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Abstract. We address the problem, not of the determination–which usually needs numerical methods–but
of an accurate analytical estimation of the distance of a raw elasticity tensor to cubic symmetry and to
orthotropy. We point out that there are not one but several second-order tensors that carry the likely
cubic/orthotropic coordinate system of the raw tensor. Since all the second-order covariants of an (exactly)
cubic elasticity tensor are isotropic, distance estimates based only on such covariants are not always accurate.
We extend to cubic symmetry and to orthotropy the technique recently suggested by Klimeš for transverse
isotropy: solving analytically an auxiliary quadratic minimization problem whose solution is a second-order
tensor that carries the likely cubic coordinate system. Numerical examples are provided, on which we
evaluate the accuracy of different upper bounds estimates of the distance to cubic or orthotropic symmetry.

Résumé. Nous abordons le problème, non pas de la détermination – qui nécessite généralement des mé-
thodes numériques – mais d’une estimation analytique précise de la distance d’un tenseur d’élasticité brut à
la symétrie cubique et à l’orthotropie. Nous soulignons qu’il n’y a pas un mais plusieurs tenseurs du second
ordre qui portent le système de coordonnées cubique/orthotrope probable du tenseur brut. Étant donné que
tous les covariants du second ordre d’un tenseur d’élasticité (exactement) cubique sont isotropes, les esti-
mations de distance basées uniquement sur ces covariants ne sont pas précises. Nous étendons à la symé-
trie cubique et à l’orthotropie la technique récemment suggérée par Klimeš pour l’isotropie transverse : ré-
soudre analytiquement un problème auxiliaire de minimisation quadratique dont la solution est un tenseur
qui porte le système de coordonnées cubique probable. Des exemples numériques sont fournis, sur lesquels
nous évaluons la précision de différentes estimations de bornes supérieures de la distance à la symétrie cu-
bique ou orthotrope.
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1. Introduction

The computation of the distance from a raw (measured) elasticity tensor E0 to a chosen symmetry
class is not an easy task when E0 is expressed in an arbitrary coordinate system [1–8]. This
problem raises questions, such as (i ) the proper definition of the distance function and (i i )
the choice of the related norm. Concerning the first point, the axioms defining a true distance
between tensors [9] are rarely recalled so that when non classical choices are made, the name
distance is sometimes used abusively or without proof that the formulated concept is indeed a
distance (such as in [10]). Concerning the second point, and as pointed out in [9, 11], many
different norms can be used to define a distance to an elasticity symmetry class. In the present
work, we will mainly consider the Euclidean norm and its related distance. We will address the
case of the Log-Euclidean norm only in the Appendix.

It has been shown by Stahn and coworkers [10] that when analytical solutions of the distance
problem were available (an algorithm that only estimates this distance in their case), the engi-
neering problem of the assignation of a symmetry class to a measured stiffness was simplified.
Elasticity symmetry classes for which an analytical solution of the standard distance problem is
available are scarce: distance to isotropy (in 2D and 3D), distance to plane elasticity square sym-
metry [12] and distance to plane orthotropy [13]. In 3D elasticity, it seems rather difficult to get
an analytical solution of the standard distance to a symmetry class problem [3] (see [8] for an at-
tempt for cubic symmetry). This is the reason why the subject that we address here is the deter-
mination of accurate upper bounds estimates of the distance to a symmetry class.

Such upper bounds estimates have been proposed for 2D elasticity in [12] and in [14] for
orthotropy. For 3D elasticity, such bounds have been formulated in [15] for transverse isotropy,
and in [10] for all symmetry classes, using a second-order harmonic component of the elasticity
tensor introduced in [16] (in fact, a second-order covariant of E0 [17]). This covariant is assumed
to carry the likely symmetry coordinate system of E0. Note however that all second-order
covariants of an exactly cubic elasticity tensor are all isotropic. Therefore, for a material expected
to be cubic (by its microstructure for instance), a methodology based on second-order covariants
is probably meaningless.

The present work focuses on cubic symmetry, first. Our goal is to evaluate and improve the
accuracy of upper bounds estimates of the distance to cubic symmetry, on three raw elasticity
tensors, for various materials:

• on the elasticity tensor measured by François and coworkers [3] for a Ni-based single
crystal superalloy (such as CMSX-4), and expected to be cubic,

• on an academic elasticity tensor studied by Stahn and coworkers [10] (close to be or-
thotropic),

• on an elasticity tensor identified by François [1], using ultrasonic measurements by
Arts [18], for a Vosges sandstone.

These improvements are the following:

(1) the use of several second-order covariants of the raw elasticity tensor E0, rather than one;
(2) the introduction of an auxiliary problem (a quadratic minimization problem which

reduces to an eigenvalue problem) whose solution is a second-order symmetric tensor
which carries the likely cubic coordinate system sought.

Using a theoretical tool from [19], the second improvement can be seen as an extension of a
technique introduced recently by Klimeš [15] for transverse isotropy, to cubic and orthotropic
symmetry.

We will finally show that, in practice, our list of second-order tensors, intended to carry the
likely cubic coordinate system of E0, produces also more accurate upper bounds estimates of the
distance to 3D elasticity orthotropy.
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2. Geometry of the elasticity tensor

In this paper, we use the notation Sn for the vector space of totally symmetric tensors of order
n and Hn for its subspace of harmonic tensors (traceless totally symmetric tensors). Since,
furthermore, all basis are assumed orthonormal, we shall not distinguish between covariant,
contravariant or mixed tensors.

Let vvv be a vector, a, b or c be a symmetric second-order tensor, E be an elasticity tensor. The
action of a rotation r ∈ SO(3) on these tensors, denoted by ⋆, is given by

(r ⋆vvv)i := ri j v j , (r ⋆a)i j := ri k r j l akl , (r ⋆E)i j kl := ri p r j q rkr rl s Ei j kl . (1)

2.1. Harmonic decomposition

The second-order dilatation tensor is defined as

d := tr12 E
(
i.e., di j = Ekki j

)
,

and the second-order Voigt tensor, as

v := tr13 E
(
i.e., vi j = Eki k j

)
.

The harmonic decomposition of E [16, 20, 21] corresponds to its splitting into

E = (
λ,µ,d′,v′,H

)
, (2)

where

λ= 1

15
(2trd− trv), µ= 1

30
(3trv− trd),

are two scalar invariants,

d′ = d− 1

3
(trd)1, v′ = v− 1

3
(trv)1,

are two deviatoric tensors, and

H = Es − (2µ+λ)1⊙1− 2

7
1⊙ (

d′+2v′
)

, (3)

is an harmonic fourth-order tensor (i.e., totally symmetric and traceless). Here, Ts means the
total symmetrization of the fourth-order tensor T, and a⊙b is the symmetrized tensor product of
two second-order tensors, defined by

a⊙b = (a⊗b)s .

The explicit harmonic decomposition of E is then

E = 2µI+λ1⊗1+ 2

7
1⊙ (

d′+2v′
)+21⊗(2,2)

(
d′−v′

)+H, (4)

which can also be written as,

E = 2µI+λ1⊗1+H+ 1

7

(
1⊗ (

5d′−4v′
)+ (

5d′−4v′
)⊗1+21⊗ (

6v′−4d′)+2
(
6v′−4d′)⊗1

)
,

where, given a and b be two symmetric second-order tensors, ⊗(2,2) is the Young-symmetrized
tensor product defined by

a⊗(2,2)b = 1

3

(
a⊗b+b⊗a−a⊗b−b⊗a

)
,

with (
a⊗b

)
i j kl := 1

2

(
ai k b j l +ai l b j k

)
, Ii j kl =

(
1⊗1

)
i j kl =

1

2

(
δi kδ j l +δi lδ j k

)
.
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Remark 1. When the Euclidean norm

∥E∥ =
p

E :: E =
√

Ei j kl Ei j kl ,

is used, one gets

∥E∥2 = 3
(
3λ2 +4λµ+8µ2)+ 2

21

∥∥d′+2v′
∥∥2 + 4

3

∥∥d′−v′
∥∥2 +∥H∥2.

2.2. Symmetry groups, symmetry classes, symmetry strata

Given an elasticity tensor E, its symmetry group GE is defined as the set of all rotations g such that

g ⋆E = E.

Given a second elasticity tensors E, deduced from E by a rotation r , i.e., E = r ⋆ E, then its
symmetry group GE is conjugate to G , meaning that GE = rGEr−1, since

g ⋆E = E ⇐⇒ (
r g r−1)⋆E = E.

Therefore, it is not really the symmetry group GE of E which is meaningful by itself but its
conjugacy class [GE], which is the set of all subgroups which are conjugate to GE. Such a set
is called a symmetry class. For each symmetry class, it is therefore useful to provide an explicit
representative subgroup G in this class, which allows to visualize the corresponding symmetry
(see Appendix A). Therefore, the set of all elasticity tensors E whose symmetry group GE is
conjugate to G , will be denoted by Σ[G] and called the symmetry stratum associated to the
symmetry class [G].

Example 2. The orthotropic symmetry class has for canonical representative the dihedral group

D2 = {e,r(eee1,π),r(eee2,π),r(eee3,π)} , (5)

where e is the identity element and r(nnn,θ) is the rotation of angle θ around nnn. The orthotropic
stratum is thus denoted by Σ[D2].

For elasticity tensors, Forte and Vianello [22] have established that there are exactly eight
symmetry classes: the triclinic class [1], the monoclinic class [Z2], the orthotropic class [D2],
the trigonal class [D3], the tetragonal class [D4], the cubic class [O], the transverse isotropic class
[O(2)] and the isotropic class [SO(3)].

Remark 3. The symmetry classes, their number, and their partial ordering are strongly depen-
dent on the tensor type. For the natural action introduced in (1), we get the following.

• There are two symmetry classes for a vector vvv : [SO(2)] (axial symmetry, if vvv ̸= 0) and
[SO(3)] (isotropy, if vvv = 0). Note that, since the transverse isotropy conjugacy class [O(2)]
is not a symmetry class in this case, a vector vvv which is invariant by O(2) (or a conjugate of
O(2)) is thus isotropic and therefore vanishes, since the immediate symmetry class which
contains [O(2)] is [SO(3)];

• There are three symmetry classes for a symmetric second-order tensor a (and for a devi-
atoric tensor a′): [D2] (orthotropy, if a has three distinct eigenvalues), [O(2)] (transverse
isotropy, if a has two distinct eigenvalues), and [SO(3)] (isotropy, if a′ = 0);

• The symmetry classes for an harmonic (totally symmetric and traceless) fourth-order
tensor H are the same eight symmetry classes as those of an elasticity tensor [22, 23]:
[1], [Z2], [D2], [D3], [D4], [O], [O(2)] and [SO(3)] (isotropy, H = 0).

An elasticity tensor E in the symmetry stratum Σ[G] may have exactly as symmetry group the
canonical representative group G itself, and not a conjugate of G , that is

g ⋆E = E, ∀ g ∈G .
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i.e., E is fixed by G . In that case, we say that E is in its normal form (or natural basis). When G =O,
elasticity tensors in cubic normal form are written as

[E] =



E1111 E1122 E1122 0 0 0
E1122 E1111 E1122 0 0 0
E1122 E1122 E1111 0 0 0

0 0 0 2E1212 0 0
0 0 0 0 2E1212 0
0 0 0 0 0 2E1212

 . (6)

When G =D2, elasticity tensors in orthotropic normal form are written as

[E] =



E1111 E1122 E1133 0 0 0
E1122 E2222 E2233 0 0 0
E1133 E2233 E3333 0 0 0

0 0 0 2E2323 0 0
0 0 0 0 2E1313 0
0 0 0 0 0 2E1212

 . (7)

Here, both normal forms are expressed in Kelvin matrix representation. Note that for each tensor
E ∈Σ[G], one can find a rotation r such that r ⋆E is in its normal form.

The set of tensors E which are fixed by a group G , not necessarily a representative symmetry
group, is called the fixed point set of G and denoted by Fix(G). It is a linear subspace of the
vector space of elasticity tensors. The orthogonal projection on this set will be denoted by RG .
It is uniquely defined, but can be expressed in several ways. When the group G is finite, this
orthogonal projection can be recast as the averaging

RG (E) = 1

|G|
∑

g ∈G
g ⋆E, (8)

where |G| is the cardinal of G , in which case, RG is called the Reynolds operator associated with
the group G [24, Chapter 2]. Alternative expressions for this orthogonal projection onto Fix(G)
are provided in Appendix C for transverse isotropy (G conjugate to O(2)), in Section 6 for cubic
symmetry (G conjugate toO, Remark 12), and in Section 7.1 for orthotropy (G conjugate to D2).

Remark 4. Let E = (λ,µ,d′,v′,H) be the harmonic decomposition of an elasticity tensor E and let
G be a subgroup of SO(3). The orthogonal projection on the vector space Fix(G), of tensors fixed
by G , can be expressed as

RG (E) = RG
((
λ,µ,d′,v′,H

))= (
λ,µ,RG

(
d′) ,RG

(
v′

)
,RG (H)

)
.

2.3. Invariants and covariants of the elasticity tensor

The quantities
λ=λ(E), µ=µ(E), d′ = d′(E), v′ = v′(E), H = H(E),

are covariants C(E) of E [25] (of degree one and respective order 0, 0, 2, 2 and 4).
The scalars λ and µ are linear invariants of E, whereas d′(E), v′(E) and H = H(E) are linear

covariants of E. They satisfy the rule

C(r ⋆E) = r ⋆C(E), ∀ r ∈ SO(3), (9)

which simplifies into I (r ⋆E) = I (E) for invariants I (E).
There exist polynomial covariants of higher degree, for example the quadratic covariant

d2(H) := H
...H,

(
i.e., (d2)i j = Hi pqr Hpqr j

)
, (10)
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introduced in [26]. Note that the algebra of (totally symmetric) polynomial covariants of the
elasticity tensor has been defined in [17] and that a minimal integrity basis for the invariant
algebra of E has been derived in [27] and [17] (it is of cardinal 294).

By definition (9), a covariant C(E) of E inherits the symmetry of E: the symmetry group of C(E)
contains the symmetry group of E,

GE ⊂GC(E),

meaning that C(E) has at least the symmetry of E.

Remark 5. This property has important consequences [17]:

(1) the vector covariants vvv(E) of a monoclinic elasticity tensor E are all collinear,
(2) the vector covariants vvv(E) of an elasticity tensor E either orthotropic, tetragonal, trigonal,

cubic, transversely isotropic or isotropic, all vanish:

vvv(E) = 0 ∀ E ∈Σ[D2] ∪Σ[D3] ∪Σ[D4] ∪Σ[O] ∪Σ[O(2)] ∪Σ[SO(3)],

(3) the second-order covariants c(E) of an elasticity tensor either cubic or isotropic are all
isotropic,

(4) the second-order covariants c(E) of an elasticity tensor E either tetragonal, trigonal or
transversely isotropic, of axis 〈nnn〉, are all at least transversely isotropic of axis 〈nnn〉,

(5) the second-order covariants c(E) of an orthotropic elasticity tensor E are all at least
orthotropic (and all of them commute with each other).

(6) the second-order covariants c(E) of a triclinic elasticity tensor E are all at least orthotropic
(but the natural basis may differ from one covariant to another).

3. Literature on upper bounds estimates of the distance to a symmetry class

Baerheim [21] has observed that the trace tr12 Ea = 1 : Ea of the asymmetric part [16]

Ea := E−Es ,

{
(Es )i j kl = 1

3

(
Ei j kl +Ei k j l +Ei l j k

)
,

(Ea)i j kl = 1
3

(
2Ei j kl −Ei k j l −Ei l j k

)
,

of an elasticity tensor E, generically carries information related to a so-called symmetry coordi-
nate system of E. This is in fact a consequence of points (4) and (5) in Remark 5.

In the case of an orthotropic tensor E, the trace 1 : Ea is diagonal in the natural coordinate
system of the well-known nine-dimensional orthotropic Kelvin normal form. The second-order
tensor

t := 1 : Ea = 2

3
(d−v) , (11)

is in fact a covariant of E. As such it inherits the symmetry of E, and, generically, t(E) is orthotopic
if E is orthotropic1. Note that orthotropy is one of the three symmetry classes which is common
to elasticity tensors and symmetric second-order tensors (see Section 2.2).

Starting from a given (raw, usually triclinic) elasticity tensor E0 with harmonic decomposi-
tion (2),

E0 =:
(
λ0,µ0,d′

0,v′0,H0
)

,

the fact that the second-order covariant

t0 = 1 :
(
E0 −Es

0

)= 2

3
(d0 −v0)

1Some degeneracy are possible for some orthotropic elasticity tensors E [17].
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carries information on the likely symmetry coordinate system, has been used by Stahn and
coworkers [10] in order to define upper bounds estimates M(E0,Σ[G]) of the distance of E0 to a
symmetry stratum Σ[G]. When the distance of E0 to Σ[G] is defined by

d(E0,Σ[G]) = min
E∈Σ[G]

∥E0 −E∥,

where ∥·∥ is usually an SO(3)-invariant norm, estimates of the distance to a symmetry class
(including the 2D orthotropic estimates of [12, Section 5] and of [14, Corollary 3.2], and the 3D
transversely isotropic estimate of [15]) are usually obtained as

M
(
E0,Σ[G]

)= min
E∈S⊂Σ[G]

∥E0 −E∥,

i.e., as the minimum over a subset S, astutely chosen, of the considered symmetry stratum. It
satisfies thus

d
(
E0,Σ[G]

)≤ M
(
E0,Σ[G]

)
.

Observe that choosing a finite subset S of N elasticity tensors

S = {E1, . . . , EN } ,

in the given symmetry stratum Σ[G], lead to an estimate of d(E0,Σ[G]). The subtlety consists in
choosing efficiently this set, given E0.

For instance, in [10], by the procedure recalled in Appendix B, the authors define first a finite
list {G1, . . . , GN } of representative groups in the symmetry class [G], using the eigenbasis of the
second-order covariant t0 = t(E0) (assumed to be orthotropic). To each symmetry group Gn is
then associated an elasticity tensor En with symmetry Gn , using the Reynolds averaging operator
RGn (defined for finite groups by (8)).

It is worth mentioning that difficulties arise when the considered elasticity symmetry class is
not orthotropic, and when the second order covariant t0 does not carry much information about
the expected symmetry group [10, 19, 21, 28]. This is the case for instance for cubic symmetry,
since all second-order covariants c(E) are then isotropic (see Section 2.3).

Another approach has been proposed by Klimeš [15, 29] for transverse isotropy (symmetry
class [O(2)] [22]). Instead of considering that a covariant of E0 carries the likely symmetry
coordinate system of the optimal transversely isotropic elasticity tensor E ∈ Σ[O(2)], this author
did observe that the following relation

TK(E,nnn) = 0, T K
i j kl (E,nnn) = 1

4
nm

(
εmi nEn j kl +εm j nEi nkl +εmknEi j nl +εml nEi j kn

)
, (12)

which is linear both in the transverse isotropy direction nnn and E, was satisfied for each elasticity
tensor E transversely isotropic of axis nnn.

Remark 6. The vector nnn is not a covariant of E, since all vector covariants of E vanish when E is
transversely isotropic [17] (see Section 2.3).

Klimeš did then suggest the likely transverse isotropy coordinate system of a raw tensor E0, as
a coordinate system with a z-axis of direction a unit vector nnn which minimizes

min
∥nnn∥=1

∥TK(E0,nnn)∥2, (13)

for the Euclidean norm. Nicely, this quadratic optimization problem has an analytical solution.
Indeed, (13) can be recast as [29]

min
∥nnn∥=1

〈Annn,nnn〉 (14)

where 〈·, ·〉 is the Euclidean scalar product and AE0 is a positive semi-definite matrix, which is
moreover a quadratic second-order covariant of E0 (see Appendix C). The solution of this problem
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is a unit eigenvector nnn of A, associated with its smallest eigenvalue. Once the axis 〈nnn〉 of the
transversely isotropic symmetry group G (conjugate to O(2)) is known, an upper bound estimate

M
(
E0,Σ[O(2)]

)= ∥E0 −RG (E0)∥ .

is obtained by standard Reynolds averaging [15] (an alternative simpler formula is provided
in Appendix C).

4. Symmetry coordinate system of a close to be cubic or orthotropic elasticity tensor

The problem now is to find a likely cubic coordinate system (or a likely orthotropic coordinate
system) for a raw elasticity tensor E0. One knows that the exact distance to cubic symmetry
d(E0,Σ[O]) is indeed solution of a quadratic optimization problem, which can be solved using
the computation of a Gröbner basis [8]. To get a fully analytical (but approximate) solution, we
propose to generalize Klimeš procedure by formulating a linear equation on a tensorial variable
N which replaces the vector nnn in Klimeš equation (12). This equation is written as the tensorial
equation

T(C(E),N) = 0,

where C(E) is a covariant of E.

• In the case of transverse isotropy (Klimeš equation), C(E) = E, and N = nnn is a vector.
Solutions nnn of the equation T(E,nnn) = TK(E,nnn) = 0 matches the axis of transverse isotropy
of E.

• In the case of cubic or orthotropic symmetry, C(E) = H, where H is the fourth-order
harmonic component of E, and N = a′ is a symmetric second-order deviator.

Following Klimeš [29], and considering then the measured—therefore not cubic—elasticity
tensor

E0 =
(
λ0,µ0,d′

0,v′0,H0
)

,

the squared Euclidean norm ∥T(H0,a′)∥2 is minimized under the constraint ∥a′∥ = 1 to obtain an
expression of the second-order tensor a′. When a′ is orthotropic, its eigenbasis (eee i ) defines the
likely cubic coordinate system sought. We shall see that it will also define a likely orthotropic
coordinate system.

4.1. Likely cubic coordinate system of a raw elasticity tensor

Let E = (λ,µ,0,0,H) be a cubic elasticity tensor, and let

S1 ×S2 :=−(S1 ·εεε ·S2)s , (15)

denote the generalized cross product between two totally symmetric tensors S1 and S2 intro-
duced in [17]. Here, εεε = (εi j k ) is the Levi–Civita tensor, a dot · stands for one subscript contrac-
tion, and ( )s means the total symmetrization of a tensor.

It has been shown in [19, Appendix B] that, for a given cubic harmonic fourth-order tensor
H ∈H4, the linear equation

T
(
H,a′) := tr

(
H×a′)= 0, a′ ∈H2,

in the deviatoric second-order tensor N = a′ has orthotropic solutions and all of them are diagonal
in the cubic coordinate system common to H and E. See Appendix D for the expression of the
components [tr(H×a)]i j k .
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Remark 7. We have S×1 = 0 for every symmetric tensor S. Hence,

tr(H×a) = tr
(
H×a′)

for every symmetric second-order tensor a, where a′ denotes its deviatoric part.

When the elasticity tensor E0 = (λ0,µ0,d′
0,v′0,H0) is not, but close to be cubic, we expect to

obtain a likely cubic basis (eee1,eee2,eee3) for E0 where the eee i are the eigenvectors of an orthotropic
deviatoric second-order tensor a′, which minimizes (see Section 5)

min
∥a′∥=1

∥∥tr
(
H0 ×a′)∥∥2 , a′ ∈H2. (16)

Remark 8. Note that it is very important to seek for a = a′ deviatoric, since, by Remark 7, we have
tr(H0 ×1) = 0. Indeed, for each fourth-order harmonic tensor H0, the minimization problem

min
∥a∥=1

∥tr(H0 ×a)∥2 , a ∈S2

has for minimum 0 and this minimum is obtained for a = ±1/
p

3 (spherical), which does not
furnish any information.

The function to be minimized can be rewritten as∥∥tr
(
H0 ×a′)∥∥2 = 9

200
∥H0∥2 ∥∥a′∥∥2 − 3

20
a′ : H2

0 : a′+ 27

100
d′

2(H0) : a′2, (17)

where H2
0 = H0 : H0 and d20 = d2(H0) is the symmetric second-order covariant of H0 defined

by (10).

Remark 9. It is worth pointing out that one has furthermore d′
2(H0) = 0 (i.e., d2(H0) is isotropic),

when H0 is cubic [17, Theorem 9.3]. This means that another likely cubic coordinate system,
in general different from the one obtained by minimizing (16), could also be obtained using the
minimization problem

min
∥b′∥=1

(
9

200
∥H0∥2 ∥∥b′∥∥2 − 3

20
b′ : H0 : H0 : b′

)
, b′ ∈H2,

instead of (16).

4.2. Likely orthotropic coordinate system of a raw elasticity tensor

Consider an orthotropic elasticity tensor E. In its natural basis, its Kelvin representation is
written as (7). Generically, its fourth-order harmonic part H is also orthotropic and its Kelvin
representation has for expression [30]

[H] =



λ2 +λ3 −λ3 −λ2 0 0 0
−λ3 λ3 +λ1 −λ1 0 0 0
−λ2 −λ1 λ2 +λ1 0 0 0

0 0 0 −2λ1 0 0
0 0 0 0 −2λ2 0
0 0 0 0 0 −2λ3

 , (18)

where λ1,λ2,λ3 are three distinct real numbers.
Our goal, now, is to show that, generically, the equation

tr
(
H×a′)= 0, a′ ∈H2,
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where H is orthotropic has orthotropic solutions and that all these solutions are diagonal in the
natural basis of H. Looking for deviatoric solutions we have a′

33 = −a′
11 − a′

22, and, using the
formulas in Appendix D, we get

0 = (
tr

(
H×a′))

111 =
3

10
a′

23(λ2 −λ3),

0 = (
tr

(
H×a′))

112 =− 1

10
a′

13(2λ2 +3λ3),

0 = (
tr

(
H×a′))

113 =
1

10
a′

12(3λ2 +2λ3),

0 = (
tr

(
H×a′))

122 =
1

10
a′

23(2λ1 +3λ3),

0 = (
tr

(
H×a′))

123 =
1

10

(
a′

11(λ1 −2λ2 +λ3)+a′
22(2λ1 −λ2 −λ3)

)
,

0 = (
tr

(
H×a′))

133 =− 1

10
a′

23(2λ1 +3λ2),

0 = (
tr

(
H×a′))

222 =− 3

10
a′

13(λ1 −λ3),

0 = (
tr

(
H×a′))

223 =− 1

10
a′

12(3λ1 +2λ3),

0 = (
tr

(
H×a′))

233 =
1

10
a′

13(3λ1 +2λ2),

0 = (
tr

(
H×a′))

333 =
3

10
a′

12(λ1 −λ2),

which leads to the general solution

a′ = a′
11

λ2 +λ3 −2λ1

−2λ1 +λ2 +λ3 0 0
0 λ1 −2λ2 +λ3 0
0 0 λ1 +λ2 −2λ3

 ,

which is diagonal in the natural basis of H (and thus E). Moreover, generically a′ has three distinct
eigenvalues and its three eigenvectors constitute then a natural basis for H.

This observation allows us to seek, as in the cubic case, for a likely orthotropic basis (eee i )
for a raw (triclinic) elasticity tensor E0 = (λ0,µ0,d′

0,v′0,H0), as an orthonormal eigenbasis of an
orthotropic deviatoric tensor a′ which minimizes

min
∥a′∥=1

∥∥tr
(
H0 ×a′)∥∥2 , a′ ∈H2. (19)

5. Reduction to an eigenvalue problem

In the method suggested by Klimeš, to estimate the distance to transversely isotropic symmetry
class, the problem consists in minimizing the quadratic form

min
∥nnn∥=1

〈AE nnn,nnn〉,
where the symmetric linear operator AE is detailed in Appendix C. It reduces therefore to the clas-
sical problem of minimizing a positive definite quadratic form 〈A vvv ,vvv〉 defined on an Euclidean
vector space over the unit sphere

min
∥vvv∥=1

〈A vvv ,vvv〉,
whose solutions vvv∗ are the unit eigenvectors corresponding to the smallest eigenvalue of A.

In the problem we consider, which is to estimate the distance to cubic/orthotropic symmetry
class, we introduce first the bilinear mapping

H4 ×S2 →H3, (H,a) 7→ tr(H×a).
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To emphasize the fact that, here, H plays the role of a parameter and a of a variable, we recast this
bilinear mapping as the linear operator

LH :S2 →H3, a 7→ tr(H×a),

i.e., LH a = tr(H×a). We have then

∥tr(H×a)∥2 = ∥LH a∥2 = 〈LH a,LH a〉 = 〈
LH

t LH a,a
〉

,

where LH
t is the transpose of the operator LH for the Euclidean metric, and where the scalar

product on S2 is given by
〈a,b〉 = tr(ab) = a : b.

We will set thus AH := LH
t LH, which is a positive semi-definite operator onS2. This operator can

be interpreted as the fourth-order tensor (of elasticity type)

AH = 9

200
∥H∥2J− 3

20
H : H+ 27

200
J :

(
1⊗d′

2 +d′
2 ⊗1

)
: J,

where d′
2 is the deviatoric part of d2(H) = H

...H defined by (10), and where the deviatoric projector

J := I− 1

3
1⊗1,

satisfies J : a = a : J = a′ for all a ∈S2. In particular, we have AH : 1 = 1 : AH = 0.
As already stated, the minimization problem

min
∥a∥=1

〈AH a,a〉, a ∈S2,

does not lead to any pertinent information, since the linear operator AH has always a vanishing
eigenvalue (indeed, AH1 = 0, for every H). Hence, in general there is no orthotropic minimum but
a minimizing sequence of orthotropic tensors (an), with ∥an∥ = 1, converging to either a = 1/

p
3

or a =−1/
p

3. This is not useful.
We need thus to remove these annoying solutions. To do so, we consider the subspace H2 of

S2 of deviatoric (harmonic) second-order tensors. Since AH1 = 0, AH is symmetric and H2 is the
orthogonal complement in S2 of the one-dimensional vector space spanned by 1, the restriction
AH|H2 toH2 is a linear mapping fromH2 toH2.

We shall thus consider rather the minimization problem

min
∥a′∥=1

〈
AH

∣∣
H2 a′,a′〉 , a′ ∈H2,

but with further restrictions, that we shall now explain. We note first that, in general, the
eigenspace corresponding to the vanishing eigenvalue of AH is one-dimensional and thus
spanned by 1. To make this statement rigorous, we restrict our study to tensors H such that
det AH|H2 ̸= 0 , which defines a generic set of tensors H (a non-empty Zariski open set, see [26, 31,
32]).

If H is generic (i.e., det AH|H2 ̸= 0), then AH|H2 is positive definite and its eigenvalues corre-
spond to the positive eigenvalues of AH. Besides, the corresponding eigenvectors are deviatoric,
since they are orthogonal to the eigenvector 1 associated with the eigenvalue λ = 0. Therefore,
in practice, it is not necessary to calculate AH|H2 . In fact, we need only to calculate the eigenval-
ues of AH and consider its smallest positive eigenvalue λmi n . An eigenvector a = a′ for λmi n > 0
(which is necessary deviatoric) is thus a candidate to provide our likely cubic normal basis. To
fully solve the problem, the deviatoric second-order tensor a′ has to be orthotropic, not trans-
versely isotropic. This turns out to be generic as well, as it can be checked in the examples of
Sections 6 and 7.

To sum up this methodology, in practice, the minimization problem

min
∥a′∥=1

∥∥tr
(
H0 ×a′)∥∥2 , a′ ∈H2,
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for generic H0 reduces to calculate the eigenvector

a′ =



a′
11

a′
22

a′
33p

2 a′
23p

2 a′
13p

2 a′
12

 .

corresponding to the smallest positive eigenvalue λmi n > 0 of the symmetric fourth-order tensor

AH0 =
9

200
∥H0∥2J− 3

20
H0 : H0 + 27

200
J :

(
1⊗d′

20 +d′
20 ⊗1

)
: J,

expressed in Kelvin notation,

[
AH0

]=


(AH0 )1111 (AH0 )1122 (AH0 )1133
p

2(AH0 )1123
p

2(AH0 )1113
p

2(AH0 )1112

(AH0 )1122 (AH0 )2222 (AH0 )2233
p

2(AH0 )2223
p

2(AH0 )2213
p

2(AH0 )2212

(AH0 )1133 (AH0 )2233 (AH0 )3333
p

2(AH0 )3323
p

2(AH0 )3313
p

2(AH0 )3312p
2(AH0 )1123

p
2(AH0 )2223

p
2(AH0 )3323 2(AH0 )2323 2(AH0 )2313 2(AH0 )2312p

2(AH0 )1113
p

2(AH0 )2213
p

2(AH0 )3313 2(AH0 )2313 2(AH0 )1313 2(AH0 )1312p
2(AH0 )1112

p
2(AH0 )2212

p
2(AH0 )3312 2(AH0 )2312 2(AH0 )1312 2(AH0 )1212

 .

Remark 10. The same procedure, with AH0 replaced by BH0 and a′ replaced by b′, applies to the
minimization problem defined in Remark 9, and recasts as

min
∥b′∥=1

(
9

200
∥H0∥2 ∥b′∥2 − 3

20
b′ : H0 : H0 : b′

)
= min

∥b′∥=1
b′ : BH0

∣∣
H2 : b′, b′ ∈H2, (20)

where we seek for b′ deviatoric and orthotropic, and where BH0

∣∣
H2 is the restriction to H2 of the

symmetric operator

BH0 =
9

200
∥H0∥2 J− 3

20
H0 : H0,

defined on S2 (and which satisfies BH0 : 1 = 1 : BH0 = 0).

6. Upper bounds estimates of the distance to cubic elasticity

Let E0 be a given (measured) elasticity tensor, triclinic, with harmonic decomposition

E0 =
(
λ0,µ0,d′

0,v′0,H0
)

.

Some upper bounds estimates of the distance d(E0, [O]) of E0 to elasticity cubic symmetry,
denoted here by M(E0, [O]), have been obtained by Stahn and coworker in [10] (see Appendix B)
and recently in [8, Appendix B], denoted here by ∆d2 (E0, [O])) (see (21)). Both estimates use a
symmetric second-order covariant of E0. In [10], it is

t0 := 2

3
(d0 −v0),

and in [8], it is

d20 := d2(H0) = H0
...H0.

The estimates M(E0, [O])/∥E0∥ and ∆d2 (E0, [O])/∥E0∥ of the relative distance to cubic symmetry
are approximately 0.34-0.33 when evaluated for the material tested by François et al [3] (see [8]
and Table 1). These upper bounds estimates are not very accurate since the relative distance
d(E0, [O])/∥E0∥ has been computed to be 0.104 in that case [3]. The explanation is that the mate-
rial considered is a single crystal superalloy (of CSMX-4 type) with a cubic Ni-based microstruc-
ture. Its mechanical behavior is expected to be cubic (experimentally, close to be cubic). As re-
called in Section 2.3, all the second-order covariants of its elasticity tensor, including t0 and d20,
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are expected to be isotropic (experimentally close to be isotropic) and therefore not to any carry
information about the cubic coordinate system.

The cubic estimate ∆d2 (E0, [O]) is defined in [8] as

∆d2 (E0, [O]) = ∥E0 −E∥, E = 2µ0I+λ01⊗1+ (
Cd20 :: H0

)
Cd20 ∈Σ[O], (21)

thanks to the introduction of a cubic harmonic fourth-order tensor

Ca :=
√

15

2

((
a2 ×a

) · (a2 ×a
))′∥∥a2 ×a

∥∥2 ∈H4,

with ∥Ca∥ = 1 and where (·)′ means the leading harmonic part,((
a2 ×a

) · (a2 ×a
))′ = (

a2 ×a
) · (a2 ×a

)− 1

15

∥∥a2 ×a
∥∥2

(3I−1⊗1) ∈H4.

It is built using the assumed orthotropic second-order tensor a = d20 and where the component
of the generalized cross product a×b of two symmetric second-order tensors defined by (15), are
given in Appendix D. Note that∥∥a2 ×a

∥∥2 = 1

12

((
tr

(
a′2))3 −6

(
tr

(
a′3))2

)
. (22)

and that a2 × a ̸= 0 when the symmetric second-order tensor a is orthotropic. Indeed, if a =
diag[a1, a2, a3] is diagonal in some basis (eee i ), one has [17]

a2 ×a = (a1 −a2)(a1 −a3)(a2 −a3)eee1 ⊙eee2 ⊙eee3, (23)

where ⊙ is the symmetrized tensor product.
We get thus the following Kelvin matrix representations, in the same basis (eee i ),

[(
a2 ×a

) · (a2 ×a
)∥∥a2 ×a

∥∥2

]
= 1

3



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (24)

and

[Ca] = 1p
30



−2 1 1 0 0 0
1 −2 1 0 0 0
1 1 −2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 . (25)

Remark 11 (Geometry of Ca). The symmetry group of the cubic tensor Ca is denoted GCa (i.e.,
g ⋆Ca = Ca ∀ g ∈GCa , see Section 2). Since, furthermore, Ca is a covariant of a2×a, which is itself
a covariant of a, we get thus

Ga ⊂Ga2×a ⊂GCa .

In a natural basis (eee i ) for a, in which a is diagonal, we have Ga =D2, and a2 ×a is of the form (23).
Moreover, Ga2×a = T, where T is the tetrahedral group and GCa = O, where O is the octahedral
(cubic) group. When expressed in the basis (eee i ), Ca is fixed by O (i.e., Ca ∈ Fix(O)) is thus in its
cubic normal form for an harmonic fourth-order tensor [30]. In another basis, GCa = rOr−1, for
some rotation r , and Ca ∈ Fix(GCa ) = Fix(rOr−1) is fixed by a conjugate ofO.
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Remark 12 (Reynolds averaging / Orthogonal projection on Fix(GCa )). In (21), the cubic har-
monic tensor H = (Ca :: H0)Ca and the elasticity tensor E are the orthogonal projections of the
harmonic tensor H0 and E0 on the respective fixed point sets Fix(GCa ), of the harmonic fourth-
order tensors and the elasticity tensors. By uniqueness of the orthogonal projection, H and E
correspond also to Reynolds averaging (defined in Section 2.2)

H = RGCa
(H0) = (Ca :: H0)Ca, E = RGCa

(E0) = (
λ0,µ0,0,0,RGCa

(H0)
)

.

Since the harmonic fourth-order tensor Ca is cubic, it is independent from the distinct values
of the ai . One can choose any orthotropic second-order tensor a (for instance other than d20) to
get a cubic tensor E and to define an (other) upper bound estimate of d(E0, [O]), as

∆a(E0, [O]) = ∥E0 −E∥, E = 2µ0I+λ01⊗1+ (Ca :: H0)Ca ∈Σ[O]. (26)

We have furthermore, by Remark 1, the following invariant formula for the Euclidean norm,

∆a(E0, [O]) =
√

2

21

∥∥d′
0 +2v′0

∥∥2 + 4

3

∥∥d′
0 −v′0

∥∥2 +∥H0∥2 − (Ca :: H0)2 . (27)

The cubic upper bound estimate in [10] is then simply recovered as

M(E0, [O]) =∆t0 (E0, [O]),

by setting

a = t0 = 2

3
(d0 −v0) .

Remark 13. Expression (26) is valid for any norm (not necessarily SO(3)-invariant see [9, 11]),
whereas expression (27) only applies to the Euclidean norm.

The normal form EO (defined by (6)) of the cubic estimate E is obtained directly from (25) with

(EO)1111 = 2µ0 +λ0 − 2p
30

Ca :: H0,

(EO)1122 =λ0 + 1p
30

Ca :: H0,

(EO)1212 =µ0 + 1p
30

Ca :: H0.

In the following examples, we systematically compare the upper bounds estimates ∆a(E0, [O])
(resp. the relative estimates∆a(E0, [O])/∥E0∥) to the distance d(E0, [O]) (resp. the relative distance
d(E0, [O])/∥E0∥) of a raw elasticity tensor E0 to cubic symmetry, for the four different choices:

• a = t0 (Stahn and coworkers estimate of the distance to cubic symmetry [10]),
• a = d20 (estimate of the distance to cubic symmetry of ref. [8]),
• a = a′, obtained by the minimization of ∥tr(H0 ×a′)∥2 = a′ : AH0

∣∣
H2 : a′ (see Section 5).

• a = b′, obtained by the minimization of b′ : BH0

∣∣
H2 : b′ (see Section 5).

The best upper bound estimate of d(E0, [O]) will, then, be the minimum minimorum

∆opt(E0, [O]) = min
(
∆t0 (E0, [O]),∆d2 (E0, [O]),∆a′ (E0, [O]),∆b′ (E0, [O])

)
.

Remark 14. Any other second-order covariant c(E0) of the elasticity tensor E0 can be added to
the list

{
t0,d20,a′,b′}, such as [17]

d0, v0, d2
0, v2

0, (d0v0)s ,

H0 : d0, H0 : v0, H0 : d2
0, H0 : v2

0, H0 : (d0v0)s ,

c3 = H0 : d20, c4 = H0 : c3, c5 = H0 : c4, . . .
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6.1. Example of Ni-based superalloy

Consider the elasticity tensor (in Kelvin representation)

[E0] =



243 136 135 22
p

2 52
p

2 −17
p

2
136 239 137 −28

p
2 11

p
2 16

p
2

135 137 233 29
p

2 −49
p

2 3
p

2
22

p
2 −28

p
2 29

p
2 133 ·2 −10 ·2 −4 ·2

52
p

2 11
p

2 −49
p

2 −10 ·2 119 ·2 −2 ·2
−17

p
2 16

p
2 3

p
2 −4 ·2 −2 ·2 130 ·2

 GPa, (28)

measured by François and coworkers [3] for a single crystal Ni-based superalloy with a so-
called cubic γ/γ′ microstructure [33–35]. Its harmonic components λ0,µ0,d′

0,v′0,H0 are given
in Appendix E.1. We get

t0 = 2

3
(d0 −v0) =

 14.67 8.67 10
8.67 6.67 16
10 16 13.33

 , d20 = H0
...H0 = 103

 19.43 −1.44 −1.06
−1.44 15.84 0.83
−1.06 0.83 22.62

 ,

respectively in GPa and in GPa2, and

[
Ct0

]= 10−3



18 38 −56 −185
p

2 140
p

2 94
p

2
38 122 −161 169

p
2 −66

p
2 −38

p
2

−56 −161 217 15
p

2 −75
p

2 −56
p

2
−185

p
2 169

p
2 15

p
2 −161 ·2 −56 ·2 −66 ·2

140
p

2 −66
p

2 −75
p

2 −56 ·2 −56 ·2 −185 ·2
94

p
2 −38

p
2 −56

p
2 −66 ·2 −185 ·2 38 ·2

 ,

[
Cd20

]= 10−3



−45 45 0 62
p

2 −203
p

2 154
p

2
45 −192 148 50

p
2 2

p
2 −226

p
2

0 148 −147 −112
p

2 201
p

2 73
p

2
62

p
2 50

p
2 −112

p
2 148 ·2 73 ·2 2 ·2

−203
p

2 2
p

2 201
p

2 73 ·2 0 62 ·2
154

p
2 −226

p
2 73

p
2 2 ·2 62 ·2 45 ·2

 .

so that

Ct0 :: H0 =−49.32 GPa, Cd20 :: H0 =−62.64 GPa.

The second-order tensors a′, minimizing (16) and b′, minimizing (20), have for Kelvin represen-
tation the eigenvectors a′ and b′, corresponding to the smallest positive eigenvalue of the 6×6
matrices [AH0 ] and [BH0 ] introduced in Section 4 (and given in Appendix E.1). We have

a′ =
−0.0556 0.0505 −0.2156

0.0505 0.6837 0.1360
−0.2156 0.1360 −0.6281

 , b′ =
 0.5310 0.0217 −0.3192

0.0217 0.1582 0.0816
−0.3192 0.0816 −0.6892

 (29)

and thus (in Kelvin notation)

[Ca′ ] = 10−3



−198 180 18 7
p

2 220
p

2 8
p

2
180 −346 166 −85

p
2 −6

p
2 −35

p
2

18 166 −184 78
p

2 −214
p

2 27
p

2
7
p

2 −85
p

2 78
p

2 166 ·2 27 ·2 −6 ·2
220

p
2 −6

p
2 −214

p
2 27 ·2 18 ·2 7 ·2

8
p

2 −35
p

2 27
p

2 −6 ·2 7 ·2 180 ·2

 ,
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[Cb′ ] = 10−3



−267 182 85 5
p

2 188
p

2 −2
p

2
182 −350 169 −79

p
2 −3

p
2 −16

p
2

85 169 −254 74
p

2 −184
p

2 18
p

2
5
p

2 −79
p

2 74
p

2 169 ·2 18 ·2 −3 ·2
188

p
2 −3

p
2 −184

p
2 18 ·2 85 ·2 5 ·2

−2
p

2 −16
p

2 18
p

2 −3 ·2 5 ·2 182 ·2

 ,

so that
Ca′ :: H0 = 218.29 GPa, Cb′ :: H0 = 226.47 GPa.

The upper bound estimates (27) as well as the corresponding relative estimates

M(E0, [O])

∥E0∥
= ∆t0 (E0, [O])

∥E0∥
,

∆d20 (E0, [O])

∥E0∥
,

∆a′ (E0, [O])

∥E0∥
,

∆b′ (E0, [O])

∥E0∥
,

are compared in Table 1, respectively to the exact distance d(E0, [O]) = 74.13 GPa and to the
relative distance d(E0, [O])/∥E0∥ = 0.1039 (computed in [3, 8]). The minimum minimorum is also
given. The determination of a likely cubic coordinate system by the minimization problems (16)
and (20), which avoid the use of second-order covariants of E0, is found to be accurate. The
best upper bound estimate of d(E0, [O]) is here∆b′ (E0, [O]) = 97.8 GPa, so that∆b′ (E0, [O])/∥E0∥ =
0.1371, with b′ the deviatoric solution of min∥b′∥=1 b′ : BH0

∣∣
H2 : b′ where

BH0 =
9

200
∥H0∥2 J− 3

20
H0 : H0.

Table 1. Comparison of upper bounds estimates of the distance to cubic elasticity
d(E0, [O]) for Ni-based single crystal superalloy.

d(E0, [O]) M =∆t0 ∆d20 ∆a′ ∆b′ ∆opt =∆b′

74.13 Estimate (GPa): 241.7 238.6 114.9 97.8 97.8

0.1039 Relative estimate: 0.3388 0.3344 0.1610 0.1371 0.1371

Finally, the cubic elasticity tensor corresponding to ∆b′ (E0, [O]) = 97.8 GPa is (in Kelvin repre-
sentation and in the basis in which is expressed [E0])

[E] =



238.76 146.72 124.86 1.18
p

2 42.46
p

2 −0.41
p

2
146.72 219.91 143.71 −17.89

p
2 −0.71

p
2 −3.66

p
2

124.86 143.71 241.76 16.72
p

2 −41.75
p

2 4.07
p

2
1.18

p
2 −17.89

p
2 16.72

p
2 135.04 ·2 4.07 ·2 −0.71 ·2

42.46
p

2 −0.71
p

2 −41.75
p

2 4.07 ·2 116.19 ·2 1.18 ·2
−0.41

p
2 −3.66

p
2 4.07

p
2 −0.71 ·2 1.18 ·2 138.05 ·2

 GPa.

6.2. Academic example of a close to be orthotropic material

Consider now the elasticity tensor studied in [10] (directly given in Kelvin notation, the units
having been suppressed for brevity),

[E0] =



9.35 5.81 −0.20 5.1 4.06 −2.51
5.81 11.09 2.67 −0.83 −3.92 2.79
−0.20 2.67 11.01 −0.1 −2.95 0.57

5.1 −0.83 −0.1 8.13 −1.16 0.8
4.06 −3.92 −2.95 −1.16 7.94 2.01
−2.51 2.79 0.57 0.8 2.01 8.13

 . (30)
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The results are given in Table 2. The estimates obtained are this time very close to each other
and to the exact distance to cubic elasticity d(E0, [O]) = 11.4551 GPa (computed using a polyno-
mial optimization method [8]). This is not so surprising since E0 is close to be orthotropic [10]
(see Section 7.3), so that its second-order covariants carry then accurate information on the ma-
terial symmetry coordinate system.

We only provide the details concerning the upper bound estimate ∆a′ (E0, [O]) = 11.4551 GPa,
which is optimal, and obtained by the minimization of ∥tr(H0 ×a′)∥2 = a′ : A0

∣∣
H2 : a′ , where (see

Appendix E.2)

A0 = 9

200
∥H0∥2J− 3

20
H0 : H0 + 27

200
J :

(
1⊗d′

20 +d′
20 ⊗1

)
: J. (31)

We get

a′ =
 0.5009 0.2749 −0.4724

0.2749 −0.2896 −0.1076
−0.4724 −0.1076 −0.2113

 ,

and (in Kelvin notation)

[Ca′ ] = 10−3



−21 113 −93 122
p

2 166
p

2 −123
p

2
113 −134 21 −242

p
2 22

p
2 66

p
2

−93 21 72 12
p

20 −188
p

2 58
p

2
122

p
2 −242

p
2 120

p
2 21 ·2 58 ·2 22 ·2

166v 22
p

2 −188
p

2 58 ·2 −93 ·2 122 ·2
−123

p
2 66

p
2 58

p
2 22 ·2 122 ·2 113 ·2

 ,

so that

Ca′ :: H0 = 9.078 GPa.

Table 2. Comparison of upper bounds estimates of the distance to cubic elasticity
d(E0, [O]) for an academic elasticity tensor.

d(E0, [O]) M =∆t0 ∆d20 ∆a′ ∆b′ ∆opt =∆a′

11.4551 Estimate: 11.4573 11.4552 11.4551 14.3961 11.4551

0.409081 Relative estimate: 0.409162 0.409086 0.409083 0.514110 0.409083

The cubic elasticity tensor corresponding to∆a′ (E0, [O]) is (in Kelvin representation, and in the
basis in which is expressed [E0])

[E] =



10.07 3. 2.94 0.19 −0.29 −0.14
3. 10.49 2.52 0.06 −0.23 0.77

2.94 2.52 10.55 −0.25 0.52 −0.63
0.19 0.06 −0.25 7.58 −0.88 −0.33
−0.29 −0.23 0.52 −0.88 8.42 0.27
−0.14 0.77 −0.63 −0.33 0.27 8.54

 GPa.
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6.3. Example of Vosges sandstone

We end this set of examples by considering the elasticity tensor identified by François [1, Chap.
4] using the ultrasonic measurement of Arts [18] on a Vosges sandstone specimen,

[E0] =



12.2 −2.2 1.9 0.9
p

2 0.8
p

2 −0.5
p

2
−2.2 13. 2.9 0.2

p
2 −0.3

p
2 0.4

p
2

1.9 2.9 13.9 0 0 0.1
p

2
0.9

p
2 0.2

p
2 0 4. ·2 1.2 ·2 0

0.8
p

2 −0.3
p

2 0 1.2 ·2 5.4 ·2 0
−0.5

p
2 0.4

p
2 0.1

p
2 0 0 5.4 ·2

 GPa. (32)

The results are given in Table 2. The estimates are accurate (compared to the distance d(E0, [O]) =
6.49 GPa and the relative distance d(E0, [O])/∥E0∥ = 0.221 computed in [1]), and they are close to
each other, meaning that the second-order covariants of E0 carry here accurate information on
the material symmetry coordinate system. We next provide the details concerning ∆b′ (E0, [O]),
obtained in this case thanks to the minimization of b′ : BH0

∣∣
H2 : b′ (see Appendix E.3). We get

b′ =
 0.6282 −0.1123 0.2526
−0.1123 −0.6367 0.1534
0.2526 0.1534 0.0085

 ,

and (in Kelvin notation):

[Cb′ ] = 10−3



−186 160 26 −7
p

2 −227
p

2 37
p

2
160 −226 66 186

p
2 48

p
2 −98

p
2

26 66 −92 −180
p

2 180
p

2 61
p

2
−7

p
2 186

p
2 −180

p
2 66 ·2 61 ·2 48 ·2

−227
p

2 48
p

2 180
p

2 61 ·2 26 ·2 −7 ·2
37

p
2 −98

p
2 61

p
2 48 ·2 −7 ·2 160 ·2

 ,

so that

Cb′ :: H0 =−1.916 GPa.

The corresponding cubic elasticity tensor is (in Kelvin representation, and in the basis in which
is expressed [E0])

[E] =



12.47 1.02 1.28 0.01
p

2 0.44
p

2 −0.07
p

2
1.02 12.55 1.2 −0.36

p
2 −0.09

p
2 0.19

p
2

1.28 1.2 12.29 0.34
p

2 −0.34
p

2 −0.12
p

2
0.01

p
2 −0.36

p
2 0.34

p
2 5.27 ·2 −0.12 ·2 −0.09 ·2

0.44
p

2 −0.09
p

2 −0.34
p

2 −0.12 ·2 5.34 ·2 0.01 ·2
−0.07

p
2 0.19

p
2 −0.12

p
2 −0.09 ·2 0.01 ·2 5.09 ·2

 GPa.

Table 3. Comparison of upper bounds estimates of the distance to cubic elasticity
d(E0, [O]) for Vosges sandstone.

d(E0, [O]) M =∆t0 ∆d20 ∆a′ ∆b′ ∆opt =∆t0

6.49 Estimate (GPa): 7.809 7.818 7.848 7.621 7.809

0.221 Relative estimate: 0.2660 0.2664 0.2674 0.2596 0.2660
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7. Upper bounds estimates of the distance to orthotropy

We consider still a given (measured) elasticity tensor E0, triclinic, with harmonic decomposition

E0 =
(
λ0,µ0,d′

0,v′0,H0
)

.

Its likely orthotropic coordinate system can be determined exactly as in the previous section,
meaning that we assume that it is one of the likely cubic coordinate systems, determined from

either a second order-covariant of E0 (among t0 = 2
3 (d0−v0) or d20 = H0

...H0, for instance), or from
a deviatoric second-order tensor a′ or b′ which minimizes respectively (16) or (20). A proof that
a′ carries information on the likely orthotropic basis has been given in Section 4.2. No such proof
exists for the deviatoric tensor b′, which minimizes (20), but nothing prevents us from keeping it
in the list

{
t0,d20,a′,b′} for comparison.

Once an orthotropic second order tensor that carries the likely orthotropic coordinate system
has been exhibited, say a, with an orthotropic (dihedral) symmetry group Ga (conjugate to D2),
we have to perform the orthogonal projection

E = RGa (E0) = (
λ0,µ0,RGa (d′

0),RGa (v′0),RGa (H0)
)

onto the linear subspace Fix(Ga) of orthotropic elasticity tensors, fixed by the group Ga (see Sec-
tion 2.2 and Remark 4). Instead of computing this projection using the Reynolds operator (by (5)–
(8)), we prefer to project each harmonic component of E0, setting

d′ = RGa (d′
0), v′ = RGa (v′0), H = RGa (H0).

The orthotropic elasticity tensor E that allows to define an upper bound estimate

∆a(E0, [D2]) = ∥E0 −E∥ (33)

of the distance d(E0, [D2]) to orthotropy is then, using (4)

E = 2µ0I+λ01⊗1+ 2

7
1⊙ (

d′+2v′
)+1⊗(2,2)

(
d′−v′

)+H. (34)

Remark 15. Using deviatoric tensors, such as t′0, d′
20, a′, b′, simplifies the orthogonal projection

formulas derived thereafter for the fourth-order harmonic component H. However, even if an
orthotropic second-order tensor a is already deviatoric, we prefer to write ∆a′ (E0, [D2]) instead of
∆a(E0, [D2]) for the sake of clarity (but we will keep the lighter notation a in the calculations).

Remark 16. The Stahn and coworkers orthotropic upper bound estimate M(E0, [D2]) [10] is in fact
equal to the upper bound estimate∆t′0 (E0, [D2]) computed using a = t′0 (see the results in Tables 4,
5 and 6).

The normal form (7) for the orthotropic estimate E used to compute ∆a′ (E0, [D2]) is recovered
in any basis in which a′ is diagonal [21].

7.1. Orthogonal projection of harmonic components

Assume that the deviatoric tensor a = a′ is either a second-order covariant of E0 (t′0 or d′
20 for

example), or is the solution of either (16) or (20). Generically, a is orthotropic and its symmetry
group—a conjugate of D2—is denoted by Ga.

The orthogonal projections RGa (d′
0) and RGa (v′0) are obtained in an intrinsic way, as

d′ = RGa (d′
0) = Pa : d′

0, v′ = RGa (v′0) = Pa : v′0 (35)

using the following projector (a fourth-order rational covariant of a, introduced in [36])

Pa = I−3

(
a2 ×a

) · (a2 ×a
)∥∥a2 ×a

∥∥2 , I = 1⊗1.
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Indeed, by (24), it can be easily checked that in a basis (eee i ) in which a is diagonal, then, for any
second-order tensor b = (bi j ) possibly non diagonal, we have

Pa : b =
b11 0 0

0 b22 0
0 0 b33

= RGa (b).

Calculating an intrinsic expression of the orthogonal projection RGa (H0) for H0 ∈ H4 is less
simple. It uses the fact that, by the theory of representations for tensor functions [37–40], if a is
orthotropic, then any orthotropic harmonic fourth-order tensor H ∈H4 having the (orthotropic)
symmetry group Ga, can be expressed as

H =αa∗a+βa∗a2 ′+γa2 ′∗a2 ′,

where the tensorial operation h∗k ∈H4 is the harmonic product (defined in [28]) of two harmonic
second-order tensors h, k inH2

h∗k := (h⊙k)′ = h⊙k− 2

7
1⊙ (hk+kh)′− 2

15
(h : k)1⊙1,

= h⊙k− 2

7
1⊙ (hk+kh)+ 2

35
(h : k)1⊙1.

The scalars α,β,γ are solution of the following system (since H0 is harmonic)

[G ]

αβ
γ

=
 H0 :: (a∗a)

H0 ::
(
a∗a2 ′)

H0 ::
(
a2 ′∗a2 ′)

=
 a : H0 : a

a : H0 : a2

a2 : H0 : a2

 ,

where [G ] is the Gram matrix

[G ] =
 (a∗a) :: (a∗a) (a∗a) ::

(
a∗a2 ′) (a∗a) :

(
a2 ′∗a2 ′)(

a∗a2 ′) :: (a∗a)
(
a∗a2 ′) ::

(
a∗a2 ′) (

a∗a2 ′) :
(
a2 ′∗a2 ′)(

a2 ′∗a2 ′;
)

:: (a∗a)
(
a2 ′∗a2 ′) ::

(
a∗a2 ′) (

a2 ′∗a2 ′) :
(
a2 ′∗a2 ′)

 .

Nicely, Invariant Theory allows to express it as a function of the two fundamental invariants (here
I1 := tra′ = 0)

I2 := tr
(
a′2) and I3 := tr

(
a′3) ,

and we get

[G ] = 1

140

 72I 2
2 72I2I3 2I 3

2 +60I 2
3

72I2I3 5I 3
2 +42I 2

3 12I 2
2 I3

2I 3
2 +60I 2

3 12I 2
2 I3 2I 4

2

 .

Its determinant is (see (22))
1

3920

(
I 3

2 −6I 2
3

)2 = 3

980

∥∥a2 ×a
∥∥2

.

It does not vanish if a is orthotropic and, then, the inverse of [G ] is a rational expression of I2 and
I3.

Finally, the orthogonal projection RGa ofH4 on Fix(Ga) is given by

H = RGa (H0) =αa∗a+βa∗a2 ′+γa2 ′∗a2 ′ (36)

where αβ
γ

= 1(
I 3

2 −6I 2
3

)2

 2I 4
2 −24I 2

2 I3 84I 2
3 −2I 3

2
−24I 2

2 I3 28I 3
2 +120I 2

3 −144I2I3

84I 2
3 −2I 3

2 −144I2I3 72I 2
2

 a : H0 : a
a : H0 : a2

a2 : H0 : a2

 . (37)

The upper bound estimate∆a′ (E0, [D2]) of d(E0, [D2]), corresponding to the choice of a = a′ as the
deviatoric second-order tensor that carries the likely orthotropic coordinate system of the raw
elasticity tensor E0, is then gained by (33)–(34), with d′ and v′ determined by (35) and H by (36)–
(37).
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7.2. Example of Ni-based superalloy

Consider first the triclinic elasticity tensor E0 of the single crystal superalloy (28), close to be
cubic, measured by François and coworkers. The tensor a′ represents one of the deviatoric
second-order tensors in the set

{
t′0,d′

20,a′,b′}, determined in Section 6.1. The upper bound
estimates (33) as well as the corresponding relative estimates

M(E0, [D2])

∥E0∥
=
∆t′0 (E0, [D2])

∥E0∥
,

∆d′
20

(E0, [D2])

∥E0∥
,

∆a′ (E0, [D2])

∥E0∥
,

∆b′ (E0, [D2])

∥E0∥
,

are compared in Table 4, respectively to the exact distance to orthotropy d(E0, [D2]) = 57.8
GPa and to the relative distance d(E0, [O])/∥E0∥ = 0.081 (computed in [3]). Since the material
has a cubic microstructure, it is not surprising that the second-order covariants do not carry
much information on the likely orthotropic coordinate system (neither t′0 nor d′

20), and that the
orthotropic upper bounds estimates built from the fourth-order harmonic component H0 are
accurate. Surprisingly, the estimate ∆b′ (E0, [D2]) is the more accurate. This example shows the
interest of keeping b′ (which minimizes (20)) in the list of second-order tensors which may carry
the likely orthotropic coordinate system.

Table 4. Comparison of upper bounds estimates of the distance to orthotropic elasticity
d(E0, [D2]) for Ni-based single crystal superalloy.

d(E0, [D2]) M =∆t′0 ∆d′
20

∆a′ ∆b′ ∆opt =∆b′

57.8 Estimate (GPa): 216.1 210.9 109.8 90.3 90.3

0.081 Relative estimate: 0.3029 0.2943 0.1539 0.1266 0.1266

The orthotropic elasticity tensor corresponding to

∆b′ (E0, [D2]) = 90.3 GPa, ∆b′ (E0, [D2])/∥E0∥ = 0.127,

is (in Kelvin representation, and in the basis in which is expressed [E0]):

[E] =



239.12 136.25 131.67 −0.44
p

2 48.41
p

2 −1.36
p

2
136.25 236.12 143.68 −16.16

p
2 2.00

p
2 −3.38

p
2

131.67 143.68 232.58 17.32
p

2 −50.18
p

2 4.89
p

2
−0.44

p
2 −16.16

p
2 17.32

p
2 133.07 ·2 5.05 ·2 0.34 ·2

48.41
p

2 2.00
p

2 −50.18
p

2 5.05 ·2 120.55 ·2 0.20 ·2
−1.36

p
2 −3.38

p
2 4.89

p
2 0.34 ·2 0.20 ·2 131.97 ·2

 GPa.

It has been computed by using the symmetry group Gb of the second-order tensor b given by (29).

7.3. Academic example of a close to be orthotropic material

For the close to be orthotropic elasticity tensor (30), and the same set of second-order tensors{
t′0,d′

20,a′,b′} defined in Section 6.2, we find that the best estimate is the Stahn and coworkers
upper bound estimate M(E0, [D2]) = ∆t′0 (E0, [D2]) of the distance to orthotropy. With the excep-
tion of ∆b′ , most estimates are nonetheless very accurate: in this case both the second-order co-
variants t′0, d′

20 as well as the fourth-order covariant H0 of E0 carry precise informations on the
likely orthotropic coordinate system.
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Table 5. Comparison of upper bounds estimates of the distance to orthotropic elasticity
d(E0, [D2]) for an academic elasticity tensor.

M =∆t′0 ∆d′
20

∆a′ ∆b′ ∆opt =∆t′0

Estimate: 0.491 0.651 0.653 6.714 0.491

Relative estimate: 0.0175 0.02325 0.0233 0.2398 0.01753

The orthotropic elasticity tensor corresponding to M(E0, [D2]) = ∆t′0 (E0, [D2]) = 0.491 GPa,
M(E0, [D2])/∥E0∥ = 0.0175, is (in Kelvin representation, and in the basis in which is expressed
[E0])

[E] =



9.28 5.85 −0.17 5.01 4.03 −2.71
5.85 11.13 2.61 −0.85 −3.94 2.67
−0.17 2.61 11.02 −0.11 −3.08 0.54
5.01 −0.85 −0.11 8.02 −1.20 0.77
4.03 −3.94 −3.08 −1.20 8.00 1.88
−2.71 2.67 0.54 0.77 1.88 8.20

 GPa.

It has been computed using the symmetry group Gt′0 of the second-order tensor

t′0 =
 0.0811 0.6554 −2.1146

0.6554 1.9311 1.7342
−2.1146 1.7342 −2.0122

 GPa.

7.4. Example of Vosges sandstone

Consider finally the raw elasticity tensor (32) identified by François, also not so far from be-
ing orthotropic (with a distance d(E0, [D2]) = 2.64 GPa and a relative distance to orthotropy
d(E0, [D2])/∥E0∥ = 0.090 computed in [1]). The set of second-order tensors

{
t′0,d′

20,a′,b′} is the
one computed in Section 6.3. The four estimates are similarly good (with relative distance≈ 0.15),
the best of them being the one obtained by Stahn and coworkers M(E0, [D2]) = ∆t′0 (E0, [D2]) =
0.149.

Table 6. Comparison of upper bounds estimates of the distance to orthotropic elasticity
d(E0, [D2]) for Vosges sandstone.

d(E0, [D2]) M =∆t′0 ∆d′
20

∆a′ ∆b′ ∆opt =∆t′0

2.64 Estimate (GPa): 4.3756 4.5587 4.8292 4.5584 4.3756

0.090 Relative estimate: 0.14907 0.15531 0.16453 0.15530 0.14907

The orthotropic elasticity tensor corresponding to M(E0, [D2]) = ∆t′0 (E0, [D2]) = 4.38 GPa and
to a relative distance to orthotropy of 0.149 is (in Kelvin representation, and in the basis in which
is expressed [E0])

[E] =



11.35 −1.20 2.18 0.65
p

2 −0.05
p

2 −0.55
p

2
−1.20 11.52 3.15 0.02

p
2 −0.15

p
2 0.48

p
2

2.18 3.15 13.17 0.51
p

2 −0.21
p

2 −0.44
p

2
0.65

p
2 0.02

p
2 0.51

p
2 4.25 ·2 0.66 ·2 0.15 ·2

−0.05
p

2 −0.15
p

2 −0.21
p

2 0.66 ·2 5.68 ·2 −0.25 ·2
−0.55

p
2 0.48

p
2 −0.44

p
2 0.15 ·2 −0.25 ·2 6.40 ·2

 GPa.
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It has been computed using the symmetry group Gt′0 of the second-order tensor

t′0 =
−1.9778 −0.7333 −0.2000
−0.7333 −0.3778 0.6000
−0.2000 0.6000 2.3556

 GPa.

8. Closure

We have addressed the problem not of the determination—which usually needs numerical
methods—but of an accurate analytical estimation of the distance of a raw elasticity tensor E0

either to cubic symmetry or to orthotropy. Following [10, 21], the key point of the present work is
the use of a second-order tensor a built from E0 and which carries the likely symmetry coordinate
system. The Stahn and coworker upper bounds estimates M(E0,G) [10] of both the distance
to cubic symmetry (G = O) and the distance to orthotropy (G = D2), correspond both to the
particular choice (a = t′0) of a second-order covariant of E0 used to compute the more general
estimate ∆a(E0,G). There are, however, not only one but many possible second-order covariants
that can be used to build an upper bound estimate of the distance (see the list in Remark 14
and [17, 32]). Furthermore, since all second-order covariants of a cubic elasticity tensor are
isotropic, these estimates are not accurate for a material with a cubic microstructure (such as
a Ni-based single crystal superalloy, see Table 1), even if its elasticity tensor E0 is measured as
triclinic.

This observation has led us to suggest another way to determine a deviatoric second-order
tensor (denoted a′ or b′), which carries its likely cubic/orthotropic coordinate system. This tensor
is not a covariant of E0. It is obtained as the solution of a minimization problem (reducing to an
eigenvalue problem of a symmetric operator), which is a generalization of an approach proposed
by Klimeš for transverse isotropy [15, 29].

More precisely, we formulate a quadratic functional defined on symmetric and deviatoric
second-order tensors (and depending on E0). This functional does not vanish in general. But
when E0 is cubic or orthotropic, orthotropic deviators on which this functional vanishes are
precisely those whose eigenvectors define a natural basis for E0. It is therefore expected that,
when E0 is triclinic, but possibly not too far from a cubic or an orthotropic tensor, the minimizer
of this functional will provide an approximation of the likely symmetry coordinate system.

Having introduced several manners to produce an orthotropic symmetric second-order ten-
sor whose eigenvectors approximate accurately the likely symmetry coordinate system of an ex-
perimental (an expected cubic or orthotropic) tensor E0, we are able to improve the calculation of
an upper bound estimate of the distance of E0 to the cubic or orthotropic symmetry (see Tables 1
to 6, using not only one but several second-order tensors).

Finally, note that the optimal tensor E, used to define an upper bound estimate as ∥E0 −E∥, is
determined a priori, i.e., before the calculation of the distance estimate in question. This allows
to consider readily other norms than the Euclidean norm [9, 11]. The example of upper bounds
estimates defined from the Log-Euclidean norm [41] is provided in Appendix F.

Appendix A. Representative symmetry groups

Some representative subgroups G ⊂ SO(3) are:

• Z2, of order |Z2| = 2, generated by the second-order rotation r(eee3,π),
• D2, of order |D2| = 4, generated by the second-order rotations r(eee3,π) and r(eee1,π),
• D3, of order |D3| = 6, generated by the third order rotation r(eee3, 2π

3 ) and the second-order
rotation r(eee1,π),
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• D4, of order |D2| = 8, generated by the fourth-order rotation r(eee3, π2 ) and the second-order
rotation r(eee1,π),

• T, the tetrahedral group, order |T| = 12,
symmetry group of the tetrahedron; it is generated by r(eee3,π), r(eee1,π) and
r(eee1 +eee2 +eee3, 2π

3 ) ,
• O, the proper octahedral group, of order |O| = 24, the orientation-preserving symmetry

group of the cube with vertices (±1,±1,±1); its principal directions are the normals to its
faces, which are the basis vectors ±eee i ,

• O(2), of infinite order, generated by all rotations r(eee3,θ) (θ ∈ [0;2π[) and the second-order
rotation r(eee1,π),

• SO(2), of infinite order, generated by all rotations r(eee3,θ) (θ ∈ [0;2π[).

Appendix B. Stahn and coworkers upper bounds estimates

Stahn and coworkers define in practice their upper bound estimate M(E0, [G]) of d(E0, [G]) by the
following steps [10]:

(1) compute an eigenbasis of

t0 = 1 :
(
E0 −Es

0

)= 2

3
(d0 −v0),

and a rotation r0 that brings it into its diagonal form (i.e., such that r0 ⋆ t0 = r0 t0 r T
0 is

diagonal),
(2) compute the rotated elasticity tensor Er0 = r0⋆E0,
(3) compute the subset

S = {
En = r T

n ⋆RG
(
rn ⋆Er0

)
, rn ∈O}⊂Σ[G],

of N elasticity tensors built from E0 but of the symmetry class [G].
(4) set

M(E0, [G]) := min
r ∈O

∥∥r ⋆Er0 −RG
(
r ⋆Er0

)∥∥= min
1≤n≤N

∥∥Er0 −En
∥∥ , (38)

The definition (38) is independent of the choice of the rotation r , among the 24 possibilities,
which brings t0 into its diagonal form.

Appendix C. Klimeš quadratic form and upper bound estimate of d(E0, [O(2)])

Let E be an elasticity tensor, with harmonic decomposition

E = (
λ,µ,d′,v′,H

)
,

and let
Es = (2µ+λ)1⊙1+ 2

7
1⊙ (

d′+2v′
)+H

be its totally symmetry part. Klimeš tensor (12) can be recast as

T = 16
(
Es ×nnn +1⊗(2,2)

[(
d′−v′

)×nnn
])

= 16

(
H×nnn + 1

7
1⊙ [(

d′+2v′
)×nnn

]+1⊗(2,2)
[(

d′−v′
)×nnn

])
.

In particular, the harmonic decomposition of T is given by

T = (
0,0,8d′×nnn,8v′×nnn,16H×nnn

)
.

By Remark 1, we get thus

∥T∥2 = 64

(
2

21

∥∥(
d′+2v′

)×nnn
∥∥2 + 4

3

∥∥(d′−v′)×nnn
∥∥2 +4∥H×nnn∥2

)
, (39)
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so that

∥T∥2 = 64
( 2

21

∥∥d′+2v′
∥∥2 ∥nnn∥2 − 1

7
nnn · (d′+2v′

)2 ·nnn + 4

3

∥∥d′−v′
∥∥2 ∥nnn∥2 −2nnn · (d′−v′

)2 ·nnn

+4∥H∥2∥nnn∥2 −7nnn ·d2 ·nnn
)
,

and finally
∥T∥2 =nnn · AE ·nnn,

where

AE = 64

[(
4∥H∥2 + 2

21

∥∥d′+2v′
∥∥2 + 4

3

∥∥d′−v′
∥∥2

)
1−7d2 − 1

7

(
d′+2v′

)2 −2
(
d′−v′

)2
]

.

The solution of the problem
min
∥nnn∥=1

nnn · AE ·nnn
is the unit eigenvector nnn of AE corresponding to its smallest eigenvalue. Once such a unit vector
nnn is known, one can build a transversely isotropic deviatoric tensor

t :=nnn ∗nnn = (nnn ⊗nnn)′, ∥t∥ =
√

2

3
.

with transverse isotropy axis 〈nnn〉 and symmetry group Gt. Using the formulas in [42, Appendix C],
Klimeš upper bound estimate K (E0,Σ[O(2)]) [15], where E0 = (λ0, µ0, d′

0,v′0, H0) recast as

K
(
E0,Σ[O(2)]

)= ∥E0 −E∥,

where E is the orthogonal projection of E0 onto Fix(Gt), which is given by

E =
(
λ0, µ0, d′ = 3

2

(
d′

0 : t
)

t,v′ = 3

2

(
v′0 : t

)
t, H = 35

8
(t : H0 : t)t∗ t

)
, (40)

and

t∗ t = t⊗ t− 4

7
1⊙ t2 + 2

35
∥t∥21⊙ t ∈H4.

Remark 17. The harmonic components (40) of the estimated transversely isotropic elasticity
tensor E correspond indeed to the Reynolds averaging for the symmetry group G = Gt, of the
harmonic components of E0,

d′ = RGt

(
d′

0

)= 3

2

(
d′

0 : t
)

t,

v′ = RGt

(
v′0

)= 3

2

(
v′0 : t

)
t,

H = RGt (H0) = 35

8
(t : H0 : t) t∗ t.

Appendix D. Components of third-order tensors tr(H×a) and a×b

When H is a totally symmetric or an harmonic fourth-order tensor and a is a symmetric second
order tensor, the ten independent components of the totally symmetric third order tensor tr(H×
a) are:

(tr(H×a))111 = 3

10

(
−a12(2H1113 +H1223 +H1333)+a13(2H1112 +H1222 +H1233)

−a22H1123 +a23H1122 −a23H1133 +a33H1123

)
,

(tr(H×a))112 = 1

10

(
a11(2H1113 +H1223 +H1333)−2a12H1123 −a12H2223 −a12H2333

+a13(−2H1111 +2H1122 +H2222 +H2233)−a22H1113 −3a22H1223 −a22H1333

+3a23H1222 −a23H1233 −a33H1113 +2a33H1223

)
,
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(tr(H×a))113 = 1

10

(
−a11(2H1112 +H1222 +H1233)+a12(2H1111 −2H1133 −H2233 −H3333)

+2a13H1123 +a13H2223 +a13H2333 +a22H1112 −2a22H1233 +a23H1223

−3a23H1333 +a33H1112 +a33H1222 +3a33H1233

)
,

(tr(H×a))122 = 1

10

(
3a11H1123 +a11H2223 +a11H2333 +a12H1113 +2a12H1223 +a12H1333

+a13(H1233 −3H1112)−a22H1123 −2a22H2223 −a22H2333

−a23(H1111 +2H1122 +H1133 −2H2222)−2a33H1123 +a33H2223

)
,

(tr(H×a))123 = 1

20

(
−3a11H1122 +3a11H1133 −a11H2222 +a11H3333 +2a12H1112

−2a12H1222 −2a13H1113 +2a13H1333 +a22(H1111 +3H1122 −3H2233 −H3333)

+2a23H2223 −2a23H2333 +a33(−H1111 −3H1133 +H2222 +3H2233)
)
,

(tr(H×a))133 = 1

10

(
−3a11H1123 −a11H2223 −a11H2333 +3a12H1113 −a12H1223

−a13(H1112 +H1222 +2H1233)+2a22H1123 −a22H2333

+a23(H1111 +H1122 +2H1133 −2H3333)+a33H1123 +a33H2223 +2a33H2333

)
,

(tr(H×a))222 = 3

10

(
a11H1223 +a12H1123 +2a12H2223 +a12H2333 +a13(H2233 −H1122)

−a23(H1112 +2H1222 +H1233)−a33H1223

)
,

(tr(H×a))223 = 1

10

(
−a11H1222 +2a11H1233

+a12H1133 −2a12H2222 +2a12H2233 +a12H3333

−a13H1123 +3a13H2333 +a22(H1112 +2H1222 +H1233)−a23H1113

−2a23H1223 −a23H1333 −a33(H1112 +H1222 +3H1233)
)
,

(tr(H×a))233 = 1

10

(
−2a11H1223 +a11H1333 +a12H1123 −3a12H2223 −a13H1122 −a13H2222

−2a13H2233 +2a13H3333 +a22(H1113 +3H1223 +H1333)

+a23(H1112 +H1222 +2H1233)−a33H1113 −a33H1223 −2a33H1333

)
,

(tr(H×a))333 = 3

10

(
−a11H1233 +a12H1133 −a12H2233 −a13(H1123 +H2223 +2H2333)+a22H1233

+a23(H1113 +H1223 +2H1333)
)
.

The 10 independent components of the totally symmetric third order tensor a×b, where both
a and b are symmetric second order tensors, are:

(a×b)111 = a12b13 −a13b12,

(a×b)112 = 1

3
(−a11b13 +a12b23 +a13b11 −a13b22 +a22b13 −a23b12) ,

(a×b)113 = 1

3
(a11b12 −a12b11 +a12b33 −a13b23 +a23b13 −a33b12) ,

(a×b)122 = 1

3
(−a11b23 −a12b13 +a13b12 +a22b23 +a23b11 −a23b22) ,

(a×b)123 = 1

6
(a11b22 −a11b33 +a22b33 −a22b11 +a33b11 −a33b22) ,

(a×b)133 = 1

3
(a11b23 −a12b13 +a13b12 −a23b11 +a23b33 −a33b23) ,
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(a×b)222 = a23b12 −a12b23,

(a×b)223 = 1

3
(a12b22 −a12b33 −a13b23 −a22b12 +a23b13 +a33b12) ,

(a×b)233 = 1

3
(a12b23 +a13b22 −a13b33 −a22b13 −a23b12 +a33b13) ,

(a×b)333 = a13b23 −a23b13.

Appendix E. Raw elasticity tensors and their harmonic components

E.1. Elasticity tensor of François–Geymonat–Berthaud [3] for Ni-based single crystal su-
peralloy

The harmonic components of the elasticity tensor (28) are:

λ0 = 1583

15
= 105.533 GPa, µ0 = 1453

15
= 96.867 GPa,

d′
0 =

 11
3 2 14
2 5

3 23
14 23 − 16

3

 GPa, v′0 =
 −1 −11 −1
−11 9 −1
−1 −1 −8

 GPa,

and, by (3) (in Kelvin notation),

[H0] = 1

35



−1986 1093 893 175
p

2 1760
p

2 −495
p

2
1093 −2306 1213 −1085

p
2 15

p
2 660

p
2

893 1213 −2106 910
p

2 −1775
p

2 −165
p

2
175

p
2 −1085

p
2 910

p
2 1213 ·2 −165 ·2 15 ·2

1760
p

2 15
p

2 −1775
p

2 −165 ·2 893 ·2 175 ·2
−495

p
2 660

p
2 −165

p
2 15 ·2 175 ·2 1093 ·2

 GPa,

so that

d′
20 =

 133.497 −1440.53 −1055.76
−1440.53 −3457.12 827.469
−1055.76 827.469 3323.62

 GPa2.

Finally (in Kelvin notation):

[A0] =



195.6 −7.3 −188.3 34.7
p

2 216.
p

2 −199.1
p

2
−7.3 52.8 −45.5 −107.2

p
2 51.9

p
2 39.

p
2

−188.3 −45.5 233.8 72.5
p

2 −267.9
p

2 160.1
p

2
34.7

p
2 −107.2

p
2 72.5

p
2 677.1 ·2 149.3 ·2 44. ·2

216.
p

2 51.9
p

2 −267.9
p

2 149.3 ·2 561.2 ·2 40.9 ·2
−199.1

p
2 39.

p
2 160.1

p
2 44. ·2 40.9 ·2 691.3 ·2

 GPa2,

[B0] =



183.6 −306.5 122.9 109.2
p

2 263.5
p

2 −134.2
p

2
−306.5 364. −57.5 −144.5

p
2 −43.1

p
2 103.8

p
2

122.9 −57.5 −65.3 35.2
p

2 −220.4
p

2 30.4
p

2
109.2

p
2 −144.5

p
2 35.2

p
2 686.1 ·2 246.5 ·2 115.3 ·2

263.5
p

2 −43.1
p

2 −220.4
p

2 246.5 ·2 327.9 ·2 −14.9 ·2
−134.2

p
2 103.8

p
2 30.4

p
2 115.3 ·2 −14.9 ·2 915.7 ·2

 GPa2.
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E.2. Elasticity tensor of Stahn–Müller–Bertram [10]

The harmonic components of the elasticity tensor (30) are:

λ0 = 2.6913, µ0 = 3.9647,

d′
0 =

−1.0433 0.601 −1.987
0.601 3.5667 2.9486
−1.987 2.9486 −2.5233

 , v′0 =
−1.165 −0.382 1.1849
−0.382 0.67 0.3474
1.1849 0.3474 0.495

 ,

and, by (3) (in Kelvin notation),

[H0] =



−0.3069 1.0334 −0.7266 2.40218 3.98271 −2.47714
1.0334 −0.9326 −0.1009 −1.5661 −0.955301 2.82291
−0.7266 −0.1009 0.8274 −0.836083 −3.02741 −0.345917
2.40218 −1.5661 −0.836083 −0.2018 −0.4892 −1.351
3.98271 −0.955301 −3.02741 −0.4892 −1.4532 3.3972
−2.47714 2.82291 −0.345917 −1.351 3.3972 2.0668

 ,

giving

d′
20 =

 19.749 11.0169 −19.1923
11.0169 −10.8286 −3.795
−19.1923 −3.795 −8.9204

 .

Finally (in Kelvin notation):

[A0] =



1.4587 −0.4878 −0.9709 0.608112 1.08668 −0.662842
−0.4878 1.1331 −0.6453 −0.39103 −0.115683 0.769049
−0.9709 −0.6453 1.6162 −0.217082 −0.970999 −0.106066
0.608112 −0.39103 −0.217082 1.8298 0.0152 −0.4514
1.08668 −0.115683 −0.970999 0.0152 1.6372 0.803

−0.662842 0.769049 −0.106066 −0.4514 0.803 2.5748

 ,

and

[B0] =



−0.3187 0.315 0.0037 0.125158 2.30814 −1.36401
0.315 2.1077 −2.4227 −0.149482 −2.55845 0.0678823

0.0037 −2.4227 2.4191 0.0243245 0.250316 1.29613
0.125158 −0.149482 0.0243245 4.4958 −1.472 2.1396
2.30814 −2.55845 0.250316 −1.472 0.1754 1.3154
−1.36401 0.0678823 1.29613 2.1396 1.3154 1.3706

 .

E.3. Elasticity tensor of François [1] for Vosges sandstone

The harmonic components of the elasticity tensor (32) are:

λ0 = 1.327 GPa, µ0 = 5.393 GPa,

d′
0 =

−2.867 0. 0.5
0. −1.067 1.1

0.5 1.1 3.933

 GPa, v′0 =
 0.1 1.1 0.8

1.1 −0.5 0.2
0.8 0.2 0.4

 GPa,

and, by (3) (in Kelvin notation),

[H0] =



0.849 −0.946 0.097 0.229
p

2 0.5
p

2 −0.814
p

2
−0.946 1.477 −0.531 −0.014

p
2 −0.2

p
2 0.086

p
2

0.097 −0.531 0.434 −0.214
p

2 −0.3
p

2 0.729
p

2
0.229

p
2 −0.014

p
2 −0.214

p
2 −0.531 ·2 0.729 ·2 −0.2 ·2

0.5
p

2 −0.2
p

2 −0.3
p

2 0.729 ·2 0.097 ·2 0.229 ·2
−0.814

p
2 0.086

p
2 0.729

p
2 −0.2 ·2 0.229 ·2 −0.946 ·2

 GPa,



Rodrigue Desmorat and Boris Kolev 197

so that

d′
20 =

 0.99 0.695 1.21
0.695 1.13 −2.32
1.21 −2.32 −2.12

 GPa2.

Finally (in Kelvin notation):

[A0] =



0.213 −0.13 −0.083 0.059
p

2 −0.042
p

2 −0.115
p

2
−0.13 0.241 −0.111 −0.039

p
2 −0.014

p
2 −0.008

p
2

−0.083 −0.111 0.194 −0.02
p

2 0.056
p

2 0.123
p

2
0.059

p
2 −0.039

p
2 −0.02

p
2 0.155 ·2 0.128 ·2 −0.005 ·2

−0.042
p

2 −0.014
p

2 0.056
p

2 0.128 ·2 0.182 ·2 0.042 ·2
−0.115

p
2 −0.008

p
2 0.123

p
2 −0.005 ·2 0.042 ·2 0.16 ·2

 GPa2,

[B0] =



0.124 0.061 −0.185 −0.15
p

2 −0.096
p

2 −0.146
p

2
0.061 0.139 −0.2 0.065

p
2 0.094

p
2 −0.039

p
2

−0.185 −0.2 0.385 0.085
p

2 0.002
p

2 0.186
p

2
−0.15

p
2 0.065

p
2 0.085

p
2 0.222 ·2 0.081 ·2 −0.087 ·2

−0.096
p

2 0.094
p

2 0.002
p

2 0.081 ·2 0.258 ·2 0.198 ·2
−0.146

p
2 −0.039

p
2 0.186

p
2 −0.087 ·2 0.198 ·2 0.017 ·2

 GPa2.

Appendix F. Log-Euclidean upper bounds estimates

For a given tensor E0, once an elasticity tensor E either cubic (E ∈ Σ[O]) or orthotropic (E ∈ Σ[D2])
has been computed according to the symmetry group of a second-order tensor, say a, one can
easily calculate the upper bounds estimates ∆a(E0,Σ[G]) for any norm. For instance, since an
elasticity tensor has to be positive definite, one can consider the Log-Euclidean norm [9, 41],

∥E∥L := ∥ln(E)∥ = ∥ln([E])∥R6 ,

which has the property of invariance by inversion, meaning that the norm for the compliance is
the same as the norm for the stiffness (∥E−1∥L = ∥E∥L). For this norm, the upper bounds estimates
of the distance d(E0,Σ[G]) = minΣ[G]∥E0−E∥L to the symmetry stratumΣ[G] can then be expressed
as

∆a
(
E0,Σ[G]

)
:= ∥E0 −E∥L = ∥ln(E0)− ln(E)∥ ,

Remark 18. This is E that is enforced to be either cubic (by formulas (25)–(26)) or orthotropic (by
formulas (33)–(37)), not ln(E) [9]. One does not perform the harmonic decomposition of neither
ln(E0) nor ln(E) and formula (27) does not apply anymore.

We provide in the following tables the comparisons (for the single crystal superalloy (28) and
the Vosges sandstone (32)) of the relative upper bounds estimates obtained with the Euclidean
norm,

∆a
(
E0,Σ[G]

)
∥E0∥

= ∥E0 −E∥
∥E∥ ,

and with the Log-Euclidean norm,

∆a
(
E0,Σ[G]

)
∥E0∥L

= ∥E0 −E∥L

∥E∥L
= ∥ln(E0)− ln(E)∥

∥ln(E)∥ .

The second-order tensor a is taken in the list
{

t′0,d′
20,a′,b′} computed in Sections 6 and 7. The

minimum minimorum is also given.
We do not provide comparisons for the academic tensor (30) since it is not positive definite.

Note that the order of magnitude of the relative distance strongly depends on the choice of a
norm.
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Table 7. Comparison of cubic upper bounds estimates for Ni-based single crystal superal-
loy.

∆t0 ∆d20 ∆a′ ∆b′ ∆opt

Relative Euclidean estimate: 0.3388 0.3344 0.1610 0.1371 0.1371
Relative Log-Euclidean estimate: 0.1365 0.1353 0.0616 0.0516 0.0516

Table 8. Comparison of cubic upper bounds estimates for Vosges sandstone.

∆t0 ∆d20 ∆a′ ∆b′ ∆opt

Relative Euclidean estimate: 0.2660 0.2664 0.2674 0.2596 0.2596
Relative Log-Euclidean estimate: 0.1261 0.1276 0.1274 0.1256 0.1256

Table 9. Comparison of orthotropic upper bounds estimates for Ni-based single crystal
superalloy.

∆t′0 ∆d′
20

∆a′ ∆b′ ∆opt

Relative Euclidean estimate: 0.3029 0.2943 0.1539 0.1266 0.1266
Relative Log-Euclidean estimate: 0.1221 0.1160 0.0529 0.0392 0.0392

Table 10. Comparison of orthotropic upper bounds estimates for Vosges sandstone.

∆t′0 ∆d′
20

∆a′ ∆b′ ∆opt

Relative Euclidean estimate: 0.14907 0.15531 0.16453 0.15530 0.14907
Relative Log-Euclidean estimate: 0.0685 0.0728 0.0749 0.0786 0.0685
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