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Abstract. In honor of Yvonne Choquet-Bruhat’s 100th birthday, we present this survey on the positive mass
theorem. Originating from a conjecture in general relativity regarding the ADM mass, the positive mass
theorem has significantly influenced geometry and analysis over the past four decades and continued to
inspire new connections. We review seminal contributions as well as recent advances, and then we focus our
discussions on the equality case and the counter-examples arising from pp-wave spacetimes.

Résumé. En l’honneur du 100e anniversaire d’Yvonne Choquet-Bruhat, nous présentons cette étude sur le
théorème de la masse positive. Issu d’une conjecture en relativité générale concernant la masse de l’ADM,
le théorème de la masse positive a influencé de manière significative la géométrie et l’analyse au cours
des quatre dernières décennies et continue d’inspirer de nouvelles connexions. Nous passons en revue les
contributions fondamentales ainsi que les avancées récentes, puis nous concentrons nos discussions sur le
cas de l’égalité et les contre-exemples provenant des espaces-temps d’ondes pp.
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1. Introduction

I am honored to contribute this survey on the positive mass theorem in celebration of Yvonne
Choquet-Bruhat’s 100th birthday. I had the chance to meet her in 2008 at the Mittag-Leffler
Institute while I was a PhD student participating in the Geometry, Analysis, and General Relativity
program. She visited briefly to meet her collaborators, including Piotr Chruściel and Jim Isenberg
who were key participants of the program. During tea time, we gathered at a large oval table
in the sunroom. As I was just starting my research career, her warmth and friendliness left a
lasting impression. We are truly fortunate to have a pioneer like Choquet-Bruhat in the general
relativity community. Her groundbreaking work and kindness are an amazing example for us all
and continue to inspire us today.
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Choquet-Bruhat made a fundamental contribution to the Cauchy problem, ensuring that the
initial value problem in general relativity is well-posed. For more details, see her survey [1]. Her
research laid the groundwork for the 3 + 1 formulation of general relativity (ADM formalism),
which is crucial for understanding how spacetime evolves and is used in both theoretical and nu-
merical relativity. The ADM approach views spacetime as a series of evolving three-dimensional
slices from an initial data set. It simplifies Einstein’s field equations into constraint and evolution
equations. It also introduces ADM energy and linear momentum, which measure the total mass
of an asymptotically flat spacetime. These quantities, defined on the initial data set, are essential
for understanding isolated gravitational systems and allow working with just the initial data and
constraint equations. We refer the reader to her beautiful book [2].

The positive mass conjecture asserts that the ADM mass is non-negative (or, more precisely,
that the ADM energy-momentum is future causal) under suitable energy conditions. Choquet-
Bruhat and Marsden proved a very interesting case of the positive mass theorem, for metrics
close to the Euclidean metric [3], building on an idea outlined by Brill and Deser [4]. The
problem gained wider attention through questions posed by Geroch in his 1975 plenary address
at the Joint Mathematical Meeting [5]. This conjecture became one of the early topics in
mathematical general relativity and remains central to developments in geometric analysis and
general relativity. The search for and affirmation of positivity conditions under various settings
has had a significant impact on mathematics, influencing areas like the Yamabe problem in
conformal geometry [6].

While there were other partial results toward the positive mass conjecture, the first ground-
breaking result was obtained by Schoen and Yau in 1979 [7]. For an earlier history of this prob-
lem, we refer to the introduction of [7]. Not only did they completely settle the so-called Rie-
mannian case, but the minimal surface technique they introduced also revolutionized the field.
Since then, more general versions, higher-dimensional cases, and new alternative proofs have
emerged, making the topic even more dynamic in recent years. Researchers have continued to
develop innovative techniques and approaches, expanding the scope and relevance of the pos-
itive mass theorem. While the physically interesting case is three spatial dimensions, there are
various reasons and motivations for seeking a general statement in higher dimensions. We will
provide a more comprehensive list of progress below. For now, we present the statement.

Theorem 1 (Spacetime positive mass theorem). Let n ≥ 3 and (M , g ,k) be an n-dimensional
asymptotically flat initial data set that satisfies the dominant energy condition. Suppose either
3 ≤ n ≤ 7 or M is spin. Then

E ≥ |P |,
where (E ,P ) is the ADM energy-momentum vector of (M , g ,k).

The above theorem says that the ADM energy-momentum vector (E ,P ) is future-directed and
causal. Thus, one can define its Lorentzian norm as the ADM mass m =

√
E 2 −|P |2, which is a

spacetime invariant.
The special case of Theorem 1 where k ≡ 0 is known as the Riemannian case (or the time-

symmetric case). In this case, P = 0, and the dominant energy condition implies nonnegative
scalar curvature. It is also conventional to denote the ADM energy E by the ADM mass m.

Theorem 2 (Riemannian positive mass theorem). Let n ≥ 3 and (M , g ) be an n-dimensional
asymptotically flat manifold with nonnegative scalar curvature. Suppose either 3 ≤ n ≤ 7 or M is
spin. Then m ≥ 0. Furthermore, m = 0 if and only if (M , g ) is isometric to Euclidean space.

Schoen and Yau proved this case in dimension three in 1979 and 1981 [7, 8] by introducing
minimal surface techniques and extended it to dimensions less than eight [9, 10]. They argued
that if the ADM mass m < 0, then there exists a codimension 1 area-minimizing minimal
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surface with the induced metric being asymptotically flat with zero mass. The area-minimizing
property allows for a conformal factor that further transforms the induced metric to one with zero
scalar curvature and negative mass, contradicting the Riemannian positive mass theorem in one
dimension lower and ultimately conflicting with the Gauss–Bonnet Theorem when n = 3. Since
the above argument does not address the case m = 0, Schoen and Yau gave a separate argument
to show that if m = 0, then the manifold is Ricci flat and thus isometric to Euclidean space.

Lohkamp [11] observed a cut-off technique to simplify the asymptotics of an asymptotically
flat manifold with negative ADM mass, showing that it can be compactified to a torus while
maintaining positive scalar curvature. Consequently, the Riemannian positive mass theorem is
equivalent to the torus rigidity theorem of Schoen and Yau [12]. In more recent years, there have
been rapid advances and alternative proofs of the Riemannian positive mass theorem for three
dimensions. Huisken and Ilmanen [13] used the inverse mean curvature flow, Li [14] employed
the Ricci flow, Bray, Kazaras, Khuri, and Stern [15] considered level sets of harmonic functions
and Bochner identity, and Agostiniani, Mazzieri, and Oronzio [16] used Green’s function.

For the general case k ̸≡ 0 in dimension three, Schoen and Yau proved E ≥ 0 by introducing
Jang’s equation [17] and reduce the case to the Riemannian positive mass theorem. Eichmair
generalized the Jang equation argument and proved the E ≥ 0 theorem in dimensions less than
eight [18]. These results also show that if E = 0, then (M , g ,k) can be isometrically embedded in
Minkowski spacetime with the second fundamental form k.

For the result E ≥ |P | as stated in Theorem 1, Witten provided a novel proof in dimension
three [19, 20], which directly generalizes to higher dimensions for spin manifolds [21, 22]. Eich-
mair, Huang, Lee, and Schoen [23] extended the minimal surface approach in the Riemannian
case developed by Schoen and Yau by introducing marginally outer trapped surfaces (MOTS) to
prove Theorem 1. They addressed the challenges posed by MOTS, which, unlike minimal sur-
faces, do not arise from a variation principle of the initial data set. In the same paper, they also
provided an alternative approach, showing that the E ≥ 0 theorem implies E ≥ |P | by a new den-
sity theorem. Recently, Hirsch, Kazaras, and Khuri [24] provided an alternative proof for the 3-
dimensional case using level sets of spacetime harmonic functions. We will briefly review those
approaches in Section 3.

Challenges in higher dimensions n ≥ 8 for the positive mass theorem arise because minimal
hypersurfaces and MOTS can have singularities in these dimensions, causing the dimensional
reduction argument to potentially break down. Lohkamp proposed a program to address these
issues in a series of papers [25–28]. For the Riemannian case, Schoen and Yau [29] introduced
a different approach using minimal slicings. Additionally, there are perturbation arguments to
avoid singularities of minimal hypersurfaces for dimensions n = 8 by Smale [30] and n = 9,10
by Chodosh, Mantoulidis, and Schulze [31]. Separately, while we shall only discuss n ≥ 3 in this
survey, there is also a Riemannian positive mass theorem for n = 2; see [32].

Neither the spinor proof in [19, 20] nor the MOTS proof in [23] includes a complete proof
to characterize the equality case E = |P | of Theorem 1. The natural conjecture states that if
E = |P |, then E = |P | = 0, and thus by E = 0 rigidity, (M , g ) can be isometrically embedded into
Minkowski space with induced second fundamental form k. This would signify that the ADM
mass m =

√
E 2 −|P |2 = 0, uniquely characterizes Minkowski spacetime.

The conjecture is shown to be true in dimensions n = 3,4, but surprisingly, in dimensions n ≥ 5
it has the subtlety depending on asymptotic flat decay rates, to be specified in Section 4 below.
For n ≥ 5, an initial data set with E = |P | that does not exhibit the optimal asymptotic decay rate
can have E = |P | ̸= 0 and exists as a Cauchy hypersurface in a larger class of spacetimes known
as pp-waves (short for plane-fronted waves with parallel rays). Minkowski spacetime is a special
case of pp-waves. Those pp-wave examples also give counter-examples to the Bartnik stationary
conjecture, see [33, Section 2].
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We summarize the current state of the art below.

Theorem 3 (Equality in the spacetime positive mass theorem). Let n ≥ 3 and (M , g ,k) be an n-
dimensional asymptotically flat initial data set that satisfies the dominant energy condition and
has E = |P |.

• If either n = 3,4 or (M , g ,k) satisfies the optimal asymptotic decay rates1, then E = |P | = 0
and (M , g ) is isometrically embedded into Minkowski spacetime with the induced second
fundamental form k.

• If n ≥ 5 and M is spin, then (M , g ,k) is isometrically embedded into a pp-wave spacetime
with the induced second fundamental form k.

We can break down the equality theorem into two separate statements: The first statement is
to show that E = |P | implies E = |P | = 0, which is the part that requires the optimal asymptotics
decay rate. The second statement is to use the fact that E = 0 to find an embedding of the initial
data set into Minkowski space.

Witten sketched an idea for proving E = |P | rigidity of spin manifolds in his 1981 article [19].
Ashtekar-Horowitz [34] and Yip [35] gave arguments for n = 3 under extra spacetime assump-
tions. A complete, rigorous proof was given in the work of Beig and Chruściel for n = 3 by a
spinor argument [36] and by Chruściel and Maerten [37] to higher-dimensional spin manifolds
under the optimal asymptotic decay rates for dimensions n ≥ 5. For general initial data sets with-
out the spin assumption, Huang and Lee used the method of Lagrangian Multipliers introduced
by Bartnik [38] to prove the first statement (under similar optimal asymptotic decay rates if n ≥ 5).
They also gave an alternative proof of E = 0 rigidity [39]. Unlike the other proofs, their proof is
self-contained in the sense that it does not depend on how one proves that E ≥ |P | theorem or
E ≥ 0 theorem. For n = 3, Hirsch and Zhang proved the equality theorem for n = 3 from the level
sets method [40].

On the other hand, Huang and Lee [33] discovered those pp-wave counterexamples in di-
mensions n > 8. Specifically, they found asymptotically flat spacelike slices in a large class of
(n + 1)-dimensional pp-wave spacetimes that are not isometric to Minkowski spacetime, and
those spacelike slices have E = |P | ̸= 0. Hirsch and Zhang further improved these counterexam-
ples to dimensions n ≥ 5 and showed that a spin asymptotically flat initial data set which satisfies
the dominant energy condition and E = |P | must be embeded into a pp-wave [41].

Given that multiple survey articles already exist on the Riemannian positive mass theorem
from different perspectives (e.g., [10, 42, 43]), along with a graduate textbook by Lee [44] on those
topics, this survey will primarily focus on the spacetime positive mass theorem, with particular
emphasis on the equality case. The outline of the survey paper is as follows: In Section 2, we set
the stage and include a variational aspect of the ADM energy-momentum.

In Section 3, we briefly review the different proofs of positivity E ≥ |P |. In Section 4, we discuss
the pp-waves and the equality case E = |P |.

2. Definitions, notations, and basic facts

2.1. Initial data sets, the dominant energy condition, and asymptotic flatness

Let n ≥ 3. An initial data set is an n-dimensional manifold U equipped with a Riemannian metric
g and a symmetric (0,2)-tensor k. Loosely speaking, an initial data set consists the information
needed to determine the evolution of spacetime by viewing the triple (U , g ,k) as a hypersurface

1We say that (M , g ,k) satisfies the optimal asymptotic decay rates if the asymptotics of (g ,k) defined by (2) below hold
for some q > 0 and 0 < α < 1 satisfying q +α > n − 2. This is an additional assumption beyond the usual decay rate
condition q > n/2 when n ≥ 5.
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Figure 1. For an initial data set (U , g ,k) embedded in a spacetime, the dominant energy
condition on (U , g ,k) states that µ ≥ |J |g , where µ = T (n,n) and Ji = T (ei ,n), with n being
the future-pointing unit normal to U and ei tangent to U . This condition is equivalent to
requiring that T (·,n) is future causal. Note that a spacetime satisfying the dominant energy
condition asserts that T (X,Y) ≥ 0 for all future causal vectors X and Y, which is a stronger
condition.

in spacetime (N,g) with the induced metric g and second fundamental form k. The Einstein
equation of spacetime is given by

Ricg − 1
2 Rgg =Λg+T,

where Λ ∈ R is the cosmological constant and T is the stress-energy tensor describing a matter
field. In this article, we shall only discuss the case Λ = 0, but note that there are also many
progresses on the positive mass theorem for the caseΛ< 0; see, for example, [45–50]. A spacetime
is called vacuum if T is identically zero. As an example of a non-vacuum matter field, the stress-
energy tensor of a perfect fluid is given by T = pg+ (ρ+ p)v⊗ v, where ρ is the energy density,
p is the pressure, and v is the fluid velocity. We do not assume any specific matter fields here;
the results apply to any matter field, as long as an energy condition is satisfied, unless otherwise
specified.

On an initial data set, one can define the mass density µ and the current density J by

µ = 1
2

(
Rg −|k|2g + (trg k)2

)
J = divg k −d(trg k).

The first equation is referred to as the Hamiltonian constraint and the second is the momentum
constraint. We denote the constraint map byΦ(g ,k) := (µ, J ).

We say that (U , g ,k) satisfies the dominant energy condition if µ≥ |J |g . If (U , g ,k) is embedded
in a spacetime (N,g), meaning that (U , g ) is isometrically embedded in to N with the induced
metric k, then the dominant energy condition is equivalent to requiring T (X,n) ≥ 0 for all future
causal vectors X, where n is the future-directed normal to the hypersurface. The initial data set
(U , g ,k) is said to be vacuum if µ= 0, J = 0. See Figure 1.

When considering the perturbation of the dominant energy condition, it turns out more effec-
tive to use the modified constraint map Φ|(g ,k) at (g ,k), introduced by Corvino and Huang [51].
The modified operatorΦ|(g ,k) is defined on initial data (γ,τ) as follows:

Φ(g ,k)(γ,τ) =Φ(γ,τ)+ (
0, 1

2γ · J
)

, (1)
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where J is the current density of g and (γ·J )i := g i jγ j k J k . A fundamental property of the modified
operator is that the dominant energy condition is preserved under perturbation. More precisely,
assume (g ,k) satisfies the dominant energy condition µ ≥ |J |g in M . Suppose (γ,τ) is an initial
data set with |γ− g |g < 3 in M and

Φ|(g ,k)(γ,τ) =Φ|(g ,k)(g ,k).

Then (γ,τ) also satisfies the dominant energy condition.
The seminal work of Choquet-Bruhat says that if (U , g ,k) is a vacuum initial data set, then

there exists a unique vacuum spacetime development (N,g) that evolves from (U , g ,k). However,
note that in general an initial data set satisfying the dominant energy condition may not have a
spacetime development satisfying an energy condition, or if it does, the spacetime development
may not be unique.

For analysis on asymptotically flat manifolds, it is convenient to use the weighted Hölder
spaces, defined below. Let B be a closed ball in Rn centered at the origin, and consider the
exterior region Rn \ B . For any ℓ= 0,1,2, . . . , α ∈ (0,1), q ∈ R, we define the weighted Hölder space
Cℓ,α
−q (Rn \ B) as the space of functions f on Rn \ B such that

∥ f ∥
Cℓ,α
−q (Rn \B)

:= ∑
|α|≤ℓ

sup
x

∣∣|x||α|+q∂α f (x)
∣∣+ ∑

|α|=ℓ

[|x||α|+q∂α f (x)
]
α <∞.

Now suppose that M is a manifold such that there is a compact set K ⊂ M and a diffeomorphism
M \ K ∼= Rn \ B . Then one can define Cℓ,α

−q (M) by choosing an atlas for M that consists of the
diffeomorphism M \ K ∼= Rn \ B together with finitely many precompact charts, and then using
the Cℓ,α

−q (Rn \ B) norm on the noncompact chart while using the Cℓ,α norm on the other ones.

The definition of Cℓ,α
−q (M) also extends to tensors simply by considering their components with

respect to these coordinate charts.
We say that an initial data set (M , g ,k) is asymptotically flat with decay rate q if M is a complete

manifold and there is a compact set K ⊂ M and a diffeomorphism M \ K ∼=Rn \ B for some closed
ball B ⊂Rn such that

(g −δ,k) ∈C 2,α
−q (M)×C 1,α

−1−q (M) (2)

where δ is a smooth symmetric (0,2)-tensor that coincides with the Euclidean inner product on
M \ K ∼= Rn \ B . In addition, we assume µ, J ∈ L1(M), and sometimes it is convenient to make a
stronger assumption that µ, J ∈ C 0,α

−n−q0
(M) for some q0 > 0. Throughout the article, we assume

q > (n −2)/2.

2.2. ADM energy and linear momentum, Regge–Teitelboim Hamiltonian, and Killing
initial data

Assume (M , g ,k) is asymptotically flat with decay rate q > (n −2)/2 in the above sense. We define
the ADM energy E and the ADM momentum P as

E(g ,k) = 1

2(n −1)ωn−1
lim

r→∞

∫
|x|=r

n∑
i , j=1

(
∂gi j

∂xi
− ∂gi i

∂x j

)
ν

j
0 dσ0

Pi (g ,k) = 1

(n −1)ωn−1
lim

r→∞

∫
|x|=r

n∑
j=1

(ki j − (trg k)gi j )ν j
0 dσ0 i = 1,2, . . . ,n.

Here, the integrals are computed in the coordinate chart M \ K ∼=x R
n \ B , ν j

0 = x j /|x|, σ0 is the
(n −1)-dimensional Euclidean Hausdorff measure, and ωn−1 is the volume of the standard unit
sphere in Rn .

Notice that if the decay rate q > n −2, then the integrand in the above expressions decays too
quickly, so E = 0 and P = 0 trivially. On the other hand, a decay rate q > (n −2)/2 is sufficient
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to ensure that the ADM energy-momentum is well-defined in the following sense. While the
ADM energy and linear momentum are defined using a specific asymptotically flat coordinate
chart, they can be shown to be coordinate invariant, depending only on the structure at infinity,
see [21]. Furthermore, although the ADM energy and linear momentum are defined entirely on
the initial data set, the Lorentzian norm −E 2 +|P |2 is a spacetime invariant. It means that, while
the ADM energy-momentum vectors of two asymptotically flat initial data sets embedded in the
same spacetime may differ, they have the same Lorentzian norm, see [52].

To understand heuristically how the decay rate q > (n −2)/2 plays a role, we expand the
constraint equations in asymptotically flat coordinates:

µ = 1

2
(Rg −|k|2 + (trg k)2) = 1

2

∑
i , j

∂

∂x j

(
∂gi j

∂xi
− ∂gi i

∂x j

)
+O(|x|−2−2q )

Ji = (divg k) j − (trg k), j =
∑

i

∂

∂xi
(ki j − (trg k)gi j )+O(|x|−2−2q ).

Observe that the ADM energy-momentum arises from the flux integrals of the divergence terms
on the right-hand sides. The decay rate q > (n −2)/2 ensures that the exponent of the error terms,
−2− 2q < −n, decays rapidly enough to be integrable on the asymptotically flat end. Together
with the assumption that bothµ and J are integrable, the flux integrals over the coordinate sphere
have a limit as the radius of the sphere going to infinity.

The following density theorem states that initial data sets with the decay rate q = n − 2
are dense among those with the weaker decay rates q > (n −2)/2, and that the ADM energy-
momentum varies continuously. This has several applications. For example, to prove the
positivity of the ADM mass as stated in Theorem 1, it suffices to verify the inequality for an
asymptotically flat initial data set with a decay rate q = n −2. For more details about the density
theorem, see, for example, [23, Section 6].

Theorem 4 (Density theorem (loosely stated)). Let (M , g ,k) be an n-dimensional asymptotically
flat initial data set at the decay rate q > (n −2)/2 satisfying the dominant energy condition. For
any ϵ> 0, there exists an asymptotically flat initial data set (M , ḡ , k̄) at the decay rate q = n−2 such
that (ḡ , k̄) satisfies the dominant energy condition, is ϵ-close to (g ,k) in C 2,α

−q (M)×C 1,α
−1−q (M), and

|(Ē , P̄ )− (E ,P )| < ϵ.
Furthermore, we can arrange (M , ḡ , k̄) to have either the strict dominant energy condition

µ̄> | J̄ |ḡ everywhere in M or to be vacuum µ̄= | J̄ |ḡ = 0 outside a large compact subset of M.

The ADM energy-momentum has a variational characterization.

Definition 5 (Regge–Teitelboim Hamiltonian). Let M be an n-dimensional manifold that can
carry an asymptotically flat initial data set. Let ( f0, X0) be a pair of a function and a vector field
on M (which we will often call a lapse-shift pair) such that ( f0, X0) is smooth and is equal to a
constant (a,b) ∈R×Rn in the exterior coordinate chart for M \ K . We define the Regge–Teitelboim
Hamiltonian HRT corresponding to ( f0, X0) by, for asymptotically flat initial data set (g ,k)

HRT(g ,k) = (n −1)ωn−1
[
aE(g ,k)+b ·P (g ,k)

]−∫
M
〈Φ(g ,k), ( f0, X0)〉g dµg . (3)

In the case of vacuum initial data sets, as originally considered by Regge and Teitelboim [53],
the Hamiltonian can recover the energy E and the linear momentum by choosing the lapse-
shift pair to be asymptotic to the translation vector fields of Minkowski spacetime. Specifically,
( f , X ) → (1,0) yields the energy E , while ( f , X ) → (0,∂/∂xi ) yields Pi , the i -th component of the
linear momentum. The task of “minimizing” the ADM energy-momentum (E ,P ) is transformed
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into minimizing the functional (3) as follows. Suppose the positivity of mass holds for vacuum
(g ,k), i.e., E(g ,k) ≥ |P (g ,k)|. Then, for any future causal vector (a,b), we have

aE(g ,k)+b ·P (g ,k) ≥ aE(g ,k)−|b||P (g ,k)| ≥ (a −|b|)|P (g ,k)| ≥ 0 (4)

with equality if and only if E(g ,k) = |P (g ,k)| and (a,b) is a constant multiple of (E(g ,k),P (g ,k)).
This is just a general fact that for non-zero future causal vectors X and Y, their Lorentzian inner
product −〈X,Y〉 ≥ 0 with equality if and only if X,Y are both null and X is a constant multiple of Y.

With the minimization task in mind, we compute the first variation of HRT: for vacuum (g ,k),
we have

DH
∣∣
(g ,k)(h, w) =−

∫
M

(h, w) ·DΦ|∗(g ,k)( f0, X0)dµg

for all compactly supported (h, w), where DΦ|∗(g ,k) denotes the L2-formal adjoint equation of the
linearization DΦ|(g ,k) at (g ,k). The adjoint equation DΦ|∗(g ,k) has geometric significance in the
vacuum case, as discovered by Moncrief [54].

Theorem 6. Let (U , g ,k) be a vacuum initial data set and suppose that there exists a nontrivial
lapse-shift pair ( f , X ) on U solving

DΦ|∗(g ,k)( f , X ) = 0.

Then the vacuum spacetime development of (U , g ,k) admits a unique global Killing vector field Y
such that Y = f n+X along U , where n is the future unit normal to U .

Conversely, given a vacuum spacetime equipped with a global Killing vector field Y and a
spacelike hypersurface U with induced initial data (g ,k), if we decompose Y = f n+ X along U ,
then the lapse-shift pair ( f , X ) must lie in the kernel of DΦ|∗(g ,k).

In light of the above theorem, a solution ( f , X ) to DΦ|∗(g ,k)( f , X ) = 0 is referred to as the Killing
initial data.

An analogous statement for a non-vacuum case was established by Huang and Lee [33,
Theorem 6] using the modified constraint operator. A spacetime (N,g) is said to be a null perfect
fluid with velocity v and pressure p if v is either future null or zero at each point and the Einstein
tensor takes the form:

Ricg − 1
2 Rgg = pg+v⊗v. (5)

Theorem 7. Let (U , g ,k) be an initial data set satisfying the dominant energy condition. Assume
there exists a nontrivial lapse-shift pair ( f , X ) on U solving the system

DΦ|∗(g ,k)( f , X ) = 0 and f J +|J |g X = 0. (6)

and assume that f is nonvanishing in U . Then the following holds:

(1) The dominant energy scalar σ(g ,k) :=µ−|J |g is constant on U .
(2) (U , g ,k) is embedded inside a null perfect fluid spacetime (N,g) that satisfies the spacetime

dominant energy condition and admits a global Killing vector field Y equal to f n + X
along U , where n is the future unit normal to U .

There is also a converse statement.

We remark that the system (6) is closely related to the improvability of the dominant energy
condition. See [33].

We refer to a solution ( f , X ) to DΦ|∗(g ,k)( f , X ) = 0 as the modified Killing initial data. These
solutions play an important role in the equality theorem of the positive mass theorem; see
Section 4. An overall strategy for proving the equality theorem is to show that the initial data
set achieving equality has one or more modified Killing initial data.
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3. The proofs of positivity E ≥ |P |

We outline the currently available proofs of the positivity theorem, Theorem 1.

3.1. Marginally outer trapped hypersurfaces

We briefly revisit the minimal hypersurface proof of the Riemannian positive mass theorem,
originally developed by Schoen and Yau. This proof uses induction on the dimension 3 ≤
n ≤ 7 and proceeds by contradiction. Assume there exists an asymptotically flat Riemannian
manifold (M , g ) with nonnegative scalar curvature and negative mass m < 0. A density argument
allows us to assume (M , g ) has harmonic asymptotics and positive scalar curvature. These
conditions imply that the coordinate planes xn = ±Λ act as barriers for minimal hypersurfaces
for sufficiently largeΛ.

Consider an (n − 1)-dimensional vertical cylinder ∂Cρ with a large radius ρ. For each h ∈
[−Λ,Λ], there exists an area-minimizing hypersurface Σρ,h ⊂ Cρ whose boundary is the height
h sphere on ∂Cρ . If n ≤ 7, this hypersurface is smooth. Each Σρ,h lies between the hyperplanes
xn =±Λ. The area ofΣρ,h is minimized by some hρ ∈ (−Λ,Λ). This “height-picking” step is crucial
in dimensions n ≥ 4 because the corresponding surface Σρ,hρ satisfies

d2

dt 2

∣∣∣∣
t=0

area(Φt (Σρ,hρ )) ≥ 0

for any variation Φt that is a vertical translation along ∂Cρ . Without the height-picking step,
the above inequality only holds for compactly supported variations Φt , which is not sufficient.
(When n = 3, one can use the so-called logarithmic cut-off trick to approximate variations that
are vertical translations along ∂Cρ by compactly supported variations. However, this trick does
not work in higher dimensions.) A smooth subsequential limit Σ∞ of Σρ,hρ as ρ→∞ is an (n−1)-
dimensional asymptotically flat manifold with zero energy and is a stable minimal hypersurface
of M .

For n = 3, the stability of Σ∞ and its asymptotics are incompatible with the Gauss–Bonnet
theorem. In higher dimensions, one can construct a conformal factor that changes the metric on
Σ∞ to one that is asymptotically flat with zero scalar curvature and negative mass, thus violating
the Riemannian positive mass theorem in dimension n −1.

Our approach to the spacetime positive mass theorem generalizes the minimal hypersurface
proof using marginally outer trapped hypersurfaces (MOTS). A hypersurface Σ is a MOTS if θ = 0,
where θ = HΣ + trΣk is the expansion scalar. In the Riemannian case, θ reduces to the mean
curvature.

Let (M , g ,k) be an n-dimensional asymptotically flat initial data set satisfying the dominant
energy condition µ ≥ |J | and E < |P |. By our density theorem, Theorem 4, we may assume
(M , g ,k) has harmonic asymptotics and satisfies the strict dominant energy condition µ > |J |.
Furthermore, we assume P points in the vertical direction −∂n . The harmonic asymptotics and
E < |P | assumptions imply that the planes xn =±Λ act as barriers for MOTS for sufficiently large
Λ. Consider an (n − 1)-dimensional vertical cylinder ∂Cr . For each h ∈ [−Λ,Λ], the existence
theorem of MOTS [55] guarantees the existence of a MOTSΣr,h with boundary equal to the height
h sphere on ∂Cr . This MOTS is smooth if n < 8 and lies between the planes xn =±Λ, being stable
in the sense of MOTS with boundary. See Figure 2.

A major challenge, distinct from the minimal surface approach, is that MOTS do not arise
from a variational principle. Thus, there is no obvious alternative to the height-picking step of



186 Lan-Hsuan Huang

Figure 2. Under the (contradictory) assumption E < |P |, two coordinate hyperplanes xn =
Λ and xn =−Λ, together with the lateral side of a cylinder of large radius, provide barriers
for the existence of a MOTS Σr with prescribed boundary.

minimizing the area with respect to the height h. To overcome this, we introduce a new functional
F on hypersurfaces with boundary on ∂Cr such that for some hr ∈ (−Λ,Λ), we have

d

dh

∣∣∣∣
h=hr

F (Σr,h) ≥ 0.

This inequality, along with the MOTS stability, parallels the area inequality in the Riemannian
case. Extracting a smooth subsequential limit Σ∞ of Σr,hr as r →∞, we find that Σ∞ is an (n−1)-
dimensional asymptotically flat manifold with zero energy and is a stable MOTS in M . We can
construct a conformal factor that changes the metric onΣ∞ to one with zero scalar curvature and
decreases the energy of Σ∞, thus violating the Riemannian positive mass theorem in dimension
n −1.

3.2. Boost argument

The positive mass theorem E ≥ |P | can also be derived from the positive energy theorem E ≥ 0
using the following reduction argument. Assume that 0 < E < |P |. Fix θ ∈ (0,1) such that
E ′ := (E −θ|P |)/(1−θ2) < 0. Using the density theorem, Theorem 4, we may assume that (M , g ,k)
satisfies µ = 0 and J = 0 outside a large compact set. According to [56], there exists a vacuum
spacetime development of the asymptotically flat end of (M , g ,k) in which the end of (M , g ,k)
can be deformed to a boosted slice (of slope θ) that has energy E ′. The deformed initial data
(M ′, g ′,k ′) satisfies the conditions of the E ≥ 0 theorem, leading to a contradiction. This reduction
is well known in the mathematical relativity community when the initial data set is assumed to
be a spacelike slice of an asymptotically flat spacetime; see, e.g., [57].

3.3. Spinor proof

Witten’s proof is notable for its use of spinors, offering a different perspective on the positive mass
theorem. A spinor field ψ on a manifold is a section of a spinor bundle, which can be roughly
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thought of as a field of “spinor-valued” functions. For a 3-dimensional initial data set (M , g ,k), M
can be given a spin structure. In higher dimensions, this method requires M has a spin structure,
which allows us to use spinor fieldsψ on M . For convenience, we consider (M , g ,k) embedded in
a spacetime (N,g) and choose an orthonormal frame {e0,e1, . . . ,en} where e0 is the timelike vector.
One can also use a framework that is a purely initial data perspective. Define a new connection
∇̃i =∇i + (1/2)ki j e j e0 and the Dirac operator /D = ei · ∇̃i = ei ·∇i + (1/2)ki j ei e j e0 where ∇i is the
induced connection on M . The Witten equation states

/D2ψ= ∇̃∗∇̃ψ+ 1
2 (µ+ Je0) ·ψ.

For any ψ asymptotic to a constant spinor ψ0 at infinity, integrating the above Witten’s equation
and analyzing the boundary term∫

M
|∇̃ψ|2 −| /Dψ|2 + 1

2 〈ψ, (µ+ Je0) ·ψ〉dµ

= lim
r→∞

∫
|x|=r

〈ψ,∇̃νψ+ν · /Dψ〉dσ= 1
2 (n −1)ωn−1

(|ψ0|2E +〈ψ0,P j e j e0 ·ψ0〉
)

(7)

where ν is the outward unit normal. By choosingψ to solve /Dψ= 0 withψ asymptotic to a certain
constant spinor ψ0 such that 〈ψ0,P j e j e0 ·ψ0〉 =−|ψ0|2|P |, one gets

1
2 (n −1)ωn−1|ψ0|2(E −|P |) =

∫
M
|∇̃ψ|2 + 1

2 〈ψ, (µ+ Je0) ·ψ〉dµ≥ 0

where we use the dominant energy condition in the last inequality.
The argument also directly leads the E = 0 rigidity. Since E = 0 implies |P | = 0, for any constant

spinor ψ0 at infinity, one can let the harmonic spinor ψ asymptotically approach ψ0 in (7) to
obtain ∇̃ψ = 0, meaning that ψ is, in fact, a parallel spinor. One then argue that the spacetime
metric is flat along M . See [20] for more details.

3.4. Level set method using spacetime harmonic functions

We provide an overview of the proof by Hirsch, Kazaras, and Khuri [24]. Additionally, a recent
survey by Bray, Hirsch, Kazaras, Khuri, and Zhang [58] discusses the level set method applied to
positive mass theorems and other applications.

Let (Ω, g ,k) be a 3-dimensional compact initial data set. Consider a scalar-valued function u.
For simplicity, we assume that u has no critical points. Let Σt = u−1(t ) be a level set of u, and
denote the unit normal to Σt by η=∇u/|∇u|. By applying the Gauss equation to the level set Σt

and using A(eα,eβ) = |∇u|−1∇2u(eα,eβ), we obtain

|∇u|Ric(η,η) = 1
2 |∇u|(Rg −RΣ)+|∇u|−1 (|∇|∇u||2 − 1

2 |∇2u|2 + 1
2 (∆u)2 − (∆u)(∇2u)(η,η)

)
. (8)

We have the modified Bochner identity:

∆|∇u| = 1

|∇u|
(|∇2u|2 +〈∇u,∇∆u〉)+|∇u|Ric(η,η)−|∇u|−1|∇|∇u||2.

Equating the previous two identities gives

∆|∇u| = 1

|∇u| 〈∇u,∇∆u〉+ 1

2
|∇u|

[
Rg −RΣ+ |∇2u|2 + (∆u)2 −2|∇u|(∆u)∇2u(η,η)

|∇u|2
]

. (9)

So far, the identity holds for any function u. It was observed in [24] that this identity takes a
more convenient form when u satisfies the spacetime harmonic equation ∆u + (trg k)|∇u| = 0, as
motivated below. Suppose the initial data set (Ω, g ,k) is embedded in a spacetime (N,g) with the
unit normal n. Then the Hessian operator ∇2 of g restricted onΩ is given by

∇2u(ei ,ei ) =∇2u(ei ,e j )+ki j n(u).
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Since n(u) involves the spacetime vector n and is not determined on the initial data set (M , g ,k),
it turns out to be effective to require n(u) = |∇u|; namely, the spacetime vector ∇u is null. By
taking the trace, it gives the spacetime harmonic equation.

Substituting u, which solves the spacetime harmonic equation, into (9) yields

∆|∇u| = 1

2
|∇u|

[
2µ−RΣ+

∣∣∇2u +k|∇u|∣∣2

|∇u|2
]
−〈∇u,∇(trg k)〉−〈∇2u,k〉.

Consider the identity on an asymptotically flat initial data set (M , g ,k) and let Ω be a large
coordinate sphere. Consider u with the asymptotics u(x) → a · x as |x| → ∞ where a ∈ R3 and
|a| = 1. Integrating the previous identity over Ω and applying the coarea formula gives the
following integral formula:∫

∂Ω
(ν(|∇u|)+k(∇u,ν)) dσ= 1

2

∫ u

u

∫
Σt

(
2µ+2J (η)−RΣt +

∣∣∇2u +k|∇u|∣∣2

|∇u|2
)

dσdt

where ν is the outward unit normal to ∂Ω. By carefully analysis, one can show that the integral∫ u
u

∫
Σt

RΣt is asymptotically nonpositive, and the boundary term is asymptotic to 16π(E + a ·P ).
To summarize, one obtain

E +a ·P ≥ 1

16π

∫
M

(
µ+ J (η)+

∣∣∇2u +k|∇u|∣∣2

|∇u|2
)

dσdt ≥ 0.

This completes the proof.

4. pp-waves and the equality case E = |P |

4.1. pp-waves

A pp-wave spacetime (or just a pp-wave for short) is a Lorentzian metric g defined on Rn+1

equipped with a global coordinate chart {u, z, x1, . . . , xn−1} where

g = 2dudz +S dz2 +
n−1∑
a=1

(dxa)2. (10)

Here, the scalar-valued function S depends on z and x1, . . . , xn−1, but not on u. The vector
Y := ∂/∂u is a covariantly constant, nowhere vanishing null vector field. Note that a pp-wave
is a special case of a null perfect fluid described by (5) with pressure p = 0 and carries a global
null Killing vector field Y with v = ηY for some scalar function η. The term “pp-waves” stands
for plane-fronted waves (the wave fronts are constant z slices, whose induced metric is flat)
with parallel rays (Y is a parallel null vector). These waves can describe situations in which
gravitational waves are idealized as propagating along one direction, uniformly across flat wave
fronts perpendicular to this direction.

Example 8. The Minkowski metric g =−dt 2+∑n
a=1(dy a)2 is a special case of the pp-wave metric.

To see this, we can introduce the null coordinates U = yn − t and Z = 1
2 (yn + t ) and re-express the

Minkowski metric as g = 2dU dZ +∑n−1
a=1(dy a)2. Thus, we recover the pp-wave metric by setting

S = 0 in (10). Another choice of coordinates is to set

U = u − (x1 +·· ·+xn−1), Z = z, y a = xa + z,

and express the Minkowski metric as

g = 2dudz +dz2 +
n−1∑
a=1

(dxa)2. (11)

Then, we recover the pp-wave metric (10) by setting S = 1.
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The second expression (11) of the Minkowski metric is more relevant to what we will discuss
below. Notice that the induced metric from (11) on the constant u slices is the Euclidean metric
with the induced second fundamental form k ≡ 0.

We consider the constant u-slices in (10), assuming that S > 0 everywhere. Additionally, we
use xn to denote the z coordinate in (10).

Lemma 9. We assume S > 0. Let g and k be respectively the induced metric and second funda-
mental form on the constant u-slices in (10). Then (Rn , g ,k) is an initial data set where g and k are
given by

g = S (dxn)2 +
n−1∑
a=1

(dxa)2

kab = 0 for a,b = 1, . . . ,n −1

k j n = 1
2 S− 1

2 S, j for j = 1, . . . ,n.

We also have

µ = − 1
2 S−1∆′S

J = 1

2
S− 3

2 (∆′S)
∂

∂xn ,

and in particular, µ= |J |g .

Proof. Along a constant u-slice we have Y = ∂/∂u = S− 1
2 n+ S−1∂/∂xn where n = ∇u/|∇u|. To

compute the second fundamental form, we use that L∂/∂u g = 0 because ∂/∂u is Killing and thus

ki j = 1
2Lng(∂i ,∂ j ) =− 1

2 f −1LX g(∂i ,∂ j ) =− 1
2 S

1
2 LX g (∂i ,∂ j )

= − 1
2 S

1
2
(
Xi , j +X j ,i −2Γn

i j Xn
)= S

1
2 Γn

i j .

Computing the Christoffel symbols gives the desired formula for k. The computations for µ, J are
more involved, and we refer to Lemma C.2 of [33]. □

It easily follows that the dominant energy condition holds if and only if ∆′S ≤ 0. Note that
such a function S cannot exist for n = 3 because Liouville’s theorem says that any superharmonic
function on R2 that is bounded below must be constant. In the next lemma, we summarize the
properties that S have such that (Rn , g ,k) is asymptotically flat with the decay rate q .

Lemma 10. Let n > 3. There exist nonconstant smooth functions S on Rn with the following
properties:

(1) ∆′S ≤ 0 everywhere, strictly negative somewhere, and ∆′S is integrable on Rn .
(2) S ≡ 1 in {|xn | ≥C } for some constant C > 0.

(3) limρ→∞
∫
|x′|=ρ−

∑n−1
a=1∂S/∂xa xa/|x ′|dσ exists and is positive.

(4) For each nonnegative integer ℓ and each α ∈ (0,1), we have S − 1 ∈ Cℓ,α
−q (Rn) with q =

n −3− (ℓ+α).

Proof. Let F be a smooth nonnegative function onRn−1 with coordinates x ′ = (x1, . . . , xn−1), such
that F = O(|x ′|−s ) for some s > n − 1. We can solve ∆′ψ = −F on Rn−1 via convolution with the
fundamental solution of the Laplacian on Euclidean Rn−1. As long as F is not identically zero,
ψ(x ′) will be a positive, globally superharmonic function on Rn−1. For n > 3, it must have the
expansion

ψ(x ′) = A|x ′|3−n + (lower order terms),

and since ψ is positive, the constant A must also be positive. Now define

S(x ′, xn) = 1+φ(xn)ψ(x ′),
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where φ is chosen to be any nontrivial, compactly supported, smooth, nonnegative function on
R. Note that ∆′S = −φ(xn)F (x ′) ≤ 0 and is strictly negative somewhere. It is straightforward to
verify that S satisfies Items (1), (2), and (3). Since the derivatives of S in the xn direction do not
decay any faster than |x ′|3−n , we can only conclude that S − 1 and its derivatives of any order
are O(|x|3−n). Thus, S −1 ∈ Cℓ,α

−q (Rn) with q = n −3−ℓ−α by the definition of weighted Hölder
spaces. □

Theorem 11. For each n ≥ 5, there exist complete, asymptotically flat initial data sets (Rn , g ,k)
that satisfy µ= |J | and E = |P | > 0. These examples have asymptotic decay rate q > (n −2)/2.

Proof. We first describe the case n > 8 by Huang and Lee [33]. Choose any S as in Lemma 10 and
use this choice in Lemma 9 to construct initial data (Rn , g ,k). We claim that for n > 8, this is the
desired example. By construction (g ,k) is clearly complete. The main task is to show that (g ,k) is
asymptotically flat at the decay rate q > (n −2)/2.

Recall that our asymptotic flatness condition requires gi j −δi j ∈ C 2,α
−q (Rn) and ki j ∈ C 1,α

−q (Rn)
for some (n −2)/2 < q < n −2, and (µ, J ) ∈ L1(Rn). For our (g ,k) from Lemma 9, this is equivalent
to requiring that S −1 ∈C 2,α

−q for some (n −2)/2 < q < n −2 and that ∆′S is integrable. By Item (4)
of Lemma 10, this imposes the condition on n:

(n −3)− (2+α) > n −2

2
for some α ∈ (0,1), or equivalently, n > 8.

To see that E = |P | > 0, we evaluate the ADM energy-momentum by integrating over large capped
cylinders. The caps do not contribute, and we can see that

E =−Pn = 1

2(n −1)ωn−1
lim
ρ→∞

∫
|x′|=ρ

−
n−1∑
a=1

∂S

∂xa

xa

|x ′| dµ> 0,

and P1 = ·· · = Pn−1 = 0.
To extend the example down to dimensions n ≥ 5, Hirsch and Zhang observed that instead

of choosing the constant u-slices in (10) as above, one can choose other spacelike slices, such
as graphs over the u-slices. By choosing appropriate graphing functions, they can improve the
derivatives in the xn direction and thus construct examples for n ≥ 5. See [41]. □

4.2. Proof that E = |P | implies E = |P | = 0

We review the proof by Huang and Lee [59] for the first statement of the equality theorem.

Theorem 12. Let (M , g ,k) be an n-dimensional asymptotically flat initial data set with decay
rate q and assume that the positive mass theorem is true near (g ,k). Furthermore, we make the
stronger asymptotic assumption that with this decay rate q,

q +α> n −2,

where α is the Hölder exponent in the definition of asymptotic flatness. If (g ,k) satisfies the
dominant energy condition, then for each asymptotically flat end, E = |P | implies that E = |P | = 0.

We set up a variational setting to prove the above theorem. Let (M , g ,k) be an asymptotically
flat initial data set satisfying the dominant energy condition, as well as the assumption E = |P |.
Given a scalar function f0 and a vector field X0 so that ( f0, X0) → (a,b), we introduce the modified
Regge–Teitelboim Hamiltonian H corresponding to (g ,k) and ( f0, X0) by

H (γ,τ) = (n −1)ωn−1
[
aE(γ,τ)+b ·P (γ,τ)

]−∫
M
Φ|(g ,k)(γ,τ) · ( f0, X0)dµg

where the volume measure dµg and the inner product in the integral are both with respect to g .
The functional is obtained from the classical Regge–Teitelboim Hamiltonian in Definition 5 by
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replacing the usual constraint operator with the modified constraint operator Φ|(g ,k). We also
choose the volume form with respect to g .

Define the constraint set C(g ,k) to be the set of asymptotically flat initial data sets (γ,τ) such
that Φ(g ,k)(γ,k) = Φ|(g ,k)(g ,k). A key property of the modified constraint operator is that if
(g ,k) satisfies the dominant energy condition, then the dominant energy condition holds for all
(γ,τ) ∈ C(g ,k) close to (g ,k). Choosing the pair ( f0, X0) asymptoting to (a,b) := (E ,−P ), we apply
the positive mass inequality to conclude that (g ,k) locally minimizes the functional H on C(g ,k)

as below: For (γ,τ) ∈C(g ,k), by the same computation as in (4), we have

H (γ,τ)−H (g ,k) = (n −1)ωn−1
[
aE(γ,τ)+b ·P (γ,τ)

]− (n −1)ωn−1 [aE +b ·P ] (12)

≥ (n −1)ωn−1
[
EE(γ,τ)−P ·P (γ,τ)

]≥ 0, (13)

where the inequality E(γ,τ) ≥ |P (γ,τ)| is used. The equality holds when (γ,τ) = (g ,k).
Using the method of Lagrange multipliers, there exists a Lagrange multiplier ( f1, X1) asymp-

totic to zero such that

DH |(g ,k) (h, w) =
∫

M
( f1, X1) ·DΦ|(g ,k)(h, w)dµg =

∫
M

DΦ|∗(g ,k)( f1, X1) · (h, w)dµg

Since the left hand side equals −∫
M (h, w) ·DΦ|∗(g ,k)( f0, X0)dµg , just as the first variation of the

classical Regge–Teitelboim Hamiltonian (3), we construct a pair ( f , X ) = ( f0, X0)+ ( f1, X1) that
solves DΦ|∗(g ,k)( f , X ) = 0 and is asymptotic to (E ,−P ). To summarize, the above construction
yields a modified Killing initial data ( f , X ) with the prescribed asymptotics ( f , X ) → (E ,−P ).

Note that in the non-vacuum case, there need not be a corresponding spacetime Killing vector
field. However, intriguingly, the spinor proof by Beig and Chruściel uses the harmonic spinor to
construct ( f , X ) that satisfies a similar over-determined equation with the asymptotic to (E ,−P ).
Their key observation is that for asymptotically flat initial data sets with the optimal decay rate,
this implies E = |P | = 0. It completes the proof.

4.3. Proof that E = |P | = 0 implies embedding in Minkowski spacetime

Suppose E = 0. We extend the above variational setting to show that the initial data set can be
embedded into Minkowski space [39]. Unlike other proofs [17–20, 40], this proof does not rely on
the specific method used to establish the E ≥ 0 theorem. Instead, it characterizes the minimizer
of the modified Regge–Teitelboim Hamiltonian by producing additional modified Killing initial
data, under the assumption that the positivity of mass holds.

Theorem 13. Let (M , g ,k) be a asymptotically flat initial data set with decay rate q > (n −2)/2
and assume that the positive mass theorem is true near (g ,k). If (g ,k) satisfies the dominant energy
condition and E = 0, then (M , g ,k) is embedded into the Minkowski spacetime.

As in the proof of Theorem 12, we use the fact that (g ,k) minimizes a modified Regge–
Teitelboim Hamiltonian H on the constraint set C(g ,k). Then we invoke the method of Lagrange
multiplier to construct a lapse-shift pair ( f , X ) that solves DΦ|∗(g ,k)( f , X ) = 0 with the prescribed
asymptotics ( f , X ) → (a,b), where (a,b) = (E ,−P ).

When E = |P | = 0, it turns out that (g ,k) minimizes the modified Regge–Teitelboim Hamilton-
ian for many choices of (a,b), because the last term of (12) is alway zero. By similar computations
as in (13), we can choose any a and b with a = |b|. This allows us to construct an entire (n +1)-
dimensional space of lapse-shift pairs that can be thought of as being asymptotic to the (n +1)-
dimensional space of translational Killing fields on Minkowski space as we approach spatial in-
finity. Moreover, having so many solutions implies that (g ,k) is vacuum, by [33, Corollary 6.6].

Once we know that (g ,k) is vacuum, it follows that each of these lapse-shift pairs is actually
vacuum Killing initial data for (g ,k) by Moncrief’s theorem, and we can extend them to become
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actual Killing fields on the vacuum development of (g ,k). The final step is to show that having
such a space of Killing fields on an asymptotically flat Lorentzian manifold that are asymptotic
to the (n + 1) translational directions implies that the Lorentzian manifold must be Minkowski
space.
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