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Abstract. The large deflections of a carbon nanotubes (CNTs) reinforced sandwich cantilever beam partially
embedded on Pasternak foundation are studied considering the influence of CNTs agglomeration. The
sandwich beam is composed of a homogeneous core and composite face layers with effective moduli being
estimated by Eshelby–Mori–Tanaka model. The nonlinear equilibrium equation is constructed using a
first-order shear deformable nonlinear beam element and solved by the Newton–Raphson based iterative
procedure. The result reveals that the effect of slenderness ratio on the large deflections is dependent on the
degree of CNT agglomeration, and this effect is more significant when the agglomeration degree is more
severe. The effects of the CNT volume fraction, the degree of CNTs agglomeration and the foundation
parameters on the large deflections are studied in detail. The influence of the sandwich configuration and
the porosities on the behavior of the sandwich beam is also examined and discussed.

Résumé. Les grandes déflexions d’une poutre sandwich renforcée par des nanotubes de carbone (CNTs)
partiellement encastrée sur une fondation de Pasternak sont étudiées en tenant compte de l’influence de
l’agglomération des CNTs. La poutre sandwich est composée d’un noyau homogène et de couches externes
composites, dont les modules effectifs sont estimés à l’aide du modèle d’Eshelby–Mori–Tanaka.

L’équation d’équilibre non linéaire est construite en utilisant un élément de poutre non linéaire défor-
mable en cisaillement de premier ordre, puis résolue à l’aide d’une procédure itérative basée sur l’algorithme
de Newton–Raphson.

Les résultats révèlent que l’effet de l’élancement sur les grandes déflexions dépend du degré d’agglomé-
ration des CNTs, et cet effet devient plus important lorsque le degré d’agglomération est élevé. Les influences
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de la fraction volumique des CNTs, du degré d’agglomération des CNTs et des paramètres de la fondation sur
les grandes déflexions sont étudiées en détail. L’impact de la configuration sandwich et des porosités sur le
comportement de la poutre sandwich est également examiné et discuté.

Keywords. Sandwich beam, Carbon nanotubes, Agglomeration, Partial foundation embedment, Large de-
flection.

Mots-clés. Poutre sandwich, Nanotubes de carbone, Agglomération, Encastrement partiel dans une fonda-
tion, Grande déflexion.
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1. Introduction

Carbon nanotubes (CNTs), with low density but large surface area and high stiffness [1, 2], have
made them a promising material for reinforcing polymer matrix. It was shown that the properties
of polymer-based composites are significantly improved by using small amounts of CNTs as
reinforcement [3, 4]. CNT-reinforced composite (CNTRC), therefore is an ideal material for
fabricating high-performance structural elements. A large number of studies on the mechanical
behavior of CNTRC structures are summarized in the review papers [5, 6], the investigations that
are close to the present topic are discussed below.

Shen et al. [7, 8] employed the two-step perturbation technique to study the thermal effect
of bending and buckling of CNTRC plates, in which the CNTs are graded in the thickness
direction by different patterns. Shen and Xiang [9] proposed the multi-scale approach for
studying nonlinear vibration, bending and post-buckling of functionally graded (FG) CNTRC
beams embedded on foundation. Wattanasakulpong and Ungbhakorn [10] employed various
beam theories to study vibration, bending and buckling of CNTRC beams, considering different
types of CNT distribution. The effect of CNT gradation on behavior of beams made from FG-
CNTRC was also considered by Mayandi et al. [11] using the finite element method. The Eshelby–
Mori–Tanaka model was adopted by Lei et al. [12] to evaluate the properties of composite in their
large deflection study of composite plates reinforced by CNTs. The large deformation and post-
buckling of cylindrical panels made from CNT composite was studied in [13,14] using the kp-Ritz
method. The moving least square Ritz method was employed in [15–17] to study buckling and
large deformation of CNTRC plates. Zghal et al. [18] developed a C 0 isoparametric shell element
for studying large deformation of CNTRC plates and panels. The effect of CNT distributions on
the nonlinear response of the CNTRC structures was numerically examined by the authors.

FG-CNTRC was also applied to sandwich structures to improve their performance. Bending
and free vibration of sandwich plates with FG-CNTRC face layers were considered by Natarajan
et al. [19] using an 8-node C 0 plate element. Their finding showed that the deflections are
decreased by increasing the CNT volume, while the frequencies are increased. Buckling of
Timoshenko beams and spherical caps made from sandwich CNT reinforced composite was
considered in references [20, 21], considering the linear distribution of CNTs. The influence of
the CNT volume fraction on the instability of CNTRC sandwich panels due to periodic loads was
also examined in reference [22] using a Q8 plate element. Mehar et al. [23] used a higher-order
finite element to assess stresses, deflections, and frequencies of sandwich plates with FG-CNTRC
faces under thermo-mechanical loading. Thermal buckling of sandwich plates with CNTRC face
sheets was studied by Kamarian [24] on the basis of a piecewise low-order shear deformation
theory. Their finding showed that the critical temperature of sandwich plates is considerably
increased by CNT reinforcement.
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In the above discussed references, the CNTs’ orientations were assumed to be straight and
aligned, and the bulk mechanical properties of the composite are estimated by the rule of mix-
ture. However, due to the low bending stiffness and high aspect ratio, CNTs tend to agglomer-
ate in polymer matrices [25, 26]. Shi et al. [27] employed Eshelby’s inclusion model to develop
a micromechanics approach for assessing CNTs agglomeration effects. They demonstrated that
CNT agglomeration significantly reduces the stiffness of the composite. Using the method in ref-
erence [27], Yas and Heshmati [28] studied the vibration of an FG-CNTRC beam traversed by a
moving load, considering a random orientation of CNTs. Their result reveals that the random
distribution of CNTs leads to higher beam deflections. The effects of CNT agglomeration and
waviness on vibration of CNTRC beams were considered by Heshmati et al. [29, 30]. The DQM
was employed by Mehrabadi and Aragh [31] to compute the stresses of agglomerated FG-CNTRC
open cylindrical shells due to mechanical loading. Also using the DQM, Tornabene et al. [32]
studied the distribution of stresses, strains, and displacements of composite plates and shells re-
inforced by agglomerated CNTs. The dynamic buckling of viscoelastic microplates reinforced by
agglomerated CNTs is considered by Kolahchi and Cheraghba [33] using the Bolotin method in
conjunction with the Navier method. Safaei et al. [34] investigated the thermal and mechani-
cal buckling of porous sandwich plates formed from an isotropic core and CNTRC face layers.
Galerkin method was used in references [35, 36] to investigate the vibration of agglomerated CN-
TRC plates and stability of nanocomposite beams, respectively. Kassa et al. [37] used the finite
element method to study bending of CNTRC tapered panels, considering the CNT waviness and
agglomeration effects. Based on the nonlocal elasticity theory, Daghigh et al. [38] derived the
governing equations for bending and buckling analyses of CNTRC composite nanoplates. The
two-parameter model in reference [27] was adopted to estimate the plate moduli and Navier’s
solution was employed to derive expressions for deflections and buckling loads.

In this paper, the large deflections of a CNTRC sandwich cantilever beam partially embedded
on Pasternak foundation under end forces is studied considering the influence of CNTs agglom-
eration. The sandwich beam is composed of a homogeneous core and two composite face layers.
The face layers are made from a polymer-based CNTs reinforced composite with effective elastic
moduli being predicted by the Eshelby–Mori–Tanaka model. The discretized equilibrium is de-
rived using a total Lagrangian nonlinear beam element, and solved by Newton–Raphson iterative
method in combination with the arc-length technique. The effects of the CNT reinforcement, the
agglomeration degree, the foundation support, and the porosities on the large deflection behav-
ior of the sandwich cantilever beam are studied in detail.

2. Problem statement

Figure 1 shows a CNTRC sandwich cantilever with a rectangular cross-section (b ×h), partially
embedded on a Pasternak foundation. The beam is formed from a homogeneous core and two
CNTRC layers. The figure, x-axis is in the mid-plane; L and LF are the lengths of the beam and
foundation supporting part; z0, z3, z1, z2 are coordinates in the z-direction of the bottommost
and topmost surfaces, interfaces between the layers, respectively.

CNTs with high elastic moduli are used to reinforce polymer to enhance the stiffness of
composite layers. The polymer core is fully characterized by elastic moduli of the polymer matrix,
a homogenization scheme, namely the Eshelby–Mori–Tanaka model [39, 40], is used herein to
predict elastic moduli of the composite faces. As mentioned above, CNTs tend to agglomerate
in the polymer, creating a sort of spherical shaped inclusions, as depicted in Figure 2 for a
representative volume element (RVE). CNTs in the RVE are found both in bundle or clusters inside
the inclusions and scattered in the matrix. This particular distribution has been described by Shi
et al. [27] by a two-parameter model, which is briefly summarized below.
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Figure 1. CNTRC sandwich cantilever beam partially embedded in Pasternak foundation.

Figure 2. RVE with agglomerated CNT inclusions.

The total CNTs inside the RVE, (VCNT), is split into two parts as follows

VCNT =V in
CNT +V out

CNT (1)

with V in
CNT and V out

CNT are, respectively, the volumes of CNTs inside and outside the inclusions.
The following parameters represent the CNT agglomeration

ξ= Vin

V
, ζ= V in

CNT

VCNT
with (ξ, ζ) ∈ [0,1] (2)

In Equation (2), the parameter ξ defines the volume proportion of inclusions (Vin) to the element
volume (V ), while parameter ζ quantifies the volume of CNTs inside inclusions (V in

CNT) in respect
of the total CNT volume. For ξ < 1, the agglomeration is partial with nanofillers are both in the
inclusions and polymer matrix. The case ξ = 1 means that all CNTs are uniformly dispersed in
the polymer, while ζ= 1 corresponds to the case that all nanotubes are in the clusters.

The effective bulk and shear moduli inside the inclusions, (Kin) and (Gin), respectively, and
that outside inclusions, (Kout) and (Gout), can be calculated as follows [27]

Kin = Km + fCNTζ(δr −3Kmαr )

3(ξ− fCNTζ+ fCNTζαr )
, Gin =Gm + fCNTζ(ηr −2Gmβr )

2
(
ξ− fCNTζ+ fCNTζβr

) (3)
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and

Kout = Km + fCNT(1−ζ)(δr −3Kmαr )

3
[
1−ξ− fCNT(1−ζ)+ fCNT(1−ζ)αr

] ,

Gout = Gm + fCNT(1−ζ)(ηr −2Gmβr )

2
[
1−ξ− fCNT(1−ζ)+ fCNT(1−ζ)βr

] (4)

with fCNT =VCNT/V , and

αr = 3(Km +Gm)+kr − lr

3(Gm +kr )
, δr = 1

3

[
nr +2lr

(2kr + lr )(3Km +2Gm − lr )

Gm +kr

]
βr = 1

5

{
4Gm +2kr + lr

3(Gm +kr )
+ 4Gm

Gm +pr
+ 2Gm[(3Km +Gm)+ (3Km +7Gm)]

Gm(3Km +Gm)+mr (3Km +7Gm)

}
ηr = 1

5

[
2

3
(nr − lr )+ 8Gm pr

Gm +pr
+ 8mr Gm(3Km +4Gm)

3Km(mr +Gm)+Gm(7mr +Gm)
+ 2(kr − lr )(2Gm + lr )

3(Gm +kr )

] (5)

In the above equation, the subscript “m” and “r ” are used to indicate the matrix and the
reinforcement; kr , mr , nr , lr , and pr are Hill’s elastic moduli of CNT reinforcement phase. It
is noted that Equation (3) is not mathematically valid for ξ= ζ= 0, while Equation (4) is not valid
for ξ= ζ= 1.

The bulk modulus and shear modulus of the composite are obtained by Mori–Tanaka homog-
enization model as

K = Kout

1+
ξ
(

Kin
Kout

−1
)

1+α(1−ξ)
(

Kin
Kout

−1
)
 , G =Gout

1+
ξ
(

Gin
Gout

−1
)

1+β(1−ξ)
(

Gin
Gout

−1
)
 (6)

where α and β are defines as

α= 1+νout

3(1−νout)
, β= 2(4−5νout)

15(1−νout)
(7)

with νout = (3Kout −2Gout)/2(3Kout +Gout). The effective Young’s modulus (E) and Poisson’s ratio
(ν) of the composite are calculated as

E = 9KG

3K +G
, ν= 3K −2G

6K +2G
(8)

The effective moduli estimated by the above equations do not consider the influence of porosi-
ties. The porosities have a negative effect on the elastic properties of the composite. For instance,
an effective property (PPOR) of the CNTRC material considering the porosity effect is given by [34]

PPOR = (1− fp)P , fp = 1−
(

2

π

√
1−e0 − 2

π
+1

)2

(9)

with fp is the porosity parameter, e0 is the porosity coefficient, and P is the effective property of
the composite without porosities.

3. Solution method

A total Lagrangian beam element, initially proposed by Pacoste and Eriksson [41] and employed
by Almeida et al. [42] as well as Nguyen et al. [43] to model geometric nonlinearity of functionally
graded beams, is extended herewith to the CNTRC sandwich beam to construct the discretized
equilibrium equation and to compute the response of the sandwich beam.
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Figure 3. Initial and deformed configurations of the beam element on Pasternak founda-
tion.

3.1. Total Lagrangian beam element

A two-node beam element, (I, J), initially straight as shown in Figure 3 is considered. The element
is embedded on a Pasternak foundation with stiffness kW and kG of the Winkler and shear layers,
respectively. The vector of nodal displacements and rotation has the form

d = {uI wI θI uJ wJ θJ}
T

(10)

in which uI, wI, θI respectively denote the displacements in the x and z directions and rotation
at the node I, and the same for node J.

The current deformed configuration of the element, (I′, J′), is defined through the position
vector r of point M (see Figure 3), which is defined by

r = [x +u(x)]i+w(x)j (11)

In the above equation, i and j denote unit vectors of the x- and z-axes, while x is the abscissa
of the point M, measured from the node I in the undeformed configuration; u(x) and w(x) are
the displacements in x- and z-directions, respectively. The cross-section S associated with point
M in the undeformed configuration undergoes large deflection and rotation to section S′ related
to point M′ in the deformed configuration as depicted in Figure 3. The tangent vector r′ of the
deformed line I′J′ at point M′ is expressed in terms of the normal strain ε and the shear strain γ

as

r′ = ∂r

∂x
= [1+ε]e+γk (12)

In the above equation, e and k are the unit vectors, orthogonal and parallel to the current section
S’, and they are related to the base vectors i and j as

e = cosθi+ sinθ j, k =−sinθ i+cosθ j (13)

The curvature χ of the beam is defined as

χ= ∂θ

∂x
(14)
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From Equations (11)–(13), we can rewrite the normal and shear strains as follows

ε=
(
1+ ∂u

∂x

)
cosθ+ ∂w

∂x
sinθ−1, γ= ∂w

∂x
cosθ−

(
1+ ∂u

∂x

)
sinθ (15)

It should be emphasized that the strains ε, γ and the curvature χ although parameterized by the
abscissa x ∈ [0,1], they take values on the current configuration.

The element strain energy U is contributed to the beam bending (UB) and foundation defor-
mation (UF), U =UB +UF, in which

UB = 1

2

∫ l

0

(
A11ε

2 +2A12εχ+ A22χ
2 +ψA33γ

2)dx (16)

with ψ = 5/6 is the shear correction factor for the present beams and the rigidities A11, A12, A22

and A33 are defined as

(A11, A12, A22) =
∫

A
(1, z, z2)E dA = b

3∑
k=1

∫ zk

zk−1

(1, z, z2)E dz, A33 =
∫

A
G dA = b

3∑
k=1

∫ zk

zk−1

G dz

(17)
The effective moduli E and G in the above equation are dependent on the parameters ξ and ζ, as
described in Section 2. One can notice that the coupling rigidity A12 in (17) will vanish when the
two face layers are symmetric with respect to the mid-plane.

Since the beam undergoes large deflections, the foundation deformation in both the axial and
transverse directions should be considered [44]. In this regard, the energy stored in the Pasternak
foundation for the large deflection analysis is

UF = kW

2

∫ LF

0
(u2 +w2)dx + kG

2

∫ LF

0

(
θ−γ)2 dx (18)

where, as above mentioned, kW and kG are the Winkler and shear moduli of the Pasternak
foundation, and LF is the foundation supporting length.

Interpolations are needed to be introduced for displacements and rotations. Since the dis-
placements and rotation are independent from each another, the following linear interpolations
can be employed


u
w
θ

=



l −x

l
0 0

x

l
0 0

0
l −x

l
0 0

x

l
0

0 0
l −x

l
0 0

x

l





uI

w I

θI

u j

w J

θJ


(19)

The element derived from the linear interpolations (19), however, suffers from the problem of
shear locking. To avoid this locking problem, the reduced integration, namely one-point Gauss
quadrature, is used in this work to calculate the terms associated with shear deformation in the
strain energies in Equations (16) and (18). In this regard, the energy expression in Equations (16)
and (18) can be written in the following forms

UB = l

2

(
A11ε̂

2 +2A12ε̂χ̂+ A22χ̂
2 +ψA33γ̂

2)
UF = lkW

6

(
u2

I +uI u J +u2
J +w2

I +w I w J +w2
J

)+ l kG

2

(
θ̂− γ̂)2

(20)
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where

ε̂=
(
1+ u J −uI

l

)
cos θ̂+ w J −w I

l
sin θ̂−1

γ̂=−
(
1+ u J −uI

l

)
sin θ̂+ w J −w I

l
cos θ̂

χ̂= θJ −θI

l
with θ̂ = θI +θJ

2

(21)

From Equation (21), one can compute

∂ε̂

∂uI
=−1

l
cos θ̂,

∂ε̂

∂u J
= 1

l
cos θ̂,

∂ε̂

∂w I
=−1

l
sin θ̂,

∂ε̂

∂w J
= 1

l
sin θ̂

∂γ̂

∂uI
= 1

l
sin θ̂,

∂γ̂

∂u J
=−1

l
sin θ̂,

∂γ̂

∂w I
=−1

l
cos θ̂,

∂γ̂

∂w J
= 1

l
cos θ̂,

∂ε̂

∂θI
= ∂ε̂

∂θJ
= 1

2
γ̂,

∂γ̂

∂θI
= ∂γ̂

∂θJ
=−1

2
(ε̂+1) ,

∂χ̂

∂θI
=− ∂χ̂

∂θJ
=−1

l

(22)

The element vector of nodal internal forces fin can be split into two parts, fB
in due to beam bending

and fF
in due to foundation deformation, as follows

fin = fB
in + fF

in (23)

These above internal force vectors are computed as derivatives of the strain energies in (19)
respecting the element vector of nodal displacements as

fB
in = ∂UB

∂d
=

{
f B

uI
f B

wI
f B
θI

f B
u J

f B
w J

f B
θJ

}T
, fF

in = ∂UF

∂d
=

{
f F

uI
f F

wI
f F
θI

f F
u J

f F
w J

f F
θJ

}T

(24)
In substituting (20) into (24) and making use of Equation (22), one can obtain explicit expressions
for the above element vectors of nodal forces. The detailed expressions for the coefficients of
these vectors are given by Equations (A1) and (A2) in the Appendix.

The tangent stiffness matrix (kt ) of the element can also be written in the form

kt = kB
t +kF

t (25)

where kB
t and kF

t are the tangent stiffness matrices stemming from the deformation of the beam
and the deformation, respectively. These matrices are computed by twice differentiation of the
strain energy (20) with respect to the vector d, and they have the forms

kB
t = ∂2UB

∂d2 =



kB
uI uI

kB
uI wI

kB
uI θI

kB
uI u J

kB
uI w J

kB
uI θJ

kB
wI wI

kB
wI θI

kB
wI u J

kB
wI w J

kB
wI θJ

kB
θI θI

kB
θI u J

kB
θI w J

kB
θI θJ

kB
u J u J

kB
u J w J

kB
u JθJ

sym. kB
w J w J

kB
w JθJ

kB
θJθJ


(26)
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and

kF
t = ∂2UF

∂d2 =



kF
uI uI

kF
uI wI

kF
uI θI

kF
uI u J

kF
uI w J

kF
uI θJ

kF
wI wI

kF
wI θI

kF
wI u J

kF
wI w J

kF
wI θJ

kF
θI θI

kF
θI u J

kF
θI w J

kF
θI θJ

kF
u J u J

kF
u J w J

kF
u JθJ

sym. kF
w J w J

kF
w JθJ

kF
θJθJ


(27)

The detailed expressions for the coefficients of the matrices kB
t and kF

t are listed by Equa-
tions (A3)–(A5) in the Appendix.

3.2. Equilibrium equation

After assembling the derived matrix kt and vector fin over the total number of elements, one can
establish the nonlinear equilibrium equation for the beam in the following form [45]

g(p,λ) = qin(p)−λfef (28)

where g is the residual force vector, is dependent on the vector of current nodal displacements
p and parameter of the load level λ; qin is the global vector of nodal internal forces, obtained by
merging vector fin over the total elements, and fef is the vector of fixed external loads.

The nonlinear equations (28) is solved herein by Newton–Raphson iterative method, which
contains predictor and corrector phases. In the method, a new solution is firstly predicted
from the previously converged solution, and then corrected by iterative solutions. The following
Euclidean norm based criterion is used for the iterative process

∥g∥ ≤β∥λfef∥ (29)

with β is a tolerance factor, chosen by 10−4 herein. The arc-length technique [45] is used with
the above Newton–Raphson to trace the equilibrium paths when the beam exhibits complex
nonlinear behavior.

4. Results and discussion

The sandwich cantilever beam is made from polymethyl pethacrylate (PMMA) with E m = 2.5 GPa,
νm = 0.34 as a matrix, and (10,10) single-walled CNTs with the Hill’s elastic moduli in Table 1 as
reinforcement is considered. The beam is loaded by a transverse load P or a moment M at its free
end. For the convenience of discussion, the non-dimensional parameters are employed

P∗ = PL2

E m I
, M∗ = ML

E m I
, u∗ = uL

L
, w∗ = wL

L
, θ∗ = θ

2π
(30)

where uL and wL are the axial and transverse displacements at the free end. Also, the dimension-
less parameters for foundation stiffness supporting length are introduced as

k1 = L4kW

E m I
, k2 = L2kG

π2E m I
, αF = LF

L
(31)

with kW, kG and LF , as above mentioned, are the foundation stiffness and the length of the
foundation supporting part. Except for Section 4.6, the results are reported for the perfect beams
(without porosities).
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Figure 4. Comparison of effective Young’s modulus of CNT reinforced composite with
VCNT = 0.1.

Table 1. Hill’s elastic moduli for the carbon nanotubes [27]

Radius of CNTs (Å) kr (GPa) lr (GPa) mr (GPa) nr (GPa) pr (GPa)
10 30 10 1 450 1

4.1. Verification

The derived formulation using the reduced integration has shown good performance in analyzing
homogeneous beams with different aspect ratios in Ref. [41], the influence of the integration
type on the solution is not presented herewith. The verification will focus on the accuracy and
convergence of the formulation in modeling the large deflection of the CNT-reinforced composite
beam. Firstly, the effective Young’s modulus of the CNT-reinforced composite obtained in the
present work is compared with the result of Daghigh et al. [38] in Figure 4 for a carbon nanotube
volume fraction VCNT = 0.1. One can see from the figure that the present result agrees well
with that of the cited reference. It can also be seen from the figure that Young’s modulus
considerably decreases by the CNT agglomeration, and it attains the highest value when ξ = ζ,
which corresponds to the fully dispersed case.

In Table 2, the dimensionless tip displacements of a (1-2-1) CNTRC sandwich cantilever beam
with L/h = 20 under an end moment M∗ = 5 obtained herein are compared with the analytical
solution of Refs. [46,47] for various values of the agglomerated parameters. The tip displacements
of Refs. [46,47] are derived for an Euler–Bernoulli FG cantilever beam, and they have the following
forms

uL = L

[
1− A22

ML
sin

(
ML

A22

)]
, wL = A22

M

[
1−cos

(
ML

A22

)]
(32)

where A22 is the bending stiffness, defined by Equation (17). An excellent agreement between
the present result with the analytical solution of Refs. [46, 47] is noted from Table 2, regardless of
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Table 2. Comparison of tip displacements of symmetric (1-2-1) sandwich cantilever beam
under end moment M∗ = 5, L/h = 20 and VCNT = 0.1

ζ ξ= 0.1 ξ= 0.3 ξ= 0.5 ξ= 0.7
Present Refs. [46, 47] Present Refs. [46, 47] Present Refs. [46, 47] Present Refs. [46, 47]

0.1
|u∗| 0.2808 0.2810 0.3092 0.3093 0.3587 0.3589 0.4169 0.4171
w∗ 0.5815 0.5814 0.6025 0.6024 0.6342 0.6340 0.6644 0.6642

0.3
|u∗| 0.3238 0.3239 0.2808 0.2810 0.3004 0.3006 0.3464 0.3466
w∗ 0.6124 0.6123 0.5815 0.5814 0.5963 0.5962 0.6268 0.6267

0.5
|u∗| 0.4379 0.4381 0.3078 0.3079 0.2808 0.2810 0.3001 0.3002
w∗ 0.6737 0.6734 0.6015 0.6014 0.5815 0.5814 0.5960 0.5959

0.7
|u∗| 0.6551 0.6553 0.4096 0.4098 0.3084 0.3085 0.2808 0.2810
w∗ 0.7241 0.7237 0.6610 0.6608 0.6019 0.6018 0.5815 0.5814

0.9
|u∗| 1.0323 1.0323 0.6942 0.6943 0.4609 0.4610 0.3289 0.3291
w∗ 0.6150 0.6143 0.7250 0.7246 0.6828 0.6826 0.6158 0.6157

the agglomeration parameters. It is noted that, for the symmetric (1-2-1) sandwich beam under
consideration, the coupling rigidity vanished, A12 = 0, and the analytical solution is derived by
taking into account the neutral surface position, which allows to elimination of the coupling
term.

The convergence of the derived beam element in predicting the large deflection response of
the CNTRC beams is shown in Table 3, where the dimensionless deflections at the free end of
symmetric (2-1-2) and nonsymmetric (1-1-2) sandwich cantilever beams with different aspect
ratios under the tip load obtained by different number of elements (nELE) are given for P∗ = 10,
VCNT = 0.3, αF = 0.3, k1 = 50 and k2 = 0.2. As seen from the table the convergence of both the
symmetric (2-1-2) and non-symmetric (1-1-2) beams is achieved by using 24 elements, regardless
of the agglomeration parameters and the aspect ratios. Because of this convergence result, a
mesh of 24 elements is used in the computations reported below.

4.2. Effect of CNT reinforcement

In Table 4, the dimensionless tip displacements of (2-1-2) and (1-1-2) sandwich beams corre-
sponding to P∗ = 10 are given for P∗ = 10, L/h = 10, αF = 0.4, k1 = 50, and k2 = 0.5. The influence
of the CNT percentage and the agglomeration parameters on the beam response can be observed
clearly from the table. As expected, the increase of VCNT leads to a noticeable decrease in the tip
displacements of both the symmetric and non-symmetric sandwich beams, regardless of the ag-
glomeration parameters. The agglomeration degree of CNTs, indicated by the two parameters ξ
and ζ, also has an impact on the beam response. The tip displacements of both the symmetric (2-
1-2) and non-symmetric (2-2-1) beams attain the smallest values when ξ= ζ, which corresponds
to the fully dispersed case of CNTs. As mentioned above and shown in Figure 4, the effective
Young’s modulus of the composite attains the highest value when the CNTs are fully dispersed,
and thus the beam stiffness is largest in this case. The tip response of both the sandwich beams
is significant when the degree of CNT agglomeration is severe, which is the case of the two ag-
glomerated parameters ξ and ζ are far from each other. A more detailed examination of the table
shows that the effect of the CNT agglomeration is, however dependent on the CNT volume frac-
tion, and this effect is more prominent for the beam associated with a higher CNT volume frac-
tion. For example, the difference in the transverse displacements of the (2-1-2) beam associated
with VCNT = 0.05 for the cases of severe agglomeration (ξ= 0.1, ζ= 0.9) and the full dispersion of
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Table 3. Convergence of the formulation in predicting tip deflection w∗ of the cantilever
beam subjected to the tip load for P∗ = 10, VCNT = 0.3, αF = 0.5, k1 = 50 and k2 = 0.2

(ζ,ξ) nELE (2-1-2) beam (1-1-2) beam
L/h = 50 L/h = 20 L/h = 10 L/h = 5 L/h = 50 L/h = 20 L/h = 10 L/h = 5

(0.1, 0.4)

8 0.5693 0.5703 0.5740 0.5889 0.7243 0.7276 0.7351 0.7565
12 0.5697 0.5707 0.5744 0.5892 0.7245 0.7277 0.7352 0.7578
16 0.5698 0.5708 0.5745 0.5894 0.7245 0.7278 0.7353 0.7581
20 0.5698 0.5709 0.5746 0.5894 0.7245 0.7278 0.7353 0.7581
22 0.5699 0.5709 0.5746 0.5895 0.7246 0.7278 0.7353 0.7581
24 0.5699 0.5709 0.5746 0.5895 0.7246 0.7278 0.7353 0.7581
26 0.5699 0.5709 0.5746 0.5895 0.7246 0.7278 0.7353 0.7581

(0.1,0.6)

8 0.5945 0.5956 0.5965 0.6153 0.7397 0.7431 0.7508 0.7751
12 0.5948 0.5959 0.5986 0.6156 0.7398 0.7432 0.7511 0.7753
16 0.5955 0.5960 0.5998 0.6157 0.7415 0.7432 0.7512 0.7753
20 0.5958 0.5961 0.6000 0.6158 0.7419 0.7433 0.7512 0.7753
22 0.5978 0.5961 0.6001 0.6188 0.7424 0.7433 0.7512 0.7753
24 0.5978 0.5961 0.6001 0.6158 0.7429 0.7433 0.7512 0.7753
26 0.5978 0.5961 0.6001 0.6158 0.7429 0.7433 0.7512 0.7753

Table 4. Dimensionless tip displacements of CNTRC sandwich cantilever beam for P∗ = 10,
L/h = 10, αF = 0.4, k1 = 50 and k2 = 0.5

VCNT ζ (2-1-2) (1-1-2)
ξ= 0.1 ξ= 0.3 ξ= 0.5 ξ= 0.7 ξ= 0.1 ξ= 0.3 ξ= 0.5 ξ= 0.7

0.05

0.1
|u∗| 0.5350 0.5421 0.5540 0.5679 0.6587 0.6636 0.6719 0.6815
w∗ 0.8088 0.8126 0.8190 0.8265 0.8774 0.8800 0.8843 0.8895

0.3
|u∗| 0.5463 0.5350 0.5402 0.5522 0.6665 0.6587 0.6623 0.6706
w∗ 0.8149 0.8088 0.8116 0.8181 0.8815 0.8774 0.8793 0.8837

0.5
|u∗| 0.5708 0.5418 0.5350 0.5402 0.6834 0.6634 0.6587 0.6623
w∗ 0.8280 0.8125 0.8088 0.8116 0.8905 0.8799 0.8774 0.8793

0.7
|u∗| 0.6031 0.5625 0.5417 0.5350 0.7055 0.6777 0.6633 0.6587
w∗ 0.8449 0.8236 0.8124 0.8088 0.9027 0.8874 0.8798 0.8774

0.9
|u∗| 0.6425 0.5987 0.5673 0.5452 0.7321 0.7025 0.6810 0.6658
w∗ 0.8656 0.8427 0.8261 0.8143 0.9182 0.9010 0.8892 0.8811

0.3

0.1
|u∗| 0.1953 0.2132 0.2391 0.2577 0.3729 0.3925 0.4194 0.4377
w∗ 0.5406 0.5618 0.5902 0.6093 0.7139 0.7279 0.7459 0.7577

0.3
|u∗| 0.2214 0.1953 0.2073 0.2298 0.4013 0.3729 0.3862 0.4099
w∗ 0.5711 0.5406 0.5550 0.5803 0.7338 0.7139 0.7234 0.7397

0.5
|u∗| 0.2830 0.2129 0.1953 0.2066 0.4616 0.3922 0.3729 0.3854
w∗ 0.6336 0.5614 0.5406 0.5541 0.7723 0.7276 0.7139 0.7229

0.7
|u∗| 0.3823 0.2767 0.2142 0.1953 0.5460 0.4557 0.3936 0.3729
w∗ 0.7143 0.6277 0.5629 0.5406 0.8195 0.7688 0.7286 0.7139

0.9
|u∗| 0.5405 0.4348 0.3240 0.2324 0.6625 0.5864 0.4980 0.4126
w∗ 0.8118 0.7499 0.6694 0.5831 0.8794 0.8404 0.7934 0.7414

CNTs (ξ = ζ) is 6.56%, while the corresponding value for the beam associated with VCNT = 0.3 is
33.41%, which is more than five times higher.
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Figure 5. Effect of VCNT on tip response of CNTRC sandwich beam under transverse load
for L/h = 10, αF = 0.4, (ξ,ζ) = (0.4,0.6) and (k1,k2) = (50,0.5).

To show the impact of CNT reinforcement on the beam response in more further, the effects
of CNT volume fraction on the large deflection response of (2-1-2) symmetric and (1-1-2) non-
symmetric sandwich cantilever beam under the tip load P and end moment M are respectively
displayed in Figures 5 and 6 for L/h = 10, αF = 0.4, (ξ,ζ) = (0.4,0.6) and (k1,k2) = (50,0.5). The
effect of the degree of CNT agglomeration on the large deflections is shown in Figures 7 and 8,
where the tip response of the symmetric (2-1-2) and non-symmetric (1-1-2) beams due to the
tip transverse load and the end moment are depicted for L/h = 10, VCNT = 0.1, αF = 0.4, ζ = 0.9,
(k1,k2) = (50,0.5) and different values of the agglomeration parameter ξ. Figure 5 shows a decline
in the free end displacement of the sandwich cantilever beams by increasing the volume fraction
of CNTs, regardless of the load level and the sandwich configuration. The influence of the CNT
volume fraction on the response of the sandwich beam loaded by the end moment is seen in
Figure 6, and the beam is more conservative in the case of a higher CNT volume fraction. The
cantilever beam rolls up a half circle when the applied moment reaches a certain value, and after
that the displacement w∗ starts to decrease, as seen in Figure 6b for the curve corresponding to
VCNT = 0.05.

The tip response of the sandwich cantilever beam with the symmetric and non-symmetric
configurations, as seen from 7 and 8, is more pronounced when the difference between the two
agglomeration parameters ξ and ζ is larger. In other words, the more severe the agglomeration
degree is, the larger tip displacements are, regardless of the loading type and the sandwich
configuration. It is noted that the cantilever beam associated with ξ = 0.3 has rolled into a
half circle when M∗ = 2, and the displacement w∗ decreases by increasing the moment some
further, as seen in Figure 8b. Thus, though the displacement w∗ of the beam with ξ= 0.3 loaded
by M∗ > 2 is smaller, it still deforms more significantly compared to the other cases (ξ = 0.5,
0.7, 0.9). The influence of the CNT reinforcement can also be observed from Figures 9 and 10,
where the configurations in the deformed state of (2-1-2) and (1-1-2) beams due to the end
moment are shown for L/h = 10, αF = 0.4, and (k1,k2) = (50,0.5). At the same applied moment
parameter M∗ = 5, the non-symmetric (1-1-2) beam with VCNT = 0.05 has already rolled into
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Figure 6. Effect of VCNT on tip response of CNTRC sandwich beam under end moment for
L/h = 10, αF = 0.4, (ξ,ζ) = (0.4,0.6) and (k1,k2) = (50,0.5).

Figure 7. The tip response of CNTRC sandwich beam to transverse load for L/h = 10,
VCNT = 0.1, αF = 0.4, ζ= 0.9, (k1,k2) = (50,0.5) and different values of ξ.

a circle, while the deformed curve of the (1-1-2) beam with VCNT = 0.3 is still far from a haft
circle (Figure 9b). The influence of the CNT volume fraction is seen more clearly from Table 5
where the dimensionless tip displacements and rotation of the sandwich beam with L/h = 10,
(ξ,ζ) = (0.4,0.7), αF = 0.4, (k1,k2) = (50,0.5) are given for M∗ = 3 and M∗ = 5. One can see that
the beam associated with a lower VCNT has larger tip rotation, regardless of the beam type and
the applied moment. In other words, the beam with lower VCNT deforms more significantly. The
deformed configuration of the sandwich cantilever beams, as can be seen in Figure 10, is also
significantly influenced by the agglomeration degree of CNTs. At M∗ = 5, the non-symmetric



Thi Thu Hoai Bui et al. 141

Figure 8. The tip response of CNTRC sandwich beam to the end moment for L/h = 10,
VCNT = 0.1, αF = 0.4, ζ= 0.9, (k1,k2) = (50,0.5) and different values of ξ.

Figure 9. Deformed configurations of cantilever corresponding to M∗ = 5 for L/h = 10,
(ξ,ζ) = (0.4,0.7), αF = 0.4, (k1,k2) = (50,0.5) and different values of VCNT.

(1-1-2) sandwich beam with fully dispersed CNTs rolls into a haft circle, while the same beam
with a severe degree of CNTs agglomeration (ξ = 0.3, ζ = 0.9) has already rolled into a circle
(Figure 10b).

4.3. Effect of foundation support

Figure 11 shows the load-deflection curves of the (2-1-2) symmetric and (1-1-2) non-symmetric
sandwich cantilever beams under the tip load P for L/h = 10, VCNT = 0.1, (ξ,ζ) = (0.4,0.7),αF = 0.4
and different foundation stiffness parameters. The effect of the foundation supporting length is
shown in Figure 12 for L/h = 10, VCNT = 0.1, (ξ,ζ) = (0.4,0.7), and (k1,k2) = (50,0.5). As expected,
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Figure 10. Deformed configurations of cantilever corresponding to M∗ = 5 for L/h = 10,
ζ= 0.9, αF = 0.4, (k1,k2) = (50,0.5) and different values of ξ.

Table 5. Dimensionless tip displacements and rotation of CNTRC sandwich beam under
end moment for L/h = 10, (ξ,ζ) = (0.4,0.7), αF = 0.4, (k1,k2) = (50,0.5)

M∗ Beam type VCNT

0.05 0.07 0.1 0.3

3

(2-1-2)
|u∗| 0.4689 0.3414 0.2279 0.0441
w∗ 0.6721 0.6144 0.5301 0.2523
θ∗ 0.2972 0.2461 0.1962 0.0830

(1-1-2)
|u∗| 1.1029 0.9481 0.7280 0.1821
w∗ 0.4587 0.6101 0.6863 0.4730
θ∗ 0.5997 0.4957 0.3959 0.1704

5

(2-1-2)
|u∗| 0.9734 0.7774 0.5580 0.1198
w∗ 0.6262 0.7019 0.7010 0.4040
θ∗ 0.5008 0.4129 0.3282 0.1385

(1-1-2)
|u∗| 0.9525 1.1242 1.1766 0.4513
w∗ 0.0022 0.0708 0.3322 0.6603
θ∗ 1.0412 0.8550 0.6748 0.2848

the tip displacements are declined by increasing the foundation stiffness, irrespective of the load
level and the sandwich configuration. The influence of the foundation supporting length on the
large deflections of the sandwich beam is similar to that of the CNT volume fraction. One can
see from Figures 11 and 12 that the increase of the supporting parameter αF mitigates the tip
displacements of the sandwich cantilever beam significantly, regardless of the loading type and
the sandwich configuration.

4.4. Effect of sandwich configuration

The sandwich configuration, as can be seen from Table 4, has a significant impact on the large
deflection response of the CNTRC sandwich cantilever beam. At the same volume fraction of
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Figure 11. Effect of foundation stiffness on large deflections of CNTRC sandwich beams
under transverse load for L/h = 10, VCNT = 0.1, (ξ,ζ) = (0.4,0.7), αF = 0.4.

Figure 12. Effect of foundation supporting parameter on large deflections of sandwich
beam under transverse load for L/h = 10,VCNT = 0.1, (ξ,ζ) = (0.4,0.7), (k1,k2) = (50,0.5).

the CNTs, the tip displacements of a non-symmetric (1-1-2) beam are considerably higher than
that of the symmetric (2-1-2) beam, regardless of the CNT volume fraction and the agglomerated
parameters. The deformed configurations of the sandwich beams under the end moment as
depicted in Figures 9 and 10 also show the more conservative of the symmetric (2-1-2) beam
compared to the non-symmetric (1-1-2) one. As seen from Figure 9, at the same end moment
parameter M∗ = 5, the non-symmetric (1-1-2) beam with VCNT = 0.05 has rolled into a full circle,
while the symmetric (2-1-2) beam just formed into a half circle only. The same situation is
seen for the configurations of the (2-1-2) and (1-1-2) beams associated with ξ = 0.05 under the
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Table 6. Tip displacements of CNTRC sandwich cantilever beams with different length-to-
height ratios for P∗ = 10, VCNT = 0.1, αF = 0.4 and (k1,k2) = (50,0.5)

L/h ζ (2-1-2) (1-1-2)
ξ= 0.1 ξ= 0.3 ξ= 0.5 ξ= 0.7 ξ= 0.1 ξ= 0.3 ξ= 0.5 ξ= 0.7

5

0.1
|u∗| 0.4326 0.4459 0.4664 0.4871 0.5828 0.5927 0.6078 0.6229
w∗ 0.7707 0.7803 0.7947 0.8090 0.8749 0.8813 0.8913 0.9014

0.3
|u∗| 0.4522 0.4326 0.4419 0.4616 0.5974 0.5828 0.5897 0.6043
w∗ 0.7848 0.7707 0.7774 0.7913 0.8844 0.8749 0.8794 0.8889

0.5
|u∗| 0.4939 0.4452 0.4326 0.4418 0.6278 0.5922 0.5828 0.5896
w∗ 0.8137 0.7798 0.7707 0.7773 0.9047 0.8810 0.8749 0.8793

0.7
|u∗| 0.5505 0.4847 0.4455 0.4326 0.6675 0.6211 0.5924 0.5828
w∗ 0.8519 0.8074 0.7800 0.7707 0.9337 0.9002 0.8812 0.8749

10

0.1
|u∗| 0.4280 0.4412 0.4617 0.4824 0.5813 0.5912 0.6063 0.6214
w∗ 0.7455 0.7540 0.7667 0.7791 0.8378 0.8429 0.8506 0.8582

0.3
|u∗| 0.4475 0.4280 0.4373 0.4569 0.5959 0.5813 0.5883 0.6028
w∗ 0.7579 0.7455 0.7515 0.7637 0.8453 0.8378 0.8414 0.8488

0.5
|u∗| 0.4892 0.4406 0.4280 0.4371 0.6263 0.5907 0.5813 0.5881
w∗ 0.7830 0.7536 0.7455 0.7513 0.8607 0.8426 0.8378 0.8413

0.7
|u∗| 0.5457 0.4800 0.4408 0.4280 0.6661 0.6196 0.5909 0.5813
w∗ 0.8146 0.7776 0.7537 0.7455 0.8813 0.8574 0.8427 0.8378

20

0.1
|u∗| 0.4268 0.4400 0.4605 0.4812 0.5813 0.5912 0.6063 0.6214
w∗ 0.7391 0.7474 0.7596 0.7715 0.8265 0.8312 0.8384 0.8454

0.3
|u∗| 0.4464 0.4268 0.4361 0.4557 0.5959 0.5813 0.5882 0.6028
w∗ 0.7512 0.7391 0.7449 0.7568 0.8335 0.8265 0.8298 0.8367

0.5
|u∗| 0.4880 0.4394 0.4268 0.4359 0.6263 0.5907 0.5813 0.5881
w∗ 0.7753 0.7470 0.7391 0.7448 0.8477 0.8310 0.8265 0.8298

0.7
|u∗| 0.5445 0.4788 0.4397 0.4268 0.6661 0.6196 0.5909 0.5813
w∗ 0.8052 0.7702 0.7472 0.7391 0.8660 0.8446 0.8311 0.8265

end moment M∗ = 5 in Figure 10. Thus, at given values of the CNT volume fraction and the
agglomeration parameters, one can design a sandwich beam to mitigate the large deformation
by the appropriate choice of the layer thickness ratio.

4.5. Effect of slenderness ratio

The length-to-height ratio, (L/h), of a rectangular cross-section beam represents the beam
slenderness ratio. The dimensionless displacements at the free end of the (2-1-2) and (1-1-2)
sandwich beams corresponding to a load parameter P∗ = 10 are tabulated in Table 6 for P∗ = 10,
VCNT = 0.1, αF = 0.4, (k1,k2) = (50,0.5) and different values of the length-to-height ratio and the
agglomeration parameters. The table shows that the dimensionless tip displacements of both the
sandwich cantilever beams are higher for the beams associated with a smaller length-to-height
ratio, regardless of the agglomeration parameters and the sandwich configuration. One can
also see from Table 6 that the effect of the slenderness ratio is dependent on the agglomeration
parameters, which is on the agglomeration degree of CNTs. For example, for the fully dispersed
case (ξ = ζ = 0.1), the difference in the deflections of the symmetric (2-1-2) beam with L/h = 5
and L/h = 20 is 4.10% but this number increases to 5.48% for (ξ = 0.1, ζ = 0.7), the case that
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Table 7. Effect of porosities on the tip response of the sandwich cantilever beam under end
moment for L/h = 10, VCNT = 0.07, αF = 0.4, (k1,k2) = (50,0.5)

Beam type (ξ,ζ) M∗ = 4 M∗ = 8
fp = 0 fp = 0.1 fp = 0.2 fp = 0 fp = 0.1 fp = 0.2

(2-1-2)

(0.1, 0.1)
|u∗| 0.4787 0.5638 0.6697 1.1445 1.1928 1.1939
w∗ 0.6787 0.6994 0.7082 0.4658 0.3426 0.1953
θ∗ 0.2992 0.3317 0.3723 0.6069 0.6754 0.7618

(0.4, 0.7)
|u∗| 0.5570 0.6506 0.7641 1.1905 1.1982 1.1470
w∗ 0.6982 0.7079 0.7001 0.3526 0.2205 0.0874
θ∗ 0.3291 0.3649 0.4097 0.6699 0.7459 0.8419

(1-1-2)

(0.1, 0.1)
|u∗| 1.1260 1.1707 1.1714 0.8757 0.9295 1.0305
w∗ 0.4437 0.3256 0.1848 0.1247 0.1896 0.1815
θ∗ 0.6102 0.6782 0.7644 1.2610 1.3954 1.5612

(0.4, 0.7)
|u∗| 1.1685 1.1755 1.1273 0.9233 1.0137 1.0785
w∗ 0.3351 0.2089 0.0818 0.1864 0.1905 0.1050
θ∗ 0.6727 0.7486 0.8447 1.3847 1.5310 1.7135

the agglomeration degree of CNTs is the most severe. Since the length-to-height ratio indicates
the shear deformation effect, one can say that the influence of the shear deformation is more
remarkable when the agglomeration degree of CNTs is more severe. Examining Table 5 in more
detail one can see that the effect of the slenderness ratio of the non-symmetric (1-1-2) sandwich
beam is more significant than that of the symmetric (2-1-2) sandwich beam, regardless of the
agglomeration degree. The difference between the deflections of non-symmetric (1-1-2) beams
with L/h = 5 and L/h = 20 is 5.53% for the case of fully dispersed CNTs (ξ = ζ = 0.1), and that
is 7.25% for the case of severe degree of CNTs agglomeration (ξ = 0.1, ζ = 0.7). These values are
slightly higher than that of the symmetric (2-1-2) beam as stated above. The result in Table 5
reveals the ability of the derived formulation to model the influence of shear deformation on the
large deflection response of the CNTRC sandwich beams.

4.6. Effect of porosities

The influence of porosities on large deflections of the CNTRC sandwich beam is examined in
this Sub-section. Following the work in Ref. [34], the response of the beam is predicted for
various values of the porosity parameter fp. In Table 7, the dimensionless tip displacements and
rotation of the porous beam with various porosity parameters are given for L/h = 10, VCNT = 0.07,
αF = 0.4, (k1,k2) = (50,0.5), and two values of the end moment, M∗ = 4 and M∗ = 8. The impact
of the porosities on the large deflections is seen from the table, and the higher the porosity
parameter is, the larger the tip rotation the beam has. The effect of the porosities on the large
deformation of the CNTRC sandwich beam can also be seen in Figure 13, where the tip response
and the deformed configurations of the (2-1-2) sandwich beam under a tip moment M∗ = 8
are depicted for L/h = 10, VCNT = 0.07, ξ = 0.4,ζ = 0.7,αF = 0.4, (k1,k2) = (50,0.5) and different
values of the porosity parameter. Figure 13b shows that the beam associated with a higher
porosity parameter deforms more significantly, though the deflection corresponding to M∗ = 8 in
Figure 13a decreases by increasing fp. The increase of the tip rotation by increasing the porosity
parameter as seen in Table 7 also confirms the influence of the porosities on the large deflections
of the beam.
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Figure 13. The tip response and deformed configurations of CNTRC (2-1-2) beam accord-
ing to M∗ = 8 for L/h = 10, VCNT = 0.07, ξ = 0.4, ζ = 0.7, αF = 0.4, (k1,k2) = (50,0.5) and
different values of fp.

5. Conclusions

The large deflections of the CNTRC sandwich cantilever beam partially embedded on a Paster-
nak foundation under the end forces have been studied considering the influence of CNTs ag-
glomeration. The sandwich beam is composed of homogeneous and two face layers made from
a CNT-reinforced composite. Eshelby–Mori–Tanaka model has been applied to predict the ef-
fective moduli of the composite. Based on the first-order shear deformation theory, a total La-
grangian beam element was derived and used to establish the equilibrium equation for the beam.
The Newton–Raphson method was used in conjunction with the arc-length technique to com-
pute the load-displacement curves. The effects of various important factors, including the CNT
volume fraction, CNT agglomeration parameters, porosities, foundation stiffness and support-
ing length on the large deflection response of the beam have been studied in detail. The finding
shows that the sandwich cantilever beam is more conservative for a higher CNT volume fraction
and a longer supporting part. The agglomeration of CNTs has an important role in the behavior
of the sandwich beam, and it not only makes the beam more flexible but also raises the effect of
the shear deformation on the large deflections. It was also shown that the sandwich configura-
tion is important in the behavior of the CNTRC sandwich beam and the symmetric beam tends
to be more conservative than the non-symmetric one.
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Appendix A.

This Appendix lists the coefficients of the internal force vectors and tangent stiffness matrices in
Equations (24), (26) and (27).

(1) Components of the internal force vectors in Equation (24)

f B
uI

=−(
A11ε̂+ A12χ̂

)
cos θ̂+ψA33γ̂sin θ̂, f B

wI
=−(

A11ε̂+ A12χ̂
)

sin θ̂−ψA33γ̂cos θ̂

f B
θI

= l

2
A11ε̂γ̂+ l

2
A12

(
γ̂χ̂− 2

l
ε̂

)
− A22χ̂− l

2
ψA33 (ε̂+1) γ̂

f B
u J

= (
A11ε̂+ A12χ̂

)
cos θ̂−ψA33γ̂sin θ̂, f B

w J
= (

A11ε̂+ A12χ̂
)

sin θ̂+ψA33γ̂cos θ̂

f B
θJ

= l

2
A11ε̂γ̂+ A12

(
l

2
γ̂2 − ε̂

)
+ A22χ̂− l

2
ψA33 (ε̂+1) γ̂

(A1)

and

f F
uI

= l

6
kW

(
2uI +u J

)+kG
(
θ̂− γ̂)

sin θ̂, f F
wI

= l

6
kW

(
2w I +w J

)+kG
(
θ̂− γ̂)

cos θ̂

f F
θI

= lkG
(
θ̂− γ̂)(

1− l

2
ε̂

)
, f F

u J
= l

6 kW
(
uI +2u J

)+kG
(
θ̂− γ̂)

sin θ̂

f F
w J

= l

6
kW

(
w I +2w J

)−kG
(
θ̂− γ̂)

cos θ̂, and f F
θJ

= f F
θI

(A2)

(2) Coefficients of the tangent stiffness matrices in Equations (26) and (27)

• The diagonal coefficients of the matrix kB
t in (26)

kB
uI uI

= 1

l

(
A11 cos2 θ̂+ψA33 sin2 θ̂

)
, kB

wI wI
= 1

l

(
A11 sin2 θ̂+ψA33 cos2 θ̂

)
kB
θI θI

= l A11

4

[
γ̂2 − ε̂ (ε̂+1)

]− l A12

4

[
(ε̂+1) χ̂+ 4

l
γ̂

]
+ A22

l
+ lψA33

4

[
(ε̂+1)2 −γ2]

kB
θJθJ

= l A11

4

[
γ̂2 − ε̂ (ε̂+1)

]− l A12

4
(ε̂+1) χ̂+ A22

l
+ lψA33

4

[
(ε̂+1)2 −γ2]

(A3)

and kB
u J u J

= kB
uI uI

, kB
w J w J

= kB
wI wI

.

• The non-diagonal coefficients of the stiffness matrix kB
t in (26)

kB
uI wI

= A11

l
sin θ̂cos θ̂− ψA33

l
sin θ̂cos θ̂

kB
uI θI

= A11

2

(
ε̂sin θ̂− γ̂cos θ̂

)− A12

2l

(
χ̂sin θ̂+2cos θ̂

)+ ψA33

2

[
γ̂cos θ̂− (ε̂+1)sin θ̂

]
kB

wI θI
=− A11

2

(
γ̂sin θ̂+ ε̂cos θ̂

)+ A12

2l

(
l χ̂cos θ̂−2sin θ̂

)+ ψA33

2

[
γ̂sin θ̂+ (ε̂+1)cos θ̂

]
kB

wI θJ
=− A11

2

(
γ̂sin θ̂+ ε̂cos θ̂

)+ A12

2l

(
l χ̂cos θ̂+2sin θ̂

)+ ψA33

2

[
γ̂sin θ̂+ (ε̂+1)cos θ̂

]
kB

uI θJ
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2

(
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2l

(
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2

[
γ̂cos θ̂− (ε̂+1)sin θ̂

]
(A4)

and
kB

uI u J
=−kB

uI uI
, kB

uI w J
=−kB

uI wI
, kB

uI θJ
= kB

uI θI
, kB

wI w J
=−kB

wI wI
,

kB
wI θJ

=−kB
uI θI

, kB
u J w J

= kB
uI wI

, kB
u JθJ

=−kB
uI θI

, kB
w JθJ

=−kB
wI θJ
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• The coefficients of the stiffness matrix kF
t in (27)

kF
uI uI

= l

3
kW + 1

l
sin2 θ̂kG , kF

wI wI
= l

3
kW + 1

l
cos2 θ̂kG , kF

θI θI
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4
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uI wI

=− 1
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uI θI

=− 1
2
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2
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and
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u J u J
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uI u J
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uI u J
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w J w J
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wI w J
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w J w J

, kF
θI θJ
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u J w J
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