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Abstract. This study aims to develop a numerical homogenization method that can be applied to a hetero-
geneous stratified medium. Traditional scale transition methods are inadequate in capturing the essential
gradient properties of some materials. Therefore, the focus of this work is to construct a homogenized model
that considers the material property gradient. To achieve this, a two-step homogenization scheme is pro-
posed. Firstly, the 3D model is decomposed into multiple 2D heterogeneous layers, and the behavior of each
layer is estimated using a micro-mechanical model such as the Hashin-Shtrikman bounds. Secondly, a vari-
ational sum method is used to rebuild the behavior of the 3D environment. Finally, the method is applied to
homogenize a thin plate with a porosity gradient.

Résumé. Cette étude vise a développer une méthode d’homogénéisation numérique qui peut étre appliquée
a un milieu stratifié hétérogene. Les méthodes traditionnelles de transition d’échelle sont inadéquates pour
capturer les propriétés essentielles de gradient de certains matériaux. Par conséquent, 1'objectif de ce travail
est de construire un modele homogénéisé qui prenne en compte le gradient des propriétés du matériau.
Pour ce faire, un schéma d’homogénéisation en deux étapes est proposé. Tout d’abord, le modele 3D est
décomposé en plusieurs couches hétérogenes 2D et le comportement de chaque couche est estimé a I'aide
d’'un modele micromécanique tel que les bornes de Hashin—-Shtrikman. Ensuite, une méthode de somme
variationnelle est utilisée pour reconstruire le comportement de ’environnement 3D. Enfin, la méthode est
appliquée a 'homogénéisation d’'une plaque mince avec un gradient de porosité.
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1. Introduction

The gradient in material properties plays a significant role in various fields of application, such
as aeronautics, electronics, and biomechanics. With the increasing use of additive manufactur-
ing [1] or forming process [2] in these sectors, understanding the behavior of materials with prop-
erty gradients has become more important. Several approaches have been proposed in the liter-
ature to account for property gradients, including non-local approaches [3-8] and full-field sim-
ulations. However, these methods have limitations such as high computational costs and com-
plexity.

In this study, we propose a numerical homogenization method to model the behavior of a het-
erogeneous stratified medium with property gradients. The method is based on the homogeniza-
tion principle and consists of two stages. In the first stage, the 3D material is decomposed into
multiple thin layers, and the behavior of each layer is estimated using the Hashin—-Shtrikman
bounds [9]. In the second stage, the behavior of the 3D environment is reconstructed using a
variational sum of 2D energy [3].

The proposed method is applied to the case of a thin plate with a porosity gradient. The
results demonstrate the effectiveness of the method in accurately capturing the behavior of
materials with property gradients. This study provides insights into the behavior of materials
with property gradients and offers a useful tool for engineers and researchers working in various
fields of application.

2. Variational sum

The variational method is proposed to reconstruct a 3D volumetric model from 2D surface
models, based on the theory of plates. This method is suitable for materials or morphological
parameters that vary continuously along a preferred direction, which is chosen to be the x3 axis.
A cube @ with gradient properties along the x3 axis is considered, and by rescaling, the geometry
is redefined as @ := @ x (0,1). The method aims to obtain an effective equivalent material that
retains the properties that change according to x3. The cube @ is divided into n thinly layered
plates, whose behavior is described by a law obtained by size reduction (3D to 2D). Indeed, a
first homogenization is carried out by dimension reduction from a 3D plate with inclusions to a
homogeneous 2D plate [10]. More specifically he resulting homogeneous 3D model is obtained
by stacking the plates and applying a scale transition approach based on I'-convergence. The
proposed method takes into account the initial properties of the gradient. In some material
cases with complex geometry, this division may be necessary, as shown in the example presented

in [11].
(a)
| [
n plates

Figure 1. Schema of the strategy of homogenization by variational summation.

(b)

n— oo

The continuous energy can be obtained as the limit of the discrete energy as n — co and the
thickness of the plates goes to zero. This leads to the following variational formulation:

inf fW(Vu(x))dx—f L(x)-u(x)dx 1)
ue H (O;R3) J& o
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where W is the stored energy density associated with the constitutive law of the material, and
L corresponds to an external load. The displacement field u belongs to the Sobolev space
H!(@;R3), which is the space of functions with square-integrable first derivatives. The func-
tion Vu(x) denotes the deformation gradient associated with the displacement field u, which
describes the local stretching and rotation of the material at each point x in the domain &.

Subfigure (b) of Figure 1, the Riemann sum is transformed into an integral over the unit cube.
The regularization energy term, denoted by y,, penalizes the variation of the energy between
adjacent layers of the discretized model. It is defined as:

2 n-2
Yolw) = = f > (Ei(u) - Eis1 (w)* dx )
n=Jo j=p

where A is a positive regularization parameter. The regularization term tends to stabilize the
energy by preventing large variations between adjacent plates. The total energy functional of the
discrete model is then defined as:

En(u) = En(w) +yn(w) 3)

Yn serves as the energy regularization function, which penalizes energy variation between adja-
cent layers of the discrete model. It's employed to stabilize the energy by preventing significant
fluctuations between neighboring plates. Specifically, v, (u) is defined by equation (2), where 1
is a positive regularization parameter, and the summation over i is taken across adjacent layers
of the discretized model. And this function aims to approach 0 as n tends to infinity, thereby
achieving continuity of macroscopic energy.

To summarize, the variational method presented in the work involves reconstructing a 3D
volumetric model from 2D surface models using a size reduction technique. The resulting
model takes into account the initial properties of the gradient as much as possible. The energy
associated with the set of plates is then minimized subject to appropriate boundary conditions
and constraints, resulting in a homogenized material property. This homogenized property can
then be used in the design and analysis of structures made of the original heterogeneous material.

ﬁg(xg,s):w(%,s) and f”(x):=L(?c,%) (4)
. i i+1
if x3€e|—,—|, (5)
n

This energy is the mechanical energy of each plate, which can be summed through integration,
yielding the energy Ej, is given by:

En(u)zf 1/73(X3,Vu)dx—f L"(x).u(x)dx (6)
0 0
if weSteps,(0) Q]

The idea is therefore to make a two-step scale transition. We then define the average (or
homogenized) energy density v}, which is then a plate-type energy calculated on the average
plane of the plate and for a representative volume element of [0, m?[ with m satisfying the
following minimum condition.

n . L[ =
Yo (x3,Vu) = inf {mz [O‘m[zS(xg,Vu)dx (8)

meN*

The function S(.,.) is the energy density relative to the modeled linear behavior. For example,
one can consider a linear elasticity model, but it can be extended to other physical behaviors.
This function must be periodic within the study domain and possess additivity properties over
the domain (i.e., summing over the entire domain yields the total behavior). Equation (8)
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corresponds to the average behavior over a representative elemental volume [0, m[?, where 7n
satisfies the infimum of this equation.

Provided that the following assumptions are verified.

The energy density s — ¢ (., s) must be convex and verifies the Lipschitz properties [11]:

[wolxs, &) —wo (x5, 8)| < €|s—s'| (1 +IsIP~" +1s1P71), 9)

For all couples (s, s") € R? x R3 and ¢ is a positive constant in varying steering x3. As can be seen
that ¥ satisfies the following growth condition for p > 1 according to x3. There are two positive
constants a and  which do not depend on 7 and satisfying for all s € R3 the following equation:

alslP =@ (xs,8) < B(1+1s1P). (10)

for all fixed x3 € (0,1). The global energy (E) e N, ['-converges [12] weakly to Ey concerning the
weak L” topology for p.

Eo(u) ::f wo(xg,Vu)dx—f L(x).u(x)dx. 1D
© ©

The ergodicity hypothesis states that a system will eventually explore all of its possible states,
and that the time average of any observable quantity of the system will be equal to its ensemble
average. In the context of the present work, it means that the homogenized properties obtained
from the variational limit hold true for all possible realizations of the heterogeneous material
with the same statistical properties, provided that the system is ergodic. It is important to note
that without this assumption, the macroscopic behavior obtained will deviate from the actual
behavior.

In other words, the variational limit is a valid approximation of the actual behavior of the het-
erogeneous material as long as the material satisfies the ergodicity hypothesis. This is an impor-
tant assumption, as there may be cases where the material does not satisfy this hypothesis, and
the homogenized properties obtained from the variational limit may not accurately represent the
actual behavior of the material.

3. Application: a case of a porosity gradient plate

The equation presented describes the homogenized energy of the porous plate & with a contin-
uous gradient of porosity. As described in [13] The method involves a convex morphology of the
pores. The plate is considered as a bi-phase material with an isotropic matrix and a random dis-
tribution of voids inclusions that change according to the x3 direction. The plate is divided into
n plates @ with the same thickness e. The behavior of each plate @ is described by a 2D potential
consisting of the strains in the plane carried by the two directions x1, x2, due to membrane effects
and bending, respectively, and the tensors of the behavior of the plate @ written for a 2D problem
denoted by A; and D;, respectively.

The homogenized energy is derived from the variational result and is denoted by y,. The
expression of v is given by the integral over the volume of @ of the sum of two terms. The first
term is the product of the strain tensor d A(x3)d and 1/2, while the second term is the product of
the bending tensor x D (x3)x and x§, where d and « are the strains in the plane carried by the two
directions x1, x2, due to membrane effects and bending, respectively. The behavior of the plate @
is characterized by the tensors A(x3) and D(x3), which depend on the porosity gradient along the
x3 direction. The integral is normalized by the volume of .

From a micromechanical point of view, the plate @ is a bi-phase with an isotropic matrix
(Young'’s modulus E and Poisson’s ratio v) and a random distribution of voids inclusions porosity
of 8(x3). Considering the porosity gradient, the approach based on the variational sum is adopted
to derive the actual behavior of the plate. The medium @ is divided into 7 in plates @ with the
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same thickness € which its behavior is described by the following 2D potential (limiting itself to a
Kirchhof type plate):

1 1
EdAkd+£2§1(DkK, (12)

with d and « are the strains in the plane carried by the two directions e, e;, due to membrane
effects and bending, respectively, whereas Ak (resp. D) denote tensors of the behavior of the
plate k written for a 2D problem.

In the case of the limit passage described earlier, equation (12) reads:

1 1 11
Wy (x3,Vu) = I@nlf@n(EdA"(xg)dJr EEKDn(XS)K av (13)

with @, the plate n.

We then need to work on the functions A, (respectively, A,) for the limit passage.

For the transition from 3D to 2D, we let ¢ tend to zero. We then obtain a homogeneous plate
energy with A(x3) and D(x3) as the homogenized material property for the plate at position
x3. The macroscopic energy of the plate is homogenized from the variational result (11). Its
expression is given by:

_ (L 21
Yo = |@|f@(2dA(x3)d+x32KD(x3)K av 14)

Note here that the variational sum, resulting in (14), allows us to find the same result as
that obtained from the laminate theory. The estimation of these properties is obtained by
homogenization in two steps:

First, each fold like i is a porous medium defined by (matrix (E, v) and porosity 6;).

i+l
Ai::f, " chom (15)

i+l

Di::f " xdChomdx, (16)

n

Then, the local properties A; and D; are estimated by performing a homogenization of the

tensor C; defined classically as:
1 Vi 0
E.
C; ’z(vi 1 0 ) a7

1-v ilo o 1;/,—
We then use variational methods of Hashin-Shtrikman to perform this homogenization, as

well as the mixture law by computing averages on two elastic quantities of the same nature: &
and p denote respectively the coefficients of compressibility and shear. They are linked to E and
v by the following relationships:

E
__E - . 18
301—2v) F=oa+w (18)
1 cm cf

A a e m wrm (19

and ; 0 0

1 m ]

¢ C  with pr=—FH 20)

C RO 20

For, the calculation, we suppose 8 = 87, u® = u™ and R = &/, u° = ' to estimate the lower and
the upper bounds, respectively. ¢”* and ¢/ denote respectively the volume fraction for the matrix
and fiber phase. More precisely since we are in the case of a porous material, the lower bound
is equal to 0 and the upper bound returns the Mori-tanaka estimation. Then, we can determine

= +
pHS +px g o e
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the homogenized behavior of each plate by using the computation results of E"*”* and v/**"* and
with (16) Clo™,

Second, the laminated plate of behavior is obtained by homogenizing the different folds
according to equation (14). Finally, the obtained results are compared to results obtained by a
classical full-field method based on the Fast Fourier Transform (FFT).

3.1. Numerical simulations and results

The aim of this section is to compare the macroscopic behavior of our model with a classical ho-
mogenization method. A possible choice is to use an algorithm based on the Fourier Transform.

For the computation, we use the same algorithm presented in [14] and implemented an in-
house FFT solver FoXtroT [15]. Then, the classical elastic problem for a periodic material is
described by the following system.

divic) =0

o(x) =C(x):e(x)

€ =3 (Vu+TVu) (@3]
€ =E

u(x) = E.x + u* (x) with u* (x) periodic

u(x),e(x),o(x) denote respectively the displacement, strain and stress fields whereas E de-
notes the macroscopic strain. The stiffness tensor is noted by C(x) which is depends on the posi-
tion of the vector x. To solve the local problem, all the full-field simulations were performed with
an FFT algorithm developed an in-house code FoxTrot [14, 15].

The algorithm uses the original version proposed by Moulinec and Suquet [16, 17]. This
method is formulated with the polarization tensor 7 (x) = (C(x) — C°) : £(x) and consists in solving
the elastic problem given in system (21). This iterative scheme with macroscopic strain and the
Green operator fo are given in the literature [17, 18]. The main steps used in the algorithm are
exposed in the following subsection:

The symbolic notations FFT and FF T-! denote the Fast Fourier Transform and its inverse,
respectively. The convergence test consists in checking the equilibrium with a strain-controlled
method. In real space, the convergence criterion is defined: [[e/*1 — ||, < 1074|€°|.

Where | .|| is the L2 norm and |.|, called Euclidean norm of second-order tensor.

The choice to use an FFT calculation is based on two reasons. On the one hand, we aim
to perform large calculations and then avoid the mesh part. On the other hand, we will only
compare the elastic energies, that is why not necessary to have rich information at the local level.
In this section, we will start by describing the process of generating the images that will be used
as support in the simulations. Then, the results are presented and discussed

3.1.1. Porous media generation

In the present work, the difficulty here is to generate a material containing spherical porosities
of different sizes according to their position along the e3-axis. Moreover, the modeling imposes
as a hypothesis an ergodic distribution of the pores.For this purpose, a unit cell containing n
inclusion with varying radius along the x3-axis is generated in a first cell (see Figure 2) In order
to guarantee the ergodicity hypothesis, we generated a random 7 x n cells to obtain a cube/3D
microstructure (see Figure 3).

3.1.2. Results

When dealing with a material property gradient that varies continuously, outcomes derived
from lamination and container theory are identified. For all microstructure types and every
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Figure 3. Porous media generated 400x400x400 voxels (2.2% of porosity).

inclusion volume fraction investigated, the Young modulus of the inclusions was equal to 100 GPa
while it was equal to 1 GPa for the matrix (contrast 100). The Poisson ratio for both constituents
was 0.3.

The variable 6; denotes the void ratio of plate i. We study 2 cases, the first is a deterministic
one with a variation of porosity which depends linearly on the plate position. We can remark
that the error measurements during the homogenization approach used in the present work are
reasonable and still less than (< 10%).

For the interpretation of the results, we plot the variation of the global energy ¥, normalized
by the same energy in the case without porosities, and this is according to the rate of porosities.
The results can be explained by the fact that the variational sum described is an infimum bound.
The same tendency of degradation of the coefficient of compressibility is also obtained for the
homogenization by FFT.

9,’ = i@o.
where 6, denotes the initial porosity fraction for the plate i. The second case, is that the variation
of porosity is quadratic:

0; = i*0y



166 Azdine Nait- Ali and Sami Ben Elhaj Salah

19

17

*0

[ )
*
15 [ ]
—~ ° *
= R .
S13 ° .
= ¢ © Model
s :
1.1 o ¢ $ ¢ Numerical Result
3
0.9
0.7
0 0.002 0.004 0.006 0.008 0.01 0.012
0; = iby

Figure 4. Evolution of normalized energy density properties as a function of 8; = 6, in the
linear case. The results from the proposed model are depicted in red, while those from the
FFT simulation are shown in blue.
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0; = i%6,

Figure 5. Evolution of normalized energy density properties as a function of 8; = i26, in
the quadratic case. The results from the proposed model are depicted in red, while those
from the FFT simulation are shown in blue.

To validate the model (Figure 6), we compared it with standard homogenization schemes. We
show here the comparison with the Hashin-Shtrikman (HS) and Voigt (V) schemes. For these
schemes, the discrepancy is significant because the calculation assumes a constant pore size and
thus does not account for variations in size with x3. In the nonlinear case, it is observed that the
simulation results deviate further from classical bounds, unlike our model. With a scheme that
takes into account size variation, such as a self-coherent scheme, it could be more precise but
would not consider the arrangement in plates.

4. Conclusions

In this article, the results demonstrate that the proposed model is in good agreement with the
numerical homogenization performed in the linear case, presented in Figure 4 and Figure 6,
as well as in the non-linear case, depicted in Figure 5 and Figure 6 uncertain about including
Figure 6. This homogenization method allows us to naturally preserve the gradient properties
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Figure 6. Evolution of normalized effective properties as a function of 8; in quadratic and
linear cases. In red are the results from the proposed model, in blue are the results from the
FFT simulation. And comparison with the Hashin-Shtrikman (HS) and Voigt (V).

(along the x5 axis) using the parameter 6. Therefore, this model represents a good compromise
between homogenization, which enables computations with low computational burden but
entails information loss. Additionally, full-field models incur high computational costs (there
is a 50-fold difference in CPU time between the computation time using FFT and our model for a
400x400x400 voxel case). For the simulation, we employ the internal solver [15], which performs
parallelized computation on 32 cores in 500 seconds CPU, whereas our script completes the
computation in less than 10 seconds CPU.

Furthermore, in this study, we assume that within each plate, the pore distribution is ergodic
(in there simulations periodic with slight perturbation from the center of the inclusion), implying
a homogeneous distribution. However, this method can be extended to cases of clusters [19] or
connected pores [20] distributed homogeneously. Therefore, the model must be adapted with
appropriate homogenization between each plate. This approach could also be extended in future
studies. Specifically, we will consider the parameter 6 in a tensorial form to not only account for
the unidirectional properties of the gradient.
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