
Comptes Rendus

Mécanique

Hang Ding and Jun Zhou

Blow-up to a p-Laplacian parabolic equation with a general nonlinear source

Volume 352 (2024), p. 71-80

Online since: 4 April 2024

https://doi.org/10.5802/crmeca.248

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

The Comptes Rendus. Mécanique are a member of the
Mersenne Center for open scientific publishing

www.centre-mersenne.org — e-ISSN : 1873-7234

https://doi.org/10.5802/crmeca.248
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus. Mécanique
2024, Vol. 352, p. 71-80

https://doi.org/10.5802/crmeca.248

Research article / Article de recherche

Blow-up to a p-Laplacian parabolic equation
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Abstract. A p-Laplacian parabolic equation with a general nonlinear source term is considered. It is shown
that the solution may blow up in finite time at positive initial energy. Moreover, under some suitable
assumptions about the nonlinear source term, the solution is proved to blow up in finite time at arbitrarily
high initial energy. These results generalize the previous ones.

Résumé. Une équation parabolique p-laplacienne avec un terme source non linéaire général est considérée.
On montre que la solution peut exploser en temps fini pour une énergie initiale positive. De plus, sous
certaines hypothèses appropriées concernant le terme source non linéaire, il est prouvé que la solution
explose en temps fini pour une énergie initiale arbitrairement élevée. Ces résultats généralisent des résultats
antérieurs.
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1. Introduction and main results

We investigate the p-Laplacian parabolic equation:
ut −div(|∇u|p−2∇u) = f (u), x ∈Ω, t > 0,
u(x,0) = u0(x) ≥ 0, x ∈Ω,
u = 0, x ∈ ∂Ω, t ≥ 0,

(1)

where the domain Ω ⊂ Rn (n ≥ 1) is bounded, the boundary ∂Ω is smooth, p ≥ 2, and u0 ∈
W 1,p

0 (Ω) ∩ L∞(Ω) is non-trivial and non-negative. Moreover, the locally Lipschitz continuous
function f satisfies f (0) = 0, f (s) > 0 for s > 0 and

αF (s) ≤ s f (s)+βsp +γ (s > 0) (2)

∗Corresponding author.

ISSN (electronic) : 1873-7234 https://comptes-rendus.academie-sciences.fr/mecanique/

https://doi.org/10.5802/crmeca.248
mailto:e-mail:hding0527@163.com
mailto:jzhou@swu.edu.cn
https://comptes-rendus.academie-sciences.fr/mecanique/


72 Hang Ding and Jun Zhou

for some α> p, γ> 0 and 0 <β< (α−p)λ1/p, where

F (s) =
∫ s

0
f (τ)dτ

and λ1 is the first eigenvalue of the p-Laplacian operator, namely,

λ1 = inf
φ∈W

1,p
0 (Ω)\{0}

∥∇φ∥p
p

∥φ∥p
p

> 0. (3)

In what follows, the inner product of L2(Ω) is denoted by (·, ·) and the norm of Lσ(Ω) (1 ≤σ≤∞)
is denoted by ∥ ·∥σ.

As is well-known, the p-Laplacian parabolic equation often appears in the theory of non-
Newtonian fluids, see [1]. Therefore, the model (1) has been widely studied by many researchers,
see [2–9]. For example, Fujii and Ohta [4] investigated the initial boundary value problem (IBVP)
of the equation

ut −div
(|∇u|p−2∇u

)= |u|p−2u, p > 2

and established some blow-up results.
Li and Xie [7] considered IBVP of the equation

ut −div
(|∇u|p−2∇u

)=λ|u|q−2u,

where p > 1, λ > 0 and q > 2. Using the comparison principle and concavity argument, the
authors studied the blow-up properties of solutions.

Le et al. [5] dealt with IBVP of the equation

ut −div
(|∇u|p−2∇u

)= |u|p−2u log |u|, p > 2.

Applying the potential well theory, the global existence and blow-up of solutions were analysed.
In particular, when f (u) satisfies the general assumption (2), Chung and Choi [3] proved the

nonnegative solution to (1) blows up in finite time with negative initial energy (i.e., J (u0) < 0),
where

J (u) := 1

p
∥∇u∥p

p −
∫
Ω

F (u)d x +γ|Ω|. (4)

Considering the blow-up result obtained in [3], there are two natural questions:

(QS1): Whether the nonnegative solution to (1) can be proved to blow up in finite time at positive
initial energy?

(QS2): Is it possible for the nonnegative solution of (1) to blow up in finite time at arbitrarily high
initial energy?

The main purpose of the present paper is to answer the above questions.
The local existence of the weak solution to (1) can be found in [3]. Now, we give the blow-up

results of this paper.

Theorem 1. Assume the nonnegative function u0 ∈W 1,p
0 (Ω)∩L∞(Ω) and (2) holds. If

J (u0) < max{0, M(u0)}, (5)

where

M(u0) := λ1(α−p)−βp

2α

(
∥u0∥2

2 −
(p −2)|Ω|

p

)
+ γ(α−1)|Ω|

α
, (6)

then the nonnegative weak solution u to (1) blows up at the time T <∞ in the sense of

lim
t →T − ∥u∥2

2 =∞.
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Remark 2. Under some suitable assumptions about the nonlinear term f , we will prove that
there exists an initial value u0 such that

0 < J (u0) < M(u0). (7)

Assume that

c1sα−1 ≤ f (s) ≤ c2
(
sα−1 +1

)
, s > 0, (8)

where c1,c2 > 0 are constants and c1α> c2. Let

u0 := κϖ(x), (9)

where κ > 0 is a constant to be specified later and ϖ(x) is a function that satisfies 0 < ϖ(x) ∈
W 1,p

0 (Ω)∩L∞(Ω).
By (4) and (8), we obtain

J (u0) ≥ 1

p
∥∇u0∥p

p − c2

α

∫
Ω

uα
0 d x − c2

∫
Ω

u0d x +γ|Ω|

and

J (u0) ≤ 1

p
∥∇u0∥p

p − c1

α

∫
Ω

uα
0 d x +γ|Ω|.

Then we deduce from (6) and (9) that

M(u0) = λ1(α−p)−βp

2α

(
κ2∥ϖ(x)∥2

2 −
(p −2)|Ω|

p

)
+ γ(α−1)|Ω|

α
,

J (u0) ≥ κp

p
∥∇ϖ(x)∥p

p − c2κ
α

α

∫
Ω

(ϖ(x))αd x − c2κ

∫
Ω
ϖ(x)d x +γ|Ω|,

J (u0) ≤ κp

p
∥∇ϖ(x)∥p

p − c1κ
α

α

∫
Ω

(ϖ(x))αd x +γ|Ω|.

Therefore, to prove (7), we only need to show that

κp

p
∥∇ϖ(x)∥p

p − c2κ
α

α

∫
Ω

(ϖ(x))αd x − c2κ

∫
Ω
ϖ(x)d x +γ|Ω| > 0 (10)

and

κp

p
∥∇ϖ(x)∥p

p − c1κ
α

α

∫
Ω

(ϖ(x))αd x +γ|Ω|

< λ1(α−p)−βp

2α

(
κ2∥ϖ(x)∥2

2 −
(p −2)|Ω|

p

)
+ γ(α−1)|Ω|

α
. (11)

In fact, when

γ> 1

|Ω|
[

c2κ
α

α

∫
Ω

(ϖ(x))αd x + c2κ

∫
Ω
ϖ(x)d x − κp

p
∥∇ϖ(x)∥p

p

]
(12)

and

γ< c1κ
α

|Ω|
∫
Ω

(ϖ(x))αd x − ακp

p|Ω| ∥∇ϖ(x)∥p
p + κ2[λ1(α−p)−βp]

2|Ω| ∥ϖ(x)∥2
2

− (p −2)[λ1(α−p)−βp]

2p
, (13)

it is easy to see that (10) and (11) hold.



74 Hang Ding and Jun Zhou

In order to show that there is a γ that makes (12) and (13) hold, we only need to prove that

1

|Ω|
[

c2κ
α

α

∫
Ω

(ϖ(x))αd x + c2κ

∫
Ω
ϖ(x)d x − κp

p
∥∇ϖ(x)∥p

p

]
< c1κ

α

|Ω|
∫
Ω

(ϖ(x))αd x − ακp

p|Ω| ∥∇ϖ(x)∥p
p + κ2[λ1(α−p)−βp]

2|Ω| ∥ϖ(x)∥2
2

− (p −2)[λ1(α−p)−βp]

2p
, (14)

i.e.,

|Ω|(p −2)[λ1(α−p)−βp]

2p
< κ

{
κ

[
λ1(α−p)−βp

2
∥ϖ(x)∥2

2

+ κp−2
(
κα−p (c1α− c2)

α

∫
Ω

(ϖ(x))αd x − α−1

p
∥∇ϖ(x)∥p

p

)]
− c2

∫
Ω
ϖ(x)d x

}
. (15)

Obviously, if κ> 0 is large enough, then (15) holds, i.e., (14) holds.

To prove the existence of the finite time blow-up solution at arbitrarily high initial energy by
using the fountain theorem (see [10]), we assume the nonlinear term f has a concrete expression.
Let

f (s) = γsα−1 + βp

α−p
sp−1, s > 0, (16)

then it is obvious that

F (s) = γ

α
sα+ β

α−p
sp ,

where

p <α<
∞, if n ≤ p;

np

n −p
, if n > p. (17)

Clearly, the nonlinear term f given in (16) satisfies (2). Moreover, if (16) holds, then we obtain
from (4) that

J (u) = 1

p
∥∇u∥p

p − γ

α

∫
Ω

uαd x − β

α−p

∫
Ω

up d x +γ|Ω|.

Theorem 3. Assume u0 ∈ W 1,p
0 (Ω)∩ L∞(Ω) and (2) holds. If (16) and (17) hold, then for any

constant B ≥ 0, there exists a nonnegative function

uB ∈W 1,p
0 (Ω)∩L∞(Ω)

satisfying (5) and J (uB) =B, and the nonnegative weak solution u to (1) with the initial value uB

blows up in finite time in the sense of

lim
t →T − ∥u∥2

2 =∞.

Remark 4. In Theorem 3, the choice of the nonlinear term f is not unique. For instance,
when f (s) = γsα−1 for s > 0 and α satisfies (17), we can also obtain the same blow-up result as
Theorem 3.

Remark 5. When f is a general nonlinear term satisfying (2), we cannot find an effective method
to show the finite time blow-up result at arbitrarily high initial energy, thus we leave it as an open
question.

The rest of this paper is to prove Theorems 1 and 3.
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2. Proofs of the theorems

Proof of Theorem 1. Let u = u(t ), t ∈ [0,T ) be the nonnegative weak solution to (1) mentioned
in [3] with u0 satisfying (5), where T represents the maximum existence time. If M(u0) ≤ 0, then
the blow-up result follows from [3, Theorems 1.1 and 1.2]. Hence, in what follows, we assume
M(u0) > 0. Then from (5), we know J (u0) < M(u0).

If there is a t0 ∈ [0,T ) such that J (u(t0)) < 0, then we deduce from [3, Theorems 1.1 and 1.2]
that u blows up in finite time. Therefore, in the remaining proof, we assume J (u) ≥ 0 for t ∈ [0,T ).

By contradiction, we suppose u exists globally. Then we obtain from Hölder’s inequality, [3,
(11) and (18)] and J (u) ≥ 0 for t ≥ 0 that

∥u∥2 =
∥∥∥∥∫ t

0
uτdτ+u0

∥∥∥∥
2

≤ t
1
2

(∫ t

0
∥uτ∥2

2dτ

) 1
2

+∥u0∥2

≤ (J (u0))
1
2 t

1
2 +∥u0∥2.

(18)

Moreover, we deduce from [3, (14) and (21)], (2), (4), (3), [3, (11) and (18)], Hölder’s and Young’s
inequalities that

d

d t

(
1

2
∥u∥2

2 −Ξ
)
=−

∫
Ω
|∇u|p d x +

∫
Ω

u f (u)d x

≥ α−p

p

∫
Ω
|∇u|p d x −β

∫
Ω

up d x +γ(α−1)|Ω|−αJ (u)

≥ λ1(α−p)−βp

p

∫
Ω

up d x +γ(α−1)|Ω|−αJ (u0)

≥ λ1(α−p)−βp

2

∫
Ω

u2d x − (p −2)
[
λ1(α−p)−βp

] |Ω|
2p

+γ(α−1)|Ω|−αJ (u0)

= [
λ1(α−p)−βp

](
1

2
∥u∥2

2 −Ξ
)

,

(19)

where

Ξ=
(
p −2

)[
λ1

(
α−p

)−βp
] |Ω|−2pγ (α−1) |Ω|+2pαJ (u0)

2p
[
λ1

(
α−p

)−βp
] .

Since

λ1(α−p)−βp > 0︸ ︷︷ ︸
by (2)

,
1

2
∥u0∥2

2 −Ξ> 0︸ ︷︷ ︸
by J (u0)<M(u0)

,

we infer from (19) that
1

2
∥u(t )∥2

2 −Ξ> 0, t ≥ 0.

Integrating (19) from 0 to t , we arrive at

∥u∥2
2 ≥

(∥u0∥2
2 −2Ξ

)
e[λ1(α−p)−βp]t +2Ξ. (20)

The combination of (18) and (20) yields(∥u0∥2
2 −2Ξ

)
e[λ1(α−p)−βp]t +2Ξ≤

(
(J (u0))

1
2 t

1
2 +∥u0∥2

)2
, t ≥ 0. (21)

Clearly, (21) cannot hold for sufficiently large t , a contradiction. The proof is complete. □

To prove Theorem 3, the following three lemmas are required.
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Lemma 6 ([10, Theorem 3.6] Fountain Theorem). Suppose H is a Banach space with the norm
∥ · ∥ and H j is a subspace of H with dimH j <∞ for each j ∈N := {1,2, · · · }. Let H =⊕

j ∈NH j be
the closure of the direct sum of all H j . Let

Wk =
k⊕

j=1
H j , Vk =

∞⊕
j=k

H j .

Assume Ψ ∈C 1(H ,R) is an even functional. For each k ∈N, if there exist ρk > rk > 0 such that

(i) mk := max
ψ∈Wk ,∥ψ∥=ρk

Ψ(ψ) ≤ 0;

(ii) zk := inf
ψ∈Vk ,∥ψ∥=rk

Ψ(ψ) →∞ as k →∞;

(iii) Ψ satisfies the (PS)c condition for every c > 0,

then Ψ has an unbounded sequence of critical values.

Lemma 7. Let (16) and (17) hold. There exist functions {ψk }∞k=1 ⊂W 1,p
0 (Ω) satisfying

J̃ (ψk ) := 1

p

∥∥∇ψk
∥∥p

p − γ

α

∥∥ψk
∥∥α
α−

β

α−p

∥∥ψk
∥∥p

p +γ|Ω|→∞ as k →∞. (22)

Proof. To prove the lemma, it is sufficient to show J̃ satisfies the assumptions of Lemma 6.
Because W 1,p

0 (Ω) is separable, one can select {e j }∞j=1 as a base of W 1,p
0 (Ω) and {l j }∞j=1 ⊂W −1,p ′

(Ω)

such that ∥∇e j ∥p = 1, ∥l j ∥W −1,p′ (Ω) = 1, and l j (ei ) = 1 if i = j and l j (ei ) = 0 if i ̸= j , where W −1,p ′
(Ω)

represents the dual space of W 1,p
0 (Ω). For j = 1,2, · · · , we set

H j := span
{
e j

}= {
ce j : c ∈R}

.

Then H j ⊥ H i for i ̸= j , i.e., li (ce j ) = 0 and l j (cei ) = 0 for any c ∈ R. With this sense, for
k = 1,2, · · · , we set

Wk :=
k⊕

j=1
H j , Vk :=

∞⊕
j=k

H j .

Then

Vk+1 =W ⊥
k , W 1,p

0 (Ω) =Wk
⊕

Vk+1,

and Wk ⊂W 1,p
0 (Ω) with dimWk <∞.

Firstly, one can easily verify J̃ ∈C 1(W 1,p
0 (Ω),R) is an even functional.

Secondly, we prove J̃ satisfies Lemma 6(ii). Let

δk := sup
ψ∈Vk ,∥∇ψ∥p=1

∥ψ∥α, (23)

then it holds 0 < δk+1 ≤ δk . Thus, there is a δ≥ 0 such that

δk → δ as k →∞.

For every k, there is ψk ∈ Vk with ∥∇ψk∥p = 1 such that

∥ψk∥α > δ

2
≥ 0.

It follows from the definition of Vk that

ψk * 0 weakly in W 1,p
0 (Ω) as k →∞.

Due to W 1,p
0 (Ω) ,→ Lα(Ω) compactly (see (17)), we know

ψk → 0 strongly in Lα(Ω) as k →∞,
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which means limk→∞δk = 0. By (3) and (23), one has, for ψ ∈ Vk ,

J̃ (ψ) ≥ 1

p
∥∇ψ∥p

p − γ

α
∥ψ∥αα−

β

α−p
∥ψ∥p

p

≥
(

1

p
− β

λ1
(
α−p

) )
∥∇ψ∥p

p − γδαk
α

∥∇ψ∥αp .

Take

rk =
(
λ1

(
α−p

)−βp

λ1γδ
α
k

(
α−p

) ) 1
α−p

.

If ψ ∈ Vk and ∥∇ψ∥p = rk , then we obtain

J̃ (ψ) ≥ λ1
(
α−p

)−βp

αpλ1

(
λ1

(
α−p

)−βp

λ1γδ
α
k

(
α−p

) ) p
α−p

,

which implies that J̃ satisfies Lemma 6(ii).
Thirdly, we prove J̃ satisfies Lemma 6(i). For any ρk > 0 and ψ̂ ∈Wk with ∥∇ψ̂∥p = 1, one has

J̃
(
ρkψ̂

)= ρp
k

(
1

p

∥∥∇ψ̂∥∥p
p − γ

α
ρ
α−p
k

∥∥ψ̂∥∥α
α−

β

α−p

∥∥ψ̂∥∥p
p

)
+γ|Ω|. (24)

Additionally, we obtain from dimWk <∞ and ∥∇ψ̂∥p = 1 that, for some ς1,ς2 > 0,

ς1 ≤
∥∥ψ̂∥∥

α ≤ ς2, ς1 ≤
∥∥ψ̂∥∥

p ≤ ς2,

which, along with (24), yields

J̃
(
ρkψ̂

)≤ ρp
k

(
1

p
− γςα1

α
ρ
α−p
k − βς

p
1

α−p

)
+γ|Ω|→−∞ as ρk →∞.

Let ψ= ρkψ̂, then ∥∥∇ψ∥∥
p = ρk

∥∥∇ψ̂∥∥
p = ρk and ψ ∈Wk .

Thus, for sufficiently large ρk > rk , we know J̃ satisfies Lemma 6(i).
Finally, we prove J̃ satisfies Lemma 6(iii). For any c > 0, we assume {ψ j }∞j=1 ⊂W 1,p

0 (Ω) satisfies

J̃
(
ψ j

)→ c and
∥∥ J̃ ′(ψ j )

∥∥
W −1,p′ (Ω) → 0 as j →∞.

Then there are C1 > c and C2 > 0 independent of j such that

J̃
(
ψ j

)≤C1 and
∥∥ J̃ ′

(
ψ j

)∥∥
W −1,p′ (Ω) ≤C2 for j = 1,2, · · · .

Thus, we infer from (3) that

C1 + C2

α

∥∥∇ψ j
∥∥

p ≥ J̃
(
ψ j

)− 1

α

〈
J̃ ′

(
ψ j

)
,ψ j

〉
= α−p

pα

∥∥∇ψ j
∥∥p

p − β

α

∥∥ψ j
∥∥p

p +γ|Ω|

≥ λ1(α−p)−βp

pαλ1

∥∥∇ψ j
∥∥p

p +γ|Ω|, j = 1,2, · · · ,

(25)

where 〈·, ·〉 denotes the duality bracket between W −1,p ′
(Ω) and W 1,p

0 (Ω), which implies there
exists a C3 > 0 independent of j such that∥∥∇ψ j

∥∥
p ≤C3, j = 1,2, · · · . (26)

Then there is a ψ ∈W 1,p
0 (Ω) and a subsequence of {ψ j }∞j=1 (still denoted by {ψ j }∞j=1) such that

ψ j *ψ weakly in W 1,p
0 (Ω) as j →∞. (27)
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From (26) and (27), we arrive at ∥∥∇ψ∥∥
p ≤ liminf

j →∞
∥∥∇ψ j

∥∥
p ≤C3. (28)

For any φ ∈W 1,p
0 (Ω), one can see〈

J̃ ′(ψ),φ
〉= ∫

Ω
|∇ψ|p−2∇ψ∇φd x −γ

∫
Ω
|ψ|α−2ψφd x − βp

α−p

∫
Ω
|ψ|p−2ψφd x.

Consequently, it holds〈
J̃ ′

(
ψ j

)− J̃ ′(ψ),ψ j −ψ
〉= ∫

Ω

(∣∣∇ψ j
∣∣p−2∇ψ j −

∣∣∇ψ∣∣p−2∇ψ
)
∇(
ψ j −ψ

)
d x

−γ
∫
Ω

(∣∣ψ j
∣∣α−2

ψ j −|ψ|α−2ψ
)(
ψ j −ψ

)
d x

− βp

α−p

∫
Ω

(∣∣ψ j
∣∣p−2

ψ j −|ψ|p−2ψ
)(
ψ j −ψ

)
d x.

(29)

By (27), W 1,p
0 (Ω) ,→ Lα(Ω) compactly, and W 1,p

0 (Ω) ,→ Lp (Ω) compactly, we deduce∣∣〈 J̃ ′(ψ),ψ j −ψ
〉∣∣≤ ∣∣∣∣∫

Ω

∣∣∇ψ∣∣p−2∇ψ∇(
ψ j −ψ

)
d x

∣∣∣∣+γ∥∥ |ψ|α−1∥∥
α
α−1

∥∥ψ j −ψ
∥∥
α

+ βp

α−p

∥∥ |ψ|p−1∥∥ p
p−1

∥∥ψ j −ψ
∥∥

p → 0 as j →∞. (30)

Furthermore, it follows from (26) and (28) that∣∣〈 J̃ ′
(
ψ j

)
,ψ j −ψ

〉∣∣≤ 2C3
∥∥ J̃ ′

(
ψ j

)∥∥
W −1,p′ (Ω) → 0 as j →∞,

which, along with (29) and (30), yields

22−p ∥∥∇ψ j −∇ψ∥∥p
p ≤

∫
Ω

(∣∣∇ψ j
∣∣p−2∇ψ j −

∣∣∇ψ∣∣p−2∇ψ
)
∇(
ψ j −ψ

)
d x

≤ 〈
J̃ ′

(
ψ j

)− J̃ ′(ψ),ψ j −ψ
〉+γ∥∥∥∣∣ψ j

∣∣α−2
ψ j −|ψ|α−2ψ

∥∥∥
α
α−1

∥∥ψ j −ψ
∥∥
α

+ βp

α−p

∥∥∥∣∣ψ j
∣∣p−2

ψ j −|ψ|p−2ψ
∥∥∥ p

p−1

∥∥ψ j −ψ
∥∥

p → 0 as j →∞.

Thus, J̃ satisfies Lemma 6(iii).
According to the above analysis and Lemma 6, (22) holds. □

Lemma 8. Let (16) and (17) hold. For any constant D ≥ 0, there is a nonnegative function
ϕ ∈W 1,p

0 (Ω)∩L∞(Ω) such that J (ϕ) =D.

Proof. Let
vk = |ψk | ∈W 1,p

0 (Ω),

where {ψk } is the sequence given in Lemma 7. From Lemma 7, we arrive at

J (vk ) →∞ as k →∞.

Therefore, for any constant D ≥ 0, there is a vk such that J (vk ) ≥ 2D.
Choose a sequence of nonnegative functions {φ j }∞j=1 ⊂C∞

0 (Ω), then one can verify that∣∣J (φ j )− J (vk )
∣∣→ 0 as j →∞ if φ j → vk in W 1,p

0 (Ω) as j →∞.

Thus, there exists a function φ j ∈C∞
0 (Ω) such that J (φ j ) ≥D.

Let

g (ξ) = J
(
ξφ j

)= ξp

p

∥∥∇φ j
∥∥p

p − γξα

α

∫
Ω
φαj d x − βξp

α−p

∫
Ω
φ

p
j d x +γ|Ω|, ∀ ξ≥ 1.
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Clearly, the function g (ξ) is continuous and limξ→∞ g (ξ) = −∞. Let R(g (ξ)) denote the range of
g (ξ), then we know R(g (ξ)) ⊃ (−∞, g (1)]. Owing to g (1) = J (φ j ), we obtain from J (φ j ) ≥ D that

there is a ξ̂≥ 1 such that ϕ := ξ̂φ j ∈C∞
0 (Ω) ⊂W 1,p

0 (Ω)∩L∞(Ω) satisfies J (ϕ) =D. □

Proof of Theorem 3. Assume Ω1 and Ω2 are two arbitrary disjoint open subsets ofΩ. Let

ν ∈
(
W 1,p

0 (Ω)∩L∞(Ω)
)

\ {0}

be an arbitrary nonnegative function satisfying

supp(ν) = {x ∈Ω : ν(x) ̸= 0} ⊂Ω1.

Then for any constant B ≥ 0, one can choose ϵ> 0 large enough such that

J (ϵν) ≤ 0,
λ1(α−p)−βp

2α

(
∥ϵν∥2

2 −
(p −2)|Ω|

p

)
+ γ(α−1)|Ω|

α
>B. (31)

For such ϵ, from Lemma 8, one can select a nonnegative function

µ ∈W 1,p
0 (Ω)∩L∞(Ω)

such that
supp(µ) ⊂Ω2 and J (µ) = γ|Ω|+B− J (ϵν).

Then for uB = ϵν+µ, we infer from (31) that

J (uB) = J (ϵν)+ J (µ)−γ|Ω| =B

and

λ1(α−p)−βp

2α

(
∥uB∥2

2 −
(p −2)|Ω|

p

)
+ γ(α−1)|Ω|

α

≥ λ1(α−p)−βp

2α

(
∥ϵν∥2

2 −
(p −2)|Ω|

p

)
+ γ(α−1)|Ω|

α

>B = J (uB).

Taking uB as the initial value, the blow-up result follows from Theorem 1. □
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