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Abstract. The iconic problem of the stability analysis of a vertical cut is revisited after Drucker’s celebrated
contribution, in order to assess the sensitivity of the analysis to the soil tensile resistance. Within the
framework of the exterior approach of the theory of yield design, the same virtual mechanisms as introduced
by Drucker are reconsidered and thoroughly implemented. It is observed that, whatever the value of
the friction angle, the drastic drop of the non-dimensional stability factor observed by Drucker when the
constituent soil does not sustain tension remains confined within the immediate vicinity i.e., a few percent,
of zero tensile resistance. Despite the fact that this conclusion cannot be considered as a final one since it
is only based upon a full implementation of Drucker’s virtual collapse mechanisms, we believe it may bring
some relief as to the reliability of classical analyses that do not take any tension cutoff into account, as a
response to Drucker’s warning about “the consequences of assuming soil unable to take tension”.

Résumé. On reprend le problème de l’analyse de stabilité d’une tranchée verticale après la contribution
célèbre de Drucker, afin d’évaluer la sensibilité de l’analyse à la résistance en traction du sol. Dans le cadre de
l’approche par l’extérieur de la théorie du calcul à la rupture, les mécanismes virtuels introduits par Drucker
sont réexaminés pour une mise en œuvre complète. On observe que, quelle que soit la valeur de l’angle
de frottement, la chute drastique du facteur adimensionnel de stabilité observée par Drucker lorsque le sol
n’offre aucune résistance à la traction reste confinée dans le voisinage immédiat, c’est-à-dire quelques pour
cent, de la résistance nulle en traction. Bien que cette conclusion ne puisse être considérée comme définitive,
puisqu’elle n’est fondée que sur une mise en œuvre complète des mécanismes virtuels introduits par Drucker,
nous pensons qu’elle peut apporter un certain soulagement quant à la fiabilité des analyses classiques en
réponse à l’avertissement de Drucker sur « les conséquences qui pourraient résulter d’une hypothèse de sol
incapable de résister en traction ».
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1. Yield design analysis for materials obeying a Coulomb or Tresca strength criterion
with tension cutoff

Tresca’s and Coulomb’s criteria with zero-tension cutoff were considered by Drucker and Prager
[1, 2] for the stability analysis of a vertical cut, who, implementing a vanishing virtual velocity
field, identified a significant reduction of the critical height of the cut. Salençon and Pecker [3],
Chatzigogos, Pecker and Salençon [4] also referred to a Tresca criterion with zero-tension cutoff
for the determination of the ultimate bearing capacity of shallow foundations under inclined
eccentric loads.
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Figure 1. Coulomb’s criterion with a tension cutoff set at a value T in the (σ,τ) plane of the
Mohr stress representation.

From a general viewpoint, Coulomb or Tresca strength criteria with a zero-tension cutoff,
which include cohesionless Coulomb’s criterion, illustrate the concept of strength criteria for
which the zero-stress state lies on the boundary of the domain of resistance, as considered by
Frémond and Friaa [5]. For such criteria, it turns out that, when implementing the exterior
approach of the Yield design theory, the minimization process often results in “vanishing” virtual
velocity fields, such as those implemented in [2] or [6].

These criteria stand as particular cases of intrinsic curve type strength criteria with a tension
cutoff set at a value T , which may either be zero, with the meaning that no tension can be sus-
tained by the material, or positive allowing some tensile stresses. As a “tribute” to D. C. Drucker
(1918–2001), this contribution is devoted to a more detailed analysis of the minimization process
implemented in [2] for the stability analysis of a vertical cut, in the cases of a Tresca or Coulomb
strength criterion when a positive tension cutoff T tends to zero, in order to assess the sensitivity
of the analysis to the soil tensile resistance.

2. Critical height of a vertical cut

In terms of non-ordered principal stresses, a Coulomb criterion defined by a friction angle φ and
a cohesion C , with a tension cutoff denoted by T such that 0 ≤ T < H =C cotφ, can be written as

f (σ) = Max{σi (1+ sinφ)−σ j (1− sinφ)−2C cosφ,σi −T | i , j = 1,2,3} ≤ 0, (2.1)

as shown in Figure 1.
The exterior approach of the yield design theory states that the rate of work by external forces

exerted on the structure whose stability is under concern shall not be superior to the maximum
resisting rate of work in any virtual velocity field U . Such virtual velocity fields U can be piecewise
continuous and continuously differentiable overΩ, with strain rate d and velocity discontinuities
V across jump surfaces Σwith normal n. The maximum resisting rate of work is then defined as

Pmr(U ) =
∫
Ω
π(d)dΩ+

∫
Σ
π(V ,n)dΣ (2.2)

with

π(d) = Sup{σ : d | f (σ) ≤ 0},π(V ,n) = Sup{V ·σ ·n | f (σ) ≤ 0}, (2.3)
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Figure 2. Virtual collapse mechanism considered in this analysis.

For a Coulomb criterion with tension cutoff as written in (2.1), the expressions for (2.3) can be
found in [7] in the forms

π
φ,C ,T

(d) = +∞ if trd < (|d1|+ |d2|+ |d3|)sinφ

π
φ,C ,T

(d) = C (|d1|+ |d2|+ |d3|− trd) tan(π/4+φ/2)

+ T

1− sinφ
(trd − (|d1|+ |d2|+ |d3|)sinφ) if trd ≥ (|d1|+ |d2|+ |d3|)sinφ

(2.4)

and 
π

φ,C ,T
(V ,n) = +∞ if V ·n < |V |sinφ

π
φ,C ,T

(V ,n) = C (|V |−V ·n) tan(π/4+φ/2)

+ T

1− sinφ
(V ·n −|V |sinφ) if V ·n ≥ |V |sinφ.

(2.5)

Corresponding expressions in the case of a Tresca criterion with tension cutoff are obtained
making φ= 0 in these equations.

The same virtual collapse mechanism as first devised by Drucker and Prager is considered in
this analysis as a 2-dimensional problem, with notations displayed in Figure 2. Non dimensional
factors ε and τ are introduced with the constraints

0 < ε= e/h ≤ tan(π/4−φ/2)/2, (2.6)

0 ≤ τ= T /C < cotφ. (2.7)

It is worth recalling that the material resistance to simple tension (σ1 = ρ,σ2 = 0) is ρ =
2C tan(π/4−φ/2), (Figure 1), so that the reduction factor on the resistance to tension introduced
by the tension cutoff is just

T /ρ = (τ/2)tan(π/4+φ/2). (2.8)

The description of the virtual collapse mechanism in Figure 2 goes as follows.
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Zone 3 remaining motionless, the virtual velocity field U in zone 1 defined as ΩA′B ′B
consists of an anticlockwise rigid body rotational motion, with angular velocity ω about point
Ω. This implies that zone 1 separates from zone 3 with a velocity discontinuity V (y) along the
ξ axis when crossingΩB , whose magnitude is

V (y) =ω[h(1−ε tan(π/4+φ/2))+ y]. (2.9)

The velocity field is continuous across ΩA′ and across ΩA. Complying with these boundary
conditions, the velocity field in zone 2 , delimited by ΩA A′, is defined as follows: referring to
the α and β lines in Figure 2, U is constant along any β line and normal to ΩA′ with magnitude
ωxα, where xα denotes the abscissa of the considered β line alongΩα1. The virtual strain rate in
zone 2 is constant, with principal axes along the ξ and y axes and principal values{

dξξ = (ω/2)tan(π/4+φ/2)

dy y =−(ω/2)tan(π/4−φ/2),
(2.10)

so that

trd = dξξ+dy y =ω tanφ= (|dξξ|+ |dy y |)sinφ. (2.11)

Implementing the yield design exterior approach in such a virtual velocity field calls for the
computation of the rate of work by external forces Pe(ω,γ,h,ε), whereγ stands for the 2-D specific
weight of the soil, and the maximum resisting rate of work Pmr(ω,C ,φ,τ,h,ε), in the whole bulk of
the soil. Since zone 3 remains motionless, it does not contribute to any of these two quantities.

The rate of work by external forces Pe(ω,γ,h,ε) results from the contribution of zones 1 and
2 . With

P1
e(ω,γ,h,ε) = (γωh3ε2/2)(1− (5/3)ε tan(π/4+φ/2)) (2.12)

P2
e(ω,γ,h,ε) = (γωh3ε3/3)tan(π/4+φ/2), (2.13)

Pe(ω,γ,h,ε) results in

Pe(ω,γ,h,ε) = (γωh3ε2/2)(1−ε tan(π/4+φ/2)).2 (2.14)

Since the virtual velocity field is continuous across ΩA and ΩA′, the maximum resisting rate
of work Pmr(ω,C ,φ,τ,h,ε) results from the addition of the maximum resisting rate of work along
ΩB , which can be calculated from (2.5), and the maximum resisting rate of work developed in
zone 2 , to be computed from (2.4) with (2.11):

Pmr(ω,C ,φ,τ,h,ε) = PΩB
mr (ω,C ,φ,τ,h,ε)+P2

mr(ω,C ,φ,τ,h,ε). (2.15)

We get

PΩB
mr (ω,C ,φ,τ,h,ε) = (ωh2/2)C τ(1−ε tan(π/4+φ/2))2 (2.16)

P2
mr(ω,C ,φ,τ,h,ε) =ωh2ε2C tan(π/4+φ/2).3 (2.17)

Finally, implementing the yield design exterior approach results in the fundamental equation
that can be written as

γh

C
≤ 2tan(π/4+φ/2)

1−ε tan(π/4+φ/2)
+τ1−ε tan(π/4+φ/2)

ε2 , (2.18)

to be minimized with respect to ε, with τ as a parameter, within constraints (2.6) and (2.7). The
first term on the right hand side of this inequation, which results from P2

mr(ω,C ,φ,τ,h,ε) and does
not depend on τ, decreases with ε, while the second term, which only depends on τ, increases
when ε decreases. Thus, for any value of τ complying with (2.7), the minimization process will

1Cf. [2, 7].
2Previous works did not require a complete computation of this quantity.
3As in [2, 8].
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Figure 3. (e/h)m tan(π/4+φ/2) as a function of T /ρ.

adjust the geometrical variable ε to the value εm(τ) that yields the best balance between these two
contributions, resulting in the best upper bound for γh/C . Referring to T /ρ = τ tan(π/4+φ/2)/2
instead of τ, Equation (2.18) can be written as

γh

C
tan(π/4−φ/2) ≤ 2

1−ε tan(π/4+φ/2)
+2

T

ρ

1−ε tan(π/4+φ/2)

ε2 tan2(π/4+φ/2)
, (2.19)

or, introducing

E(φ) = ε tan(π/4+φ/2), (2.20)
γh

C
tan(π/4−φ/2) ≤ 2

1−E(φ)
+2

T

ρ

1−E(φ)

[E(φ)]2 (2.21)

It follows that, for any given value of φ, with T /ρ as a parameter, the minimum of the right
hand of (2.21) with respect to ε is obtained for the same value of E(φ) = ε tan(π/4+φ/2) denoted
by Em(T /ρ), where Em = (e/h)m tan(π/4+φ/2), (Figure 3).

The corresponding value of the right hand member of (2.21) is the best upper bound for the
left hand member of this equation. It is capped by the best available upper bounds in the absence
of a tension cutoff, i.e., 3.83 whatever φ, (3.77649 for φ= 0) as usually agreed upon [9–12].

The results of the minimization process are displayed in Figure 4, where (γh/C ) tan(π/4−φ/2)
is plotted as a function of τ= T /ρ = tan(π/4+φ/2)T /2C .

It comes out, through this normalization process, that all the results fit on a parabolic like
curve with a horizontal axis and a summit on the vertical axis at γh tan(π/4−φ/2)/C = 2, which
is the critical value obtained by Drucker and has also been established as a lower bound estimate
through a simple three-zone relevant stress field.

It also appears that the mechanisms in Figure 2 only prevail over the classical log-spiral one
for small values of T /ρ, namely when T /ρ ≤ 0.07, while the drastic drop to the critical and exact
valueγh/C = 2tan(π/4+φ/2) for τ= 0 remains confined within the immediate vicinity of T /ρ = 0.
From a practical viewpoint, if a 20% drop is considered as acceptable, T /ρ must be superior to
3%, which means that the tensile resistance of the soil shall not be less than 0.06C tan(π/4−φ/2).
It is worth insisting on the fact that these results are valid whatever the value of φ.

Obviously, strictly speaking, the conclusions enounced here above cannot be considered as
final since they only result from a full implementation of Drucker’s virtual collapse mechanisms.
Nevertheless, it can be observed that, from a physical viewpoint, these mechanisms, when
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Figure 4. Normalized results of the minimization process on Equation (2.21).

T /ρ↘ 0, with Em(T /ρ) ↘ 0, are perfectly suited to matching the zero normal stress constraint,
which is imposed as a boundary condition along the stress-free vertical and horizontal edges of
the cut, with the vanishing tensile resistance of the material. Hence, as a response to Drucker’s
warning about “the consequences of assuming soil unable to take tension” [2], we believe that
the analysis that has been developed here may bring some relief as to the reliability of classical
analyses that do not take any tension cutoff into account.

In the particular case of a purely cohesive frictionless material (φ = 0), numerical static
lower bound approaches have been developed, assuming full tensile resistance of the material
(ρ = 2C ), which culminated with γh/C ≥ 3.77522 as a lower bound estimate in [11]. Checking the
sensitivity of such approaches to a reduction of the tensile resistance would, obviously, help to
comfort the preceding conclusion.
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