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Recollement pour les équations de contrainte d’Einstein
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Abstract. Initial data for the Einstein equations must satisfy a system of nonlinear partial differential equa-
tions, the Einstein constraint equations. Constructing interesting solutions of the constraint equations can
then lead to interesting spacetime evolutions. Over the past twenty-five years, various gluing methods to con-
struct solutions of the constraints have shed light on some long-standing questions. In this article we survey
some of the methods and results achieved to date.

Résumé. Les données initiales des équations d’Einstein doivent satisfaire un système d’équations aux dé-
rivées partielles non linéaires, les équations de contrainte d’Einstein. La construction de solutions intéres-
santes des équations de contrainte peut alors conduire à des évolutions intéressantes de l’espace-temps. Au
cours des vingt-cinq dernières années, diverses méthodes de recollement permettant de construire des solu-
tions des équations de contrainte ont permis de faire la lumière sur certaines questions de longue date. Dans
cet article, nous passons en revue quelques-unes des méthodes et des résultats obtenus à ce jour.
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1. Introduction and preliminaries

The foundational work of Yvonne Choquet-Bruhat1 firmly established that the Einstein field
equation can be treated as an evolution problem [5]. The initial data for the vacuum equation are
given by a Riemannian manifold (M , g ) along with a symmetric (0,2)-tensor K , that determine
a vacuum spacetime, i.e. a time-orientable Ricci-flat Lorentzian manifold (S , ḡ ) in which M is a
Cauchy surface embedded with first and second fundamental forms g and K , which play the role
of the initial metric and its time derivative (in appropriate coordinates). In the non-vacuum case,
the initial data will be augmented with data for whatever physical fields are being modeled.

The initial data g and K are not freely prescribed, but must adhere to the Gauss and Codazzi
equations relating the ambient geometry to the fundamental forms. The Einstein equation
involves the Ricci tensor, and so from appropriate traces of the Gauss and Codazzi equations
along with the Einstein equation, one deduces a coupled, nonlinear underdetermined elliptic
system for g and K , the exploration of which has provided a rich playground for mathematical
physicists and geometric analysts, with deep connections to topology and geometry, in part
forged by advances in the theory of partial differential equations. Robust methods to construct

1For her exposition on this, see her book [1], the classic survey articles [2, 3], as well as [4] for her comments on some
of the history of the problem.
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solutions of the constraint equations allow for constructions, theoretical and numerical, of
spacetimes. Understanding the solution space to the constraint equations is thus intimately tied
to an understanding of the solution space of the Einstein field equation, and a parametrization
of the solution space of the constraints would ostensibly isolate the true gravitational degrees of
freedom [6], cf. [7].

A fulsome account of the work on the constraint equations, which one can trace back at least
eighty years to classical work of Lichnerowicz [8], is well beyond the scope of this article. Rather,
we focus on some relatively recent work of the past twenty-five years on constructing solutions
of the Einstein constraint equations by gluing techniques, discussing some of the methods and
applications without giving an exhaustive account. Gluing techniques can be used to address the
following natural question: given multiple solutions of the constraint equations, is there another
solution (on a connected manifold) which contains chosen regions from the given initial data
sets (at least approximately)? There is of course the related question about spacetimes: given
regions of multiple spacetimes solving Einstein’s field equation, is there a (connected) spacetime
satisfying the field equation that contains them?

From the initial data point of view, if one can construct an initial data set which contains re-
gions obtained from several spacetimes, the resulting evolution of the initial data will contain re-
gions isometric to ones in the given spacetimes, by finite speed of propagation. That said, one
might naturally try to glue spacetime regions together directly, or at least utilize the Lorentzian
structure in the construction. In this direction we mention two different recent series of works.
Hintz constructs spacetimes with multiple small black holes by a gluing construction using geo-
metric singular analysis (pseudodifferential b-calculus) techniques (see [9], cf. [10]). In a differ-
ent direction, Aretakis, Czimek and Rodnianski achieve a suite of gluing results by characteristic
gluing, which leverages the null structure of spacetime, as surveyed with additional references
in [11]. While these works are interesting, we do not have the time in the present short survey
article to do justice to either, and we will focus on constructing solutions of the constraint equa-
tions on a spacelike hypersurface (though we do mention some compelling results obtained by
the methods of [11] in Section 4 below).

1.1. Overview of some spacelike gluing results

A natural interpretation of the above aim of gluing is that of constructing initial data for a
relativistic N -body problem [12], including, say, multi-black hole spacetimes. Such constructions
have been achieved in earlier works [13–15], while more recent works have used gluing to
construct more exotic such initial data sets, such as the N -body configurations with gravitational
shielding from [16], multi-localized initial data sets [17], as well as initial data with small black
holes [10]. Naturally, the issue of the two-body and N -body problems in general relativity dates
back a century (see [8, 18, 19] and references therein) and various sorts of approaches have been
taken to produce initial data to model such spacetimes.

Connected sum construction of initial data was achieved by Isenberg, Mazzeo and Pollack
in [20] by the conformal method, and Chruściel and Delay [21] observed how to combine confor-
mal and localized gluing techniques (introduced in [22,23]) to perform connected sum construc-
tions which leave the data unperturbed outside a connecting neck region (cf. [24, 25] for related
results, and [26, 27] for analogous surgery results). Of particular note, [28] established that there
is no topological obstruction to admitting an asymptotically Euclidean solution of the vacuum
Einstein constraint equations: for a closed manifold Σ and p ∈ Σ, there is a vacuum asymptot-
ically flat solution of the Einstein constraints on Σ \ {p}. An intriguing implementation of the
conformal gluing method was employed by Stavrov in [29] to construct families of initial data to
model point particle limits in general relativity (cf. recent work of Hintz [9, 10] along these lines).
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Gluing constructions have also shed light on the asymptotics of solutions of the constraints.
The original motivation for the construction in [22] was to understand to what extent the
asymptotics determine the interior of a vacuum initial data set, in particular how special are
Schwarzchild asymptotics. That initial work showed that any compact subset of any time-
symmetric asymptotically flat vacuum initial data set is also contained in a vacuum time-
symmetric initial data set which is exactly Schwarzschild near infinity. While that in itself may
seem intriguing, one immediately turns to the spacetime evolution of such data. To be precise,
the question open at the time was whether there exist any nontrivial asymptotically simple vac-
uum spacetimes (sometimes called purely radiative spacetimes), a question answered in the af-
firmative in [30, 31] by constructing suitable families of initial data which are Schwarzschild with
small mass in a uniform neighborhood of infinity, evolving to an asymptotically hyperboloidal
hypersurface, and then invoking the work of [32] for the asymptotics of the evolution.

Another question that has been addressed by gluing methods is that of gravitational shielding.
A remarkable result was obtained by Carlotto and Schoen [16], who showed that any region of any
vacuum initial data set can be localized within a conical region in a vacuum initial data set which
is flat outside the conical region. While Bartnik’s parabolic quasi-spherical construction [33] pro-
duced examples of nontrivial asymptotically flat vacuum initial data (time-symmetric, so scalar-
flat) containing a flat region, their localized gluing construction produced striking examples with
non-compact flat regions. The results in [16] were proven in spirit along the lines of [21–23], with
a number additional of technical obstacles to surmount. While the works [21–23] established
that any bounded region in an asymptotially flat vacuum solution can be realized as a subdo-
main in a solution in which each asymptotic end is a slice of a Schwarzschild or Kerr spacetime,
the method of proof requires that the end be tuned appropriately to the given data (in terms of
the asymptotically conserved quantities: ADM energy-momentum, center-of-mass and angular
momentum), whereas the regions in the result of Carlotto and Schoen are glued to flat exteriors
outside the conical regions. In any case, all these results illustrate that unique continuation fails
spectacularly for the vacuum constraints.

In this article we overview aspects of gluing by the conformal method [20] and compare with
the localized approach. While there are many excellent references for the conformal method,
localized gluing constructions are relatively newer, and are still being developed, so we will focus
on some details of the approach to localized gluing that dates back to the works [22, 23]. In
the spirit of “something old and something new”, we illustrate the localized gluing technique
by applying it to the time-symmetric Einstein–Maxwell constraint equations.

1.2. Preliminaries

1.2.1. The Einstein constraint equations

The vacuum constraint equations arise from the following. Consider a spacetime splitting
(S = I × M , ḡ ), with I an interval and (M , g ) a Riemannian hypersurface given as a level set of
the coordinate x0 on I (so ∂/∂x0 is timelike). With G = Ric(ḡ )− (1/2)R(ḡ )ḡ the Einstein tensor,
Gαβnβ does not contain any second time derivatives ḡµν,00 of the metric components, where n is
a timelike unit normal to M . In fact, using the Gauss and Codazzi equations, one obtains, with
G(n, ·) a one-form along M ,

G(n,n) = 1
2 (R(g )−|K |2g + (trg K )2) (1)

G(n, ·) = divg (K − (trg K )g ). (2)

If we consider a cosmological constant Λ, and let GΛ = G +Λḡ , and if T is the stress-energy
tensor, the Einstein equation takes the form GΛ = κT for some constant κ > 0. (In spacetime
dimension four, κ = 8πG/c4.) We observe that µ := T (n,n) is the energy density as measured by
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an observer with four-velocity cn, and c−1 J := −c−1T (n, ·) is corresponding momentum density
one-form. The dominant energy condition that the energy-momentum vector of the matter fields
is causal future-pointing is given by µ≥ |J |g . Combining the Einstein equation with (1)–(2) yields
the Einstein constraint equations

1
2 (R(g )−|K |2g + (trg K )2) = κµ+Λ (3)

divg (K − (trg K )g ) = κJ . (4)

In the vacuum (T = 0) time-symmetric (K = 0) case, the system reduces to the constant scalar
curvature (CSC) condition R(g ) = 2Λ. Unless noted, we take Λ = 0, in which case the time-
symmetric vacuum constraints reduce to R(g ) = 0.

For a non-vacuum example, consider initial data for the time-symmetric Einstein–Maxwell
equations, often given as a Riemannian metric g and an electric field E . The constraint (3)
becomes R(g ) = 2κ|E |2g . In any source-free region, we must also have divg E = 0. For simplicity
we will treat E as a vector field and study the map Ψ(g ,E) = (R(g )−2κ|E |2g ,divg E). We note that
it could be more natural to specify the field through a differential form ηE , to which a metric g
would associate a vector field Eg in such as way that the condition divg Eg = 0 would follow for
any g in a source-free region. We will see the echo of this in the gluing method below. For further
exploration of specifying the initial data for fields, see [34].

We will focus on the constraints in dimension n = 3, though much of what is discussed below
extends readily to n ≥ 3. We employ the Einstein summation convention of summing over
repeated upper and lower indices; a semicolon denotes a covariant derivative, and a comma
denotes a partial derivative.

1.2.2. Some classical solutions

For later use, we recall a family of time-symmetric solutions to the Einstein–
Maxwell constraint equations, each obtained from data on a spacelike hypersurface in a
Reissner–Nordström spacetime: gRN = (1 − (2m/r ) + (Q2/r 2))−1 dr 2 + r 2 g̊S2 , with ERN =
(Q/r 2)

√
1− (2m/r )+ (Q2/r 2)(∂/∂r ) =: (Q/r 2)er , where g̊S2 is the unit round metric. Since

R(gRN) = 2Q2/r 4, we see the units are such that κ= 2. We will just employ the data on an asymp-
totic end r = |x| ≫ 1, and so we do not pose any relation between m and Q, though that could
affect the Reissner–Nordström spacetime structure.

For Q = 0, the Reissner–Nordström metric reduces to the Schwarzschild metric, which has
vanishing scalar curvature. We write the metric in isotropic form, and we can also re-center
the coordinates to obtain (g m,c

S )i j (x) = (1 + m/(2|x − c|))4δi j . A metric gi j = u4δi j which is
conformally Euclidean has vanishing scalar curvature precisely when u is Euclidean harmonic.
If we require that u tends to 1 at infinity, to impose asymptotically Euclidean geometry, then u is
either identically 1 or it must have singularities, such as for the Schwarzschild metric with m ̸= 0,
and for the following family of solutions.

As recalled earlier, it has been a longstanding question as to how to construct solutions to
the Einstein equations to model the interaction of multiple bodies. A classical solution of the
vacuum constraints is given by vacuum Brill–Lindquist metrics (see [35,36], cf. [8]): given a finite
set p= {p1, . . . , pN } of N points in R3 and m= (m1, . . . ,mN ) ∈RN , we consider the metric

(gm,p
BL )i j (x) =

(
1+

N∑
k=1

mk

2|x −pk |

)4

δi j (5)

for x ∈ R3 \ p. This metric is conformally Euclidean with harmonic conformal factor, and thus
has vanishing scalar curvature, providing a time-symmetric vacuum initial data set. If we take all
mk > 0, then the data has N + 1 asymptotically flat ends. By an ingenious use of the method
of images, Misner [37] modified the conformal factor, incorporating an infinite sequence of
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inversions, to produce a scalar-flat metric with two asymptotically flat ends and N Einstein–
Rosen bridges, hence obtaining a type of gluing construction by conformal means. In another
direction, one can modify the Brill–Lindquist data by localized gluing techniques to produce data
on R3, even allowing p to be infinite; see [17] along with comments in Section 4 below.

1.2.3. The conformal method

The vacuum Einstein constraints form an underdetermined elliptic system for g and K . The
conformal method specifies some parts of g and K , leaving a determined elliptic system. This
approach can be traced back to2 Lichnerowicz [8], Choquet-Bruhat [38], York and Ó Mur-
chadha [6,39,40]. The formulation below is especially well suited to the constant mean curvature
(CMC) case with trg K constant3 (for a variation see [40]). It is based on the transverse-traceless
(TT) decomposition of symmetric two-tensors. In this approach, a conformal class C of metrics
is given, say C = [γ]. Furthermore a scalar function τ and a (0,2)-tensorσ are given on M n , where
σ is TT with respect to γ: divγσ= 0, trγσ= 0.

From this data we seek a scalar function u > 0 and a vector field W such that, with

g = u
4

n−2 γ, K = u−2(σ+LγW )+ τ

n
u

4
n−2 γ,

where (LγW )i j = Wi ; j +W j ;i − (2/n)(divγW )γi j is the conformal Killing operator, (g ,K ) satisfies
the vacuum constraint equations, which take the form

∆γu − n −2

4(n −1)
R(γ)u + n −2

4(n −1)
|σ+LγW |2γu− 3n−2

n−2 − n −2

4n
τ2u

n+2
n−2 = 0 (6)

divγ(LγW )− n −1

n
u

2n
n−2 dτ= 0. (7)

The system is a semilinear elliptic system for (u,W ). In the CMC case (constant τ), the system de-
couples: the second equation becomes divγ(LγW ) = 0. On a closed manifold, or asymptotically
flat manifold with W decaying suitably near infinity, multiplying by W and integrating by parts
gives LγW = 0, i.e. W is a conformal Killing field. In this case W does not affect K or the
equation for u, and we can just take W = 0 (which is the only option in the absence of conformal
symmetries). Then the conformal method comes down to solving the Lichnerowicz equation

∆γu − n −2

4(n −1)
R(γ)u + n −2

4(n −1)
|σ|2γu− 3n−2

n−2 − n −2

4n
τ2u

n+2
n−2 = 0.

As noted earlier, we will focus on n = 3, in which case the above becomes

∆γu − 1
8 R(γ)u + 1

8 |σ|2γu−7 − 1
12τ

2u5 = 0. (8)

1.2.4. The conformal method and asymptotics

When gluing initial data with the conformal method (see Section 2), the resulting data can be
made arbitrarily close to the given data outside the gluing region. A similar scenario arises when
using conformal perturbations to arrange conformally Euclidean, or more generally harmonic,
asymptotics. Indeed Schoen and Yau [42] showed that a scalar-flat asymptotically flat metric can
be approximated by one which is conformally Euclidean outside a compact set, and so that the
ADM energy is perturbed by an arbitrarily small amount. The method of proof is straightforward:
along a large annular region, patch the original metric to a Euclidean metric near infinity; for
large enough annuli, we get approximately scalar-flat data. One then employs a conformal factor
to reimpose the vacuum constraint, with appropriate estimates on the size of the perturbation of
the metric and the ADM energy. Such an approximation result is useful for proving the Positive

2One can find an early analysis of the conformally Euclidean case in [18], which also includes some early study of
static spaces and asymptotically Euclidean spaces; see [4] for more comments on the history.

3See [41], cf. [7, 34], for discussion of the conformal method outside the vacuum CMC regime.
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Energy Theorem [43] and the Riemannian Penrose Inequality, since it simplifies the asymptotics
with only a small change to the energy, and Bray termed such metrics harmonically flat at
infinity [44].

An analogous non-time-symmetric version established in [23], harmonic asymptotics, has
also proved useful in this and other contexts [45, 46]. The formulation is a modification of the
conformal method above so that the principal part of the constraints operator in the asymptotic
region is a diagonal Laplacian. The asymptotic form of the data in harmonic asymptotics is

gi j = u4δi j , Ki j = u2
(

Xi , j +X j ,i − 1
2 X k

,kδi j

)
. (9)

This form is usually written in terms of the momentum tensor π= K −(trg K )g , in which case this
becomes πi j = u2(Xi , j +X j ,i −X k

,kδi j ).
The proof for harmonic asymptotic approximation of asymptotically flat initial data sets is

similar to the time-symmetric case. Given asymptotically flat data (g ,K ), smoothly patch the
metric to Euclidean while cutting off K to zero, over a large annular region R < |x| < 2R, with the
resulting data (ĝ , π̂) (a family of data depending on R). Let (Lg X )i j = Xi ; j + X j ;i − (divg X )gi j .
One seeks to reimpose the constraints and obtain harmonic asymptotics by considering data of
the form ḡ = u4 ĝ and π̄= u2(π̂+Lĝ X ), or K̄ = u2(K̂ +Lĝ X +(1/2)(divĝ X )ĝ ). Observe that it is not
the conformal Killing operator L ĝ X that appears here, in contrast to the standard formulation of
the conformal method. In any case, (ĝ , K̂ ) is an approximate solution of the vacuum constraints
(better for larger R), and one seeks to perturb to an exact solution, for which one considers the
map

(u, X ) 7→ T (u, X ) =
(
R(ḡ )−|K̄ |2ḡ + (trḡ K̄ )2,divḡ (K̄ − (trḡ K )ḡ )

)
.

Outside a compact set, i.e. for |x| > 2R, the vacuum constraints T (u, X ) = 0 can be written in
Cartesian components as (omitting metric subscripts for the Euclidean metric)

8∆u = u
(−|L X |2 + 1

2 (tr(L X ))2) , ∆X i =−4u−1u, j (L X ) j
i +2u−1u,i tr(L X ). (10)

Solutions in spaces with suitable decay for u −1 and X will admit partial expansions of the form
u(x) = 1+ (a/|x|)+O(|x|−2), and X i (x) = (bi /|x|)+O(|x|−2). Using (9), one finds the ADM energy
is 2a, and the linear momentum is P i =−(1/2)bi .

The linearization of T (u, X ) at (1,0) is readily found to be Fredholm of index zero between
appropriate spaces [23], of which (10) is certainly indicative. The possible existence of a finite-
dimensional cokernel is accommodated by finding a complementary finite-dimensional space
of compactly supported tensors, and showing that one can find (h,k) near (0,0) in this comple-
menting space along with (u, X ) close to (1,0) (for large R), such that (ḡ +h, K̄ +k) solves the vac-
uum constraints. It can also be shown that the energy and linear momentum can be perturbed
an arbitrarily small amount in this construction [23].

In a certain sense, these approximation constructions establishing that a kind of asymptotic
behavior is suitably dense can be construed as a type of gluing construction, gluing a given
interior to an exterior end in a certain family. Good approximate solutions form a family
parametrized by R, which can be corrected with suitable perturbations. In this case the family
of exterior data, either the harmonically flat metrics, or more generally data with harmonic
asymptotics, is a large family, as compared to a data like the Schwarzschild family, parametrized
by m and c. Just as in the conformal gluing we recall below, the given data is perturbed a small
(for large R) amount.

Harmonic asymptotics yield a particularly convenient form of the asymptotics for the energy
and momenta. For some other applications, one might want to make controlled construction of
solutions of the constraints with more general asymptotics. For instance, recent work of Fang,
Szeftel and Touati [47, 48] constructs suitable classes of vacuum initial data compatible with
the stability results for Minkowski spacetime and for black hole stability. The basic approach
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is to start with an approximate solution with a desired asymptotic behavior and then perturb
to a solution of the constraints, with estimates on the perturbation which ensure the desired
decay rate. The perturbation is as above, utilizing a conformal change of metric, together with
a perturbation of the momentum tensor of the form LγX (for a suitable metric γ), plus a
complementing compactly supported perturbation.

1.2.5. Remarks on localized deformations

A fundamental issue for constructing solutions to the constraints by gluing methods is how to
obtain controlled perturbations of the constraints map (where π= K − (trg K )g )

(g ,π) 7→Φ(g ,π) := (R(g )−|K |2g + (trg K )2,divgπ). (11)

As recalled above, modifying data with a suitable conformal transformation has proven fruitful.
Since a conformal factor u solves an elliptic equation, we do not expect to be able to effectively
contain the support of u−1. With the linearization stability results of Fischer and Marsden [49,50]
in mind, one can naturally move outside the conformal regime and consider a general form
of perturbations, modifying (g ,π) to (g + δg ,π+ δπ). The vacuum constraints then give an
underdetermined elliptic system for the perturbations (δg ,δπ). This freedom is what has been
employed in [22, 23] and numerous subsequent works to achieve more direct control on the
support of the deformation tensors.

Of course, the analysis will focus on the linearized constraints operator, which morally speak-
ing should be locally surjective when the formal adjoint of the linearization has trivial kernel.
The presence of nontrivial kernel indicates symmetries in the spacetime evolution of the data, as
in [51], so that except in special situations, we expect to be able to effectively perturb the con-
straints operator. That said, in many gluing constructions, the approximate solution approaches
a special configuration which admits symmetries, and this requires some extra care to handle.

To make this precise, we consider the linearization and formal L2-adjoint for the scalar
curvature and vacuum constraints operators. The well-known formulas for the linearization of
the scalar curvature operator and its adjoint are given by

DRg (h) =−∆g (trg h)+divg divg h −h ·g Ric(g ), DR∗
g ( f ) =−(∆g f )g +Hessg f − f Ric(g ). (12)

At a Ricci-flat metric, an element of the kernel of DR∗
g is precisely a function f with vanishing

Hessian, which in the Euclidean case means f is a constant plus a linear combination of the
Cartesian coordinate functions x1, x2, x3.

While the formulas for the linearization of Φ and its formal adjoint are straightforward to
compute in the general case, they simplify tremendously at the flat data, about which we will
be perturbing. Let g̊ be the Euclidean metric on R3. If we let DΦ̊= DΦ(g̊ ,0), we find from (11)

DΦ̊(h,ω) = (DRg̊ (h),divg̊ω), DΦ̊∗( f , Z ) =
(
DR∗

g̊ ( f ),− 1
2 LZ g̊

)
,

where (LZ g )i j = Zi ; j + Z j ;i is the Lie derivative, so that at g̊ in Cartesian coordinates, we have
(LZ g̊ )i j = Zi , j + Z j ,i . Now, LZ g = 0 precisely for a Killing vector field Z , which at g̊ must be a
linear combination of the generators of translations and rotations. Thus the kernel of DΦ̊∗ gives a
ten-dimensional space of potential obstructions to localized gluing constructions for the vacuum
Einstein equations, near Minkowskian initial data. To accommodate for this, we glue to model
families of solutions that are governed by ten parameters which can cover this approximate
cokernel, such as the Kerr family of asymptotically flat initial data (see, e.g. [21, Appendix F]). We
will see in Section 3 below how the mass and center-of-mass parameters can be used to handle
the kernel of DR∗

g̊ , while in the general case, the linear and angular momentum parameters
correspond to the translational and rotational Killing fields [21,23]. In general the kernel elements
of DΦ∗

(g ,π) are related to spacetime symmetries [51], and are called Killing Initial Data.



36 Justin Corvino

2. Gluing by the conformal method

We now discuss the connected sum construction of Isenberg, Mazzeo and Pollack [20]. We
start with solutions of the vacuum constraints on manifolds M1 and M2 with constant mean
curvature τ, given on each as a Riemannian metric γ j , and a TT tensor µ j with respect to γ j , so
that the second fundamental form is given K j = µ j + (τ/3)γ j (recall that we consider dimension
three).

To construct a connected sum M = M1♯M2 of disjoint manifolds M1 and M2, one removes a
ball around points p1 ∈ M1 and p2 ∈ M2 and identifies the union of the complements along the
boundary spheres (the construction could also be applied where p1 and p2 are points on the
same manifold, corresponding to adding a handle). We seek to construct a family of solutions on
M1♯M2, such that for any compactly contained domains away from p1 and p2, there are solutions
in the family arbitrarily close to the original data. The approximate solutions are obtained
using conformal blowups of M1 \ {p1} and M2 \ {p2}, producing solutions with asymptotically
cylindrical ends. The connected sum is then performed by cutting off far down on each cylinder
and making appropriate identifications. We assume that K j is nontrivial, and we also make the
nondegeneracy assumption that there are no nontrivial conformal Killing vector fields on M j that
vanish at p j .

In normal coordinate neighborhoods U j ∋ p j around each point, the metric takes the form
γ j = dr 2

j + r 2
j h j (r j ), where h j gives a family of metrics on S2, with h j (0) = g̊S2 the unit round

metric. For j = 1,2, let ψ j be a positive smooth function which is identically one on most of M j ,
and which is r 1/2

j near each p j , say for r j < r̊ , and withψ j = 1 outside of r j < 2r̊ (take log(r̊−2) > 1).

With the change in radial coordinate t j =− logr j , we find ψ−4
j γ j = dt 2

j + g̊S2 +O(e−2t j ) [25]. One
introduces a large parameter T ≫−2log r̊ > 1 to specify how far along each neck we go before
transitioning smoothly to an exactly cylindrical metric γ̊ = ds2

j + g̊S2 . Indeed with coordinate

s j =−log(r j /r̊ )−(T /2), we haveψ−4
j γ j = ds2

j +g̊S2+e−T e−2s j r̊ 2ĥ j , and we can smoothly transition

in the region (−1,−1/2)×S2 to the exactly cylindrical metric on (−1/2,∞)×S2. We appropriately
form a quotient along the cylindrical pieces (−1/2,1/2) ×S2 where the change of coordinates
identifies s1 with −s2; note that s j = 0 where r j = r̊ e−T /2, while s j = −T /2 where r j = r̊ . With
s = s1 for s ≤ 0 and s = −s2 for s ≥ 0, then on CT

∼= [−T /2,T /2] ×S2, the metric is γT =
ds2 + g̊S2 +e−T cosh(2s)ĥT , where ĥT and its covariant derivatives with respect to the cylindrical
metric are bounded.

We have now put a metric on the connected sum, patching together the conformal rescalings.
Observe that ψ2

jµ j is TT for ψ−4
j γ, and just like for γT , we can patch together the conformally

rescaled TT-tensors along the cylinder, to obtain an approximate solution µT . We want to con-
formally rescale appropriately to get a suitable approximate solution to the constraint equations.
To do this, we patch the conformal factors ψT := χ1,Tψ1 +χ2,Tψ2, in such a way that ψT is the
sumψ1+ψ2 inside the region corresponding to [−(T /2)+1,(T /2)−1]×S2, i.e. most of CT . In this
region, then

ψT = r 1/2
1 + r 1/2

2 = (r̊ e−s− T
2 )1/2 + (r̊ es− T

2 )1/2 = 2r̊ 1/2e−
T
4 cosh

( s

2

)
.

In the exactly cylindrical piece −1/2 < s < 1/2, ψ4
TγT is readily seen to have scalar curvature zero.

By rotational symmetry, then, it is exactly Schwarzschild in this region, with mass 2r̊ e−T /2. Thus
for T large, we have a connected sum with the middle of the neck being a neighborhood of the
very small horizon sphere.

From here, one can first modify µT to a γT -TT tensor µ̃T = µT −σT , with the perturbation
σT which is globally small, with norm exponentially decaying in T [20, Proposition 5]. This step
employs the conformal Killing operator, and this is where the nondegeneracy assumption is used.
The proof is interesting and nontrivial, but we focus on the Lichnerowicz operator here for the
sake of brevity, noting its role in constant scalar curvature gluing (see, e.g. [25]).
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Having sorted out µ̃T , one then solves the Lichnerowicz equation

NT (u) :=∆γT u − 1
8 R(γT )u + 1

8 |µ̃T |2γT
u−7 − 1

12τ
2u5 = 0.

We make some remarks on the proof.
First, ψT can be used as an approximate solution, since one can bound ∥NT (ψT )∥C k,α ≤

C e−T /2, where C is independent of T large [20, Proposition 6], cf. [25, Proposition 4.6]. Indeed
outside of CT , NT (ψT ) = 0. Now, where ψT =ψ1 +ψ2, we have ∆γ̊ψT − (1/8)R(γ̊)ψT = 0 (we note
R(γ̊) = 2 for the cylindrical metric). As γT is approximately cylindrical in [−1,1]×S2, with precise
error estimates, and with corresponding estimates on µ̃T and ψT , we can estimate NT (ψT ) in
this region. The other regions in CT are handled likewise, using that in [−T /2,−1]×S2 we have
NT (ψ1) = 0, and in [1,T /2]×S2 we have NT (ψ2) = 0.

The next step is to get uniform (in T ) bounds on the inverse of the linearization LT = DNT |ψT .
We observe

LT =∆γT − 1
8

(
R(γT )+7|µ̃T |2γT

ψ−8
T + 10

3 τ
2ψ4

T

)
. (13)

Showing that LT is invertible for all T large and bounding the inverse are both handled by
blowup arguments. Indeed, suppose the existence of a sequence Tm ↗ ∞, with supM |ηm | = 1
but LTmηm = 0. By the Schauder estimate and reindexing a subsequence, we can assume
that ηm converges to η in C 2. There are two basic scenarios: either we can also arrange the
subsequence so that sup |ηm | ≥ c > 0 on M1 \ {p1} or M2 \ {p2} (note that (M1♯M2,γT ) contains
more of (M1,γ1)∪(M2,γ2) isometrically as T grows), or ηm converges locally uniformly to zero on
these two pieces and the point where supM |ηm | = 1 is attained travels further down the cylinder.
By translation we can center the supremum point, and obtain a nontrivial bounded η on the
cylinder R×S2, satisfying ∆γ̊η− (1/4)η= 0; this follows from (13) by the estimates of µ̃T and ψT .
As there are no nontrivial such η (by separation of variables or the maximum principle), we have
a contradiction.

Thus we must be in the former case, say η is nontrivial on M1 \ {p1}. In this case, γT converges
to ψ−4

1 γ1, |µ̃T |2γT
converges to ψ12

1 |µ1|2γ1
, so that LT (13) converges to

L̃ =∆ψ−4
1 γ1

− 1
8

(
R(ψ−4

1 γ1)+7|µ1|2γ1
ψ4

1 + 10
3 τ

2ψ4
1

)
.

The conformal Laplacian satisfies a covariance property,

∆ψ−4
1 γ1

η− 1
8 R(ψ−4

1 γ1)η=ψ5
1

(
∆γ1 (ψ−1

1 η)− 1
8 R(γ1)ψ−1

1 η
)

,

while since (γ1,K1 =µ1+(τ/3)γ1) solves the vacuum constraints, we have R(γ1) = |µ1|2γ1
−(2/3)τ2,

and so we see that L̃ η= 0 can be re-written(
∆γ1 −|µ1|2γ1

− 1
3τ

2
)

(ψ−1
1 η) = 0.

The operator (∆γ1 −|µ1|2γ1
− (1/3)τ2) has trivial kernel for nontrivial K1, which we assume. Thus

it admits a positive Green’s function G which has a pole or order r−1
1 at p1, with r1 the distance

to p1. Since |η| ≤ 1 and |ψ−1| ≤ r−1/2
1 , ψ−1η must extend smoothly across p1, and so we conclude

it must vanish, contradicting that η is nontrivial on M1 \ {p1}.
Similar arguments can be used to control the inverse [20, Proposition 8] (cf. [25, 29]). Writing

a Taylor expansion NT (ψT +η) = NT (ψT )+LT (η)+QT (η), one can then show that for large T ,
the following map is a contraction on a suitable ball around 0 with small T -dependent radius in
a Hölder space:

η 7→ −L −1
T (NT (ψT )+QT (η)) =−L −1

T (NT (ψT +η)−LT (η)).

The keys are that ψT is a sufficiently good approximate solution, and there is suitable control on
L −1

T uniform in T large.
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The fixed point ηT furnishes the desired conformal factor ψ̃T = ψT + ηT , and the solution
(ψ̃4

TγT ,ψ̃−2
T µ̃T + (τ/3)ψ̃4

TγT ) of the constraints on M1♯M2. The difference between the solution
and the starting data decays exponentially in T on compact subsets of each M j \ {p j }.

This result gives us a way to combine solutions to the vacuum constraints (or to add a han-
dle to a solution), with the constituent parts approximately represented in the final solution.
There are analogous results in the asymptotically Euclidean and asymptotically hyperboloidal
setting, and an interesting implementation [29] of conformal gluing (including a different
family of approximate solutions) to construct initial data with some features of point particle
solutions.

A natural question to ask is whether and under what conditions one can preserve compact
subdomains in the original data. Results in this direction, see e.g. [21, 24, 25], use localized
deformations, to which we now turn.

3. Localized gluing

In this section we will outline steps to glue an asymptotically flat initial data set across a large
annulus to an initial data set suitably chosen from a given family of initial data. The perturbation
will be localized to the annular region.

To bring the ideas across, we will present a proof sketch of the following. For any R > 0, let
ER = {x ∈R3 : |x| > R}, and let E = E1.

Theorem. Let (g ,E) be asymptoticaly flat, time-symmetric source-free initial data for the
Einstein–Maxwell equations on E , with ADM mass m(g ) ̸= 0. For sufficiently large R, there are
source-free initial data (ḡ , Ē) on E which agree with the given data data on E \ ER , and on E2R

agree with asymptotically flat data from a spacelike slice in a suitable Reissner–Nordström space-
time, with the same electric charge.

The statement is for an asymptotic end (which could be outside nontrivial charge distribu-
tions), whereas if (M , g ,E) comprised a nontrivial complete asymptotically flat solution of the
time-symmetric Einstein–Maxwell constraints, then since R(g ) = 2κ|E |2g ≥ 0, we would have
m(g ) > 0, by the Positive Mass Theorem.

The corresponding theorem for the non-time symmetric case requires the exterior slice to
be chosen suitably in the Kerr–Newman family. For simplicity of exposition, we focus on the
time-symmetric case here. Before we begin, we note that non-vacuum gluing results using the
conformal method have been explored in [52].

We remark that the argument will show the construction works for interior gluing, i.e., the
asymptotic exterior could be taken from the given data, while the interior would then be from
a suitable member of the model family. For example, in the time-symmetric vacuum case, the
interior can be made to be a member of the Schwarzschild family. If this interior solution has
positive mass, then the resulting data will be complete with two asymptotically flat ends and will
contain the Schwarzschild minimal sphere; as the gluing region will be far out in the asymptotic
end, this will be an outermost minimal surface in the end, so the Penrose inequality restricts the
mass based on that of the exterior. In any case, we note that interior gluing has been used for
long-time existence results for the evolution problem [53, 54].

3.1. Proof of the Theorem

The method of proof we follow here is the same as in [22, 23], cf. [21]. We smoothly patch
together the given data to data from a slice in the model spacetime across an annular region
AR = {x : R < |x| < 2R} to form an approximate solution. As R increases, the metric approaches g̊ ,
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where g̊i j = δi j in the asymptotic coordinates, and E tends to zero (in the general case, K also
tends to zero). As such, while the approximation improves with increasing R, it approaches a
solution which admits nontrivial kernel of the formal adjoint of linearization of the constraints.
This finite-dimensional kernel, arising from symmetries, is precisely the obstruction to a local
(and localized) perturbation result, as we now outline.

The first key to achieving localized perturbation in our framework is a weighted elliptic
estimate (17), which in the time-symmetric case derives from an absolute estimate (16) without
boundary terms. The estimates are used to guarantee that the solution obtained lies in an
appropriate weighted space, so that it extends smoothly across AR . Like the conformal method
above, we need to get uniform estimates on a family of linearized operators, but this can only
be done transverse to the finite-dimensional approximate kernel of the adjoint of linearized
operator (see estimate (18) below). The presence of this approximate cokernel for large R leads
us to employ a Lyapunov–Schmidt reduction: we use the weighted linear elliptic estimates and
a Picard-type quasi-Newtonian iteration to solve a nonlinear projected problem that puts the
constraint data into a finite-dimensional space. We handle the obstruction space by choosing a
suitable member of the model family, in this case Reissner–Nordström.

To be precise, we recall the following operator introduced earlier:

Ψ(g ,E) = (R(g )−2κ|E |2g ,divg E).

For a perturbative analysis, we compute its linearization and formal L2-adjoint, for which one
readily finds (and recall (12))

DΨ(g ,E)(h, X ) = (
DRg (h)−4κg (E , X )−2κh(E ,E),divg (X )+ 1

2 d(trg h)(E)
)

,

and hence

DΨ∗
(g ,E)( f ,ψ) =

(
DR∗

g ( f )−2κ f E ♭⊗E ♭− 1
2 divg (ψE)g ,−gradgψ−4κ f E

)
. (14)

These simplify at the flat data, about which we will be perturbing. Let g̊ be the Euclidean
metric on R3, with connection ∇̊. If we let DΨ̊= DΨ(g̊ ,0) with formal L2-adjoint DΨ̊∗, then

DΨ̊(h, X ) = (DRg̊ (h),divg̊ X ), DΨ̊∗( f ,ψ) = (DR∗
g̊ ( f ),−gradg̊ψ).

The obstruction space is given by the elements ( f ,ψ) in the kernel of DΨ̊∗. As observed
earlier, then f must be a constant plus a linear combination of the Cartesian coordinate functions
x1, x2, x3, whileψmust be a constant. The end of the proof will show how to cover these directions
by picking appropriately the parameters (mass, center of mass and charge) of the Reissner–
Nordström data to which we glue, as we will detail in Section 3.1.7.

3.1.1. Weighted spaces

We suppose (Ω, g̊ ) is compact, connected with smooth nonempty boundary ∂Ω. It suffices
for our purpose here to consider Ω to be an annular region. Given N > 0, and 0 < r1 < r0,
we let ρ̃ : R→ R be a smooth nondecreasing function with ρ̃(t ) = 0 for t ≤ 0, ρ̃(t ) = e−N /t for
0 < t < r1, and ρ̃(t ) = 1 for t ≥ r0. We define ρ on Ω by ρ(x) = ρ̃(d(x,∂Ω)), where d(x,∂Ω) is
the g̊ -distance of x to ∂Ω; we choose r0 suitably small, so that in particular ρ is smooth. On an
annular region, ρ decays to zero at the boundary spheres, and is identically 1 near the middle of
the annulus.

Let ∥u∥2
L2
ρ (Ω)

= ∫
Ω |u|2ρdµg̊ , while for k a nonnegative integer, let ∥u∥2

H k
ρ (Ω)

=∑k
ℓ=0 ∥∇̊ℓu∥L2

ρ (Ω).

The resulting Hilbert spaces can in fact can be identified as the closure of C∞(Ω) in the relevant
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norm [23, Lemma 2.1]. Furthermore by [55, Proposition 2.10], upon choosing N suitably large,
there is a constant C > 0 such that for all u ∈ H k

ρ (Ω),

∥uρ1/2∥H k (Ω) ≤C∥u∥H k
ρ (Ω). (15)

As such, for a bounded sequence in H k
ρ (Ω), there is a u ∈ H k

ρ (Ω) and a subsequence ui for which
uiρ

1/2 converges to uρ1/2 in H k−1(Ω) and weakly in H k (Ω), while ui converges weakly to u in
H k
ρ (Ω). We note that for metrics g in a C k (Ω)-bounded set, the norms defined as above but using

the measures dµg and connection ∇g are uniformly equivalent.
The linearized operators enjoy estimates (16)–(17) in these weighted spaces, which are used in

solving the linearized equation variationally (see Section 3.1.4). There are also weighted Hölder
spaces built with the appropriate scaling to capture the interior Schauder estimates (22)–(23)
that follow for the solutions of the linearized equations. These spaces are defined with a natural
scaling compatible with the weight function ρ, and in fact there is a suite of weighted spaces
compatible with different weights ρ. In [22], we first dealt with power decay, so ρ = d N near ∂Ω,
which has a simple weighted estimate. While the exponential weighting was discussed there, the
weighted Hölder spaces used by Chruściel and Delay [21] give a more elegant formulation of the
interior estimates, and allow for various kinds of weights all in one framework.

We follow an equivalent implementation as in [55]. We take a smooth function 0 <φ< 1 with
φ = d 2 near the boundary, and with Bφ(x)(x) ⊂Ω for all x ∈Ω. We let ϕ be of the form ϕ = φrρs ,
with r and s real numbers, and let

∥u∥
C k,α
φ,ϕ(Ω)

= sup
x∈Ω

(
k∑

j=0
ϕ(x)φ j (x)∥∇̊ j u∥C 0(Bφ(x)(x)) +ϕ(x)φk+α(x)[∇̊k u]0,α;Bφ(x)(x)

)
.

Every derivative is matched with a power ofφ, corresponding to ρ̃′(t ) = N t−2ρ̃(t ), and by iterating
this we have |φkρ−1∇kρ| is bounded.

3.1.2. Integral estimates

The key to time-symmetric estimates is that DR∗
g is overdetermined-elliptic. In fact

Hessg f = DR∗
g ( f )− 1

n −1
(trg (DR∗

g ( f ))+ f R(g ))g + f Ric(g ),

from which we immediately see that there is a constant C > 0 such that on any open set Ω,
∥ f ∥H 2(Ω) ≤C (∥DR∗

g ( f ,ψ)∥L2(Ω) +∥ f ∥H 1(Ω)).
With an application of Rellich’s lemma we can replace the right-most norm by ∥ f ∥L2(Ω), and

together with (14) we obtain

∥ f ∥H 2(Ω) +∥ψ∥H 1(Ω) ≤C (∥DΨ∗
(g ,E)( f ,ψ)∥L2(Ω) +∥ f ∥L2(Ω) +∥ψ∥L2(Ω)). (16)

We can replace the above norms with the weighted Sobolev norms by a method used in [22],
namely we can replace Ω with Ωε = {x ∈Ω : d(x,∂Ω) > ε} for small ε > 0, multiply the (squared)
estimates by ρ̃′(ε) ≥ 0 and integrate:∫ ε0

0
ρ̃′(ε)(∥ f ∥2

H 2(Ωε) +∥ψ∥2
H 1(Ωε))dε≤C

∫ ε0

0
ρ̃′(ε)(∥DΨ∗

(g ,E)( f ,ψ)∥2
L2(Ωε) +∥ f ∥2

L2(Ωε) +∥ψ∥2
L2(Ωε))dε.

Integration by parts together with the coarea formula lead to

∥( f ,ψ)∥H 2,1
ρ (Ω) := ∥ f ∥H 2

ρ (Ω) +∥ψ∥H 1
ρ (Ω) ≤C (∥DΨ∗

(g ,E)( f ,ψ)∥L2
ρ (Ω) +∥ f ∥L2

ρ (Ω) +∥ψ∥L2
ρ (Ω)). (17)

We note that (16), and hence (17), holds for any data (g ,E), with a constant uniform for (g ,E) in a
bounded C 2(Ω)×C 1(Ω) neighborhood.
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While we focus on the time-symmetric case, we do note that the estimate

∥Z∥H 1
ρ (Ω) ≤C (∥LZ g∥L2

ρ (Ω) +∥Z∥L2
ρ (Ω))

for Z is more subtle. The proof from [55, Lemma 5.1] is a variation on the argument from [23,
Lemma 4.1]; both use the elementary inequality∆g̊ρ ≥ (1/2)N 2d−4ρ near ∂Ω and an integration-
by-parts argument, and the estimate holds for N sufficiently large. The analogue of (17) for the
full constraints operator follows.

3.1.3. Uniform estimate transverse to cokernel

We can promote (17) to a coercivity estimate, at least in directions transverse to the cokernel
K at flat data. Recall K = span{1, x1, x2, x3}⊕span{1} ⊂ H 2

ρ(Ω)×H 1
ρ(Ω) =: H 2,1

ρ (Ω). Fix a nontrivial
smooth bump function ζ supported on Ω. Let Sg be the L2(Ω,dµg )-orthogonal complement
of ζK .

We claim there is a C > 0 and a C 2(Ω)×C 1(Ω) neighborhood U of the flat data (g̊ ,0) such that
for all data (g ,E) ∈U and all ( f ,ψ) ∈ Sg ,

∥( f ,ψ)∥H 2,1
ρ (Ω) ≤C∥DΨ∗

(g ,E)( f ,ψ)∥L2
ρ (Ω). (18)

The same holds if Sg is replaced by any closed subspace S of H 2,1
ρ (Ω) with S ∩K = {0}.

There are a couple ways one can prove this. For instance, one can argue along the lines of the
proof of [25, Proposition 3.1], establishing the unweighted analogue of (18) onΩε, with a uniform
constant for ε small, and proceed as in the proof of (17). Another approach is to use (17) along
with a standard compactness argument: from a sequence ( fi ,ψi ) ∈ Sgi , with (gi ,Ei ) → (g̊ ,0),
∥( fi ,ψi )∥H 2,1

ρ (Ω) = 1 and ∥DΨ∗
(g ,E)( fi ,ψi )∥L2

ρ (Ω) → 0, one can construct a nontrivial ( f ,ψ) ∈ S g̊ ∩K ,

which furnishes a contradiction. Indeed as noted after (15), there is a ( f ,ψ) ∈ H 2,1
ρ (Ω) such

that, upon re-indexing a subsequence, ( fi ,ψi )ρ1/2 converges to ( f ,ψ)ρ1/2 in H 1(Ω)×L2(Ω). In
particular, ( fi ,ψi ) converges in L2

loc(Ω) to ( f ,ψ), so that DΨ̊∗( f ,ψ) = 0 weakly. Hence ( f ,ψ) ∈K .
Since ( fi ,ψi ) is L2(dµgi )-orthogonal to ζK , ( f ,ψ) ∈ S g̊ . Moreover, since ( fi ,ψi ) → ( f ,ψ) in L2

ρ(Ω),
we see from (17) that ( f ,ψ) is nontrivial, which is a contradiction.

3.1.4. The projected problem

With ζ, K and Sg as above, let Πg be the L2(Ω,dµg )-orthogonal projection to Sg , and let
Π̊ = Πg̊ . For simplicity, we may arrange that ζ is supported where ρ = 1. We study the map
(g ,E) 7→ Π̊(Ψ(g ,E)), with linearization (h, X ) 7→ Π̊(DΨ(g ,E)(h, X )).

The goal is to solveΨ(g ,E) = 0. We start by solving a projected problem:

Π̊(Ψ(g0 +h,E0 +X )) = 0,

where (g0,E0) is close to (g̊ ,0). The linearization of this is

Π̊(DΨ(g0,E0)(h, X )) =−Π̊(Ψ(g0,E0)). (19)

To solve this we consider the functional on H 2,1
ρ (Ω)∩Sg0 given by

G0( f ,ψ) =
∫
Ω

(
1

2
ρ|DΨ∗

(g0,E0)( f ,ψ)|2g0
+Πg0 (Ψ(g0,E0)) · ( f ,ψ)

)
dµg0 .

If G0 is stationary at ( f0,ψ0), the Euler–Lagrange equation

Πg0 (DΨ(g0,E0)ρDΨ∗
(g0,E0)( f0,ψ0)) =−Πg0 (Ψ(g0,E0))

is implied by the following, which holds for all (u, v) compactly supported:∫
Ω

(Πg0 (DΨ(g0,E0)ρDΨ∗
(g0,E0)( f ,ψ))+Πg0 (Ψ(g0,E0))) · (u, v)dµg0 .
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This follows trivially for (u, v) ∈ ζK , while for (u, v) ∈ Sg0 , the leading projection operator in the
above integral equation can be removed, and so it follows by stationarity of the functional at
( f ,ψ) ∈ H 2,1

ρ (Ω)∩Sg0 .
We conclude that Ψ(g0,E0) + DΨ(g0,E0)ρDΨ∗

(g0,E0)( f0,ψ0) ∈ ζK , and so we see that (19) is
solved with (h, X ) = ρDΨ∗

(g0,E0)( f0,ψ0). Moreover, combining (18) with G0( f0,ψ0) ≤ 0 we find

∥( f0,ψ0)∥H 2,1
ρ (Ω) ≤C∥Πg0 (Ψ(g0,E0))∥L2

ρ−1 (Ω) ≤C ′∥Π̊(Ψ(g0,E0))∥L2
ρ−1 (Ω). (20)

3.1.5. Pointwise estimates

The above shows we can solve the desired equation at the linear level, with an integral
estimate. To iterate linear corrections to solve the nonlinear problem, we require a pointwise
estimate of the variational solution, in part to establish the convergence of a quasi-Newtonian
iteration scheme.

The operator ( f ,ψ) 7→ DΨ(g ,E)DΨ∗
(g ,E)( f ,ψ), and in fact for our purposes, the weighted version

( f ,ψ) 7→ ρ−1DΨ(g ,E)ρDΨ∗
(g ,E)( f ,ψ) =: (L11 f +L12ψ,L21 f +L22ψ), (21)

is an elliptic operator of mixed order that admits Douglis–Nirenberg weights [56]: Li j is order
si + t j , where s1 = 0, s2 = −1, t1 = 4, t2 = 3, i.e. L11 is order four, L12 and L21 are order three,
and L22 is order two. For example, at the flat data (g̊ ,0), DΨ̊DΨ̊∗( f ,ψ) = (2∆2

g̊ f ,−∆g̊ψ). The
diagonal terms of (21) have the analogous principal parts, but there are also off-diagonal terms
(though they are small for E small), and terms from the weight, which can in principle blow
up on approach to the boundary at a rate which is a power of d−1. This behavior can be
accommodated in the interior elliptic estimates by a scaling argument, which is efficiently coded
by the weighted Hölder norms introduced earlier. Indeed if we write Li j in local coordinates

as Li j = ∑
|β|≤si+t j

bβi j∂
β, then it is not hard to see that for 0 < α < 1, there is a C > 0 such that

∥bβi j ∥C
−si ,α

φ,φ
si +t j −|β| (Ω) ≤C . We record the following interior Schauder estimate (see [55, Theorem 5.8],

e.g.), with ϕ j =φ(3/2)+4−t j ρ1/2, i.e. ϕ1 =φ3/2ρ1/2 and ϕ2 =φ5/2ρ1/2:

∥ f ∥C 4,α
φ,ϕ1

(Ω) +∥ψ∥C 3,α
φ,ϕ2

(Ω)

≤C (∥L11 f +L12ψ∥C 0,α
φ,φ4ϕ1

(Ω) +∥L21 f +L22ψ∥C 1,α
φ,φ2ϕ2

(Ω) +∥ f ∥L2
ρ (Ω) +∥ψ∥L2

φ2ρ
(Ω)). (22)

We apply this to get a pointwise estimate of ( f0,ψ0), where (h, X ) = ρDΨ∗
(g0,E0)( f0,ψ0) is the

variational solution to (19). The integral terms can be estimated by (20). We can also replace
terms in (22) involving the operator by the their projected values: since ρ = 1 on the support of ζ,

ρ−1DΨ(g0,E0)ρDΨ∗
(g0,E0)( f0,ψ0)−ρ−1Π̊(DΨ(g0,E0)ρDΨ∗

(g0,E0)( f0,ψ0)) ∈ ζK .

Using the fact that ζK is finite-dimensional (so all norms on it are equivalent) and an elementary
compactness argument, one can derive (cf. the proof of [55, Proposition 6.4])

∥ f0∥C 4,α
φ,ϕ1

(Ω) +∥ψ0∥C 3,α
φ,ϕ2

(Ω) +∥( f0,ψ0)∥H 2,1
ρ (Ω)

≤C (∥ρ−1Π̊(Ψ(g0,E0))∥C 0,α
φ,φ4ϕ1

(Ω)×C 1,α
φ,φ2ϕ2

(Ω) +∥ f0∥L2
ρ (Ω) +∥ψ0∥L2

φ2ρ
(Ω))

≤C (∥Π̊(Ψ(g0,E0))∥C 0,α
φ,φ4ϕ1ρ

−1 (Ω)×C 1,α
φ,φ2ϕ2ρ

−1 (Ω) +∥Π̊(Ψ(g0,E0))∥L2
ρ−1 (Ω)) (23)

where we used the variational estimate (20). We define norms such that we can abbreviate the
above result as

∥( f0,ψ0)∥B4,3 ≤C∥Π̊(Ψ(g0,E0))∥B0,1 . (24)



Justin Corvino 43

3.1.6. Iteration

If we let (h0, X0) = ρDΨ∗
(g0,E0)( f0,ψ0) and define

∥(h, X )∥B2,2 = ∥(h, X )∥C 2,α

φ,φ
7
2 ρ

− 1
2

(Ω) +∥(h, X )∥L2
ρ−1 (Ω),

it follows from (24) that

∥(h0, X0)∥B2,2 ≤C∥( f0,ψ0)∥B4,3 ≤C ′∥Π̊(Ψ(g0,E0))∥B0,1 .

The point is that by design, Π̊(Ψ(g0 +h0,E0 + X0)) is quadratic in (h0, X0), i.e. in Π̊(Ψ(g0,E0)).
We set up a recursion by a quasi-Newtonian scheme to determine a sequence (hm , Xm) =
ρDΨ∗

(g0,E0)( fm ,ψm), satisfying

Π̊(DΨ(g0,E0)ρDΨ∗
(g0,E0)( fm+1,ψm+1)) =−Π̊(Ψ(gm ,Em)),

where gm = g0 +∑m−1
k=0 hk , and Em = E0 +∑m−1

k=0 Xk . Note that the linearization is computed at the
starting data, which we take to be smooth.

For sufficiently small Ψ(g0,E0), the resulting convergence is not quadratic, but it is super-
linear; for more details, see [55, Section 6.3 and Appendix D], cf. [22,23], and [21, Appendix G]. We
obtain gm → g = g0 +h and Em → E = E0 + X , with Π̊(Ψ(g ,E)) = 0, in other words, Ψ(g ,E) ∈ ζK .
Here (h, X ) = ρDΨ∗

(g0,E0)( f ,ψ) ∈B2,2, where f =∑∞
k=0 fk andψ=∑∞

k=0ψk , with ( f ,ψ) ∈B4,3∩Sg0 ,

and ∥(h, X )∥B2,2 ≤ C∥Π̊(Ψ(g0,E0))∥B0,1 . By elliptic bootstrapping on the quaslinear equation
Ψ(g ,E) ∈ ζK , one can show that (h, X ) extends smoothly by zero across ∂Ω.

3.1.7. Handling the cokernel

Thus far we have not glued anything, we have just referenced data near (g̊ ,0) on a domain Ω.
We will now restrict to Ω = A1, the unit annulus. Given asymptotically flat initial data (g ,E)
satisfying Ψ(g ,E) = 0, we use a cutoff function to smoothly patch (g ,E) to (gRN,ERN) in AR ,
obtaining (ĝR , ÊR ). We may assume for exposition that gi j (x) − δi j = O(|x|−1) and E i (x) =
O(|x|−2) (and derivatives used in the proof attain additional decay), though we could formulate
somewhat more generally. For instance, we could pose the starting solution of the constraints is
asymptotically flat of order q , i.e. in asymptotic coordinates |x| > 1, ∂αx (gi j (x)−δi j ) =O(|x|−q−|α|)
and ∂βx E i =O1(|x|−1−q−|β|) for q > 1/2, |α| ≤ 2 and |β| ≤ 1. Notice that R(g ) = 2κ|E |2g =O(|x|−2−2q )
which is integrable, and hence the ADM mass exists. In any case, we consider q = 1 for exposition,
and the interested reader can readily generalize.

The exterior we attach depends on the parameters m, Q, as well as c ∈ R3 about which we
center (gRN,ERN). We then pullback to the unit annulus, as follows: for x ∈ A1, let (g̃R )i j (x) =
(ĝR )i j (Rx), and Ẽ i

R (x) = RÊ i
R (Rx). Observe that (g̃R , ẼR ) differs from (g̊ ,0) in A1 by O(R−1), while

Ψ(g̃R , ẼR )(x) = R2Ψ(ĝR , ÊR )(Rx) = O(R−1). We see the scaling was chosen so that we can solve
the vacuum constraints on A1 and simply scale back. Moreover, for all large R, we can apply
the previous analysis to find (hR , XR ) that extend smoothly by zero outside A1, such that with
(g R ,E R ) = (g̃R +hR , ẼR +XR ), we have Π̊(Ψ(g R ,E R )) = 0.

The final step is to arrangeΨ(g R ,E R ) = 0, for which we recall K = span{1, x1, x2, x3}⊕span{1}.
ProjectingΨ(g R ,E R ) onto the second summand yields (by scaling)

R
∫
A1

divg R
E R dµg R

= R
∫
∂A1

ẼR ·νg̃R dσg̃R =
∫

{|x|=2R}
ERN ·νgRN dσgRN −

∫
{|x|=R}

E ·νg dσg .

Since divg E = 0, the integral
∫

{|x|=R} E · νg dσg is independent of R > 1, and the value is 4πQ.
Thus if we patch the solution to Reissner–Nordström data with charge Q, then we conclude∫
A1

divg R
E R dµg R

= 0. Since divg R
E R = bζ for a constant b, we conclude b = 0, and hence

divg R
E R = 0. The reader might compare this with our earlier remark in Section 1.2.1 about how

to prescribe the electric field data.
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For the rest of the section, we extend the summation convention to all pairs of repeated indices
(even if both are down). Since in Cartesian coordinates, DRg̊ (h) = hi j ,i j −hi i , j j , we see that by
simple expansion of the scalar curvature term∫

A1

(R(g R )−2κ|E R |2g R
)dx =

∫
∂A1

((g̃R )i j ,i − (g̃R )i i , j ) ν̊ j dσ̊+O(R−2)

= R−1
∫
∂AR

((ĝR )i j ,i − (ĝR )i i , j ) ν̊ j dσ̊+O(R−2)

= R−116π(m −m(g ))+O(R−2).

So the projection is to leading order controlled by the mass m of the Reissner–Nordström exterior.
The projection onto the linear elements requires a bit more attention. For the metric g , we

find that for any r > r0 > 1,∫
{r0≤|x|≤r }

xk (gi j ,i j − gi i , j j )dx =
(∫

{|x|=r }
−

∫
{|x|=r0}

)
(xk (gi j ,i − gi i , j )− (δk

i gi j −δk
j gi i ))ν̊ j dσ̊.

Note that in the last terms of the integral on the right, we could replace the terms of the form gℓm

with gℓm−δℓm . Moreover, using the constraint equations, the integrand (gi j ,i j −gi i , j j ) =O(|x|−4),
and so the left hand side is O(logr ).

If instead the above is evaluated at the Reissner–Nordström data, by using the asymptotic
parity and the fact that the center of mass does not appear in the |x|−1 term in the expansion,
we can show that for |c| ≤ r /2 and for m bounded,

∫
{|x|≥r } xk ((gRN)i j ,i j − (gRN)i i , j j )dx = O(r−1),

on the one hand, while on the other

lim
r→∞

∫
{|x|=r }

(xk ((gRN)i j ,i − (gRN)i i , j )− (δk
i (gRN)i j −δk

j (gRN)i i ))ν̊ j dσ̊= 16πmck .

Assembling all of this, noting that the rescaled exterior is a Reissner–Nordström with center
c̃ = cR−1, we obtain∫

A1

xk (R(g R )−2κ|E R |2g R
)dx

=
∫
∂A1

xk ((g̃R )i j ,i − (g̃R )i i , j ) ν̊ j dσ̊+O(R−2)

= R−2
∫

{|x|=2R}
(xk ((gRN)i j ,i − (gRN)i i , j )− (δk

i (gRN)i j −δk
j (gRN)i i ))ν̊ j dσ̊

− R−2
∫

{|x|=R}
(xk (gi j ,i − gi i , j )− (δk

i gi j −δk
j gi i ))ν̊ j dσ̊+O(R−2)

= R−1
(
16πmc̃k +O

(
logR

R

))
+O(R−2). (25)

Thus we get a map

(m, c̃) 7→ R

16π

∫
A1

(1, x)(R(g R )−2κ|E R |2g R
)dx = (m −m(g )+ξ(m, c̃),mc̃ +Ξ(m, c̃)),

where ξ(m, c̃) =O(R−1) and Ξ(m, c̃) =O(logR/R). Moreover, the construction is continuous with
respect to m and c̃, and so ξ and Ξ are continuous; this is fairly straightforward but cumbersome
to prove (see, e.g. [17, Section A.7]). A fixed-point or degree argument can finish the proof from
here. For example, the function

F (m, c̃) =
(
m(g )−ξ(m, c̃),− Ξ(m, c̃)

m(g )−ξ(m, c̃)

)
,

is readily seen to map {(m, c̃) : |m −m(g )| ≤ |m(g )|/2, |c̃| ≤ 1/2} to itself, and the Brouwer fixed
point theorem can then be applied. The fixed point gives parameters that solve the problem.
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We remark that we did not assume the original metric g enjoyed enough parity symmetry to
admit a well-defined center of mass. If this were the case, we could argue that the resulting center
c = Rc̃ is close to that of the original, cf. [22, 23].

3.2. Further applications of deformation

Suppose the starting data, say (g0,E0), is such that DΨ∗
(g0,E0) admits only trivial kernel in Ω.

The same perturbative analysis above can be applied, the only difference is that since there
is no kernel to deal with, we do not need the projected operator, and so the technique yields
a localized deformation result: given a compactly contained subdomain of Ω and sufficiently
small compactly supported S and σ, say, there are h and X which smoothly extend by zero
across ∂Ω with Ψ(g0 +h,E0 +X ) =Ψ(g0,E0)+ (S,σ). Similar comments apply to scalar curvature
deformation [22], as well as for the general constraints case [23], though in the latter case
maintaining the dominant energy condition at the borderline is somewhat subtle [55].

As mentioned earlier, one can combine conformal gluing and localized gluing to obtain
connected sum constructions leaving the original data intact outside the gluing neck [21, 24, 25].
The additional assumption needed, beyond any needed for the conformal gluing, is that the
corresponding operator for the localized gluing problem has trivial kernel. If you have a sequence
of solutions of the nonlinear problem (vacuum constraints, or a scalar curvature equation, say)
which converges to a solution for which the linearized adjoint has trivial kernel in Ω, then you
can glue back in the original data inside some appropriate subdomain, and use the localized
perturbations (unobstructed in this case) to reimpose the nonlinear equation.

For an interesting application combining localized deformations of constraint data with con-
formal deformations, consider an asymptotically flat metric g with nonnegative scalar curva-
ture R(g ), which is not static outside of some bounded region Ω ⊂ R3 (in the sense that the ad-
joint DR∗

g of the linearization of the scalar curvature has trivial kernel in the exterior R3 \Ω). It

is possible using localized deformations to find a compactly contained domain V ⊂ R3 \Ω such
that for S compactly supported in V , and for ε > 0 sufficiently small, there is a metric ḡε with
R(ḡε) = R(g )+ εS, and ḡε − g = O(ϵ) is supported in V . If S ≥ 0 and is nontrivial, one can then
use an elementary conformal transformation to bring the ADM mass down while keeping the
scalar curvature nonnegative, with conformal factor uε > 0 which is one in a neighborhood of
Ω [57]. In terms of asymptotically flat extensions of a given region, then, this shows that un-
less the data outside the region were static in the above sense, there would be extensions with
nonnegative scalar curvature and lower ADM mass, and hence in particular the original con-
figuration does not minimize the Bartnik mass. To summarize, a localized deformation is used
to bump the scalar curvature up (adding energy density) in a compact set outside the region
Ω, which does not change the ADM mass, and then a conformal deformation removes some of
this scalar curvature and in so doing brings down the ADM mass, leaving the original geometry
ofΩ intact.

Similar considerations hold for the general (non-time-symmetric) case, though maintaining
the dominant energy condition seems to require a modification of the constraints operator to
have trivial kernel [55, 58]. An interpretation of the kernel elements for the modified operator,
akin to that in [51], and has been established in the recent work [59] on constraint deformations
and the dominant energy condition, with striking applications to the Bartnik mass.

Another application is the gluing of initial data to interpolate their scalar curvatures [60], or
more generally interpolating (µ, J ) from the constraints operator [55]. As an interesting example,
one can glue initial data for a Kerr solution (including Schwarzschild) to a different Kerr solution
across an annular region where the dominant energy condition can be maintained (see Remark
after Theorem 1.4 in [55]).
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Finally, we discussed earlier the use of the conformal method to achieve solutions with certain
prescribed asymptotic behavior, with stability for the Einstein evolution in mind. Motivated
by questions about the asymptotics posed in [16], the work [61] proceeds to seed the desired
asymptotics, and then correct to solutions of the constraints, but in a different manner than that
of [47, 48], in part employing variational methods of the kind used in [16, 23].

3.3. Alternate approach to solving the projected problem

We review the steps in the procedure shown above for gluing to an asymptotically flat model
family. We start by patching initial data to a member of the model family, with the following
parameters at our disposal: R (measuring the scale), the exterior mass m and center of mass c;
for the Einstein–Maxwell constraints, we match the electric charge Q. For large enough R the
patched data is sufficiently close to flat, and we solve the constraints up to a finite-dimensional
obstruction space. To accomplish this, we iterate linear corrections, in spaces with suitable
decay at the boundary of the annulus. The procedure is controlled using basic elliptic estimates,
both integral and pointwise, and with suitable weights. The integral estimates for the time-
symmetric case are relatively straightforward, while the weighted Schauder estimates follow
from the standard interior estimates and scaling. From here, a topological argument using the
finite-dimensional space of parameters allows us to cover the cokernel and solve the constraints.
Similar comments apply in the non-time-symmetric case.

The main first step, then, is how to solve the relevant linear equations with compact support.
For g = g̊ +h with h small, the scalar curvature to leading order is governed by a divergence:

R(g̊ +h) = DRg̊ (h)+Q(h) = divg̊ divg̊ (h − (trg̊ h)g̊ )+Q(h),

where Q(h) is a combination with bounded coefficients of terms of components of h ⊗∂2h and
∂h ⊗∂h. A similar expansion holds for the constraints operator. At the linear level, then, solving
for a compactly supported perturbation for the constraints map near (g̊ ,0) amounts to being able
to solve suitable divergence equations with compact support.

Recent works [62, 63] have indeed developed this approach near the flat data (with an ex-
tension to data near hyperbolic data obtained in [64]). For instance, to solve a double diver-
gence equation, the authors use a Bogovskǐi-type operator as follows. Let Ω⊂ R3 be an open set,
which for simplicity we take to be convex, and containing an open ball B , and let η ∈ C∞

c (B)
with

∫
R3 η(x)dx = 1. Then for any f ∈ C∞

c (Rn) we define the tensor S f to have Cartesian
components

(S f )i j (x) =
∫
R3

(∫ ∞

|x−y |
η

(
r

x − y

|x − y | + y

)
r 2 dr

)
(x − y)i (x − y) j

|x − y |3 f (y)dy.

If f ∈ C∞
c (Ω), then S f is supported in Ω as well, and moreover, if

∫
Ω f (x)dx = 0 = ∫

Ω xk f (x)dx,
for k ∈ {1,2,3}, then divg̊ divg̊ (S f ) = f . The integral conditions are of course readily seen to be
the orthogonality of f to the cokernel of the double divergence. One can furthermore use a
straightforward finite patching argument to handle more general domains such as the annuli
used in gluing constructions.

As a remark related to this and to the Einstein–Maxwell equations, we recall the well-known
procedure for solving the divergence equation divg̊ X = f , with f and the solution X compactly
supported (see, e.g. [65, Section 1.3]). Of course we assume that

∫
Rn f (x)dx = 0. In one dimension

this is straightforward, as X (x) = ∫ x
−∞ f (t )dt satisfies the required conditions. We can proceed

inductively. Suppose f is compactly supported in D = Dn × I ⊂ Rn+1, where Dn is an open
rectangle in Rn and I ⊂ R is an open interval. For x ∈ Rn , we let F (x) = ∫

R f (x, t )dt . By
assumption, then

∫
Rn F (x)dx = 0, so by induction, there are Y 1, . . . ,Y n supported in Dn with
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∂i Y i (x) = F (x). If θ is supported in I with
∫
Rθ(t )dt = 1, we let X i (x, xn+1) = Y i (x)θ(xn+1) for

i ∈ {1, . . . ,n} and

X n+1(x, xn+1) =
∫ xn+1

−∞
( f (x, t )−θ(t )F (x))dt .

The vector field X with components X 1, . . . , X n+1 is supported in D and has divergence f .
Returning to the constraints, one would still need to solve the nonlinear projected problem,

which is essentially done by an iteration scheme. That said, one major benefit of the Bogovskǐi-
type operator is that regularity is maintained when the data is in appropriate Sobolev spaces, a
question which arises when considering the natural regularity for initial data for the evolution
problem. Moreover the method has been extended beyond the asymptotically flat regime to
give an asymptotically hyperboloidal construction [64], and this is certainly intriguing since the
asymptotically hyperboloidal case proves to be more challenging (for instance the conformal
infinity is not a point as it is for the asymptotically Euclidean case), see for example [66–
68]. The Bogovskǐi-type operator method has also been used for other localization results
such as Carlotto–Schoen type gravitational shielding constructions [62]. Finally, one often
wants to connect the solutions of the Einstein constraints to the spacetimes they determine,
whether in theory or numerically. Numerical implementation of gluing constructions seems
quite challenging, and though there have been a handful of works in this direction [69–72],
alternative methods to do gluing constructions could prove useful if they are more readily
implemented numerically. It is natural to wonder if the Bogovskǐi-type operator approach of [63]
might be helpful in this direction, and likewise for the characteristic gluing constructions of [11]
involving transport-elliptic differential equations, which are of a different character than the
spacelike gluing.

4. Further applications to spacetimes

As mentioned earlier, one of the early goals for the gluing construction was to create vacuum
initial data which would evolve to a vacuum spacetime that is asymptotically simply in the sense
of Penrose conformal compactification, a purely radiative spacetime. Since work of Friedrich [32]
the following was known: if one could construct a family of solutions to the vacuum constraints
with small mass tending to zero, each of which is Schwarzschild in a uniform neighborhood of
spacelike infinity, then for members of the family with sufficiently small mass, the spacetime
evolution would be an asymptotically simple vacuum spacetime. The result in [22] on its own
did not quite give such a construction. The main issue, as one can see from (25), is that as the
mass m tends to zero, the projection onto the linear directions is on the order of mc, and so for
small mass, the center of mass may need to grow larger to accommodate. To control the center,
Chruściel and Delay [30] restrict to a family of parity-symmetric metrics, for which the center
of mass in the construction can always be taken to vanish. In [31], we construct a larger family
of solutions to the constraints with small masses and controlled centers, by using the second
variation of the mass at the Euclidean data [73,74] to control the mass from below in terms of the
center. With either approach, the gluing to Schwarzschild at infinity then finishes the initial data
construction.

In a completely different direction, Li and Yu [75] construct vacuum initial data, free of trapped
surfaces, whose evolution will contain a trapped surface (cf. [76]). Of note, the solution contains
an interior region of Minkowskian data, while the exterior is an exterior of a space-time slice
of a Kerr spacetime. The construction builds on the monumental work of Christodoulou on
formation of trapped surfaces in vacuum [77], from data on null hypersurfaces; in particular,
the construction in [75] uses data given at past null infinity.
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While we do not have the space and time to discuss any details here, there is one feature of
the proof that we want to note. The construction uses gluing to Kerr exterior as in [23], but in a
regime where the limiting data is not Minkowksian, but Kerrian. As such, the cokernel has smaller
dimension than at the flat data, so the gluing is not quite as obstructed. This has been observed in
other places, such as in initial data constructions with positive cosmological constant [78] and in
more recent work on multi-localized initial data [17]. In the latter work, the relevant approximate
kernel is that of a Schwarzschild, which is one-dimensional (for non-zero mass). The motivation
for the multi-localized initial data constructed in [17] comes from the nonlinear stability result of
Anderson and Pasqualotto [79]. The template for the construction is the Brill–Lindquist metric
(5), and we glue ends on around each of the punctures in the set p to make initial data on R3. Of
note is that we are able to handle certain configurations where p is infinite, and in particular, we
construct smooth metrics on R3 with zero scalar curvature and infinitely many minimal spheres,
each of them exterior to all the others.

As remarked earlier, in recent years characteristic gluing has been developed in a series of
papers by Aretakis, Czimek and Rodnianski; for an overview and further references, see [11].
For the characteristic initial value problem, one specifies certain free data on what will be two
transversely intersecting null hypersurfaces in the vacuum spacetime, after which one can appeal
to local well-posedness results for the characteristic initial value problem for the Einstein vacuum
equation [80, 81]. For the characteristic gluing problem, one seeks to glue data on two spheres
along a null hypersurface. As with the spacelike case, the relevant equations that must be
satisfied arise from the vacuum Einstein equation together with the fundamental compatibility
equations for an embedding, in this case the compatibility coming from a double null foliation.
The resulting equations for metric and curvature components are the null structure equations, of
transport-elliptic character along either the ingoing or outgoing null hypersurface. As is noted
in [11], there are obstructions to gluing data from two spheres, such as a monotonicity deriving
from the Raychaudhuri equation.

There are a number of noteworthy applications of their technique, and we just mention a few.
Their methods can recover the asymptotic gluing to Kerr as in [23], as well as localized gluing
from [16], and without loss of decay in the transition region. In [82], the method is employed
to achieve obstruction-free gluing. The asymptotic gluing construction along the lines of [22, 23]
glues initial data with certain energy–momenta to Kerr data with energy–momenta which is close
to the starting one, as we say above, tuned to cover the linear obstruction from the approximate
cokernel. A natural question is whether one can glue pieces from spacetimes whose parameters
are not necessarily close, and results in this direction have been obtained in [82].

The characteristic gluing construction has been employed by Kehle and Unger [83] to perform
a specific event horizon gluing in the context of the Einstein–Maxwell charged scalar field system,
in spherical symmetry. As an upshot, they produce a counterexample to the third law of black
hole thermodynamics.

5. Conclusion

Gluing methods for constructing solutions of the Einstein constraint equations have garnered a
number of noteworthy achievements. While more than twenty years have passed since the gluing
results of [22] and [20], new techniques and applications are still being developed and continue
to highlight the interplay between initial data results and the evolution problem.

Dedication

This article is dedicated to Mme. Yvonne Choquet-Bruhat, for giving so much to so many of us
for so many years. The memory of Yvonne that is emblazoned upon me comes from over twenty
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years ago at a workshop in Cargèse, Corsica, marking the fiftieth anniversary of her landmark
paper on the initial-value problem. Walking back to the seminar room with a colleague, we
encountered Yvonne taking a bit of respite from the sunshine under a tree; while it was not an
apple tree, what sprung to my imagination was the universe (or the spirit of Sir Isaac Newton)
willing one to fall and land in the palm of her hand.
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