = aji =1+

a,-j:aij:At

o Sip 05 ) )
ij)’

wi; n
At"
o (18)
D= (1-y™ At”( Naar Y Sij (lag)i;  4i;
i=(1-y')+ -yH+ — | —— .
i i T i jcom @i \ P} P}
Assuming that a;; >0,
A" S (qg)’f. q’
AiA) =1+ ——+At" Y i(—n”——‘,{ .
i jevl) Wi\ P; Pi
Remark 3. These two formulations are equivalent:
Sij ((qg);kj ql*]) Sij
b=y _ Y > 1-y%)(gr); 19)
jeot Wi p:? pl" jent ( l]) i

The conditions V (i, j) € [1, N1%,a;; >0, a;j < 0and A; > 0 ensure that matrix A is invertible and
its inverse has positive coefficients (see [Ciarlet1970, Varga]). To satisfy the maximum principle,
vectors B and B also need to fulfill b; = 0 and b; = 0 with i € [1, N]. To summarize, the conditions
for the scheme are

ai; >0,a;;<0,jev),
Yie[l,N],{ A;A) >0, (20)
bi =0, b; =0.

For Tk >0,y € [0,1],k € [1, N] and when y € [0,1],7 € [1, N], the maximum principle for
the mass fractlon with QG scheme is satisfied when properties (20) are fulfilled. Actually, the
condition on (b ) is equlvalent to (15). If condition (15) is verified, the coefficients (a;;) and (A;)
are positive as a;; = A; = bl. The other two conditions a;; < 0 and b; = 0 are always satisfied. [

3.3. Global Scheme with QRd scheme

3.3.1. Definition of QRd scheme

For the mixture flow rate contribution to the convection flux, a standard upwind scheme is
once again used as in equation (13).
The global scheme with QRd scheme is written:

ploi(yp =y +ae ¥ sian{(1-sey) (vt -y}
Jjev(d)

njezu(nsij(q’):ff{sgwylnﬂ(l_yfr'l) ( Sgw)yf (1- ym)} @1
y yln+1
o

13

=At"pllw; =

3.3.2. Discrete maximum principle

Now we examine whether the discrete mass fraction remains within [0, 1] on the N cells using
this scheme.
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Property 3 (Maximum principle for the mass fraction with QRd scheme): Assume that the
physical parameters are such that TZ >0, )7,’61 €[0,1],V k € [1, N]. If the initial conditions are such
that V k € [1, N], y,?‘ € [0,1], then the global scheme with QRd ensures that yl.’“rl remains in [0,1],
Y i € [1, N], whatever the time step At" is.

Remark 4. The scheme is rigorously conservative in space only for the discrete steady states
(ylf”l = y,i € [1,N]). This is not an issue in practice, when the method is applied to the

computations of steady states.

Proof. Using the same methodology as for QG scheme, a similar discrete system (noted d) is
written from (21) for QRd scheme:

Aq = ((a)ij),
Ay Y =By with V (i, j) € [1,N]%, { By = ((ba):), (22)
Y'= (y7).

For QRd scheme, the coefficients of the matrix system and the quantity A; are

*
n

At Sif qif Sij (qr);-kj
+A[n s Sg.._]_ + _J Sgr_yn i
i (J';Vm Wi py ( N ) jezu(i) wi pY ( H l)

(ag)ii=(Gg)ii=1+

_ Sij 9ij
(aq)ij = @qa);j = Ar" w; p" (1 _Sgij)’

n

i i

At" S;i (qr)*
i jev) Wi Pj

(ba)i =y} +— (sgij—l)y}?), (23)
~ At" _ Sij (qr);j
(=) (1—ym+m"(j€zmw—i s (1-37))

At" Sij @ny;
+A" — sgt.—y7 .
a2, B )

ANi(Ag) =1+

For given values g, and (q,),, (k,]) € [1, N1?, and for 72>0, 7 €10,1],k € [1,N], the following
conditions are fulfilled when y;’ €[0,1],i € [1,N]:

(ag)ii > 0, (aq)ij = 0,j€v(i),
Vie[l,N],{ Ai(Ag) > 0, (24)
(ba)i =0, (ba); =0,

whatever the time step At" is.

Once again, using the results [Ciarlet1970, Varga], the matrix A, is invertible, and its inverse
has positive coeflicients. Hence the maximum principle for the mass fraction y is satisfied, using
QRd scheme, whatever the time step At" is. U

3.4. Global Scheme with QRq scheme

3.4.1. Definition of QRq scheme

QRq scheme not only considers the sign of the relative flow rate but also the sign of the
mixture flow rate inside the relative flow rate contribution to the convection flux. The global
QRq scheme is
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pioi (v =yi)+art 3 Sifq;j{(l_sgij)(y7+l J’znﬂ)}

jev()
Y S seiy (o (1= (1o + i -7 el
&5 TP f-s) oy - s et
=At"plw Vi yl’m
= At piwiT i —

i
3.4.2. Discrete maximum Principle

Property 4 (Maximum Principle for the mass fraction with QRq scheme): Assume that the
physical parameters are such that: TZ > 0, j/,'g [0,1],k € [1,N]. If the initial conditions are
such that k € [Il,N]],y,’c’ [0,1], then QRq scheme ensures that y”+1 remains in [0,1], i € [1, N],
whatever the time step At" is, provided that the flow rates fulfill the following conditions, when
q;f‘j <0:

« 1f(g,)];20

a; +(q,);fj(1- y;?) <0. (26)
o Otherwise, if (qr)l’.‘j <0
ij—(anyi =o. @27)
No condition arises when g, > 0.
For a co-current flow, these conditions are automatically verified.

Remark 5. Once again, the scheme is rigorously conservative in space only for steady states
(Mt =yt iell,ND.

Proof. Using the same methodology as for QRd scheme, the discrete system from (25) is written
as
Aq =((ag)ij),
Ay, Y™ =B, with ¥ (i, j) € [1,N1%, { By = ((bg)i) , (28)
Y" = (7).
Using blue to denote the terms linked to QRq scheme, the coefficients of the matrix system
and the quantity A;(A,) are

Sij q;'kj Sij (Clr)* . . )
— 88— 1)+ Lsg;: [sg: =y,
T? (fezu(i) Wi P? ( Y ) ]'EZ‘U(Z) wi p, ”( Y ’)
Sij 4ij Si; (an;;
o agn 200 3 Sij o Veor o
(aq)ij = At ; p:’( sg,,)+At w0 p7 ( sgl])(sgij yj)’

(bpi=y!'+ AT;nyl-"+At”( Y S’J %(sg” )(Sgijyl'rl+(1_sgij)y;l))’
1

jéun Wi Py
” (qr)”

sg; (1 [sgij+ (1-58,;) v}

(), =10+ S (- 5t) e 2

Jjev@ Wi pl- ))

Assuming that V j € v(i), (ag)i; <0,

cor( 3, 25t )

At"
Aj (Aq) =1+ o

i

(29)

Examining the sign of these coefficients raises two conditions for the flow rates.
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e When q;‘j <0and (q,)jj =0

qu+(67r);~‘j(l—y]’-‘) <0. 30)
¢ When q;‘j <0and (qr);‘j <0
a;;— @y} <0. 31)

When ql’cll and (q,)Zl,(k, D) € [1,N]? satisfy the previous conditions (30)-(31), and if T]'cl >0,
37]2‘ €1[0,1], k € [1, NJ, the following properties are verified when yl.” €[0,11,i € [1, N]:

(aq);; >0, (“q)ij =0,jev@),
Vie[l,NI,{ Ai(Ag) >0, (32)
(bg); =0, (bg); 20,
whatever the time step At" is.

Once more, using common results of [Ciarlet1970, Varga], the matrix A4 is invertible and its
inverse has positive coefficients. Hence, the maximum principle for the mass fraction with QRq
scheme is verified regardless of the time step At", as long as the conditions (30)-(31) on the flow
rates are respected. O

3.5. Boundary Conditions

These Finite Volume cell schemes presented above are only valid for cells that do not contain
faces on the boundary. The cells (noted i here) containing at least one face on the boundary are
presented in Appendix B. Boundary conditions are considered for three schemes with a given
valid mass fraction y € [0,1] outside. The inlet/outlet flow rates for the faces on the boundary
are noted (i and (g;) joo-

We summarise here the main conclusions of Appendix B. If a co-current flow is considered,
QRq scheme still satisfies the discrete maximum principle without any condition on the time
step. Turning to QG scheme, a slightly different condition on the time step arises on cell i
sharing a face with the boundary. This condition must be considered because it can be the
most constraining one. Eventually, QRd scheme still has no limit on the time step. However,
the boundary flux used in the QRd scheme must be handled carefully on the outlet face (with
respect to the mixture flow rate g;, > 0). When the mass fraction is unknown on this face, the
expression of the flux should be modified or another boundary flux should be preferred.

4. Numerical results

To be able to compare the numerical solution of the different schemes obtained using an ana-
lytical solution of (3), a steady one-dimensional test case is considered. The physical parame-
ters (p, 4, q,,7,¥) are uniform and constant, and are noted with an exponent 0. The simplified
system is

p=0"q=4"
9 9 9 o _pO(J_’O_J’) 33)
5 @V (ay(1-y)) = ——F—

with g, = g% t=1% y = j°.
0 _5.0 ,0 _ 0,,0_,0 0 .0_¢° _ 0 . s
Setting 95, = 2q,, qlog =4 +q:=4q;;, VY =75 Yo=Y , this equation can be rewritten in
the following form:

d
(@ + @i (oo =) a—)yc =" (Yoo = ¥)- (34)
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A domain Q = [0,1] m is considered and a Dirichlet boundary condition is used on the left
boundary y(0, f) = yy. The analytical solution y(x) reads

Yo=Y
q?in(y—yo)—q?ogln(h) =90 (35)

For numerical simulations, we use the parameters in Table 1.

Table 1. Parameters of the test case

Quantity Value Unit
Yoo 3.04x1072 -
a0, -6000 | kg.m2.s7!
q?og 682.57 | kg.m2.s7!
¥° 7x10* | kg.m 357!

The stationary numerical solution y,,,;, and the exact solution y., are computed, using a
mesh with Ax = 10~ m. Results are given in Figure 1 for QRd scheme. Similar solutions are
obtained using QG and QRq schemes.

0.030

0.025

0.020

o015

0.010

0.005

| —— Numerical Mass Fraction y,um

0.000 Exact Solution yex

0.0 0.2 0.4 0.6 0.8 1.0

x [m]
Figure 1. Mass fraction y as a function of x - QRd scheme (blue line) and exact (dotted

orange) solutions.

Figure 2 shows the convergence rate with the three schemes for this test case using different
mesh sizes: Ax € [107°,1071] m. The L, norm of the error err, computed for each mesh size, is

lynum = yexll, . & 1
err; = —————— with || x|l = x2, Ny = {_J . (36)
= yals PR P

As expected, the three different schemes comply with the convergence rate of first order in
space. For a given mesh size, QRq scheme is more accurate than QRd scheme. QG scheme and
QR(q scheme have similar accuracy for this test case.
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10-1 | | | |
o ©®

=
S
N

Error ||.||.2
=
o
b

—— QRd Scheme: log(y) = 0.931x log(dx) + 1.223; r?2 = 0.999
—— QRg Scheme: log(y) = 0.978x log(dx) + 0.332; r? = 0.999
—— QG Scheme: log(y) = 0.978x log(dx) + 0.339; r2 = 0.999

1074

1073 1074 1073 1072 107t
Ax [m]

Figure 2. L, Norm of the error as a function of mesh size for QG (green), QRd (red), and
QRq (orange) schemes.

5. Conclusion

Three different linear first-order schemes that approximate the nonlinear relative velocity term
have been presented. QG scheme (13) is always conservative in time and space, but a condition
appears on the time step to preserve the discrete maximum principle when a non-null velocity is
considered. Conversely, QRd and QRq schemes ((21),(25)) comply with the maximum principle
without any constraint on the time step. However, the latter two schemes are conservative in
space only once the steady-state solution is reached. This is obviously not an issue for many
practical computations that aim at approximating steady states. Eventually, QRq scheme seems
to be more accurate than QRd scheme.

5.1. Boundary condition for QG scheme

For Cell i from Figure 3, QG scheme is written

plwi (Y =yl =Ar" Y Sijaf; vt = A" Sicodicoy) !
jev(
8 1 g 1
+0" Y Sijlag) fsefyi ™+ (1-s8) v
jev@) 37)

+ AtnSioo((/Ig)ioo{sg'igooy?Jrl + (1 - ngoo) J/oo}
n
:At”p?wi%
i
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Using this scheme, the coefficients arising from conditions (20) are

S (qg) qf‘.
oo g
i jevti Wi oy} p;
wi pl ico pln ’
S;i (dg)7;
JRpp— n_j l] _ g
a;jj =At ; ? (1 sgij),
Atn 5 Sloo (qg)loo
bi=y}'+ = ¥ Ao o (1-585_) Yoor
7 n S (gt g
bi:(l—y;’)+ - (1—J7?)+At” Z l( gn”__l,{) (38)
i jevi Wi\ P; P;
Si (qg)ioo qi
+Atn£ oo+ (1= Vo) s g ) _ HYico ]
Assuming that a;; >0,
M=ty ol
T jety Wi\ P; o'
+At n lOO (qg)loos g ql_oo .
wi p:’l ico p:ft

The three condltlons aj; > 0 A; >0 and b; = 0 are not always fulfilled. Using the formula

(dg) ioo (Yoo + (1= yoo)sg )< sg (qg),oo, it can be stated that a;; > A; > b;. The only remaining

condition on the time step is again on b, This condition, which is slightly different from (15),
should be monitored because it can become the most constraining one.

5.2. Boundary condition for QRd scheme

For Cell i from Figure 3, QRd scheme is written

ploi(yr -y +arm ¥ siar{(1-se;) (vt -y}
jev(i)

+ AtnSiooqioo (1 - Sgioo) (yOO yszrl)

FA Y Sian; sel it (1= v+ (1-sg )y (- v}

jev(@ (39)

+ A" Sioo () ioo{58o0 V1! (1= Yoo) + (1= 581o0) Yoo (1= 7/71) |

n+l1
yz —JVi
n
i

=At"plw;

Using this scheme, the coefficients arising from conditions (24) are
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Sij q* Sij (ar; ,] )

——|sg;i — 1|+ g -y

i (Jezvm‘” p;( ' ) Jezvu) wi P} ( ])

Sioo qico n Qioco (qr)loo r

“wi p7 (88ioo = 1) +AL w_ip—?(sgioo_yw)’
S:: g7

(ag)ij =At" ﬁp_l,{(l_s&‘j),

v

At" _n Sz] (qr)l]
T+ A" -1
T]'f; yl + (];v(l) w; pi ( gl] )y]

+At"

(ba)i =y;' +

Sico qi Sico (Gr)ico
Aph Dico ico A DI 4 ’ 40
A (58io0 = 1) Yoo + A"~ o (s ) yoo (40)
~ At Sl] (qr)l]
ba)i=1-yH+ 1-77) +At" sgl {1-y
14 ( i ) T;’L ( i ) jEZU(l) w; pi ij ( ])
n Sico Gioco Sloo (gr)ico

+At P? (Sgioo_l)(l_yoo) +At" W pn ngtoo(l_yoo)’

i i i

At S” (qr)l]
A‘(Ad)=1+—+At”( Y sgi; Y
l T;l jevl) Wi P? ( ])

n SlOO quO

+ At

= (oo~ 1) + AL T (sl ).
12 1

Once again, no condition on the time step arises for the QRd scheme. However, it should be
handled carefully for an outlet boundary (with respect to mixture flow rate q;», > 0). Indeed,
regardless of the sign of the relative flow rate (g,) -, the flux requires a given value of y... If the
value of the outlet mass fraction y, is unknown, a different consistent formula should be used to
approximate y, € [0, 1] (for instance yo, = yln). Otherwise, the flux should be modified.

5.3. Boundary condition for QRq scheme

For Cell i from Figure 3, QRq scheme is written

ploi(yrt -y +ar ¥ sian{(1-se) (vt - v}
jev@)

+Atnsiooqioo (I_Sgioo) (yOO yln+1)
[ s {1 (101" (1-sefy )+ i (00 sl ]
O e e e P

n+l1 _ggol n+l(1_ r
+Mnsi°°(qr)i°°[5gm{y " Ji- )sg(;l )Sg;oo)(;f’y JSI ]

" Y Sijlan;;
jev(@
(41)

n+1
i

n

i

=At"plw; Vi
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Using this scheme, the coefficients arising from conditions (32) are

q” Sl] (qr)l]

(ag);i; = "( > Sis sg; + ) sgij(s8i;— Vi

q)i & wi pi ( ij = ) 1S wi pi 11( ij t)

Sico Gi Sico (gr)i
+AL" L:O p’j"’(gloo 1) +A" a’:" ;;,""’ $8ico (87oo ~ Vi)
Sii q;. (gr);
oAt ZH W l (1 se.. Tyt

(ag)iy =be" 2 p?( sgl])+At o ( sg,]](sg,, y]),

A" S: (qr)*
(bq)i=J’?+_nJ7?+Atn( y =L ( sgi;— )(SgijJ/?Jr(l—Sgij)J’}’))
T jevi Wi P,-

(Cfioo + (1 - ,Voo) (qr)ioo)
el

nSzoo

FA 2R -1
; (88j0o — 1)

[e o]

SlOO (qr)loo

i i

™ n At" -n n
(bg)i=(1-y;)+ n (1-y7)+ar"| 3 —
i

jev(

+At" S8ico (sgzoo_ 1) yl ’

y Wi P Y ))

qioo_J/oo(Qr)ioo (1 -y )

n

pi

n SIOO

+A1"—= (8800 — 1)
l

+A SlOO (Qr) 100

i A SglOOSglOO (1 yl )
l

Assuming that V j € v(i), (aq);; <0,

(ar)}
— l] l]
Ai(Ag) =1+ ; (]Z() w0 p" (587, - [Sgijy?+(1—sgif)ym)
+Atnsl£qi:lo (S ioo_l)‘i‘AtnSci_o_o(q;)yfoosgim(sg?w_y?)'

t i ! i

(42)

The same conditions as (30) and (31) on the flow rates for neighboring inner cells again arise
from condition a?j < 0. Similar conditions appear for the boundary face from condition b? =0

and B:’ = 0. When ¢;« <0, the inlet boundary flow rates must be coherent with

Jico + (1 - yoo) (Qr)ioo =0,

(43)
Gioco — (qr)looyoo <0.

When (43) is verified, no condition on the time step appears. Conditions (43) are automatically
verified when a co-current flow is considered, because in this case, the mixture flow rate g;, the
gas flow rate (qg) ioo = Gico + (1 = ¥o0) (Gr) ico and the liquid flow rate (§;) ico = Gioo — Yoo (qr)ico have
the same sign.

When (43) is not verified, a condition on the time step appears from condition bq =0 or from
condition bq =0.

Conflicts of interest

The authors declare no competing financial interest.



Gauthier Lazare, Qingqing Feng, Philippe Helluy, Jean-Marc Hérard, Frank Hulsemann and Stéphane Pujet 95

Dedication

This manuscript was written with the contributions of all authors. All authors have approved the
final version of the manuscript.

Acknowledgments

The authors would like to thank Erwan Le Coupanec for his guidance and help during the writing
of this article.

Appendix A. Continuous maximum principle

The study equations are

a_p+y.q:0,
a(py) " -y An
SV () + Y- (y(1-y)ar) =T

The notation ¢ = y(1 — y) is used to study the maximum principle for y. Indeed, if { = 0 then
y1-y)=0e yelo,1]. (A2)

The governing equation for ¢ can be obtained from the non-conservative equations of y and
1 -y as follows:

(paty+q'2y+2'(<fqr) =py;y) x(1-y)

_ (A3)
1--0-y
+ par(l—y)+q-2(1—y)—2-(fqr)=P%)Xy-
Then S 2
pd&+q-VE+(1-2y)V - (¢q,) =p———withS=y(1-7)+y1-). (A4)
Using the standard notations ¢ = max(¢,0) and ¢{_ = —min(¢,0), equation (A3) is multiplied
by (-¢-):
& & ) _-Sg 282
(m%(;)ﬂl-z(? )+(1—2y)(£_2-qr—€-qr-26)—pf
& & & 1
(Ot(pg)+(q3))+((1—2y)qr7)+€2_{(I—Zy)!qr—52-((1—2y)qr)} (A5)
_ p(S+28)8-
E—
Finally, the equation obtained is
2 2 2
< al < (§+2&0)
oo )+ ¥ (la+ =200 5 )+ S{0-20) Y a -ar v -2} - 22 g

We define the quantity E(#) = f o é dQ and split the outside surface domain according to the
signof q: =q+(1-2y)q,: o2
1“‘;, ={x€T, q;-nr =0},
I% = {xeT, q¢-nr <0}, (A7)
ré = {xeT, q:-nr > 0}.
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Then, the quantity E(¢) verifies
dE(1) f &
—l = +(1-2 =

dat T (@ ( y) ar) 2

S+2¢_
_fp(+£)£__
Q T

Assumptions 6.

.nrdl“—fﬂ%{(1—2y)y.qr_qr.y(1—2y)}d(2

(A8)

(1) Relevant mass fraction on the boundary conditions: ¢_(x € Fi, 1) =0.

(2) Mass fraction for the initial condition such that: {_(x€ Q, t =0) =0 and thus E(t =0) = 0.

@) 5l1-2y)V-qr~q;-V(1-2y)] € L=(Q, [0, T)).

(4) Equilibrium mass fraction such that y € [0,1] implying, (S +2¢_) = 0 (proof of lemma
below).

(5) Positive relaxation time scale 7 > 0 and density p > 0.

Thus, we have

dE(1) &
- Qp;[;((I—Zy)z-qr—qr-z(l—Zy))]dQ. (A9)
Assuming the assumptions previously presented,
dE(t 1
D _ —[(1—2y)y-q,—q,-y(1—2y)]H E(1). (A10)
dt p o0

Using the Gronwall’s inequality [¢680dbbe-119c-31e0-a97a-d790b679674f] and E(0) = 0, it
enables to conclude that E(#) = 0 on [0,T].

Lemma?7. Ifye[0,1] thenS+2{_=0withS=jy1-y)+y(1-7)
Proof. Letus assume that jy € [0, 1].
Caseé_=0
If{_ =0, then y € [0, 1], implying that S = 0.
Consequently, we have S+2¢_ =0
Caseé_#0
b y<0
=—¢(_= All
¢ ¢ thus ory>1l. (ALD)
If y <0, using S = y+ y(1 —2j), the following inequality is verified:
y=S=<sl-y
=>Syzy(l-y)=¢
and S(1-y)zyd-y) =¢.
SoS(y+1-y)=8=2¢{=-2¢_.
If y > 1, the same proof can be used in a symmetric manner. Finally, we have S+2¢_ = 0 for
yEeR. O

(Al12)

Appendix B. Boundary conditions

As shown in Figure 3, we consider a cell i containing several faces shared with j € v(i) neighbor-
ing cells, a wall face (noted w), and an inlet/outlet face (noted with an index ico). The inlet/outlet
face has a surface S, a given valid mass fraction y € [0, 1] outside and an outward unit normal
n... The flow rates on this face are noted

Jico = Qico " Nooy
(dr)ico = (Ar)ico * Moo, (B13)
(qg)ioo = ico + (1 = Yico) (Gr) icos
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where

T S8i Gio =0,
Yiooz{yl o1 dico (B14)

Yoo SI (ico <O.

Only one inlet/outlet face is considered here, but the discussion is valid for several other faces.
For quantities on the inlet/outlet boundary face, the instants considered are not specified here
for the sake of readability. These values are given as data; hence, any consistent formula can
be used, with y € [y, y5™1]. Conditions (20),(24) and (32) are computed to verify the discrete
maximum principle for Cell i. Blue terms are terms added due to the inlet/outlet boundary face.

P
‘T
Re
¢ *
R

v
Gico n, (
Yo

1
oo
!

)ioo

Figure 3. Cell i with (k, [, m) neighboring inner cells, a wall boundary face, and an in-
let/outlet boundary face.
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