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1. Introduction

The aim of this review is to give an overview of important spectral and microlocal methods that
have been applied to questions in Mathematical General Relativity over the last decades. We will
try to explain some of them using the wave equation on the De Sitter Schwarzschild metric as a
leading example.

It is hard to say exactly when spectral and microlocal methods appear first in the context
of General Relativity. Their application was certainly pushed by the desire of understanding
quantum fields on a curved background starting in the 1970s. Right from the beginning the
interaction was very rich, not only existing methods were applied in a new context, but also
this new context contributed to developing new methods. For example in their celebrated paper
Fourier Integral Operators II [1] Duistermaat and Hörmander cite the construction of Feynman
propagators for the Klein Gordon equation on a general Lorentzian manifold as a motivation.
It later turned out that an important condition on states on curved spacetime, the so called
Hadamard condition, is naturally formulated in terms of microlocal analysis, see the work of
Radzikowski [2]. Today these states have been constructed by pseudodifferential calculus, see
Gérard and Wrochna [3].

In the construction of preferred quantum states on a curved background scattering theory
plays an important role and a whole program concerning scattering theory on black hole type
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backgrounds was initiated by Dimock and Kay in the 1980s, see e.g. [4]. This program was later
pushed forward by Bachelot in the 1990s, see e.g. [5] and culminated in his rigorous proof of the
Hawking effect in the spherically symmetric setting in 1999 [6]. This picture was later completed
by Dappiaggi, Moretti and Pinamonti [7] who showed that the Unruh state which is linked to the
Hawking effect fulfills the Hadamard condition. Today our understanding of quantum fields is
also very complete for fermions on the Kerr spacetime, see Häfner [8] for the Hawking effect and
Gérard, Häfner and Wrochna [9] for the Hadamard property of the corresponding Unruh state.
These results rely on classical asymptotic completeness results obtained by Häfner and Nicolas
in [10]. For bosons the picture is less complete, but see Klein [11] for the Hadamard property
of the Unruh state in the De Sitter Kerr metric. Whereas classical asymptotic completeness
results are also known for Klein Gordon fields on the (De Sitter) Kerr spacetime (see Häfner [12],
Dafermos, Rodnianski, Shlapentokh-Rothman [13] and Gérard, Georgescu, Häfner [14]), the
results of Klein rather use decay estimates as obtained e.g. in Hintz and Vasy [15].

Scattering theory for hyperbolic equations is very much linked to dispersive properties of
these equations. The importance of these estimates for non linear problems becomes manifest
in the fundamental work on the non linear stability of Minkowski spacetime by Christodoulou
and Klainerman [16].

It is very fortunate that the so complicated Einstein equations have explicit solutions like the
(De Sitter) Kerr family of solutions describing rotating black holes. However to be sure of the
physical importance of these solutions, one has to show that these families are stable as solutions
of the Einstein vacuum equations. Again dispersive estimates for the linearized problem play a
key role in this context.

Whereas the scattering theory developed in the 1980s and 1990s only showed that the local en-
ergy of the underlying equations decays to zero, quantitative decay estimates were now needed.
Roughly speaking decay of the solution translates to regularity properties of the underlying re-
solvent and vice-versa. A particular favorable situation in this context is the case when the re-
solvent in suitable function spaces has a meromorphic extension in a strip beyond the real axis.
The poles of this extension are then called resonances. It turns out that this is the case for the De
Sitter Kerr metric.

The mathematical study of resonances for black hole spacetimes was initiated by Bachelot
and Motet-Bachlot in 1993 [17]. A bit later Sá Barreto and Zworski [18] succeeded to localize
the high frequency resonances of a De Sitter Schwarzschild black hole. Later on Bony and
Häfner [19] obtained an expansion of the local propagator of the wave equation on the De Sitter
Schwarzschild metric. This expansion in particular gives very precise dispersive estimates. The
analysis of Bony and Häfner was extended to include also the horizon by Melrose, Sá Barreto and
Vasy [20]. Dyatlov then obtained similar results for the De Sitter Kerr metric [21, 22]. The most
general version of this theorem including De Sitter Kerr spacetime for small angular momentum
of the black hole is due to Vasy [23]. The work of Vasy is an important breakthrough in this context
as it doesn’t use the symmetries of Kerr spacetime a part from the time invariance. More generally
it develops a robust Fredholm theory for non elliptic problems, that turned out to be crucial in
the following. This came out as a kind of surprise since Fredholm theory so far seemed to be
reserved for elliptic problems. Not surprisingly, these new methods rapidly also gave interesting
results in quantum field theory, see e.g. Vasy and Wrochna [24].

An important obstacle for showing dispersive estimates on black hole spacetimes is trapping
that appears in these spacetimes. More precisely to show the resonance expansion theorems one
has to control the high energy regime of the resolvent which is directly linked to the trapping.
Fortunately the trapping on (De Sitter) Kerr spacetimes is very mild, more precisely it is r -
normally hyperbolic. Suitable resolvent estimates in the presence of r -normally hyperbolic
trapping have been shown by Wunsch-Zworski in [25] and Dyatlov [26], see also Hintz [27].
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The program on dispersive estimates on the De Sitter Kerr family culminated in the proof of
the non linear stability of this family for small angular momentum of the black holes by Hintz
and Vasy in 2016 [28]. Whereas the restriction to small angular momentum has been removed
in the linear framework, see Petersen and Vasy [29], it remains for the non linear framework,
because growing modes for the linearized problem can’t be excluded so far, but see Hintz [30] for
important progress in this direction.

In the context of the Kerr family new difficulties appear. On the linear level, the underlying
resolvent can’t be extended any more meromorphically beyond the real axis. This is a low
frequency problem and very close to what happens when considering evolution equations on
an asymptotically euclidean manifold. It turns out that the resolvent has nevertheless certain
C k properties down to the real axis permitting to show polynomial decay for several evolution
equations, see e.g. the series of papers by Bony and Häfner [31, 32]. However, for the wave
equation the low frequency analysis becomes significantly simpler if one uses a hyperboloidal
foliation, see Vasy [33,34]. We also refer to Baskin, Vasy and Wunsch [35,36] for the asymptotically
Minkowskian context. Let us also mention the work of Gajic and Warnick [37] and Stucker [38]
about the definition of quasinormal modes in this context. The above mentioned low frequency
problems are very different from the above mentioned high frequency problems and one of
the advantages of spectral and microlocal analysis is that these problems can be very clearly
separated and then treated by very different methods.

All this has then been used to show linear stability of the Kerr family for small angular
momentum, see Häfner, Hintz and Vasy [39]. Recall that most black holes are rapidly spinning,
see e.g. Thorne [40], such that it would be important to remove the restriction to small angular
momentum. The very robust Fredholm framework makes that the restriction to small angular
momentum only comes from the mode analysis. Indeed all essential features for the analysis like
the structure of the horizon or the nature of trapping are the same in the case of large angular
momentum (see e.g. Dyatlov [41]). In contrast to the De Sitter Kerr case, mode stability for the
Teukolsky equation on the Kerr background is known in the full subextreme range in the Kerr
case, see Whiting [42]. This was then used by Andersson, Häfner and Whiting [43] to give a full
analysis of the mode solutions for the linearized Einstein equations. As an illustration how the
whole analysis can be carried out in the full subextreme case we cite Millet [44] who obtains
optimal decay results for the Teukolsky equation on the Kerr background, see also the work of
Hintz [45] in this context.

The relatively weak decay for linearized gravity1 makes the analysis of the non linear prob-
lem for the Kerr family more difficult than for the the De Sitter Kerr family. In a series of papers
Klainerman–Szeftel [46–48] and Giorgi–Klainerman–Szeftel [49] give a proof of non linear stabil-
ity of the Kerr family in the case of small angular momentum, see also Shen [50]. We also refer
to the work of Dafermos, Holzegel, Rodnianski and Taylor [51] for the non linear stability of the
Schwarzschild metric.

Let us also briefly mention the case of negative cosmological constant. If one imposes for
example Dirichlet boundary conditions for the Klein Gordon equation on the Anti De Sitter Kerr
metric, the trapping becomes more severe. As a consequence the decay for the equation becomes
weaker, see e.g. Gannot [52] and Holzegel, Smulevici [53].

Microlocal methods also play an important role in the context of strong cosmic censorship
in particular in the case of positive cosmological constant. Considering a (De Sitter) Kerr or
(De Sitter) Reissner–Nordström black hole, one can see that there exists a stabilizing effect at
the black hole horizon, often called redshift effect and an inverse effect at the Cauchy horizon,
called blueshift. It is interesting to see that these redshift and blueshift effects are directly linked

1More precisely the solution of the linearized problem will decay to some linearized Kerr plus gauge terms.
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to radial point estimates which play an important role in establishing the Fredholm setting for
linear equations on the background, see Hintz and Vasy [15]. In the case of zero cosmological
constant the asymptotic behavior of the metric at infinity leads to only inverse polynomial decay
at the black hole horizon and the blueshift effect at the Cauchy horizon seems to be stronger
leading in the end to an instability of the Cauchy horizon, see the work of Dafermos [54] as well
as Luk and Oh [55,56]. In the case of positive cosmological constant there is a subtle competition
between both effects. For example the question if the solution of the wave equation is H 1 near
the cosmological horizon is directly linked to the distance to the real axis of the resonance which
is closest to the real axis2, see Cardoso, Costa, Destounis and Hintz [57]. Unfortunately the
exact position of these low frequency resonances is very hard to compute. Nevertheless it is
possible that strong cosmic censorship fails for certain black hole parameters. Interestingly, it
seems that it is always valid on a quantum level, see the work of Hollands, Wald and Zahn [58].
At first glance it might be surprising that only the resonance position that comes somehow
from the analysis outside the black hole determines what is going on on the Cauchy horizon.
There is indeed a scattering process between the black hole horizons and the Cauchy horizons
and scattering theory for the wave equation has been developed in this context by Kehle and
Shlapentokh-Rothman [59] in the spherically symmetric case. Remarkably as already observed by
Chandresekhar and Hartle [60] the poles of the corresponding scattering matrix can be computed
and they lie too far from the real axis to contribute to the instability although one can give data
on the black hole horizons which lead to certain instabilities. Note that asymptotic completeness
results inside the black hole can also be obtained by time dependent methods, see the work
of Häfner, Nicolas and Mokdad [61] and Mokdad and Provci [62]. However this doesn’t give a
scattering matrix which is needed to study the behavior in the directions transverse to the Cauchy
horizon.

We concentrate in this review on spectral analysis, resolvent analysis and Fourier transform.
This however doesn’t mean that microlocal analysis cannot be applied in non stationary situa-
tions. Indeed in general one will be faced with situations where the operators are not stationary
but settle down in some sense to a stationary situation. In this situation the here described anal-
ysis is the first of two ingredients for the global analysis of the operator. The second ingredient is
a control of regularity of solutions of the non stationary equation and requires in addition other
techniques which can however be fully microlocal, see e.g. the recent work of Hintz [63]. We also
refer to Hintz and Vasy [64] in this context.

In the above review we have concentrated on the mathematical literature on the subject. There
is also a very important physics literature that unfortunately we can’t review here. Also it goes
without saying that only some of the aspects of microlocal analysis in General Relativity can
be treated in this review and inevitable important aspects and important contributions will be
missing. We hope that the review gives nevertheless an idea of some of the important ideas that
have been developed over the last years.

The review is organized as follows. In Section 2 we review some of the important aspects of
the (De Sitter) Kerr family of spacetimes which are used in the microlocal approach. A few of
the above mentioned results are presented in some detail in Sections 3, 4 gives some minimal
notions of mircolocal and semiclassical analysis. In Section 5 we discuss the wave equation on
the De Sitter Schwarzschild metric. Through this relatively simple example we try to explain two
of the main ideas for showing decay estimates for hyperbolic equations via microlocal methods.
Firstly the Fredholm setting and the underlying estimates (in particular radial point estimates)
and secondly the high frequency estimates in the presence of trapping.

2There is in fact a zero resonance but which is not included in this discussion.
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Figure 2.1. Choice of coordinates, source: [28].

2. Black hole spacetimes

2.1. The De Sitter Schwarzschild metric

We first consider the De Sitter Schwarzschild metric in Boyer Lindquist coordinates. For m> 0 we
put b0 = (m,0). The manifold and metric (M , g ) are then given by

M =Rt×X̃ , X̃ =Ib0×S2
ω, Ib0 = (r−,r+), g = Fb0 dt 2−F−1

b0
dr 2−r 2dω2, Fb0 (r ) = 1−2m

r
−Λr 2

3
.

Here m > 0 is the mass of the black hole and Λ > 0 is the cosmological constant. We require
9m2Λ < 1 in the following. Fb0 then has two positive roots that we call r−, r+. The potential
Vb0 (r ) = Fb0 (r )/r 2 has a unique maximum on (r−,r+) given by r0 = 3m. The Regge–Wheeler
coordinate r∗ is defined by the requirement dr∗/dr = F−1

b0
and that r∗(3m) = 0. The coordinate

t∗(r∗) is defined as a smooth function of r∗ such that

t∗ =
{

t + r∗ r ≤ 3m,
t − r∗ r ≥ 4m.

We find in the coordinates (t∗,r,ω) and for r ≤ 3m:

g = Fb0 dt 2
∗−2dt∗ dr − r 2 dω2

as well as a similar formula for r ≥ 4m. This shows that the metric extends for some ϵ > 0
to M = Rt∗ × X , X = (r− − ϵ,r+ + ϵ) × S2

ω. The null hypersurfaces H + = Rt∗ × {r−} × S2
ω and

H
+ = Rt∗ × {r+}× S2

ω are called the future event horizon and the future cosmological horizon,
see Figure 2.1. A similar construction can be performed in the past, constructing then the past
event horizon H − and the past cosmological horizon H −.

2.2. The De Sitter Kerr metric

The De Sitter Kerr metric describes black holes with non zero angular momentum. For m> 0, a ∈
R3 we put b = (m,a). Let also a = |a|. We again start with Boyer Lindquist coordinates. For a
suitable interval Ib ⊂R defined below the metric takes the form

gb = Fb

(1+λb)2ρ2
b

(dt −a sin2θdφ)2 − κb sin2θ

(1+λb)2ρ2
b

(a dt − (r 2 +a2)dφ)2 −ρ2
b

(
dr 2

Fb
+ dθ2

κb

)
,

Fb = (r 2 +a2)

(
1− Λr 2

3

)
−2mr, ρ2

b = r 2 +a2 cos2θ, λb = Λa2

3
, κb = 1+λb cos2θ.

Under suitable conditions Fb has two positive roots rb,−, rb,+ and Ib = (rb,−,rb,+) in this case.
We can construct a similar coordinate t∗ as in the De Sitter Schwarzschild case. If one also
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changes the coordinate φ to some coordinate φ∗, then the metric g can be extended in the new
coordinates (t∗,r,θ,φ∗) to the manifold M =Rt∗×X , X = (rb,−−ϵ,rb,++ϵ)×S2

θ,φ∗ . Event horizons
and cosmological horizons are defined in a similar way to the De Sitter Schwarzschild case.

2.3. Schwarzschild and Kerr metric

In Boyer-Lindquist coordinates the Schwarzschild and the Kerr metric are formally obtained by
putting Λ= 0. Note that the interval Ib0 then becomes Ib0 = (2m,∞) in the Schwarzschild case
and the interval Ib becomes Ib = (m+

p
m2 −a2,∞) in the Kerr case. The spacetimes are now

asymptotically Minkowskian, no cosmological horizon exists. We then have M = Rt∗ × X , X =
(m+

p
m2 −a2 − ϵ,∞). Passing to the conformally rescaled metric ĝ = r−2g , one can construct

future and past null infinity in a similar way to the construction of the cosmological horizons. In
the Kerr case we will also need the coordinate t which equals t∗ near the future event horizon and
t near infinity.

2.4. Some important properties of black hole spacetimes

2.4.1. Asymptotic behavior

The fundamental difference between positive and zero cosmological constant is that the
spacetimes are asymptotically De Sitter in the first case and asymptotically Minkowskian in the
second case. In the asymptotically Minkowski case we have more precisely:

gb0 = g(0,0) +O (r−1), gb = gb0 +O (r−2), r →∞.

Here b0 = (m,0), b = (m,a) and g(0,0) is the Minkowski metric. As we will explain in the next sec-
tion, the different asymptotic behavior has important consequences for the dispersive properties
of solutions of the wave equation.

2.4.2. Superradiance

It is easy to see that the vector field ∂t becomes spacelike in a region outside the horizon if
the rotation a is non zero. This holds for the De Sitter Kerr as well as for the Kerr case. More
generally there doesn’t exist a global timelike Killing vector field. As a consequence there doesn’t
exist a positive conserved quantity for the wave equation and the evolution can’t be described by
a selfadjoint hamiltonian.

2.4.3. Trapping in the De Sitter Schwarzschild case

We first consider the De Sitter Schwarzschild case. The associated wave operator is

□gb0
= F−1

b0
∂2

t −
1

r 2 ∂r r 2Fb0∂r − r−2∆S2 .

Let P (σ) = Fb0□̃gb0
(σ), where □̃gb0

(σ) is the Fourier transform of □gb0
with respect to t . Then

P (σ) has symbol

p = ξ2 +Vb0 |η|2 −σ2,

where σ, ξ,η are dual to t ,r∗,ω and Vb0 = Fb0 /r 2. The projections of the bicharacteristics of p on
M are null geodesics, but it is actually more interesting to consider the bicharacteristics them-
selves. The quantities σ and |η|2 are clearly conserved along the evolution and the Hamiltonian
equations reduce to

ṙ∗ = 2ξ, ξ̇=−V ′
b0
|η|2.
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A solution is clearly given by (r∗,ξ) = (0,0). Linearization around this solution leads to the
equation:

ṙ∗ = 2ξ, ξ̇=−V ′′
b0

(0)|η|2r∗.

The matrix (
0 2

−V ′′
b0
|η|2 0

)
has eigenvalues λ± =±

√
−2V ′′

b0
(0)|η|. The point (0, 0) is therefore a hyperbolic fixed point of this

reduced system.

2.4.4. r -normally hyperbolic trapping

In this subsection we describe the trapping arising in black hole spacetimes in a more general
framework. We follow closely Dyatlov [26]. Let X be a compact manifold, p : T ∗X → R a
Hamiltonian with associated Hamiltonian vector field Hp . We mimic infinity by an absorption
operator Q with semiclassical symbol q , see Section 4.3 for the definition. We define the
backward/forward trapped sets Γ± and the trapped set K in the following way

(1) Γ± are codimension 1 orientable C∞ submanifolds of T ∗X such that Γ±∩{p = 0}∩{q = 0}
are compact.

(2) if (x,ξ) ∈ {p = 0} \Γ±, then e∓t Hp (x,ξ) ∈ {q > 0} for some t ≥ 0;
(3) Hp is tangent to Γ±.
(4) Γ± intersect transversely, K = Γ+ ∩ Γ− is called the trapped set, and we assume that

W F ′
h(Q)∩K ∩ {|p| ≤ δ} = ; for δ > 0 small enough, see Section 4.3 for a definition of

W F ′
h(Q).

(5) K is a symplectic codimension 2 submanifold of T ∗X .
(6) if v ∈ TKΓ±, then de∓t Hp v exponentially approaches T K ⊂ TKΓ± as t →∞.

We furthermore define 0 < νmin ≤ νmax as the maximal and the minimal numbers such that for
each ϵ> 0 there exists a constant C such that for each v ∈ TKΓ±

C−1e−(νmax+ϵ)t |π(v)| ≤ |π(de∓t Hp v)| ≤C e−(νmin−ϵ)t |π(v)|, t ≥ 0,

where π : TKΓ± → TKΓ± is any fixed smooth linear projection whose kernel is equal to T K .
In other words, νmin and νmax are the minimal and maximal expansion rates in directions
transversal to the trapped set. In the above situation we will speak about normally hyperbolic
trapping, see Figure 2.2. The notion of r -normally hyperbolic trapping requires in addition that
the rate of expansion transversal to K is much larger than the rate of expansion on K . More
precisely the trapping is r -normally hyperbolic, if νmin > rµmax, where µmax is the maximal
expansion rate along K , namely

∥det Hp |T K ∥ =O (e(µmax+ϵ)t ), as |t |→∞
for all ϵ > 0. It can be shown that the trapping on the (De Sitter) Kerr metric is r -normally
hyperbolic for all r , see Dyatlov [41]. This is a structurally stable property, see Fenichel [65] as
well as Hirsch, Pugh and Shub [66] for details.

3. Stability results obtained via mircolocal methods

In this section we recall some linear and non linear stability results which have been obtained via
microlocal methods.
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Figure 2.2. Normally hyperbolic trapping, source: [26].

3.1. The Cauchy problem in General Relativity

We consider the Einstein vacuum equations

Ric(g )+Λg = 0. (3.1)

Initial data for this equation are a triplet (Σ,h,k) consisting of a 3-manifold Σ, a riemannian
metric h on Σ and a symmetric 2-tensor k on Σ subject to the constraint equations, which are
the Gauss–Codazzi equations on Σ implied by (3.1). Let us fix Σ as a submanifold of M . For a
Lorentzian metric g on M we define τ(g ) = (−g |Σ,Πg

Σ
), where Πg

Σ
is the second fundamental for

of Σ within M . A metric g is said to solve the initial value problem with data (Σ,h,k) if

• Σ is spacelike with respect to g ;
• τ(g ) = (h,k).

The pioneering work of Choquet-Bruhat [67] shows that the Einstein equations have a local
solution for smooth data fulfilling the constraint equations. The non linear stability problem
for black hole solutions consists now in slightly perturbing initial data of these solutions and to
ask if the initial value problem has a global solution which stays close to one of the members of
the family. This is an orbital stability. Note that because of energy radiation each member of the
family is not expected to be individually stable.

3.2. The global nonlinear stability of the De Sitter Kerr family

The first non linear stability result for black holes was obtained by Hintz and Vasy in 2016 for
slowly rotating De Sitter Kerr family. We state it here in its easiest form, see [28] for the full precise
formulation of the result. Let us fix a De Sitter Schwarzschild spacetime (M , gb0 ). Within this we
consider a compact spacelike hypersurfaceΣ0 ⊂ {t∗ = 0} ⊂M extending slightly beyond the event
and cosmological horizons. Denote by Σt∗ the translates of Σ0 by ∂t∗ and let Ω = ⋃

t∗≥0Σt∗ ⊂ M

be the spacetime region swept out by these, see Figure 2.1.

Theorem 3.1 (Hintz–Vasy 2016). Suppose that (h,k) are smooth initial data on Σ0, satisfying the
constraint equations, which are close to the data (hb0 ,kb0 ) of a De Sitter Schwarzschild spacetime
in a high regularity norm. Then there exists a solution g of (3.1) attaining these initial data at Σ0,
and black hole parameters b which are close to b0, so that

g − gb =O (e−αt∗ )
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for a constant α > 0 independent of the initial data; that is, g decays exponentially fast to the De
Sitter Kerr metric gb .

Note that data for slowly rotating De Sitter Kerr black holes are included so that the above
result is a non linear stability result for the De Sitter Kerr family in case of slow rotation of the
black holes.

3.3. Linear stability of the Kerr family

As seen above, the decay in the De Sitter Kerr case is very fast. As a consequence passing from the
linear to the non linear stability result is not too difficult. This is different in the Kerr case and the
full non linear stability of the Kerr family has not been shown so far via spectral and mircolocal
methods, but see the series of papers by Klainerman–Szeftel [46], Giorgi–Klainerman–Szeftel [49]
for a proof via different methods. However a linear stability result has been obtained by Häfner–
Hintz–Vasy via spectral and microlocal methods which we state now in its easiest version. Again
we refer to the original version [39] for full details3. Consider black hole parameters b close to
b0 = (m0,0).

Theorem 3.2 (Linear stability of the Kerr family, H-Hintz–Vasy 2019). Let γ′,k ′ be symmetric
2-tensors on Σ= t−1(0) satisfying the linearized constraint equations and

|γ′|≲ r−1−α, |k ′|≲ r−2−α, 0 <α< 1,

(and similar bounds for derivatives ∂ω, r∂r up to order 8). Then there exists a symmetric 2-tensor
h on M such that

Dgb Ric(h) = 0, Dgbτ(h) = (γ′,k ′),

which decays to a linearized Kerr metric,

h = ġb(ḃ)+ h̃, |h̃|≲ t−1−α+
∗ ,

(
ġb(ḃ) := d

ds
gb+sḃ

∣∣∣∣
s=0

)
.

Note that Andersson et al. [69] also obtained a linear stability result for the Kerr family, but
their decay assumptions on the data are stronger, which eliminates the linearized Kerr solution.
Earlier results by Dafermos, Holzegel and Rodnianski [70] as well as Hung, Keller and Wang [71]
establish linear stability of the Schwarzschild solution.

3.4. Remarks on gauge issues

To carry out the analysis in the linear or non linear case one has to fix a gauge and one usually
then considers a gauge fixed operator. On the linear level one can then consider this gauge fixed
operator with general initial data. This is an advantage in an iteration scheme to solve the non
linear equation because one doesn’t have to worry about the linearized constraint equations at
each step. On the other hand the gauge fixed linear operator can now have growing modes which
are not physical in the sense that they are not solutions of the linearized Einstein equations
without gauge. Unfortunately this kind of scenario is produced when one uses the usual wave
map gauge. In the De Sitter Kerr case one even expects exponentially growing modes. In the Kerr
case the situation is more favorable and only generalized quadratically growing modes can arise.
The handling of these gauge issues is beyond the scope of this review. Let us just say that in the
Kerr case one can get rid of these modes by the so called constraint damping, we refer to [28] for
the De Sitter Kerr case. In the Kerr case once the constraint damping implemented we obtain a
linearized operator Lb and the gauge fixed version of Theorem 3.2 is the following.

3Note that a small error in [39] has been corrected in [68], the main theorem remains unchanged.
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Theorem 3.3 (H-Hintz–Vasy 2019). Let α ∈ (0,1), and let h0,h1 ∈C ∞(Σ;S2T ∗
ΣM ),

|h0|≲ r−1−α, |h1|≲ r−2−α,0 <α< 1

(and similar bounds for derivatives). Let{
Lbh = 0,

(h|Σ,L∂t h|Σ) = (h0,h1).

Then there exist ḃ ∈R×R3 and vector fields W,V ∈ on M such that

h = ġ ′
b(ḃ)+LV gb +LW gb + h̃, |h̃|≲ t−1−α+

∗ , |LW gb |≲ t−α+∗ .

Here ġ ′
b(ḃ) is a gauge fixed version of ġb(ḃ) and V lies in a fixed 7-dimensional vector space

consisting of asymptotic translations, asymptotic boosts and a Coulomb type vector field.

A part from the Coulomb type solutions, the vector field V lies exactly in the space one would
expect. In principle one can read off the change of the black hole parameters and the movement
of the black hole in the given gauge. Let us also mention that one can get rid of the gauge solution
LW gb by admitting a gauge source term.

3.5. The large a case

As will be explained later on, the proof of these theorems relies on a very robust Fredholm
framework. The only ingredient which is not stable with respect to perturbations is the mode
analysis. This mode analysis for the linearized Einstein equations has been carried out by
Andersson, Häfner and Whiting [43] also in the large a case. Precise decay estimates for the
Teukolsky equation (including the computation of the leading order term) have been obtained by
these techniques by Millet in [44]. We give here a rough version of the theorem without defining
precisely the Teukolsky operator Ts . We refer to [72] for a review of the geometric background for
the Teukolsky operator.

Theorem 3.4 (Millet 2023). Let 0 ≤ a < m. We fix s ∈ {0,±1/2,±1,±3/2,±2}. Let u0,u1 smooth
and compactly supported on Σ0. The solution u of the Cauchy problem

Ts u = 0

u(t = 0) = u0
∂

∂t
u(t = 0) = u1

satisfies:

|u(r, t∗,θ,φ)−pu0,u1 (r, t∗,θ,φ)| ≤Cr−1+t−2−|s|+s−ϵ
∗

(
t∗
r

+1

)−1−s−|s|

where ϵ> 0. We have

p= t−3−2|s|
∗

(2|s|+2)
( t∗

r

)2+|s|+s +2(|s|− s +1)
( t∗

r

)1+|s|+s( t∗
r +2

)2+|s|+s
Fu0,u1 ,

where Fu0,u1 (r,θ,φ) can be expressed in terms of hypergeometric functions and spin weighted
spherical harmonics. The hypotheses of the above theorem can be relaxed. In particular H N

regularity for N sufficiently large is sufficient. Also the compact support of initial data is not
necessary, inverse polynomial decay can be permitted and the exact decay rate then depends on
the exact decay rate of the initial data. We refer to [44] for details. Similar results also in the large a
case have been obtained by Shlapentokh Rothman and Teixeira Da Costa [73, 74] but the precise
decay rates are weaker. For entire spin and small a the above result has been obtained before by
Ma–Zhang in [75]. The leading order term has already been computed for the wave equation by
Hintz [45] in the large a case.
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4. Microlocal and semiclassical analysis

In standard microlocal analysis the asymptotic parameter is given by |ξ|, where ξ is the fiber
variable. We start our representation with a review of that theory. In the semiclassical theory
a small parameter h is added to measure the wave length of oscillations. We are then concerned
with asymptotics as h → 0, ξ→∞ and to make the link with standard microlocal analysis h can
be thought as h = 1/|ξ|. A fundamental reference for the subject is Hörmander [76]. We also
refer to Zworski [77] for the semiclassical part. Our presentation owes a lot to the lecture notes of
Wunsch [78] and Hintz [79] as well as to the thesis of Hintz [80].

4.1. Microlocal analysis

In this section we present some of the main objects of microlocal analysis we will need. Let us
start with a differential operator on Rn of order m,

A = ∑
|α|≤m

aα(x)Dα
x ∈ Diffm(Rn).

We can rewrite this expression using the Fourier transform F :

(Au)(x) = ∑
|α|≤m

aα(x)F−1(ξα(Fu)(ξ)) = 1

(2π)n

∫
ei〈x,ξ〉 ∑

|α|≤m
aα(x)ξαû(ξ)dξ=: (Op(a)u)(x),

where a(x,ξ) =∑
|α|≤m aα(x)ξα is the symbol of the operator. The above writing suggests that one

can permit more general symbols a(x,ξ) and then define the corresponding operator Op(a) by

(Op(a)u)(x) = 1

(2π)n

∫
eixξa(x,ξ)û(ξ)dξ= 1

(2π)n

Ï
ei〈(x−y),ξ〉a(x,ξ)u(y)dy dξ. (4.1)

A smooth function a on T ∗Rn is a symbol of order m if the following estimate holds:

|∂αx ∂βξ a(x,ξ)| ≤Cαβ〈ξ〉m−|β|, ∀α,β ∈Nn .

Let Sm(Rn) be the set of symbols of order m. If a ∈ Sm we define Op(a) by (4.1). If Sm is the set of
symbols of order m, we define the set of pseudodifferential operators of order m as

Ψm(Rn) = {Op(a), a ∈ Sm(Rn)}.

For symbols in Sm one can define other quantizations, for example the Weyl quantization

(aw (x,D)u)(x) = 1

(2π)n

Ï
ei〈(x−y),ξ〉a

( x + y

2
,ξ

)
u(y)dy dξ

is often used. If A ∈Ψm(Rn) we define the principal symbol σm(A) ∈ Sm/Sm−1 by

σm(A) =: a(x,ξ) mod Sm−1.

The principal symbol is independent of the choice of coordinates and it doesn’t depend on the
particular quantization we use. We now collect some important properties of pseudodifferential
operators.

Theorem 4.1 (Fundamental properties of pseudodifferential operators). (1) Algebra
property. Ψm is a vector space for each m ∈ R. If A ∈ Ψm and B ∈ Ψm′

, then
AB ∈ Ψm+m′

, A∗ ∈ Ψm . The composition of operators is associative and distributive.
The identity operator is in Ψ0(X ).

(2) Boundedness. If A ∈Ψm , then A ∈L (H s , H s−m) for all s ∈R.
(3) Principal symbol homomorphism.

σm+m′ (AB) =σm(A)σm′ (B), σm(A∗) =σ(A).
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(4) Symbol of commutator. If A ∈Ψm(X ), B ∈Ψm′
(X ), then [A,B ] ∈Ψm+m′−1(X ) and we have

σm+m′−1([A,B ]) = i{σm(A),σm′ (B)} = Hab, if a =σm(A),b =σm(B).

Here {., .} is the Poisson bracket and Ha the hamiltonian vector field associated to a.

Definition 4.2. (1) The symbol a ∈ Sm is elliptic at a point (x0,ξ0) ∈Rn ×(Rn \0) if there exists
c,R > 0 and a conic (in the ξ variable) neighborhood U of (x0,ξ0) in Rn × (Rn \ 0) such that
|a(x,ξ)| ≥ c〈ξ〉m for all (x,ξ) ∈U , |ξ| ≥ R. The set of all points at which a is elliptic is called
the elliptic set Ell(a), and its complement the characteristic set Char(a). We say that a is
uniformly elliptic if it is elliptic at every point with constants R and c uniform in x.

(2) The essential support ess supp of a ∈ Sm is the complement of the set of all (x0,ξ0) ∈
Rn × (Rn \ 0) for which a ∈ S−∞ in a conic neighborhood of (x0,ξ0).

(3) For A =Op(a) we define its wavefront set as W F ′(A) := ess supp a.
(4) Let u ∈D′(Rn). We define the wave front set of u as follows. (x,ξ) is not contained in W F (u)

if and only if there exists an operator A ∈Ψ0 which is elliptic at (x,ξ) and a smooth cut-off
ψ ∈C∞

c (Rn),ψ(x) ̸= 0, such that A(ψu) ∈C∞(Rn).

We need two additional important results

Theorem 4.3. Let P ∈Ψm be a uniformly elliptic operator. Then there exists Q ∈Ψ−m such that

QP −1 ∈Ψ−∞, PQ −1 ∈Ψ−∞.

Another important result is the sharp Gårding inequality.

Theorem 4.4. Let a ∈ S2m+1 and ℜa ≥ 0, then we have for u ∈S :

Re〈Op(a)u,u〉 ≥−C∥u∥2
H m .

We now radially compactify each fiber of T ∗Rn to obtain T ∗Rn and we will denote by S∗Rn =
∂T ∗Rn the cosphere bundle, which we thus view as a boundary at fiber infinity of T ∗Rn . We will
sometimes also need classical symbols. A classical symbol of order m is then 〈ξ〉m times a smooth
function on T ∗Rn . For a classical symbol a we can write down the Taylor series near 1/|ξ| = 0 to
obtain

a(x,ξ) ∼
∞∑

j=0
am− j (x, ξ̂)|ξ|m− j , am− j ∈C∞(Rn ×Sn−1),

and where the tilde denotes an asymptotic expansion-truncating the expansion at the |ξ|m−N

term gives an error that is O (|ξ|m−N−1).
Suppose that A ∈ Ψm has compactly supported Schwartz kernel supported in U ×U . Then

under a coordinate change κ : U →V , the principal symbol of an operator a =σm(A) transforms
as a function on the cotangent bundle and the Hamiltonian vector field is invariantly defined
under change of coordinates. This allows to define pseudodifferential calculus on a compact
manifold X and the above properties remain valid. In the non compact case, some care has to
be taken for example by imposing some control at infinity or by requiring that the operators are
properly supported.

4.2. Propagation of singularities

Let P ∈ Ψm(X ) be a classical operator with real homogeneous principal symbol pm = σm(P ) ∈
Sm

hom(T ∗X ). Fix a boundary defining function ρ of fiber infinity in T ∗X . We rescale the Hamil-
tonian vector field Hpm = ρm−1Hpm ∈ V (S∗X ) and also rescale the principal symbol p = ρm pm ∈
C∞(S∗X ). Within the characteristic set Char(P ) = p−1(0), the rescaled vector field induces a flow
which is merely a rescaling of the Hamiltonian flow of pm if we identify the subset Char(P ) ⊂ S∗X
with the corresponding conic set of T ∗X \ 0. We remark that Hpm vanishes at a point ζ ∈ S∗X if
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Figure 4.1. Propagation of singularites, source: [80].

and only if Hpm is radial at ζ (i.e. at the ray in T ∗ \ 0 associated to ζ), and in this case the integral
curve through ζ is constant.

We suppose in the following that ζ0 ∈ S∗X is such that Hpm |ζ0 ̸= 0, hence the hamiltonian flow
in Char(P ) starting at ζ0 is non trivial; denote by γ : [0,T ] → S∗X a segment of a null bicharacter-
istic, i.e. an integral curve of Hpm in Char(P ) starting at γ(0) = ζ0. The following theorem was first
proven by Duistermaat and Hörmander in [1] (Figure 4.1 illustrates this theorem):

Theorem 4.5. Let s, N ∈ R. Let E , B , G ∈Ψ0. Assume that E is elliptic at ζ0, B is elliptic at γ(T ),
and G is elliptic at γ([0,T ]), such that every backward null bicharacteristic starting at a point in
W F ′(B) reaches Ell(E) in finite time. Then

∥Bu∥H s ≤C (∥GPu∥H s−m+1 +∥Eu∥H s +∥u∥H N ).

Remark 4.6. (1) The estimates holds in the strong sense that if u ∈ E ′(X ) is such that the right
hand side is finite, then so is the left hand side and the estimate holds. The theorem shows
that H s regularity propagates along null bicharacteristics in the following sense. Assuming
that we have microlocal H s control at γ(0), we conclude microlocal H s control at γ(T )
provided Pu stays in H s−m+1 along the way.

(2) The hypothesis excludes radial points, we come back to radial points in the special setting
of the De Sitter Schwarzschild metric in Section 5.3.2.

Sketch of the proof. We sketch the proof in the case when P is selfadjoint, P = P∗. We assume
further Pu = 0. We can suppose T = 1. We begin by straightening out the flow of Hpm . We
introduce local coordinates (q1, q ′) ∈R×R2n−2 on S∗X near ζ0 such that ζ0 = (0,0) and Hpm = ∂q1 .
Let for δ> 0, Uδ = {|q1|, |q ′| < δ}. We start with a formal computation and discuss regularity issues
later. For a commutant A =Op(a) ∈Ψ2s−m+1 such that A = A∗ to be chosen later we compute:

0 = 2ℑ〈Pu, Au〉 = 〈i(PA− AP )u,u〉 = 〈i[P, A]u,u〉. (4.2)

Let a = ρ2s−m+1a ∈C∞(S∗X ). We claim that we can arrange

Hpm a =−b2 −Ma+e, (4.3)

where b ∈ C∞(S∗X ) is non negative, and positive in {q1 ∈ (δ,1+δ), |q ′| < δ}, while e ∈ C∞(S∗X )
is supported in the neighborhood Uδ and M > 0 can be chosen large. We define a as a product
a = a1(q1)a′(q ′), where a1 and a′ are constructed in the following way. Let

ψ ∈ C∞
0 (R2n−2), supp ψ⊂ {|q ′| ≤ 2δ},ψ(q ′) = 1 for |q ′| < δ,

χ1 ∈ C∞(R), supp χ1 ⊂ (−δ,∞), supp(1−χ1) ⊂ (−∞,δ) (turn off function),
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χ0(q1) =
{

e
− F

1+δ−q1 q1 < 1+δ,
0 q1 ≥ 1+δ,

a1(q1) = χ0(q1)χ2
1(q1), a′(q ′) =ψ2(q ′).

It is not difficult to check that (4.3) can be achieved for M > 0 given if we choose F sufficiently
large. Going back to a we compute

Hpm a = ρ−m+1Hpm (ρ−2s+m−1a) = ρ−2s (Hpm a− (2s −m +1)aρ−1Hpmρ). (4.4)

Noting that ρ−1Hpmρ is bounded and choosing M in (4.3) sufficiently large we see that

Hpm a =−b2 +e −M ã + r ã, (4.5)

where b = ρ−s b,e = ρ−2s e, ã = ρ−m+1a,r ∈ S0. Let Ã be a quantization of ã and suppose that we
arrange Ã = C∗C . Then −M〈Ãu,u〉+ 〈Op(r ã)u,u〉 ≤ C∥u∥2

H s−(1/2) . Let B ∈Ψs (X ) and E ∈ψ2s (X )
be quantizations of b and e, respectively. We then obtain:

〈B∗Bu,u〉 ≤ 〈Eu,u〉+C∥u∥2

H s− 1
2

. (4.6)

It has to be pointed out that the integration by parts above are not justified at the level of
regularity supposed in the hypothesis. The above argument therefore needs a regularization
procedure and this can be done for u ∈ H s−1/2 microlocally near γ([0,T ]), see [79] for details.
Supposing this done, then the estimate (4.6) implies Bu ∈ L2(X ), therefore u ∈ H s microlocally
near γ([0,T ]). Thus starting with the a priori knowledge u ∈ H N (X ), one can iteratively improve
the regularity by 1/2 in each step, until one obtains H s -regularity as desired. □

4.3. Semiclassical analysis

We briefly introduce some elements of semiclassical analysis that we will need in the following.
We refer to Zworski [77] for details. We start by introducing the algebra Ψm

h (X ) of semiclassical
pseudodifferential operators, depending on a parameter h. The corresponding symbols a(x,ξ;h)
(denoted a ∈ Sm

h (X )) satisfy a(·, ·;h) ∈ Sm(X ) uniformly in h as h → 0, with Sm(X ) defined in Sec-
tion 4.1. The semiclassical symbol of A ∈Ψm

h , denoted σh(A), lies in the space Sm
h (X )/hSm−1

h (X ).
We will be concerned in particular with the class Ψ0

h(X ). We moreover require that symbols of
the elements of Ψ0

h(X ) are classical in the sense that they have an asymptotic expansion in non
negative powers of h. More precisely we require that a ∈Ψ0

h writes

a ∼
∞∑

j=0
h j a j , meaning

∣∣∣∣∣∂αx ∂βξ
(

a −
N−1∑
j=0

h j a j

)∣∣∣∣∣≤Cα,βhN 〈ξ〉−N−|β|

for all multiindices α, β and N ∈N. For A, A′ ∈Ψ0
h(X ) with principal symbols a, a′ we have

σh(A ◦ A′) = aa′, σh(A∗) = ā, σh(ih−1[A, A′]) = {a, a′} = Ha a′.

In the context of semiclassical analysis we will mostly use the Weyl quantization:

aw (x,hD)u(x) = 1

(2πh)n

Ï
a

( x + y

2
,ξ

)
e

i
h 〈x−y,ξ〉u(y)dy dξ.

Moreover each A = aw (x,hD) ∈Ψ0
h(X ) acts L2(X ) → L2(X ) with norm uniformly bounded in h.

In fact we have the bound [77, Theorem 13.13]

lim sup
h→0

∥A∥L2(X )→L2(X ) ≤ sup
T ∗X

|σh(A)|. (4.7)

Each A ∈Ψk
h(X ) has a semiclassical wave front set W F ′

h(A), a closed (and not necessarily conic)
subset of the fiber-radially compactified cotangent bundle T ∗X ; a point (x,ξ) ∈ T ∗X does not
lie in W F ′

h(A) if and only if the full symbol of A satisfies a(x ′,ξ′) = O (h∞〈ξ′〉−∞) for h small
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enough and (x ′,ξ′) ∈ T ∗X in a neighborhood of (x,ξ) in T ∗X . We will mostly use the subalgebra
of compactly microlocalized pseudodifferential operators Ψcomp

h (X ) ⊂Ψ0
h(X ). For A ∈Ψcomp

h (X )
the wave front set is a compact subset of T ∗X . We say that A = B +O (h∞) microlocally in some
set U ⊂ T ∗X if W F ′

h(A−B)∩U =;. We will often consider sequences u(h j ) ∈ L2(X ), where h j → 0
is a sequence of positive numbers; we typically suppress the dependence on j and write u = u(h).
For such a sequence, we say that u =O (hδ) microlocally in some set U ⊂ T ∗X , if ∥Au∥L2 =O (hδ)
for each A ∈Ψcomp

h (X ) such that W F ′
h(A) ⊂U . The notion u = o(hδ) is defined similarly.

4.4. Semiclassical defect measures

Definition 4.7. Assume that h j → 0 and u = u(h j ) ∈ L2(X ) is uniformly bounded as j →∞. We
say that u converges to a non-negative Radon measure µ on T ∗X if for each A = A(h) ∈Ψcomp

h (X ),
we have

〈A(h j )u(h j ),u(h j )〉→
∫

T ∗X
σh(A)dµ as j →∞. (4.8)

See [77, Chapter 5] for an introduction to defect measures, in particular,

(1) for each sequence u(h j ) uniformly bounded in L2, there exists a subsequence h jk such that
u(h jk ) converges to some µ [77, Theorem 5.2];

(2) we have µ(U ) = 0 for some open set U ⊂ T ∗X if and only if u = o(1) microlocally on U .

The following basic properties of microlocal measures are easy to prove, see e.g. [26].

Lemma 4.8 (Ellipticity). Take P ∈Ψ0
h(X ) and denote p =σh(P ). Assume that u = u(h j ) converges

to some measure µ and Pu = o(1) microlocally in some open set U ⊂ T ∗X . Then µ(U ∩ {p ̸= 0}) = 0.

Lemma 4.9 (Propagation). Take P,W ∈Ψ0
h , denote p = σh(P ), w = σh(W ), and assume P∗ = P.

Assume that u = u(h j ) converges to some measure µ and denote f := (P − ihW )u. Then for each
a ∈C∞

0 (T ∗X ) and for each Y ∈Ψcomp
h (X ) such that Y = 1+O (h∞) microlocally in a neighborhood

of suppa we have, ∣∣∣∣∫
T ∗X

(Hp −2ℜw)a dµ

∣∣∣∣≤ 2∥a∥∞ lim sup
h→0

(h−1∥Y f ∥L2∥Y u∥L2 ). (4.9)

In particular, if f = o(h) microlocally in a neighborhood of suppa, then∫
T ∗X

(Hp −2ℜw a)dµ= 0.

5. The wave equation on the De Sitter Schwarzschild metric

In this section we explain the general strategy for showing decay estimates via microlocal meth-
ods for a simple example: the wave equation on the De Sitter Schwarzschild metric. Let M =
Rt∗ ×X , X = (r−−ϵ,r++ϵ)×S2

ω. Near r = r− resp. r = r+ the metric is given by

g = F dt 2
∗−2dt∗ dr − r 2 dω2 resp. g = F dt 2

∗+2dt∗ dr − r 2 dω2,

where F (r ) = 1− (2m/r )− (1/3)Λr 2. Recall that the surface gravities are given by κ± = (1/2)F ′(r±).
The wave operator is given near r = r− resp. r = r+ by

□g = 2D t∗Dr + 1

r 2 Dr r 2F Dr − r−2∆S2 resp. □g =−2D t∗Dr + 1

r 2 Dr r 2F Dr − r−2∆S2 .

Fourier transforming this with respect to t∗, i.e. putting

□̂g (σ) = eit∗σ□g e−it∗σ.

then gives

□̂g (σ) =−2σDr + 1

r 2 Dr r 2F Dr − r−2∆S2 resp. □̂g (σ) = 2σDr + 1

r 2 Dr r 2F Dr − r−2∆S2 .
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We will consider in the following the forward problem

□g u = f , (5.1)

where f ∈C∞
0 (M ) and we require that suppu ⊂ {t∗ ≥−T } for some T > 0. Let H̄ s (X ) resp. Ḣ s (X )

be the Sobolev spaces based on extendible resp. supported distributions. Initial value problems
can easily be transformed into forward problems and vice versa, see e.g. [44]. The existence of a
forward solution is assured by the global hyperbolicity of the spacetime.

5.1. A key theorem

A first important result is that the Fourier transformed wave operators form an analytic family of
Fredholm operators. Let γ= max{(1/κ−), (1/κ+)}. We have

Theorem 5.1. Let s ≥ 1/2, X s = {u ∈ H̄ s (X ); □̂g (0)u ∈ H̄ s−1(X )}, Y s−1 = H̄ s−1(X ). The operators

□̂g (σ) : X s →Y s−1

form an analytic family of Fredholm operators of index 0 for all σ ∈C such that

ℑσ> 1−2s

2γ
. (5.2)

Moreover □̂g (σ) is invertible if ℑσ> 0.

Theorem 5.2. Let t0 ∈R. There are C , ν> 0 such that for 0 < δ<C and s > (1/2)+γδ any solution
to (5.1) with f ∈ e−δt∗ H̄ s−1+ν(M) and with supp(u) ∪ supp( f ) ⊂ {t∗ > t0} has an asymptotic
expansion

u(t∗,r,ω)−
N∑

j=1

k j∑
k=0

t k
∗e−iσ j t∗a j ,k (r,ω) ∈ e−δt∗ H̄ s (M), (5.3)

where σ1, . . . ,σN are the (finitely many) quasinormal mode frequencies with

ℑσ j >−δ
and k j their multiplicities, and where e−iσ j t∗ak, j are the C∞ generalized quasinormal modes with
frequency σ j .

Remark 5.3. (1) Quasinormal mode frequencies are also called resonances, they corre-
spond to those σ such that □̂g (σ) has a non trivial kernel. By analytic Fredholm the-
ory one obtains a meromorphic family of operators □̂−1

g (σ) : Y s−1 →X s . Resonances or
quasinormal mode frequencies are then the poles of this family of operators. These poles
may be of higher order which gives rise to the t k∗ coefficients.

(2) Note that close to the black hole horizon, □̂g (σ) = eiσr∗□̃g (σ)e−iσr∗ , where □̃g (σ) is the
Fourier transformed operator with respect to t . Therefore v is mode solution for □̂g (σ)
(□̂g (σ)v = 0) if and only if u = e−iσr∗v is mode solution for □̃g (σ) and the requirement
that v is smooth at the horizon translates to the usual outgoing condition u ∼ e−iσr∗ ,
r∗ →−∞ for u.

(3) The analogue of Theorem 5.1 is false in the Schwarzschild case. Nevertheless the resol-
vent has good regularity properties down to the real axis, see Vasy [33, 34]. This can then
be used to show polynomial decay estimates, see Häfner, Hintz, Vasy [39], Hintz [45] and
Millet [44].

(4) There exists a generalized version for the De Sitter Kerr metric (see Vasy [23], Petersen-
Vasy [29]), but a priori nothing is said about the existence of resonances with strictly
positive imaginary part. The non existence of mode solutions with positive imaginary
part of σ has been shown by Whiting in the whole subextreme case for the Kerr solution.
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The analogue question for the De Sitter Kerr case remains open, but see Hintz [30] for
results in this direction.

(5) High frequency resonances (meaning for large real part ofσ) are well approximated by so
called pseudopoles which can be computed and which are given byp

1−9Λm2

3
3
2 m

(±(ℓ+1/2)− i(1/2+n)), ℓ ∈N,n ∈N0.

These resonances are very closely linked to the trapping of the hamiltonian flow.
(6) As □g (0)1 = 0, 0 is a resonance, in particular the solution does not decay. However it can

be shown (see [19]) that this is the only real resonance. Together with the high frequency
analysis of Section 5.4 this gives the existence of a strip beyond the real axis in which the
only resonance is zero. As a corollary one obtains the existence of a constant c with

u(t∗,r,ω)− c ∈ e−δt∗ H̄ s (M).

The first version of Theorem 5.2 was shown by Bony and Häfner in [19]. This was formulated
in the original Boyer Lindquist coordinates and excluded the horizons. A generalization of this
including the horizons was subsequently obtained by Melrose, Sá-Barreto and Vasy in [20]. Later
on the theorem was generalized by Dyatlov to the De Sitter Kerr case in [21,22]. The most general
version of this was obtained by Vasy in [23] first in the small a case and later generalized to the
large a case in collaboration with Petersen [29].

In the remaining of this section we will explain some of the principal ideas in the proof of
Theorems 5.1 and 5.2. Since M is globally hyperbolic there exists a unique forward solution of
(5.1). Standard energy estimates give a first control of the solution of the form

|u(t∗,r,ω)|≲ eC t∗ .

It is then easy to see that the Fourier transform of u

û(σ) =
∫
R

eiσt∗u(t∗)dt∗

is holomorphic in ℑσ>C . We now take Fourier transform of Equation (5.1) to obtain:

□̂g (σ)û(σ) = f̂ (σ).

We then can write
u(t∗, x) = 1

2π

∫
ℑσ=C+1

e−iσt∗□̂−1
g (σ) f̂ (σ)dσ.

This doesn’t give so far any better behavior of u, but □̂−1
g (σ) is a meromorphic family of bounded

operators and we can shift the contour to ℑσ=−δ. The residue theorem then gives the expansion
in (5.3). The most delicate part is the estimate of the error, which requires in particular high
frequency estimates of the resolvent □̂−1

g (σ).

Remark 5.4. By choosing s large enough the strip where the operators form an analytic Fredholm
family can be made arbitrary large. Forℑσ=−C and C large enough this line lies below an infinite
number of resonances. The sum in (5.3) is then infinite, but still converges in some appropriate
sense, see [19].

5.2. Fredholm operators

Let us recall that a Fredholm operator T : X → Y is a bounded operator with closed rank such
that kernel and cokernel coker = Y /range(T ) are finite dimensional. The index is then defined as
indT = dimkerT −dimcokerT . The situation is particularly interesting when we have an analytic
family D ∋ z 7→ T (z) of Fredholm operators. The index is then a continuous function of z and the
Fredholm alternative says that either T (z) is invertible for no z ∈ D or F−1(z) form a meromorphic
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family of operators. Typically elliptic operators are Fredholm between suitable Sobolev spaces
and vice versa the Fredholm property between these Sobolev spaces requires ellipticity. We refer
to [76, Section 19.2] for details.

The operators P̂ (σ) we are interested in are not elliptic. An analytic Fredholm theory can
nevertheless be developed as observed by Vasy [23]. A central observation is that the Fredholm
theory follows from suitable estimates. A general setting is the following, see e.g. [44, Lemma
6.23]:

Lemma 5.5. Let X0 ⊂ X1 ⊂ X2 and Y0 ⊂ Y1 ⊂ Y2 be Banach spaces (with continuous dense
inclusions). Let P : X1 → Y2 be a bounded operator such that P |X0 is bounded from X0 to Y1. We
assume that both inclusions X1 ⊂ X2 and Y0 ⊂ Y1 are compact and that there exists C > 0 such that
for all u ∈ X1 and all v ∈ Y ∗

1 :

∥u∥X1 ≤ C (∥Pu∥Y1 +∥u∥X2 ),

∥v∥Y ∗
1
≤ C (∥P∗v∥X ∗

1
+∥v∥Y ∗

0
).

Under these assumptions, P is Fredholm as an operator between the Banach space X := {u ∈
X1; Pu ∈ Y1} (endowed with the norm ∥u∥2

X
= ∥u∥2

X1
+∥Pu∥2

Y1
) and Y1.

Let β = min{(1/κ−), (1/κ+)} if ℑσ ≥ 0, β = max{(1/κ−), (1/κ+)} if ℑσ ≤ 0. We will obtain the
following global estimates.

(1) Let s > s0 > (1/2)−βℑσ. Then we have

∥u∥H̄ s (X ) ≤C (∥□̂g (σ)u∥H̄ s−1(X ) +∥u∥H̄ s0 (X )). (5.4)

(2) Let s0 < s′ < (1/2)+βℑσ. Then we have:

∥u∥Ḣ s′ (X ) ≤C (∥□̂∗
g (σ)u∥Ḣ s−1(X ) +∥u∥Ḣ s0 (X )). (5.5)

The compact Sobolev embedding H̄ s (X ) ,→ H̄ s0 (X ) and Lemma 5.5 then imply the Fredholm
property. In the following we will only show (5.4), the arguments for (5.5) are quite similar.

5.3. Bounded frequency analysis

Let us recall that we have near r = r±:

□̂g (σ) = r−2Dr r 2F Dr ±2σr−2Dr r 2 − r−2∆S2 .

We will apply the unitary transform U : L2((r−,r+)×S2,r 2 dr dω) → L2((r−,r+)×S2,dr dω),u 7→ r u
and then work with the operator

r □̂g (σ)r−1 = r−1Dr r 2F Dr r−1 ±2σr−1Dr r − r−2∆S2 ,

which we call again □̂g (σ) in the following. The above operator has principal classical symbol (ξ
is now dual to r ):

σ2(□̂g (σ)) = Fξ2 + r−2|η|2 =: p.

The operator is therefore elliptic over all points (r,ω) of the base manifold with r− < r < r+. We
will distinguish the elliptic and non elliptic regions.

5.3.1. Elliptic type estimates

Proposition 5.6. Let χ ∈C∞
0 (r−+δ,r+−δ) for some δ> 0. Then we have

∥χu∥H̄ s ≲ ∥□̂g (σ)u∥H̄ s−2 +∥u∥H̄ s−1 .
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Proof. Let φ ∈C∞
0 ((−1,1)) with φ= 1 in a neighborhood of 0. We write

χ(x) =χ(x)φ(p)+χ(x)(1−φ(p)).

Note that χ(r )φ(p) ∈ S−∞, χ(x)(1−φ(p)) ∈ S0. By pseudodifferential calculus we only have to
consider the second term. Now,

Op(χ(x)(1−φ(p))) =Op

(
χ(x)

1−φ(p)

p

)
□̂g (σ)+R, R ∈Ψ−1.

The estimate for s = 0 then follows by pseudodifferential calculus. Higher order estimates are
obtained by applying Op(ξ2 +|η|2). □

5.3.2. Radial point estimates

The characteristic manifold is

Σ= {(r,ω,ξ,η) ∈ T ∗X \ 0; p(r,ω,ξ,η) = 0}

and it splits into positive and negative energy shells:

Σ=Σ+∪Σ−,Σ± =Σ∩ {±ξ> 0}.

As F (r−) = 0 there is a lack of ellipticity at r = r−. Note also that we have

Hp = (−F ′ξ2 +2r−3|η|2)∂ξ+2ξF∂r + r−2H|η|2 .

The
Λ±
± = {

(r±,ω,ξ,0);ξ ∈R∗,ω ∈S2}∩Σ±
are the radial points of Hp . The lower index indicates the point on the base manifold, the upper
index the energy level. It is not difficult to see that Λ+− and Λ−+ are sources of the hamiltonian
vector field whereas Λ−− and Λ++ are sinks.

Proposition 5.7. Suppose that u ∈ H̄ s with s > (1/2)− (1/κ±)ℑσ. Let χ± ∈ C∞
0 ((r± −δ,r± +δ)).

Then for δ> 0 sufficiently small we have:

∥χ±u∥H̄ s ≲ ∥□̂g (σ)u∥H̄ s−1 +∥u∥
H̄ s− 1

2
.

Remark 5.8. (1) The condition s > (1/2)− (1/κ±)ℑσ gives the condition (5.2) in Theorem
5.1.

(2) Let us try to understand where the condition s > (1/2)−βℑσ comes from. As a toy model
we consider

Pσ = Dx xDx −σDx , x ∈ (−1,1).

In this case β= 1. We have
Pσ(x ± i0)iσ = 0.

We have (x ± i0)iσ ∈ H (1/2−ℑσ)− but not in H s for s > (1/2) −ℑσ. Imposing Sobolev
regularity s > (1/2)−ℑσ thus excludes these solutions.

(3) The estimate is a very simplified version of the radial point estimate obtained by Vasy,
see [23, Proposition 2.3]. This kind of estimates goes back to Melrose, see [81]. They are
central in Vasy’s method concerning the Fredholm theory for non elliptic problems. We
also refer to Zworski [82] for a review of this method.

Main ideas of the proof. We will prove the proposition only for a model problem. We will
consider the operator which is given near r = r± by

P̂ (σ) = r−1Dr r 2F Dr r−1 ±2σr−1Dr r

and P̂ (σ) acts on L2((r−−ϵ,r++ϵ);dr ).
Also to avoid technical issues we will suppose u ∈C∞

0 ((r−−ϵ,r++ϵ)). We prove the proposition
at r = r−, the proof at r = r+ being essentially the same. We also put x = r − r−. Let χ− be as in
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the hypotheses with xχ′−(x) ≤ 0. We drop the index—in the following. Letψ ∈C∞(R),ψ(x) = 0 for
x ≤ 0 and ψ(x) = 1 for x ≥ 1.

A =C∗C , C =Op(c), c := ξs− 1
2ψ(ξ)χ(x).

Let a :=σ2s−1(A). Now,

2ℑ〈P̂ (σ)u, Au〉 = 〈i(P̂∗(σ)A− AP̂ (σ))u,u〉
= 〈i[P̂ (σ), A]u,u〉+〈i(P̂∗(σ)− P̂ (σ))Au,u〉
= 〈i[P̂ (σ), A]u,u〉−4ℑσ〈r−1Dx r Au,u〉. (5.6)

The symbolic calculation gives

Hp a =−(2s −1)ξ2sψ2(ξ)F ′χ2(x)−2F ′ψ(ξ)ψ′(ξ)ξ2s+1χ2(x)+4ξ2sψ2(ξ)Fχ(x)χ′(x). (5.7)

Note that the second term is in S−∞ and that the third term is negative.
We have

〈i[P̂ (σ), A]u,u〉 = 〈Op(Hp a)u,u〉+〈Ru,u〉, R ∈Ψ2s−1.

Applying the sharp Gårding inequality, Theorem 4.4, we find

〈i[P̂ (σ), A]u,u〉−4ℑσ〈r−1Dx r Au,u〉 ≤ (−(2s −1)2κ−+ ϵ̃(δ)−4ℑσ)∥Op(ψ(ξ)χ(x))u∥2
H̄ s +∥u∥2

H̄ s− 1
2

,

where ϵ̃(δ) → 0, δ→ 0. Here and in the following H̄ s = H̄ s ((r−−ϵ,r−+ϵ)).
We also have

|2ℑσ〈P̂ (σ)u, Au〉| ≤C ϵ̂∥P̂ (σ)u∥2
H̄ s−1 + ϵ̂∥Op(ψ(ξ)χ(x))u∥2

H̄ s +C∥u∥2
H̄ s−1 .

Putting everything together and choosing δ, ϵ̂ small enough gives:

∥Op(ψ(ξ)χ(x))u∥2
H̄ s ≤C

(
∥P̂ (σ)u∥2

H̄ s +∥u∥2

H̄ s− 1
2

)
. (5.8)

We now want to obtain the same estimate with Op(ψ(ξ)χ(x)) replaced by χ(x). To show the
estimate for Op(ψ(−ξ)χ(x)) we can replace a(x,ξ) by a(x,−ξ), then the above proof works for
−P̂ (σ) instead of P̂ (σ). Writing 1 =ψ(ξ)+ψ(−ξ)+ψ0(ξ) and using that ψ0(ξ) ∈ S−∞ we see that
we can indeed replace Op(ψ(ξ)χ(x)) by χ(x). □

Remark 5.9. Using a regularization procedure one can show that it is sufficient to suppose
Cu ∈ L2. What is usually called a radial point estimate is rather (5.8), the important property of
B =Op(ψ(ξ)χ(x)) is that backward bicharacteristics starting in W F ′(B) tend toΛ+−, where C has to
be elliptic. In this very simplified model this is used in the proof via the sign of 4ξ2sψ2(ξ)Fχ(x)χ′(x)
in (5.7). Also P̂ (σ) can be replaced by GP̂ (σ) with G ∈Ψ0 elliptic at Λ+− as long as the closure of all
backward bicharacteristics starting in W F ′(B) is contained in the elliptic set of G. We refer to [23]
for details.

5.3.3. Proof of Theorem 5.1

Putting the estimates in Sections 5.3.1 and 5.3.2 together we obtain the following global
estimates:

Proposition 5.10. Let u ∈ H̄ s and s > 1/2−βℑσ. Then we have

∥u∥H̄ s (X ) ≤C
(
∥□̂g (σ)u∥H̄ s−1(X ) +∥u∥

H̄ s− 1
2 (X )

)
.

Proof. Let us first choose χ± as in Proposition 5.7 and χ± = 1 on (r± − (δ/2),r± + (δ/2)). We
then choose χ̂± with suppχ̂− ⊂ [r−− ϵ,r−− (δ/2)), suppχ̂+ ⊂ (r++ (δ/2),r++ ϵ] and χ0 ∈C∞

0 (r−+
(δ/2),r+ − (δ/2)) with χ̂− +χ− +χ0 +χ+ + χ̂+ = 1. We then use Proposition 5.6 on suppχ0 and
Proposition 5.7 on supχ±. Concerning suppχ̂± let us observe that the symbol p = Fξ2+r−2|η|2 is
hyperbolic there, because F is negative on this interval. The estimate follows then from classical
hyperbolic estimates, we refer to [44] for details. □
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Proof of Theorem 5.1. We obtain in a similar way a suitable estimate also for the adjoint opera-
tor. The two estimates then give the Fredholm property. To show that the operators are invertible
for ℑσ> 0 we have to show that kernel and cokernel are empty. We only consider the kernel, the
proof for the cokernel is similar. Let ℑσ> 0, u ∈ H̄ s and □̂g (σ)u = 0. Then

F □̃g (σ)e−iσh(r )r∗(r )u(r,ω) = 0,

where h is some smooth function with h(r ) = 1 for r ≤ 3m and h(r ) = −1 for r ≥ 4m and □̃g (σ)
denotes the Fourier transform with respect to t :

F □̃g (σ) = r−2F Dr (r 2F )Dr − r−2F∆S2 −σ2.

F □̃g (0) is a selfadjoint positive operator on L2((r−,r+)×S2;F−1r 2 dr dω2). But for ℑσ> 0 we have
e−iσh(r )r∗(r )u(r,ω) ∈ L2((r−,r+)×S2;F−1r 2 dr dω2), which is a contradiction. Thus u|(r−,r+)×S2 = 0.
To see that u really is zero on the whole manifold (r−−ϵ,r++ϵ)×S2 we can follow [82, Lemma 1],
see [43, Proof of Theorem 4.5] for details. The index 0 property then follows from the continuous
dependence of the index on σ. □

5.4. High frequency analysis: trapping

Whereas the bounded frequency analysis is sufficient to prove Theorem 5.1, the proof of Theorem
5.2 requires a precise control of the estimates when ℜσ→ ∞. This requires a precise analysis
of the semiclassical flow whose projection on the base manifold gives the geodesic flow. The
analysis then becomes more complicated, but the general structure of elliptic, propagation and
radial point estimates remains similar. However there is a new aspect which we want to discuss in
this subsection which is trapping. To analyze the trapping it is easier to go back to the initial Boyer
Lindquist coordinates. We will present a toy model, the proof for the existence of a resonance free
strip follows very closely the proof of Dyatlov [26] for the general situation.

5.4.1. Resonance free strip

Fourier transforming with respect to t and fixing the angular momentum ℓ leads to consider-
ing the operator:

P̃ℓ−σ2 = D2
r∗ +V ℓ(ℓ+1)−σ2, V = F

r 2 . (5.9)

We introduce the semiclassical parameter h2 = 1/ℓ(ℓ+1). As explained in Section 2.4.3 trapping
is concentrated at r∗ = 0. We introduce a Taylor development of V at r∗ = 0. We will put x = r∗ in
the following. This leads to considering the local model

P̃ −λ= h2D2
x −x2 −λ, λ=O (h), (5.10)

which we will use as a toy model in the following. Note that in the model (5.9) the critical energies
are σ2 ∼ V (3m)ℓ(ℓ+1), after rescaling this becomes λ ∼p

V (3m). In the toy model however the
critical energy is zero, we therefore consider λ=O (h). We obtain semiclassical estimates that can
be translated into high frequency estimates in the original scaling.

The symbol writes ξ2−x2 = (ξ−x)(ξ+x) which suggests that the operator is unitary equivalent
to P = h(xDx +Dx x). We can indeed introduce the transform

U u(x) = 1p
πh

e−i x2

2h

∫
ei

p
2x y
h e−i y2

2h u(y)dy.

It can be checked that U : L2(R) → L2(R) is an isometry and that P̃U = U P. We will in the
following consider the operator P = (h/2)(xDx +Dx x). Note that

σh(P ) = xξ=: p, Hp =−ξ∂ξ+x∂x .
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Thus the Hamiltonian equations can be explicitly solved, ξ(s) = e−tξ0, x(s) = et x0, where (x0,ξ0)
are the initial data. In the abstract setting of Section 2.4.4 this means that we have:

Γ+ = {ξ= 0}, Γ− = {x = 0}, K = {x = ξ= 0}.

To analyze the situation near the trapped set, we will consider the situation on a compact
manifold and add an absorption operator. Concretely, we put X =S1 =R/(6Z); we view X as the
interval [−3,3] with the endpoints glued together. We add an absorption operator Q =Op(q), q ∈
C∞(T ∗X ) such that q(x,ξ) = 0 for all |(x,ξ)| ≤ 1 and q(x,ξ) = 1 for all |(x,ξ)| ≥ 2. We will now
consider the operator P − iQ −λ on X . Let R(λ) = (P − iQ −λ)−1.

Lemma 5.11. For each ϵ> 0 and h small enough depending on ϵ we have

∥R(λ)∥L2→L2 = o(h−2) if |λ| =O (h), ℑλ>−( 1
2 −ϵ)h. (5.11)

Remark 5.12. Let us note that the same bound on the resolvent holds in general situations of
normally hyperbolic trapping as described in Section 2.4.4, see [26]. We will give here the same
proof for the model operator, which has the advantage of avoiding the technical issues while
keeping the main ideas of the proof. Further gaps can be obtained for r -normally hyperbolic
trapping, see also [26].

To prove the lemma we will proceed by contradiction. Suppose that (5.11) does not hold. Then
for some ϵ > 0 small enough, there exist sequences h j ,h j → 0, λ(h j ), u = u(h j ) ∈ L2 with the
following properties

∥u∥L2 = 1, |λ| =O (h), ℑλ>−( 1
2 −ϵ)h (5.12)

and

(P − iQ −λ)u =O (h2). (5.13)

The interesting properties are obtained when commuting (P −λ)u with the defining functions
of Γ±. Indeed we have

hDx (P −λ)u = (P − ih −λ)hDx u.

Now suppose that ℑλ≥−((1/2)−ϵ)h for some ϵ> 0. Then h +ℑλ≥ ((1/2)+ϵ)h and we can write

hDx u = (P − ih −λ)−1hDx (P −λ)u. (5.14)

A simple application of the spectral theorem gives

∥hDx u∥≲ h−1∥hDx (P −λ)u∥. (5.15)

Note that the corresponding commutation relation with x

x(P −λ) = (P + ih −λ)xu.

doesn’t give an analogous estimate because of the different sign.
The estimate (5.15) can be microlocalized. Let for δ≪ 1

Uδ = {|ξ| < δ, |x| < δ}.

Note that

(P −λ)u =O (h2) microlocally on U2δ. (5.16)

Let φ ∈ C∞
0 ((−4δ,4δ)),φ = 1 on [−3δ,3δ], θ+ = ξφ(x)φ(ξ), Θ+ = Oph(θ+). Applying Θ+ to (5.16)

and using that [Θ+,P ] = ihOph(Hpθ+)+O (h2) =−ihΘ++O (h2) microlocally on U2δ together with
(5.16) gives an appropriate microlocalized version of (5.15):

Θ+u =O (h), microlocally on U2δ. (5.17)

A central lemma is then the following:
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Lemma 5.13. There exists a constant C such that for each δ0 > 0,

µ(Uδ∩ {|x| < δ0}) ≤Cδ0. (5.18)

Proof. We first note that for a ∈C∞
0 (Γ+∩Uδ) we have:∣∣∣∣∫

Γ+∩Uδ

Hθ+a dµ

∣∣∣∣≤C∥a∥∞. (5.19)

This follows indeed from Lemma 4.9 and (5.17). Now choose a = ã(x)χ(ξ), with χ ∈
C∞

0 ((−δ,δ)), χ(0) = 1 and

suppã ⊂ (−2δ0,δ1), ∥ã∥∞ ≤ 1, ∂x ã ≥− 2

δ1
, ∂x ã ≥ 1

3δ0
for |x| ≤ δ0

for some fixed δ1 ∈ (0,δ) independent of δ0. Noting that θ+ = ξ on Uδ we find∫
Γ+∩Uδ

Hθ+a dµ≥ 1

3δ0
µ({|x| ≤ δ0})− 2

δ1
µ({δ0 ≤ |x| ≤ δ1}).

The LHS is bounded by a δ0-independent constant by (5.19); so is the second term on the RHS
(since µ is a finite measure). Multiplying both sides by 3δ0 we obtain (5.18). □

Lemma 5.14.
µ(Uδ \Γ+) = 0, µ(Uδ) > 0.

Proof. The lemma follows from two type of estimates

(1) Take A ∈Ψ0
h(R) such that W F ′

h(A)∩ {p = 0}∩Γ+ =;. Then

∥Au∥L2 ≤C h−1∥(P − iQ −λ)u∥L2 +O (h∞)∥u∥L2 .

This follows from the elliptic estimate [83, Proposition 2.4] and propagation of singu-
larities with a complex absorbing operator [83, Proposition 2.4], since for each (x,ξ) ∈
W F ′

h(A), there exists t ≥ 0 such that e−t Hp (x,ξ) ∈ {p − iq ̸= 0}.
(2) Let B ∈Ψcomp

h (X ) such that σh(B) ̸= 0 on {p = 0}∩K :

∥u∥L2 ≤C h−1∥(P − iQ −λ)u∥L2 +∥Bu∥L2 .

To prove this second estimate we use the elliptic estimate and propagation of singular-
ities, noting that for each (x,ξ) ∈ T ∗R, there exists t ≥ 0 such that e−t Hp (x,ξ) ∈ {p − iq ̸=
0}∪ {σh(B) ̸= 0}, see [41, Lemma 4.1].

□

Proof of Lemma 5.11. Starting with (5.13) and passing to a subsequence, we may assume that

u →µ, h−1ℑλ→ω ∈C .

By Lemma 5.14 we know that
µ(Uδ) > 0, µ(Uδ \Γ+) = 0.

We can now apply Lemma 4.9 to see that for each a ∈C∞
0 (Uδ) we have∫

Γ+∩Uδ

Hp a dµ= 2ℑω
∫
Γ+∩Uδ

a dµ.

For t ≥ 0, since e−t Hp (Γ+∩Uδ) ⊂ Γ+∩Uδ, we have

µ(e−t Hp (Uδ)) = e2tℑωµ(Uδ).

By Lemma 5.13, as t →∞
µ(e−t Hp (Uδ)) ≤µ(Uδ∩ {|x| < δe−t }) ≤C e−t .

However, since ℑω≥−(1/2)+ϵ, we see that e2tℑω decays exponentially slower than e−t , as t →∞.
Since µ(Uδ) > 0 we arrive at a contradiction, finishing the proof of the Proposition. □
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5.4.2. Approximation of resonances generated by the trapping

As we have just seen the relatively mild trapping leads to a resonance free strip. Nevertheless
the trapping creates resonances that we now want to compute in a high frequency limit. The res-
onances can be computed as the eigenvalues of a scaled operator which is no longer selfadjoint.
The operator P coming from the De Sitter Schwarzschild metric is an operator with holomorphic
coefficients

P (w,hDw ;h) = (hDw )2 +V (w,h); V (w,h) = F r−2(1+h2r∂r F ). (5.20)

Here w replaces the Regge–Wheeler coordinate r∗. We put Γθ = eiθR and we parametrize Γθ by x,
w = eiθx. The scaled operator is then defined by Pθ(x,hDx ;h) = P (w,hDw ;h)|Γθ . Note that the
RHS of this equation is well defined because all the coefficients are holomorphic. The important
proposition is the following (see [18]):

Proposition 5.15. For −2θ < ar g z < 2π−2θ the operator

Pθ(x,hDx ;h)− z : H 2(Γθ) → L2(Γθ),

is a Fredholm operator of index 0. The eigenvalues of Pθ(x,hDx ;h) in−2θ < arg z < 2π−2θ coincide
with the poles of the meromorphic continuation of (Pθ(x,hDx ;h)− z)−1 there.

To figure out what is a good choice for θ we come back to our toy model P̃ = h2D2
x − x2 in

the previous section. We then see that a good choice is θ = π/4. Indeed we then find Pθ =
−i(h2D2

x + x2), which is just −i times the (semiclassical) harmonic oscillator and its eigenvalues
are of course known. Putting all this together leads to the following characterization of the high
frequency resonances in the De Sitter Schwarzschild case (see [18]):

Proposition 5.16. There exists K > 0 and θ > 0 such that for any C > 0 there exists an injective
map, b̃, from the sets of pseudo-poles

(1−9Λm2)1/2

3
3
2 m

(
±N± 1

2
− i

1

2

(
N0 + 1

2

))
into the set of poles of the meromorphic continuation of (P −σ2)−1 such that the poles in

ΩC = {σ : ℑσ>−C , |σ| > K , ℑσ>−θ|ℜσ|}
are in the image of b̃ and for b̃(ν) ∈ΩC ,

b̃(ν)−ν→ 0, when |ν|→∞.

If ℜν = ((1−9Λm2)1/2/33/2m)(±ℓ ± (1/2)), ℓ = 1,2, . . ., then the corresponding pole, b̃(ν) has
multiplicity 2ℓ+1.

5.5. More general situations

5.5.1. De Sitter Kerr metric

The proof for the equivalent of Theorems 5.1 and 5.2 for the De Sitter Kerr metric follows
the same lines as in the De Sitter Schwarzschild case. The radial point estimates are now
formulated in terms of propagation estimates which permit to propagate regularity out of these
points. As already mentioned the trapping keeps the same structure and the proof for the high
energy resolvent estimates follows the same lines. At first glance the new aspect seems to be
superradiance. Nevertheless thanks to the very robust Fredholm setting this point is now reduced
to the analysis of mode solutions.
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5.5.2. Kerr metric

The Kerr case is asymptotically Minkowskian and one has to deal with this aspect. As an
immediate consequence, the underlying resolvent doesn’t possess a meromorphic extension in a
strip beyond the real axis. It has nevertheless good C k properties down to the real axis, see [33,34]
and [39]. Another important aspect is that we find a radial point structure of the Hamiltonian flow
also at infinity.

5.5.3. Other fields

As long as the fields are massless and not charged, most of the here presented aspects remain
valid also for other hyperbolic field equations than the wave equation. Note that the presence of
mass or charge of the field can also create growing modes, we refer to Shlapentokh-Rothmann for
the Klein Gordon equation on the Kerr metric [84] and to Besset–Häfner [85] for the charged Klein
Gordon equation on the De Sitter Reissner–Nordström or De Sitter Kerr Newman black hole. In
the case of linearized gravity, one has of course to deal with the gauge. The presented methods
are well adapted to generalized wave map gauges. In these generalized wave map gauges the
Fourier linearized Einstein operator L̂g (σ) will have a kernel forσ= 0 consisting of linearized (De
Sitter) Kerr solutions and some special gauge solutions. The existence of this kernel makes the
analysis of L̂−1

g (σ) more delicate close to σ= 0.

5.5.4. Perturbations of the (De Sitter) Kerr metric

As long as the metric remains stationary and the important structure of radial points, trapping
etc. is not changed the analysis remains more or less the same on the linear level. Note
that in contrast to the trapping the radial point structure is a priori not stable with respect to
perturbations; however the estimates are, see [23, Remark 2.5] for a discussion of this point. A
delicate part is the analysis of the mode solutions which most often is analyzed on the exact
spacetimes by separation of variables and ode techniques. This can however often be analyzed
in a perturbative regime.

If the spacetime itself is not stationary but say decays to a (De Sitter) Kerr solution, the here
presented analysis has to be completed by a second step. Note however that this second step can
be purely microlocal, see [63]. These aspects go beyond the scope of this review.
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