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Abstract. A dimension reduction problem is tackled using Trotter’s theory of convergence of semi-groups of
operators acting on variable spaces [1, 2]. We show that this framework makes it possible to perform the
asymptotic analysis for both viscoelastic thin plates and slender beams in a unifying manner. Several models
are provided for the dynamic behavior of such structures in bilateral contact with a rigid body on a part of
their boundaries with Norton or Tresca friction.

Résumé. Nous nous penchons sur la modélisation mathématique asymptotique de structures minces visco-
élastiques dans le cadre de la théorie de Trotter de convergence de semi-groupes d’opérateurs agissant sur
des espaces variables [1, 2]. Nous montrons que dans ce contexte, il est possible d’effectuer d’une manière
unitaire l’analyse asymptotique des plaques et des poutres minces. Nous mettons en évidence divers modèles
de comportements dynamiques de telles structures en contact bilatéral avec frottement de type Norton ou
Tresca le long d’une partie de leur surface latérale avec un corps rigide.
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1. Introduction

This paper intends to provide a unifying presentation of the asymptotic mathematical mod-
eling of the mechanical behavior of thin plates and slender beams. How we go about this task is
related to our previous works, so our aim here is manifold. Indeed we first carried out the asymp-
totic analysis of the quasi-static response of a linearly viscoelastic plate of Kelvin–Voigt type in [3]
before addressing the case of the transient response of a thin linearly elastic plate with Norton
or Tresca friction in [4]. This background led us to the present, more demanding study, which
aims to combine (1) asymptotic mathematical modeling of slender beams, (2) Kelvin–Voigt vis-
coelasticity and (3) Norton or Tresca friction in (4) the dynamic case. But our intention is to do so
in two radical ways. As stated before, one is to embrace both plates and beams modeling in the
same framework. The other is to bypass the classical step of transforming the initial problem into
an equivalent scaled one. This short-circuit allows to provide more refined information about
the displacements in the real thin structures than in traditional and separate studies like [5–7].
Such approach is made possible by a suitable non-linear extension [8] of Trotter’s theory of con-
vergence of semi-groups of linear operators acting on variable spaces [1]. This theory is particu-
larly well suited to the mathematical modeling in Physics of continuous media (see in particular
the introduction in [2] which contains an overview of the details of this method, which we did
not consider relevant to reproduce here ; the reader may find it useful to refer to it), particularly
because almost all boundary value problems stemming from Physics are parameterized by the
domain where the problem is posed and/or by the physical coefficients which may be very large,
very small or strongly oscillating. Throughout this paper the letter r will be used as upper left
index in our notations for both a thin flat plate (r = 1) and a slender beam (r = 2). Indeed our
approach through the theory of Trotter of approximation of semi-groups of operators acting on
variable Hilbert spaces works in the same way in the case of thin plates and slender beams. The
reader not acquainted with this topic is invited to refer first to the Appendix. There, from (66)
onward, is given a concise exposition of how this innovative unifying treatment is carried out in
the basic case of linearly elastic slender beams and thin plates. Because the limit models obvi-
ously depend on the mathematical objects whose asymptotic behavior is being studied, a careful
reading of this short section will make our strategy clear : we aim at introducing a notion of con-
vergence that provides an energetically sound equivalent to the solution to the genuine physical
problem. This is achieved by a careful and comprehensive study of the asymptotic behavior of
the strain tensor. The technical apparatus required to achieve the asymptotic analysis in a more
demanding framework, as it is the case in the main text of the article, will then be easier to digest.

The thin structure evolution problem is set in Section 2 where it is stated that the thin plate or
the slender beam occupies a domain deduced from the same cylindrical domain by a shrinkage
either in the direction of its axis or normally to its axis, respectively. We set its variational
formulation (rPs ) indexed by r and s at the end of this section. As it will be explained shortly,
the index r refers to the geometry of the structure while s is a quadruplet containing the key
physical data of the problem.

In Section 3, the problem (rPs ) is transformed into a formally equivalent differential inclusion
denoted by (rP s ) and governed by a multi-valued maximal monotone operator rA s defined on a
Hilbert space rH s . Such a deeper and global approach of the dynamics of these structures, con-
sidered as Standard Generalized Systems, yields the existence and the uniqueness of a solution
rU s immediately through a simple property of convexity and lower semi-continuity of the global
dissipation potentials. Moreover it is efficient and neat with respect to convergence considera-
tions.

Section 4 is devoted to the construction of the framework enabling the study of the asymptotic
behavior of rU s . The quadruplet s is then considered as a set of parameters. Their relative
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orders of magnitude are encoded by way of an index denoted I. Through both a deductive
and inductive approach, what emerges is a “limit differential inclusion” (rP I) governed by a
multi-valued maximal monotone operator rA I defined on a Hilbert space rH I and whose unique
solution is denoted by rU I. It is crucial to observe that our framework lies on an appropriate
energetic connection between the elements of spaces rH s and rH I which are of very different
nature. More precisely, through an operator denoted by rPsI, we may associate to each element
U of rH I a representative rPsIU in rH s whose energy converges to the square of the norm of U
as s goes to some limit s̄ (in particular the thinness ε goes to zero). This means in particular
that the problem (rP I) should not be considered as the limit model as such but as a tool to
build it: the unique solution rU I of (rP I) has a representative rPsI rU I defined on the genuine
physical structure and the relative energetic gap between the unique solution rU s of the genuine
physical problem and rPsI rU I goes to zero. In short, we say that rU s converges toward rU I in
the sense of Trotter. This convergence is here achieved through an elementary adaptation to
the case of thin structures of the two-scale convergence developed for homogenization purpose
by [9, 10]. This tool is essential to ensure the compactness of the sequence of operators rA s in
the sense of the resolvent convergence. This is indeed one of the original features of this paper:
Kelvin-Voigt viscoelastic behavior is preserved in our limit models, which contrasts with results
presented in the literature where most of the time an additional term of delayed memory appears.
Of course if we eliminate an additional state variable characterizing the “limit” state we find the
term with memory (see (49)). Another topic that should be highlighted is that the strain of the
real displacement field on the genuine physical thin plate/slender rod is shown to be actually
far from the strain of Kirchhoff–Love/Bernoulli–Navier and even Reissner–Mindlin/Timoshenko
displacement fields. The tools and concepts that are used lead to few proofs. However, the reader
who is not inclined towards mathematical considerations can be satisfied with the reading of the
beginning of the sole subsection 4.1.1 where the “limit” spaces involved by the “limit” problem
are defined in (23)-(25).

In Section 5 we present and detail the main properties of our various limit models both in the
case of thin plates and of slender beams.

Eventually we present in the Appendix A our adaptation to the case of reduction dimension of
the two-scale convergence mentioned earlier.

2. Formulation of the problem

As usual we do not distinguish between R3 and the Euclidean physical space. Throughout
the paper, lower Greek (resp. Latin) indices run from 1 to 2 (resp. 1 to 3). For our purpose it is
convenient and capital to introduce

α
((
ζ
))

:=
{
ζ̂ := (ζ1,ζ2) if α= 1

ζ3 if α= 2
, ∀ ζ ∈R3. (1)

The thin structure (a thin plate when r = 1, a slender beam when r = 2, see Fig. 1 below)
occupies the closure of rΩε the images ofΩ by the bijections rΠε defined, respectively, by

ζ ∈R3 7→ rΠεζ := (
εr−1ζ̂,ε2−r ζ3

) ∈R3 (2)

Ω :=ω× (−1,1) (3)

where ω is a bounded domain of R2 with a Lipschitz-continuous boundary ∂ω. When r = 2,
without loss of generality, we choose the origin of coordinates in such a way that∫

ω
xα d x̂ =

∫
ω

xαxβ d x̂ = 0, ∀α ̸=β. (4)
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In the sequel, the space variables xε in rΩε and x inΩ are systematically connected by

xε := rΠεx, ∀ x ∈Ω. (5)

Figure 1. Thin plate and slender beam deriving from a single abstract domain through the
bijections rΠε

Within the context of small strains, we study the dynamic response of a structure made of a
nonlinear Kelvin–Voigt viscoelastic material subjected to a given load during the time interval
[0,T]. The structure is clamped on a part rΓεD of the boundary ∂

(
rΩε

)
of rΩε such that

1ΓεD := γD × (−ε,ε), 2ΓεD := εω× {−1} (6)

where γD is a part of ∂ω with H1(γD) > 0, Hn being the n-dimensional Hausdorffmeasure. The
structure is also in bilateral contact with a rigid body by Norton or Tresca friction with a “friction”
coefficient µ on rΓεC defined by

1ΓεC := γC × (−ε,ε), γC ⊂ ∂ω, γC ∩γD =∅, H1(γC) > 0, 2ΓεC := εω× {1} (7)

and subjected to a given loading which at each instant t of [0,T] can be represented by an element
rLε(t ) of rU s ′ the strong dual of

rU s := {
w ∈ H 1 (rΩε,R3) ; w = 0 on rΓεD, wN ,ε = 0 on rΓεC

}
(8)

where wN ,ε := w ·nε, wT,ε := w − wN nε are the normal and tangential parts of w on rΓεC, with
nε the outward unit normal to ∂(rΩε). Classically rLε stems from body forces of density rf ε in
L2(rΩε,R3) and surface forces of density rg ε in L2(rΓεN,R3) acting on rΓεN:

1ΓεN := (
∂ω\

(
γD ∪γC

))× (−ε,ε)∪ (ω× {−ε,ε}), 2ΓεN := ε∂ω× (−1,1),
rLε(t )(v) :=

∫
rΩε

rf ε
(
xε, t

) · v d xε+
∫

rΓεN

rg ε
(
xε, t

) · v dH2, ∀ v ∈ rU s .
(9)

The density ρδε of the structure, its elasticity tensor aε and the density of its viscous pseudo-
potential of dissipation b rDε

v satisfy:
ρ > 0, b > 0,

δε ∈ L∞ (rΩε
)

; ∃αa > 0 s.t. δε
(
xε

)≥αa a.e. xε ∈ rΩε,

aε ∈ L∞ (rΩε;Lin
(
S3)) ; αa |e|2 ≤ aε

(
xε

)
e ·e , ∀ e ∈S3, a.e. xε ∈ rΩε,

∃ q ∈ [1,2], ∃β> 0, ∃αv > 0; −αv ≤ rDε
v

(
xε,e

)≤β(
1+|e|q )

, ∀ e ∈S3, a.e. xε ∈ rΩε.

(H0)

Let s := (ε,ρ,µ,b) be the key data of the structure and eε(u) the strain tensor associated with
the displacement u (the symmetric part of ∇εu, the gradient of u with respect to xε-variable). If
φp (ξ) = |ξ|p /p for all ξ in RN ,1 ≤ p ≤ 2 and if ∂J (v) denotes the subdifferential at v of any lower
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semicontinuous convex function J , then the stress tensor rσs , the fields of displacement rus and
velocity rv s satisfy: 

rσs ∈ aε eε
(rus)+b ∂ rDε

v

(
eε

(rv s)) in rΩε,

−(rσs nε
)

T,ε ∈ ∂φp

(
rv s

T,ε

)
, rus

N ,ε = 0 on rΓεC,

−div rσs − rf ε+ρδε ∂
rv s

∂t
= 0 in rΩε,

rσs nε = rg ε on rΓεN, rus = 0 on rΓεD.

(10)

So rU s := (rus , rv s ) has to solve the following problem:

(rPs)



Find
(rus , rv s = ∂ rus /∂t

)
sufficiently smooth in rΩε× [0,T] such that

rus = 0 on rΓεD × [0,T], rus
N ,ε = 0 on rΓεC × [0,T],(rus (·,0), rv s (·,0)

)= rU s0 := (rus0, rv s0) in rΩε,

and there exists
(rζs , rξs) in ∂ rDε

v

(
xε,eε

(rv s))×∂φp

(
rv s

T,ε

)
satisfying∫

rΩε
ρδε

∂2 rus

∂t 2 ·w d xε+
∫

rΩε
aεeε

(rus) ·eε(w)d xε+
∫

rΩε
b rζs ·eε(w)d xε

+
∫

rΓεC

µ rξs ·wT,εdH2 = rLε(t )(w),

for all w sufficiently smooth in rΩε and such that w = 0 on rΓεD, wN ,ε = 0 on rΓεC,

Note that on the lateral part rΓεlat := εr−1∂ω× (−ε2−r ,ε2−r ), the plate is partly clamped, sub-
jected to surface forces and friction whereas the beam is only subjected to surface forces, while
on the basis rΓε± := εr−1ω× {±ε2−r } the plate is subjected to surface forces only whereas the beam
is clamped and subjected to friction (to simplify we do not consider the case when surface forces
appear on a part of 2Γε±).

3. Existence and uniqueness

To obtain the existence and uniqueness of rU s , we make an assumption on the loading
rLε ∈ BV 1(0,T; rU s ′) (H1)

where for all Hilbert space H , BV 1(0,T; H) is the space containing all elements of BV (0,T; H)
whose distributional time derivative belongs to BV (0,T; H) which itself is the space of all ele-
ments of L1(0,T; H) whose distributional time derivative is an H-valued measure.

The field rU s is decomposed into two fields through rU s = rU se+ rU sa with rU se (t ) := (ruse (t ),0)
defined by

ruse (t ) ∈ rU s ; rϕs (ruse (t ),u′)= rLε(t )(u′), ∀ u′ ∈ rU s , ∀ t ∈ [0,T], (11)

where
rϕs (u,u′) := 1

ε2+r

∫
rΩε

aεeε(u) ·eε(u′)d xε, ∀ u,u′ ∈ rU s . (12)

Due to (H0) and (H1), the displacement field ruse is well-defined and lives in BV 1(0,T; rU s ).
The other part rU sa of rU s brings into play an evolution equation set in a Hilbert space rH s

of possible states with finite total mechanical energy governed by a maximal-monotone operator
rA s . To this end we introduce the bilinear form rk s associated with the kinetic energy

rk s (
v, v ′) := 1

ε2+r

∫
rΩε

ρδεv · v ′ d xε, ∀ v, v ′ ∈ rV s := L2 (rΩε,R3) , (13)

and define the space rH s := rU s × rV s endowed with the following inner product and norm
r〈U ,U ′〉s := rϕs (

u,u′)+ rk s (
v, v ′) , ∀U = (u, v), U ′ = (

u′, v ′) ∈ rH s ,

r|U |s := [r〈U ,U 〉s]1/2 .
(14)
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The global pseudo-potential of dissipation rDs
f involved by friction is

rDs
f (v) := µ

ε2+r

∫
rΓεC

φp (vT,ε)dH2, ∀ v ∈ rU s , (15)

while the global viscous pseudo-potential of dissipation is

rDs
v(v) := b

ε2+r

∫
rΩε

rDε
v

(
xε,eε(v)

)
d xε, ∀ v ∈ rU s . (16)

The situation when p = 1 refers to Tresca while p ∈ (1,2] corresponds to Norton tangential friction
with bilateral contact. The purpose of the normalizing factor ε2+r for energies and global pseudo-
potentials of dissipation will clearly appear in the next section.

So the multi-valued operator rA s defined on rH s by

D
(rA s) :=

{
rU = (ru, rv

) ∈ rH s ;

{
I) rv ∈ rU s

ii) ∃ rw ∈ rV s s.t.
rϕs (ru, v ′)+ rk s (rw, v ′)+ rDs

f

(rv + v ′)− rDs
f

(rv
)

+ rDs
v(rv + v ′)− rDs

v(rv) ≥ 0 ∀ v ′ ∈ rU s
}

,

− rA s rU = {(rv, rw
)

; rw satisfies ii) in the definition of D
(rA s)} ,

obviously satisfies:

Proposition 1. The operator rA s is maximal monotone and for all rψs = (rψs
u , rψs

v ) in rH s

{rU
s = (rus , rv s) s.t.

rU
s + rA s rU

s ∋ rψs
⇐⇒



rus = rv s + rψs
u ,

where rv s is the unique minimizer on rU s of rJ s ;

rJ s (rv
)

:= 1

2

[r∣∣(rv, rv
)∣∣s ]2 + r〈(rψs

u ,−rψs
v

)
,
(rv, rv

)〉s

+rDs
f

(rv
)+ rDs

v

(rv
) ∀ rv ∈ rU s .

Finally as the very definitions of rDs
f and rDs

v imply that (rPs ) is formally equivalent to

(rP s) 
d rU s

d t
+ rA s (rU s − rU se) ∋ 0,

rU s (0) = rU s0,

a result of [11] yields:

Theorem 2. Under assumptions (H0), (H1) and

rU s0 ∈ rU se (0)+D
(rA s) (H2)

the problem (rP s ) has a unique solution rU s belonging to W 1,∞(0,T ; rH s ) and the first line of (rP s )
is satisfied almost everywhere in (0,T].

4. Asymptotic behavior

Now we consider s as a quadruplet of parameters taking values in a countable subset S of
(0,+∞)4 with a unique cluster point s̄ in {0}× [0,+∞)× [0,+∞]2.

For each value of r we will consider various cases of relative behavior of the elements of s
characterized by I = (I1, I2, I3) in {1,2}× {1,2,3}× {1,2}. First we let

ρ∗I1 :=
{
ρε−2 I1 = 1

ρ I1 = 2
,
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1µ∗I2 :=
{
µε−2 I2 = 1

µεp−2 I2 = 2,3
; 2µ∗I2 :=µε−2, I2 = 1,2,3,

b∗I3 := b εq−2, I3 = 1,2

and second make the following assumption to account for the magnitudes of density, thickness
and viscosity: 

there exists
(
ρ̄I1 , rµ̄I2 , b̄I3

)
in (0,+∞)× [0,+∞]× [0,+∞] such that

ρ̄I1 := lim
s→ s

ρ∗I1 ,

1µ̄I2 := lim
s→ s

1µ∗I2 with 1µ̄1, 1µ̄2 ∈ [0,+∞) and 1µ̄3 =+∞,

2µ̄I2 := lim
s→ s

2µ∗I2 with 2µ̄1 ∈ [0,+∞), 2µ̄I2 =+∞ if I2 = 2,3,

b̄I3 := lim
s→ s

b∗I3 with b̄2 =+∞.

(H3)

In the sequel, according to the very definition of rΠε in (2), we discard the index ε for the
notations of the inverse images of rΓεD and rΓεC. We make the following assumption (H4) on the
density, the elasticity tensor of the structure, the viscous pseudo-potential of dissipation and the
loading: 

∃ (δ, a) ∈ L∞(
Ω,R×Lin(S3)

)
s.t.

αa ≤ δ(x), αa |e|2 ≤ a(x)e ·e, ∀ e ∈S3, a.e. x ∈Ω
δε(xε) = δ(x), aε(xε) = a(x), a.e. x ∈Ω

∃ rDv measurable inΩ, convex on S3 s.t.

∃ q ∈ [1,2], −αv ≤ rDv(x,e) ≤β(1+|e|q )
rDε

v (xε,e) = rDv(x,e)

}
∀ e ∈S3, a.e. x ∈Ω

∃ rLε ∈ BV 1(0,T;rU ′
c

)
s.t.

rLε(t )(w) = ε2+r rLε(t )(rSεw),∀ (w, t ) ∈ rU s × (0,T)

∃ rL ∈ BV 1(0,T; rU ′
c

)
s.t.

rLε strongly converges in BV 1(0,T; rU ′
c

)
toward rL

(H4)

where 
rUc := {

w ∈ H 1(Ω,R3); w = 0 on rΓD, wN = 0 on rΓC
}

rU ′
c is the strong dual of rUc

n is the outward normal to ∂Ω, wN := w ·n, wT := w −wN n

(17)

and (see (1))

r((rSεw
))

(x) := 1

ε
r((w

))
(xε), 3−r((rSεw

))
(x) := 3−r((w

))
(xε), ∀ w ∈ L2(rΩε,R3). (18)

Remark 3. Equation (18) expresses that the relative orders of magnitude between the in-plane
and the out of plane displacements are not the same in the case of plates and in the case of beams.
In the classical literature (see [5–7] for example) what is called the “scaled displacement field” (the
one which lives on Ω) and very often denoted by u(ε) is - up to a power of ε - connected to the
genuine physical displacement denoted by uε through formulas of the kind uε

α(xε) = εuα(ε)(x),
uε

3(xε) = u3(ε)(x) in the case of plates and uε
α(xε) = uα(ε)(x), uε

3(xε) = εu3(ε)(x) in the case of
beams, which is summarized in (18).
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4.1. A candidate for the limit behavior

4.1.1. The limit framework

The limit framework may be determined by studying the asymptotic behavior of sequences
with bounded total mechanical energy. The “scaling operator” rSε introduced in (18) plays a key
role because one has

eε(w)(xε) = ε re(ε, rSεw) (19)

where

rei j (ε, z) :=


ε2(1−r )ei j (z) for 1 ≤ i , j ≤ 2

ε−1ei j (z) for 1 ≤ i ≤ 2, j = 3
re j i (ε, z) for 1 ≤ j < i ≤ 3

ε2(r−2)e33(z) for i = j = 3,

ei j (z) := 1
2

(
∂i z j +∂ j zi

)


∀ z ∈ H 1 (

Ω,R3) . (20)

and therefore the bilinear forms rϕs and rk s read as

rϕs (u,u′) =
∫
Ω

a re
(
ε, rSεu

) · re
(
ε, rSεu′) d x, ∀ u,u′ ∈ rU s , (21)

rk s (v, v ′) = ρ

ε2

∫
Ω
δ
(
ε2 r((rSεv

)) · r((rSεv ′))+ 3−r((rSεv
)) · 3−r((rSεv ′)))d x, ∀ v, v ′ ∈ rV s . (22)

Remark 4. Similarly to what has been recalled in Remark 3, as soon as we consider ε as a
parameter, its influence on the strain tensor is different depending on whether we consider the
case of plates or the case of beams. In the case of plates we are led to deal with a strain tensor
ei j (ε, z) of the form

 eαβ(z) 1
ε eα3(z)

1
ε eα3(z) 1

ε2 e33(z)

 ,

while the case of beams leads to

 1
ε2 eαβ(z) 1

ε eα3(z)

1
ε eα3(z) e33(z)



and this is what (20) summarizes.



Yotsawat Terapabkajornded, Somsak Orankitjaroen, Christian Licht and Thibaut Weller 209

Thus we let

xR := (−x2, x1), ∀ x ∈R3,

H 1
b (−1,1) :=

{
w ∈ H 1(−1,1); w(−1) = 0

}
,

H 1
b

(
Ω,R3) :=

{
w ∈ H 1 (

Ω,R3) ; w(x̂,−1) = 0, a.e. x̂ ∈ω
}

,

H 1
m(ω) :=

{
w ∈ H 1(ω);

∫
ω

w(x̂)d x̂ = 0
}

,

H 1
m

(−1,1;L2 (
ω,Rn))

:=
{

w ∈ H 1 (−1,1;L2 (
ω,Rn))

;
∫ 1

−1
w(x)d x3 = 0

}
,

VKL :=
{

w ∈ H 1 (
Ω,R3) ; ei 3(w) = 0

}
, VBN :=

{
w ∈ H 1 (

Ω,R3) ; eαβ(w) = eα3(w) = 0
}

,

1U 0 :=VKL ∩ 1Uc, 2U 0 :=VBN ∩ 2Uc,
1U 1 := H 1

m

(−1,1;L2(ω,R2)
)× {0},

2U 1 :=
{

w ;∃ c ∈ H 1
b (−1,1) s.t. ŵ(x) = c(x3)xR, w3 ∈ L2(−1,1; H 1

m(ω)
)}

,

1U 2 := {0}2 ×H 1
m

(−1,1;L2(ω)
)
,

2U 2 :=
{

ŵ ∈ L2(−1,1; H 1
m

(
ω,R2)) s.t.

∫
ω

xR · ŵ(x)d x̂ = 0 a.e. x3 ∈ (−1,1)
}
× {0},

rU := rU 0 × rU 1 × rU 2.

(23)

We also introduce reu in L2(Ω,S3) such that

(reu
)

i j :=


ei j

(
u2(r−1)

)
for 1 ≤ i , j ≤ 2

ei j
(
u1

)
for 1 ≤ i ≤ 2, j = 3

e33
(
u2(2−r )

)
for i = j = 3,

, ∀ u = (
u0,u1,u2) ∈ rU , (24)

and define 

rϕ
(
u,u′) :=

∫
Ω

a reu · reu′ d x, ∀ u,u′ ∈ rU

rV 1 := L2 (
Ω,Rr) , rV 2 :=

{
v ∈ L2 (

Ω,R3) ; 3−r((v
))= 0

}
,

rH I := rU × rV I1 , ∀ I = (I1, I2, I3) ∈ {1,2}× {1,2,3}× {1,2},

rkI1
(
v, v ′) := ρ̄I1

∫
Ω
δv · v ′ d x, ∀ v, v ′ ∈ rV I1 ,

r〈U ,U ′〉I := rϕ(u,u′)+ rkI1 (v, v ′), ∀ U = (u, v), U ′ = (
u′, v ′) ∈ rH I,

r|U |I := [r〈U ,U 〉I]1/2
.

(25)

The following two propositions suggest that the Hilbert space rH I is the required framework
to describe the asymptotic behavior:

Proposition 5. For every sequences rX s = (rX s
u , rX s

v ) in rH s such that r|rX s |s is uniformly
bounded, there exist a not relabeled subsequence and rX I = (rX I

u , rX I
v ) in rH I such that

(i)
(

rerX I
u

, rX I
v

)
is the weak limit in L2

(
Ω,S3 ×R(3−r )I1+(2r−3)

)
of

(
re(ε, rSε

rX s
u ), 3−r

((
rSε

rX s
v

)))
when I1 = 1 or of

(
re(ε, rSε

rX s
u ), rSε

rX s
v

)
when I1 = 2,

(ii) r ∣∣rX I∣∣I ≤ lim
s→ s

r ∣∣rX s ∣∣s .
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Proposition 6. For all s in S and all U = (u, v) in rH I, let rPsIU := (rPsI
u u, rPsI

v v) in rH s defined by

rϕs (rPsI
u u,u′) :=

∫
Ω

a reu · re
(
ε, rSεu′) d x, ∀ u′ ∈ rU s , (26)

rk s (rPsI
v v, v ′) :=

{
ρ̄1

∫
Ωδv · 3−r

((
rSεv ′))d x, if I1 = 1

ρ̄2
∫
Ωδv · rSεv ′ d x, if I1 = 2

, ∀ v ′ ∈ rV s . (27)

There holds:

(P1) ∃C > 0 s.t. r|rPsIU |s ≤C r|U |I, ∀U ∈ rH I, ∀ s ∈S,
(P2) lim

s→s

r ∣∣rPsIU
∣∣s = r|U |I, ∀U ∈ rH I,

(P3) (i) lim
s→s

1

ε2+r

∫
rΩε

aε
[

eε
(rPsI

u u
)− reεu

]
·
[

eε
(rPsI

u u
)− reεu

]
d xε = 0, with

reεu
(
xε

)
:= ε reu(x) a.e. xε = rΠεx ∈ rΩε, ∀ u ∈ rU . (28)

(ii) rPsI
v v = rV εI

v :=


ρ̄I1

ρ∗I1

(rSε

)−1 r v̌ , if I1 = 1,

ρ̄I1

ρ∗I1

(rSε

)−1 v if I1 = 2.

where, for all v in L2(Ω,R3), r v̌ :=
{

(0,0, v3) if r = 1,

(v̂ ,0) if r = 2.

Proof. The proof of Proposition 5 is obvious when r = 1 (case of plates) but more difficult when
r = 2 (case of beams) and we are aware of two proofs in the literature [12, 13]. Here we propose
a simplification of the last part of the proof in [12]. We set zε := 2Sε

2X s
u , the boundedness of

2e(ε, zε) implies that there exist a not relabeled subsequence and z0 in 2U 0 such that zε weakly
converges in H 1(Ω,R3) toward z0. Moreover through a decomposition lemma, it is established
in [12] that

1

ε
ẑε = εŵε+ cεxR+dε

wε ∈ H 1
b

(
Ω,R3)∩ 2U 2, |ŵε|2L2(−1,1;H 1

m(ω,R2)) ≤
C

ε2

∑
α,β

∣∣eαβ(zε)
∣∣2
L2(Ω)

cε := 1

ε

∫
ω xR · ẑεd x̂∫
ω |x̂|2 d x̂

, dε := 1

ε|ω|
∫
ω

ẑεd x̂

(29)

which, first, implies that there exists z2 in 2U 2 such that up to a not relabelled subsequence
1
ε2 eαβ(zε) = eαβ(wε) weakly converges in L2(Ω) toward eαβ(z2) and, next through some handlings,
that there exists c in H 1(−1,1) such that cε strongly converges in L2(−1,1) toward c. Lastly to
establish that there exists z1 in 2U 1 such that 1

ε eα3(zε) weakly converges in L2(Ω) toward eα3(z1),
it suffices to observe that

2

ε
eα3(zε) = ε∂3wε

α+
dcε
d x3

xR
α +∂α

(
d

d x3

(
dεβ

)
xβ+

zε3

ε

)
. (30)

As c belongs to H 1(−1,1) one deduces that ∂α( d
d x3

(dεβ )xβ + zε3
ε ) converges in the sense of

distributions to an element qα of L2(Ω). Therefore as ∂2q1 −∂1q2 = 0 and ω is a domain, there
exists ζ in L2(−1,1; H 1(ω,R2)) such that q = ∇̂ζ and z1 := (cxR,ζ) meets the required condition.

The proof of Proposition 6 is then straightforward. First by taking u′ = rX s
u := rPsI

u u in (26),
one deduces that there exist a not relabeled subsequence and z in rU such that re(ε, rSε

rX s
u )

weakly converges in L2(Ω,S3) toward some rez . Next by choosing u′ = (rSε)−1(
∑2

i=0 ε
i y i ) with
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y in rU ∩C∞(Ω,R3)3, we deduce that z = u. Lastly by taking u′ = rX s
u again, one obtains

that | re(ε, rSε
rX s

u )|2
L2(Ω,S3)

converges to |reu |2L2(Ω,S3)
which implies the strong convergence of

re(ε, rSε
rX s

u ) toward reu which is also (P3i) because of (19) and the definition of reεu ; in other
words 1

ε eε(rX s
u ) “3d−(3− r )d converges” toward reu (see the Appendix).

The remaining point (P3ii) is obvious. □

Property (P2) states that any element U of rH I has a representative rPsIU in rH s whose
rescaled energy r〈rPsIU , rPsIU 〉s is arbitrarily close to the square of the norm of U in rH I, ensuring
that rH I is appropriate to describe the asymptotic behavior. Note that through (25) the “abstract
velocities” living in the space rV I1 involve only the component 3−r((·))!

4.1.2. The limit operator rA I

According to the theory of Trotter of approximation of semi-groups of operators acting on
variable spaces [1, 2, 8], we examine the asymptotic behavior of the resolvent (I− rA s )−1 of rA s

in order to guess the limit operator rA I. By due account of Proposition 1, we consider sequences
rzs with uniformly bounded global friction and viscous pseudo-potentials of dissipation rDs

f (rzs ),
rDs

v(rzs ) and “total energy functional” [r|(rzs , rzs )|s ]2, which will permit to define the space rZ I of
“virtual limit admissible generalized velocities” and the limit global potentials of dissipations rDI

f
and rDI

v. Let

rZ I :=
{

z ∈ rU ; 3−r((z0))= 0 if I1 = 2,
3−r((z0))= 0 on rΓC if I2 = 2, z0 = 0 on rΓC if I2 = 3, z = 0 if I3 = 2

}
, (31)

1DI
f (z):=


2 1µ̄1

∫
γC
φp

(
z0

3

)
dH1 if I2 = 1

2 1µ̄2
∫
γC
φp

(
ẑ0

T

)
dH1 if I2 = 2

0 if I2 = 3

, ∀ z ∈ 1Z I, (32)

2DI
f (z):=

{
2µ̄1

∫
ωφp

(
ẑ0 (x̂,1)

)
d x̂ if I2 = 1

0 if I2 = 2,3
, ∀ z ∈ 2Z I, (33)

rDI
v(z):=

{
b̄1

∫
Ω

rDv (rez ) d x if I3 = 1

0 if I3 = 2
, ∀ z ∈ rZ I. (34)

A simple argument of lower semi-continuity yields:

Proposition 7. For all sequence rzs in rU s such that [r|(rzs , rzs )|s ]2 + rDs
f (rzs )+ rDs

v(rzs ) ≤ C , there
exist a not relabeled subsequence and rz in rZ I such that re(ε, rSε

rzs ) weakly converges in L2(Ω,S3)
toward rerz and[

r
∣∣∣(rz, r(z̊

)I
)∣∣∣I

]2

+ rDI
f

(rz
)+ rDI

v

(rz
)≤ lim

s→ s

([
r∣∣(rzs , rzs)∣∣s

]2 + rDs
f

(rzs)+ rDs
v

(rzs))
with

r(z̊
)I :=

{
3−r

((
z0

))
if I1 = 1

z0 if I1 = 2
, ∀ z = (

z0, z1, z2) ∈ rU . (35)

Note that therefore friction appears only when I2 = 1 in the case of beams.
Thus taking advantage of the concept of multi-valued operators, we introduce the following

operator rA I:
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• When I3 = 1:

D
(rA I) :=U = (u, v) ∈ rH I ;


i) ∃ ṽ ∈r Z I s.t. r (

˚̃v
)I = v,

ii) ∃ w ∈ rV I1 s.t. r
〈

(u, w),
(
z, r(z̊

)I
)〉I + rDI

f (z + ṽ)− rDI
f (ṽ)

+rDI
v(z + ṽ)− rDI

v(ṽ) ≥ 0, ∀ z ∈ rZ I

 ,

−rA I U = { (ṽ , w) satisfying i) and ii)}.

• When I3 = 2: {
D

(rA I) := rU × {0},

−rA I U = {0}× rV I1 ,

and the very definition of rA I implies:

Proposition 8. The operator rA I is maximal monotone and for all rψ = (rψu , rψv ) in rH I, when
I3 = 1:

{
rŪ I = (

rūI, rv̄ I
)

s.t.
rŪ I + rA I rŪ I ∋ rψ

⇐⇒



(rūI, rv̄ I)= (
rz̄ + rψu , r( ˚̄z

)I
)

,

where rz is the unique minimizer on rZ I of rJ I;

rJ I(z) := 1

2

[
r
∣∣∣(z, r(z̊

)I
)∣∣∣I

]2

+ r
〈(rψu ,−rψv

)
,
(
z, r(z̊

)I
)〉I

+rDI
f (z)+ rDI

v(z), ∀ z ∈ rZ I

while when I3 = 2: rŪ I + rA I rŪ I ∋ rψ⇐⇒ (rūI, rv̄ I) = (rψu ,0).

Hence if rU Ie (t ) = (ruIe (t ),0) is defined by
ruIe (t ) ∈ rU ; rϕ

(ruIe (t ), w
)= rL(t )(w), ∀ w ∈ rU , ∀ t ∈ [0,T] (36)

we have:

Theorem 9. Under assumptions (H1) to (H4) and
rU I0 ∈ rU Ie (0)+D

(rA I) (H5)

the differential inclusion

(rP I)


d rU I

d t
+ rA I (rU I − rU Ie) ∋ 0

rU I(0) = rU I0

has a unique solution rU I belonging to W 1,∞(0,T; rH I) and the first line of (rP I) is satisfied almost
everywhere in (0,T].

Note that for the singular case (i.e. when I3 = 2) the problem (rP I) reduces to
rU I(t ) = rU I0, rU I0 = (ruI0,0

)
.

4.2. Convergence

To prove the “convergence” of the solution rU s to (rP s ) toward the solution rU I to (rP I), as rU s

and rU I do not inhabit in the same space and by due account of Propositions 5 and 6, we use the
framework of the Theory of Trotter of approximation of semi-groups of linear operators acting on
variable spaces [1, 2]. We state:

rX s in rH s converges in the sense of Trotter toward rX I in rH I if lim
s→ s

r ∣∣rX s − rPsI rX I∣∣s = 0. (37)

Propositions 5 and 6 immediately imply:
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Proposition 10. The sequence rX s = (rX s
u , rX s

v ) in rH s converges in the sense of Trotter toward
rX I = (rX I

u , rX I
v ) in rH I if and only if both limits are satisfied:

(i) lims→ s
1

ε2+r

∫
rΩε aε

(
eε

(
rX s

u

)− reεrX I
u

)
·
(
eε

(
rX s

u

)− reεrX I
u

)
d xε = 0,

(ii) lims→ s
rk s

(
rX s

v − rV εI
rX I

v
, rX s

v − rV εI
rX I

v

)
= 0.

As
∫

rΩε aε reεrX I
u
· reεrX I

u
d xε = ε2+r

∫
Ω a rerX I

u
· rerX I

u
d x, this notion of convergence is the appropriate

one from the mechanical point of view: a convergence result of relative energetic gaps measured
on the physical structure (the only one which has a meaning because the total mechanical energies
are going to zero!) between the state rX s and the image on the genuine physical configuration rΩε

of the limit state rX I.
Thus according to a non-linear extension of Trotter theory [8], our key result of convergence:

Theorem 11. Under assumptions (H1) to (H5) and

lim
s→s̄

r ∣∣rPsI rU I0 − rU s0∣∣s = 0 (H6)

the solution rU s to (rP s ) converges to the solution rU I to (rP I) in the sense that lims→ s
r|rPsI rU I(t )−

rU s (t )|s = 0 uniformly on [0,T ]. In addition, lims→ s
r|rU s (t )|s = r|rU I(t )|I uniformly on [0,T ].

stems from the definitions (11) and (36) of ruse and ruIe , their time regularities and the following
result:
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Proposition 12. There hold:

(i) lims→ s
r
∣∣∣rPsI

(
I+ rA I

)−1
ψ− (I+ rA s )−1 rPsIψ

∣∣∣s = 0, ∀ψ= (ψu ,ψv ) ∈ rH I,

(ii) lims→ s
r
∣∣rPsI rU Ie (t )− rU se (t )

∣∣s = 0, ∀ t ∈ [0,T].

Proof.
(i) Proposition 1 implies that rU

s = (rūs , rv̄ s ) := (I+ rA s )−1 rPsIψ is such that rūs = rv̄ s + rPsI
u ψu and

rv̄ s is the unique minimizer on rU s of rJ̃ s defined by

rJ̃ s (v) = 1

2

[r |(v, v)|s]2 +
∫
Ω

a reψu · re
(
ε, rSε v

)
d x + rkI1

(−ψv , rSε v
)+ rDs

f (v)+ rDs
v(v), ∀ v ∈ rU s .

Hence rv̄ s is bounded in rU s and rV s . According to Propositions 7 and 8, there exist rv∗ in rZ I and
a not relabeled subsequence such that re(ε, rSε

rv̄ s ) weakly converges in L2(Ω,S3) toward rerv∗ and

rJ I (rv∗)≤ lim
s→ s

rJ̃ s (rv̄ s) .

To prove that the entire sequence converges toward rerz̄ with rz̄ the unique minimizer of rJ I on rZ I

and
rJ I (rz̄

)= lim
s→ s

rJ̃ s (rv̄ s) , r
∣∣∣(rz̄, r(z̊

)I
)∣∣∣I = lim

s→ s

r ∣∣(rv̄ s , rv̄ s)∣∣s , (38)

it remains to show that for all z = (z0, z1, z2) in rZ I such that zi , i = 1,2, belongs to rUc there exists
rzs in rUc such that re(ε, rSε

rzs ) weakly converges in L2(Ω,S3) toward rez with

lim
s→ s

r∣∣(rzs , rzs)∣∣s ≤ r∣∣(z, r(z̊
)I)∣∣I,

lim
s→ s

rDs
f

(rzs)≤ rDI
f (z),

lim
s→ s

rDs
v

(rzs)≤ rDI
v(z),

lim
s→ s

rJ̃ s (rzs)≤ rJ I(z).

(39)

which is achieved by

rzs := (rSε

)−1

(
z0 +

2∑
i=1

εi zi

)
.

(ii) As rU se (t ) and rU Ie (t ) are the unique minimizers of

1

2

[r∣∣(·, ·)∣∣s]2 − rLε(t ) and
1

2

[
r∣∣(·, ·)∣∣I

]2 − rL(t ),

respectively, it suffices to use the preceding result i) by simply replacing the linear forms
∫
Ω a reψu ·

re(ε, rSε·)d x, ϕ(ψu , ·) by rLε(t ), rL(t ), respectively, and make ρ =µ= 0, ψv = 0. □

5. Conclusive remarks and proposal of an “asymptotic model”

According to each value of I in {1,2}×{1,2,3}×{1,2} we give a more explicit way of writing (rP I)
in the form of variational equations (rPI) posed over the abstract domain Ω. Their “mechanical
interpretation” is given right after. We recall that the space rZ I of virtual limit admissible
generalized velocities and the limit global potentials of dissipations rDI

f and rDI
v are defined

in (31)-(34) while the “limit loading” rL(t ) satisfies:

rL(t )(v) :=
∫

rΩ

rf (x, t ) · v0(x, t )d x +
∫

rΓN

rg (x, t ) · v0(x, t )dH2, ∀ v = (
v0, v1, v2) ∈ rZ I,(rf (·, t ), rg (·, t )

) ∈ L2 (
Ω,R3)×L2 (rΓN,R3) . (40)
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Let 1〈δ〉 := ∫ 1
−1δ(x̂, x3)d x3 and 2〈δ〉 := ∫

ωδ(x̂, x3)d x̂. We denote the time derivative by an upper
dot and consider the following initial conditions:

ruI(0) = ruI0 = (ruI0,0, ruI0,1, ruI0,2) , rv I(0) = rvI0, ∀ I. (41)

In the case of plates we use the equivalent characterization of VKL:

VKL :=
{

w ∈ H 1 (
Ω,R3) ;∃ (

wM, wF) ∈ H 1 (
ω;R2)×H 2(ω) s.t.

ŵ(x) = wM(x̂)−x3∇̂wF(x̂), w3(x) = wF(x̂)
}

, (42)

from which we infer

1uI0M = 0, 1uI0F = 0 and ∂ν
1uI0F = 0 on γD, 1uI0M ·ν= 0 and ∂ν

1uI0F = 0 on γC, (43)

where ν is the unit outer normal vector along ∂ω and ∂ν := ν · ∇̂ is the normal derivative. These
relations are also valid for all z0 such that z = (z0, z1, z2) belongs to 1Z I with moreover

z0F = 0 in ω if I1 = 2, z0F = 0 if I2 = 2,3, z0M = 0 on ΓC if I2 = 3, (44)

The limit problem for thin plates reads as:

(1PI)



I = (1,1,1) : ∃ ζ ∈ ∂ 1Dv
(

1e1u̇I

)
and ∃ ξ ∈ ∂φp

(
1u̇I0F

)
s.t.

ρ1 ∫
ω

1〈δ〉1üI0F z0F d x̂ +∫
Ω

[
a 1e1uI +b

1
ζ
]
· 1ez d x +21µ1 ∫

γC
ξz0F dH1 = 1L(t )(z0),

∀ z = (
z0, z1, z2

) ∈ 1Z I,

I = (1,2,1) :∃ ζ ∈ ∂ 1Dv
(

1e1u̇I

)
and ∃ ξ ∈ ∂φp

(
1u̇I0M

T

)
s.t.

ρ1 ∫
ω

1〈δ〉1üI0F z0F d x̂ +∫
Ω

[
a 1e1uI +b

1
ζ
]
· 1ez d x +21µ2 ∫

γC
ξ · z0M dH1 = 1L(t )(z0), ∀ z ∈ 1Z I,

1uI0F(t ) = 1uI0,0F on γC, ∀ t ∈ [0,T],

I = (1,3,1) : ∃ ζ ∈ ∂ 1Dv
(

1e1u̇I

)
s.t.

ρ1 ∫
ω

1〈δ〉1üI0F z0F d x̂ +∫
Ω

[
a 1e1uI +b

1
ζ
] · 1ez d x = 1L(t )(z0), ∀ z ∈ 1Z I,

1uI0(t ) = 1uI0,0 on 1ΓC, ∀ t ∈ [0,T],

I = (2,1,1) : ∃ ζ ∈ ∂ 1Dv
(

1e1u̇I

)
s.t.

ρ2 ∫
ω

1〈δ〉1üI0M · z0M d x̂ +∫
Ω

[
a 1e1uI +b

1
ζ
] · 1ez d x = 1L(t )(z0), ∀ z ∈ 1Z I,

1uI0F(t ) = 1uI0,0F, ∀ t ∈ [0,T],

I = (2,2,1) : ∃ ζ ∈ ∂ 1Dv
(

1e1u̇I

)
and ∃ ξ ∈ ∂φp

(
1u̇I0M

T

)
s.t.

ρ2 ∫
ω

1〈δ〉1üI0M · z0M d x̂ +∫
Ω

[
a 1e1uI +b

1
ζ
] · 1ez d x +21µ2 ∫

γC
ξ · z0M dH1 = 1L(t )(z0), ∀ z ∈ 1Z I,

1uI0F(t ) = 1uI0,0F, ∀ t ∈ [0,T],

I = (2,3,1) : ∃ ζ ∈ ∂ 1Dv
(

1e1u̇I

)
s.t.

ρ2 ∫
ω

1〈δ〉1üI0M · z0M d x̂ +∫
Ω

[
a 1e1uI +b

1
ζ
]
· 1ez d x = 1L(t )(z0), ∀ z ∈ 1Z I,

1uI0F(t ) = 1uI0,0F, ∀ t ∈ [0,T],
1uI0M(t ) = 1uI0,0M on γC, ∀ t ∈ [0,T],

I3 = 2 : 1uI(t ) = 1uI0, 1v I(t ) = 0.
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As for the beams, it is convenient to use the equivalent characterization of VBN:

VBN :=
{

w ∈ H 1 (
Ω,R3) ;∃ (

cw , wT, wL) ∈R×H 2 (−1,1;R2)×H 1(−1,1) s.t.

ŵ(x) = wT(x3)+ cw xR , w3(x) = wL(x3)− x̂ · d wT

d x3
(x3)

}
(45)

which implies 
2uI0L(−1) = 0, 2uI0T(−1) = 0,

d

d x3

2uI0T(−1) = 0, c2uI0 = 0,

2uI0L(1) = 0,
d

d x3

2uI0T(1) = 0.
(46)

These relations are also valid for all z0 such that z = (z0, z1, z2) belongs to 2Z I with moreover:

z0T = 0 if I1 = 2, z0T(1) = 0 if I2 = 2,3. (47)

The limit problem for slender beams then reads as:

(2PI)



I = (1,1,1) : ∃ ζ ∈ ∂ 2Dv
(

2e2u̇I

)
and ∃ ξ ∈ ∂φp

(
2u̇I0T(1)

)
s.t.

ρ̄1
∫ 1
−1

2〈δ〉2üI0T · z0T d x3 +
∫
Ω

[
a 2e2uI + b̄1ζ

] · 2ez d x

+2µ̄1|ω|ξ · z0T(1) = 2L(t )(z0), ∀ z ∈ 2Z I,

I = (1,2,1) or (1,3,1) :∃ ζ ∈ ∂ 2Dv
(

2e2u̇I

)
s.t.

ρ̄1
∫ 1
−1

2〈δ〉2üI0T · z0T d x3 +
∫
Ω

[
a 2e2uI + b̄1ζ

] · 2ez d x = 2L(t )(z0), ∀ z ∈ 2Z I,

I = (2,1,1) or (2,2,1) : ∃ ζ ∈ ∂ 2Dv
(

2e2u̇I

)
s.t.

ρ̄2
∫ 1
−1

2〈δ〉2üI0Lz0L d x3 +
∫
Ω

[
a 2e2uI + b̄1ζ

] · 2ez d x = 2L(t )(z0), ∀ z ∈ 2Z I,
2uI0T(t ) = 2uI0,0T, ∀ t ∈ [0,T],

I = (2,3,1) : ∃ ζ ∈ ∂ 2Dv
(

2e2u̇I

)
s.t.

ρ̄2
∫ 1
−1

2〈δ〉2üI0Lz0L d x3 +
∫
Ω

[
a 2e2uI + b̄1ζ

] · 2ez d x = 2L(t )(z0), ∀ z ∈ 2Z I,
2uI0T(t ) = 2uI0,0T, ∀ t ∈ [0,T],
2uI0L(t )(1) = 2uI0,0L(1), ∀ t ∈ [0,T],

I3 = 2 : 2uI(t ) = 2uI0, 2v I(t ) = 0.

Even if (rPI) involves abstract fields defined in an “abstract plate” or an “abstract beam”
occupying Ω, we will use the language of Mechanics to comment it. For almost all t in [0,T]
there exists an element rσI in L2(Ω,S3) - a kind of “stress field” - such that

rσI ∈ a reruI + b̄I3 ∂ rDI
v

(reru̇I

)
, (48)

which makes it possible to express just below the “equations of motion” for both plates and
beams (of course only if I3 = 1) subjected to smooth enough loading such that 1g3 vanishes on
∂γN×(−1,1) with γN = ∂ω\(γD∪γC). In the case of plates, we follow [5] and denote by 1N I and 1M I

the stress resultant and the bending moment, respectively. In the case of beams, 2N I, 2M I and 2T I

respectively stand for the axial normal force, the bending moment and the shear force (see [7]).
They satisfy the equations below in which their dynamic (’dyn’) and friction (’f’) components are
subscripted.
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Plates (r = 1):

• 1σI
i 3 = 1σI

3i = 0,

• 1N I
αβ :=

∫ +1

−1

1σI
αβd x3,

1N I
dyn := ρ̄2 1〈δ〉1üI0M if I ∈ {2}× {1,2,3}× {1}, 1N I

dyn = 0 if not,

1N I
f := 2 1µ̄Iξ, ξ ∈ ∂φp

(1u̇I0M
T

)
if I ∈ {1,2}× {2}× {1}, 1N I

f = 0 if not,

• 1M I
αβ :=

∫ +1

−1
x3

1σI
αβd x3,

1M I
dyn := ρ̄1 1〈δ〉1üI0F if I ∈ {1}× {1,2,3}× {1}, 1M I

dyn = 0 if not,

1M I
f := 2 1µ̄1ξ, ξ ∈ ∂φp

(1u̇I0F)
if I = (1,1,1), 1M I

f = 0 if not,

• −∂β 1N I
αβ =

∫ +1

−1

1fαd x3 + 1gα(x̂,1)+ 1gα(x̂,−1)− 1N I
dyn in ω,

1N I
αβ ·νβ =

∫ +1

−1

1gαd x3 on γN, 1N I
αβνβτα =−1N I

f on γC,
1uI0M ·ν= 0 on γC, 1uI0M = 0 on γD,

• −∂αβ 1M I
αβ =

∫ +1

−1

1f3 d x3 + 1g3(x̂,1)+ 1g3(x̂,−1)+
∫ +1

−1
x3∂α

1fαd x3

+∂α 1gα(x̂,1)−∂α 1gα(x̂,−1)− 1M I
dyn in ω,

1M I
αβνανβ =

∫ +1

−1
x3

1gαναd x3 on γN,

(
∂α

1M I
αβ

)
νβ+∂τ

(1M I
αβνβτβ

)=

−

∫ +1

−1
x3

1fαναd x3 +
(1gα(x̂,1)− 1gα(x̂,−1)

)
να

+
∫ +1

−1

1g3 d x3 +
∫ +1

−1
x3∂τ

1gαταd x3 on γN

−1M I
f and ∂ν

1uI0F = 0 on γC,
1uI0F = ∂ν 1uI0F = 0 on γD,

where it is recalled that ν is the unit outer normal vector along ∂ω, ∂ν the normal derivative ν · ∇̂,
τ= (−ν2,ν1) and ∂τ the tangential derivative τ · ∇̂.
Beams (r = 2):

• For almost all x3 in (−1,1) there exists (c1,c2,c3) in R2 ×R×R such that
∂α

2σI
αβ

= (c1)β+ c2(xR )β, ∂α
2σI

3α = c3 in ω, 2σI
iβνβ = 0 on ∂ω,

• 2N I :=
∫
ω

2σI
33 d x̂,

2N I
dyn := ρ̄2 2〈δ〉2üI0L if I ∈ {2}× {1,2,3}× {1}, 2N I

dyn = 0 if not,

• 2M I :=
∫
ω

x̂ 2σI
33 d x̂,

2T I := d

d x3

2M I if I = (1,1,1),

2M I
dyn := ρ̄1 2〈δ〉2üI0T if I ∈ {1}× {1,2,3}× {1}, 2M I

dyn = 0 if not,

2T I
f := 2µ̄1|ω|ξ, ξ ∈ ∂φp

(2u̇I0T(1)
)

if I = (1,1,1),
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• − d

d x3

2N I =
∫
ω

2f3 d x̂ +
∫
∂ω

2g3 dH1 − 2N I
dyn in (−1,1),

2uI0L(−1) = 2uI0L(−1) = 0,

• − d 2

d x2
3

2M I =
∫
ω

(
2̂f + x̂

∂2f3

∂x3

)
d x̂ +

∫
∂ω

(
2̂g + x̂

∂2g3

∂x3

)
dH1 − 2M I

dyn in (−1,1),

2T I(1) =−
∫
ω

x̂ 2f3(x̂,1)d x̂ −
∫
∂ω

x̂ 2g3(x̂,1)dH1 − 2T I
f ,

2uI0T(−1) = d

d x3

2uI0T(−1) = d

d x3

2uI0T(1) = 0,

2uI0T(1) = 0 if I1 = 2 or I2 = 2,3.

We therefore clearly see how and when friction and dynamical effects do occur and notice the
remarkable correspondance between reduction elements of the efforts for plates and beams of
which we spared the reader a unifying writing.

So, by introducing the additional fields of displacements (ruI1 , ruI2 ) and introducing a general-
ized strain eruI , the behavior of the abstract structure is viscoelastic of the same non-linear Kelvin-
Voigt type as that of the material the real structure is made of. Of course when Dv is a quadratic
form 1

2 b ė · ė it is possible to eliminate 1uI1 and 1uI2 (see [14]) and to obtain a viscoelastic behavior
which is no longer of Kelvin-Voigt type but rather with fading memory:

1σI = aKLe
(1uI0(t )

)+bKLe
(1u̇I0(t )

)+∫ t

0
κ(t −τ)e

(1u̇I0(τ)
)

dτ, (49)

{
aKL := a∧∧−a∧⊥(a⊥⊥)−1a⊥∧,

bKL := b∧∧−b∧⊥(b⊥⊥)−1b⊥∧,
(50)

a∧∧, a∧⊥, a⊥∧ and a⊥⊥ stemming from the decomposition S3 =S∧⊕S⊥:

S∧ := {
σ ∈S3;σi 3 = 0

}
, S⊥ := {

σ ∈S3;σαβ = 0
}

, (51)

the same being done for b and one has:
κ(t )e = a∧⊥we (t )+b∧⊥ẇe (t ),

we ∈S⊥ ; a⊥⊥we +b⊥⊥ẇe = 0, we (0) = (ub)⊥− (ua)⊥,

(ua)⊥ := (a⊥⊥)−1a⊥∧ê, (ub)⊥ := (b⊥⊥)−1b⊥∧ê,

(ê)αβ := eαβ, ∀ e ∈S3.

(52)

The feature of the evolution is therefore the same in both cases: a juxtaposition of a dynamic
evolution for a part of the displacement and of a quasi-static one (possibly static) for the other
part, depending on the relative magnitude of the density and the thinness ε. However, in the case
of a very high viscosity (i.e. when b̄2 = +∞) the motion is frozen in the initial state. Dynamic
evolution concerns the transverse component of the displacement for ρ of order ε2 and in the
case of beams (resp. plates) the longitudinal (resp. in-plane) one for ρ of order 1. For plates, as
in the elastic case, the friction involves the in-plane or transverse component of the tangential
velocity according to the relative magnitudes of the viscosity coefficient µ and the thickness.
On the contrary, in the case of beams, friction appears only when ρ is of order ε2 and when
the viscosity coefficient is of order ε2. Of course, Kelvin-Voigt viscosity reinforces the presence
of additional state variables of displacement (u1,u2) as already mentioned in [15] in the purely
(anisotropic) elastic beams case. These additional state variables also allow to maintain the short
memory viscosity character.
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Next we propose our simplified but accurate enough modeling not by considering (rSε)−1

ruI0(t ) but by taking into account our convergence result (see Theorem 11) and the crucial
Proposition 10 which leads to

lim
s→ s

1

ε2+r

∫
rΩε

aε
(
eε

(rus)− reεruI

)
·
(
eε

(rus)− reεruI

)
d xε = 0. (53)

Hence as denoted in [2, 13], reεruI is a good approximation of the strain tensor of rus in the sense
that the relative error made by replacing eε(rus ) by reεruI tends to zero.
As reεruI is not necessarily the strain tensor of a field of rU s , we are led to consider

ruIs := (rSε

)−1

(
ruI0
ε +

2∑
i=1

εi ruIi
ε

)
,

where ruIi
ε is a smooth approximation in rUc of ruIi , i = 1,2, which leads to

lim
s→ s

1

ε2+r

∫
rΩε

aε
(
eε

(ruIs)− reεruI

)
·
(
eε

(ruIs)− reεruI

)
d xε = 0. (54)

Thus ruIs is our proposal of approximation for rus . It is obtained by first solving (rPI) which
actually corresponds to a three-dimensional problem yet set on a “reasonable” fixed domain Ω
and involving fields with simplified kinematics and second by means of ruIs which also involves
the fixed domainΩ. It is therefore easy to implement a numerical method of approximation.

For almost all t in [0,T ], rσs defined by rσs (x) := rσs (rΠεx) converges weakly in L2(Ω,S3) toward
some rΣI. So if rΣIε(rΠεx) := ε rΣI(x) one has:

lim
s→ s̄

1

|rΩε|
∫

rΩε

(rσs − rΣIε)(xε) ·q(xε)d xε = lim
s→ s̄

∫
Ω

(rσs − rΣI)(x) ·q(x)d x = 0, ∀ q ∈ L2 (
Ω,S3) , (55)

that is to say 1
ε

rσs 3d-(3-r)d converges toward rΣI, which satisfies 1ΣI
i 3 = 0 (see the Appendix).

Remark 13. Note that, as mentioned in part ii) of the proof of Proposition 12, this paper
encompasses the full treatment of purely linearly elastic beams and plates in the static case (see
the Appendix from (66) onward). Hence we have a good approximation of the real strain tensor
in the sense of (53) and also of the real stress in the structure as obviously

lim
s→s̄

1

ε2+r

∫
rΩε

(aε)−1(rσs − rΣIε) · (rσs − rΣIε)d xε

= lim
s→ s

1

ε2+r

∫
rΩε

aε
(
eε(rus )− reεruI

) · (eε(rus )− reεruI

)
d xε, (56)

with rΣIε(rΠεx) := ε rΣI(x) and rΣI(x) = a(x) reruI (see also (19)-(20)), reruI being the strong limit in
L2(Ω,S3) of re

(
ε, rSε(ruε)

) = 1
ε eε(ruε), where ruε is the solution of the elasticity problem set in rΩε

with a loading rLε such that rLε(w) = ε2+r rL(rSεw). We recall that in the case of plates 1Σεi 3 = 0!

Remark 14. It is worthwhile to observe that in problems concerning thin linearly elastic or non-
linear Kelvin-Voigt viscoelastic plates, the field of displacement in the real plate which occupies
1Ωε is far from a Kirchhoff–Love field and even from a Reissner–Mindlin one because (1eε1uI )i 3

depends on xε3 even in the case of an homogeneous plate. It is the abstract field 1uI0 which
does satisfy ei 3(1uI0) = 0 in Ω. We will pay particular attention to this type of properties in a
forthcoming paper dedicated to the case of thin viscoelastic plates.

Similarly, in the case of beams, the field of displacement in 2Ωε is far from a Bernoulli–Navier
field and even from a Timoshenko one because (2eε2uI )i 3 depends on xε3 even in the case of an

homogeneous beam. It is the abstract field 2uI0 whose componentsαβ andα3 of its symmetrized
gradient do vanish inΩ!
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Remark 15. It is also possible to deal with the not too much realistic case 2 < p, q ≤ +∞ by
the same method, the variant being that rDs

f , rDs
v , rDI

f and rDI
v are only lower semicontinuous

functions and some trivial approximation processes are in order.

Remark 16. A more practical approach is when two other physical data concerning the magni-
tudes of the stiffness and of the loading are taken into account and we refer the reader to the [4,
Remark 3] for its mathematical treatment.

Appendix A. 3d-(3-r)d convergence and asymptotic modeling of thin structures

We present here the tool used in the proof of Proposition 6. It is an adaptation to the case
of dimension reduction problems of two-scale convergence introduced in [9, 10] for periodic
homogenization.

Let H be a finite dimensional space. We recall that r takes its value in {1,2}.

Definition 17. A sequence of functions uε in L2(rΩε, H) is said to 3d-(3-r)d converge to a limit u0

belonging to L2(Ω, H) if, for any ψ in L2(Ω, H), we have:

lim
ε→0

1

|rΩε|
∫

rΩε
uε(xε) ·ψ((rΠε

)−1 xε
)

d xε = 1

|Ω|
∫
Ω

u0(x) ·ψ(x)d x (57)

where we recall xε = rΠεx, a.e. x ∈Ω (see (2)).

Proposition 18. From each sequence uε in L2(rΩε, H) such that
1

|rΩε| |u
ε|2L2(rΩε,H) is bounded we

can extract a subsequence, and there exists a limit u0 in L2(Ω, H) such that this subsequence 3d-(3-
r)d converges to u0 and

1

|Ω| |u0|2L2(Ω,H) ≤ lim
ε→0

1

|rΩε| |u
ε|2L2(rΩε,H). (58)

Proof. As uε defined by
uε(x) = uε

(
xε

)
a.e. x ∈Ω (59)

satisfies
1

|rΩε|
∫

rΩε

∣∣uε
(
xε

)∣∣2 d xε = 1

|Ω|
∫
Ω
|uε(x)|2 d x (60)

there exists a not relabeled subsequence such that uε weakly converges toward some u0 in
L2(Ω, H) with:

lim
ε→0

1

|rΩε|
∫

rΩε
uε

(
xε

) ·ψ(
xε

)
d xε = lim

ε→0

1

|Ω|
∫
Ω

uε(x) ·ψ(x)d x = 1

|Ω|
∫
Ω

u0(x) ·ψ(x)d x (61)

and consequently (58). □

This 3d-(3-r)d limit u0 may give accurate information on the behavior of uε:

Proposition 19. Let uε be a sequence of functions in L2(rΩε, H) that 3d-(3-r)d converges to a limit
u0 belonging to L2(Ω, H). Assume that

lim
ε→0

1

|rΩε| |u
ε|2L2(rΩε,H) =

1

|Ω| |u0|2L2(Ω,H). (62)

Then, for any sequence vε which 3d-(3-r)d converges to a limit v0 belonging to L2(Ω, H) we have:

lim
ε→0

1

|rΩε|
∫

rΩε
uε

(
xε

) · vε
(
xε

)
d xε = 1

|Ω|
∫
Ω

u0(x) · v0(x)d x (63)

lim
ε→0

1

|rΩε|
∫

rΩε
|uε

(
xε

)−uε
0

(
xε

) |2 d xε = 0 (64)

with uε
0(xε) := u0(x) a.e. xε ∈ rΩε.
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Proof. It is an obvious consequence of (59), which implies that uε converges strongly in L2(Ω, H),
vε weakly, toward u0, v0, respectively. □

The relation (64) expresses that uε
0 is a rather good approximation of uε in the sense that the

relative gap in L2(rΩε, H) tends to zero:

lim
ε→0

∣∣uε−uε
0

∣∣
L2(rΩε,H)∣∣uε

0

∣∣
L2(rΩε,H)

= 0. (65)

Application:

A standard problem of equilibrium of a linearly elastic thin plate (r = 1) or slender beam (r = 2)
occupying rΩε with elasticity tensor aε, clamped on rΓεD defined in (6) and submitted to a given
loading represented by a continuous linear form rLε on H 1

rΓεD
(rΩε,R3) := {v ∈ H 1(rΩε,R3); v =

0 on rΓεD} can be formulated as:Find ruε in H 1
rΓεD

(
rΩε,R3

)
such that∫

rΩε
aε

(
xε

)
eε

(ruε
) ·eε(v)d xε = rLε(v), ∀ v ∈ H 1

rΓεD

(rΩε,R3) .
(66)

Observe that the scaling operator rSε introduced in (18) implies (see (19) and (20)):

eε(w)(xε) = ε re
(
ε, rSεw

)
(x). (67)

Denoting rΓD := (
rΠε

)−1 rΓεD and assuming
∃α> 0, ∃ a ∈ L∞(

Ω,Lin
(
S3

))
s.t. α|e|2 ≤ a(x)e ·e, aε(xε) = a(x), a.e. x ∈Ω, ∀ e ∈S3

∃ rLε ∈ H 1
rΓD

(Ω,R3)′ the strong dual of H 1
rΓD

(
Ω,R3

)
:= {

w ∈ H 1(Ω,R3); w = 0 on rΓD
}

such that

i) rLε(v) = ε2+r rLε (rSεv) , ∀ v ∈ H 1
rΓεD

(
rΩε,R3

)
ii) rLε strongly converges in H 1

rΓD

(
Ω,R3

)′
toward rL

(68)
(which corresponds to assumption (H4) for both aε and the loading ( f ε, g ε)), the field

ruε := rSε

(ruε
)

(69)

does satisfy: Find ruε in H 1
rΓD

(Ω,R3) such that∫
Ω

aε(x) re
(
ε, ruε

) · re(ε, v)d x = rLε(v), ∀ v ∈ H 1
rΓD

(
Ω,R3) (70)

We can replicate the proof of Proposition 6 to show that there exists some ru = (ru0, ru1, ru2) in rU

(see (23)) such that re(ε, ruε) strongly converges toward reru defined in (24), with

i)


ru ∈ rU ;∫
Ω

a reru · rev d x = rL(v), ∀ v ∈ rU

ii) lim
ε→0

1

ε2+r

∫
rΩε

aε
(reε(ruε)− reεru

) · (reε(ruε)− reεru
)

d xε = 0,

where reεru(xε) := ε reu(x) a.e. xε = rΠεx ∈ rΩε,∀ u ∈ rU

that is to say
1

ε
reε(ruε) 3d−(3−r )d converges toward reru (see (P3) and (28) in Proposition 6) and the

strain of the real field ruε in the domain rΩε is close to reεru in the sense that the relative energetic
gap tends to zero which is the only significant notion as the energy of uε tends to zero!

Moreover we have the same result for the stress field rσε, as ii) above is equivalent to:

iii) lim
ε→0

1

ε2+r

∫
rΩε

(
aε

)−1 (rσε− rΣε
) · (rσε− rΣε

)
d xε = 0, with rΣε := aε reεru .
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