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Abstract. In this survey, we provide a review of recent progresses in the local well-posedness problem of
Einstein equations in (3+1)-D with low regularity and its applications.

Résumé. Dans cette enquête, nous rendons compte des progrès récents dans le problème de la bonne pose
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1. Introduction

Many fundamental theories of physics are modelled by nonlinear hyperbolic equations, such
as general relativity, gas and fluid mechanics, elastodynamics etc. The main theories of these
PDEs are on the well-posedness of the solution of the equation with certain initial or boundary
conditions, which are usually classified into local-in-time or global-in-time well-posedness.
Pioneered by Schauder [1], Choquet-Bruhat [2] and Leray [3], the local-in-time well-posedness of
classical solutions for nonlinear hyperbolic equations of multiple spatial dimension were studied
by physical methods such as energy methods, pointwise estimates based on Kirchhoff formulas.

In [2], without assuming analyticity for the Cauchy data, Choquet-Bruhat proved local exis-
tence result for the following second order hyperbolic system1{

Aµν(Φ,∂Φ)∂µ∂νΦ= F (Φ,∂Φ),
Φ|t=0 =Φ0, ∂tΦ|t=0 =Φ1

(1.1)

where Φ is a vector-valued function, the principal coefficients Aµν and F are smooth functions
of their variables. In particular she provided an constructive proof for local existence and
uniqueness of solutions for Einstein vacuum equations under wave coordinates. Together with

1By default ∂0 = ∂t unless specified otherwise. Under the Einstein summation convention, the lowercase Latin indices
such as i , j ,k start from 1, while the Greek indices such as µ,ν begin from 0. Here, ∂ represents both the spatial and time
derivatives, while ∂ without a subscript is reserved solely for spatial derivatives.
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Geroch, in [4], she also proved that for each initial data set, there is a unique maximal future
development.

Consider Einstein vacuum equations

Rαβ(g) = 0 (1.2)

where Rαβ denotes Ricci curvature tensor of the Lorentzian spacetime (M ,g). An initial data set
for (1.2) consists of a three dimensional surface Σ0 together with a Riemmannian metric g and a
symmetric 2-tensor k satisfying the constraint equations{ ∇ j ki j −∇ j trk = 0

Rs −|k|2 + (Trk)2 = 0
(1.3)

where ∇ is the Levi-Civita connection of the metric g on Σ0, and Rs is the scalar curvature of
(Σ, g ). For a given initial data set (g ,k,Σ0), solving the Cauchy problem is to find a metric g
satisfying (1.2) and an embedding of Σ0 in M such that the metric induced by g on Σ0 is g and
the 2-tensor k is the second fundamental form of the hypersurface Σ0 ⊂M .

With the wave coordinates xα, the metric takes

g =−n2dt 2 + gi j (dxi + v i dt )(dx j + v j dt ),

where n is the lapse function of x0 = t and the vector-valued function v i is the shift of the metric,
gi j is the induced Riemannian metric on Σt , the level set of t . Since g is Lorentzian, there is a
constant c > 0 such that

c−1|ξ|2 < gi jξ
iξ j ≤ c|ξ|2, n2 −|v |2g ≥ c.

Schematically, withΦ= (gµν), under the wave coordinates, the reduced Einstein equation system
takes the form

gµν(Φ)∂µ∂νΦ=N (Φ,∂Φ). (1.4)

gµν is the inverse metric of the Lorentz metric g; the function N = (Nµν) on the right-hand
side is smooth on its variables, and N (Φ,∂Φ) is quadratic in ∂Φ. The method Choquet-Bruhat
adopted is based on pointwise estimates and a generalized Kirchhoff formula, which later in-
spired important works such as the breakdown criterion for solutions of Einstein equations given
by Klainerman–Rodnianski in [5–7]. We will go back to this point in Section 5. Meanwhile, the
energy method adopted in [1, 3] has become the classical method in studying hyperbolic PDEs.

A key motivation of the work [2] was to extend the Cauchy–Kowalevski theorem to non-
analytic Cauchy data, as the assumption of analyticity is meaningless in a physical theory where
coordinate changes are only restricted to be sufficiently differentiable. Furthermore, in [2],
Choquet-Bruhat noted: “It seemed to me that, for the problems considered by the theory of
relativity, it would be interesting to obtain, under the minimal possible amount of assumptions,
an existence theorem easy to use, enabling [one] to find properties of the solutions that can
be compared with the classical properties of light waves and gravitational potentials, and to
have formulas which can be an efficient method of calculating gravitational fields, at least
approximately, that correspond to given initial conditions.”

Since the seminal work [2] of Choquet-Bruhat, extensive work has been done on the well-
posedness of the quasi-linear wave equation (1.1) in Rn+1 for n ≥ 2, including applications
to Einstein-vacuum equations. The assumptions regarding the regularity of the Cauchy data
have been significantly relaxed. The classical approach for proving local well-posedness relies
on energy methods, Sobolev embeddings, and the classical iteration argument. Constructing
solutions with lower regularity data may involve using Strichartz estimates or bilinear estimates
(when the equations satisfy the null form condition). These approaches may go beyond physical
methods, requiring constructing and controlling a parametrix and employing Fourier analysis,
which are challenging to extend to quasilinear equations.
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Next, we provide a detailed review of the local well-posedness results for Cauchy problems
concerning Einstein equations and similar types of quasilinear wave equations.

The classical local well-posedness result of Hughes–Kato–Marsden [8] in the Sobolev space H s

follows from the energy estimate

∥∂Φ(t )∥H s−1 ≤ c∥∂Φ(0)∥H s−1 ·exp

(∫ t

0
∥∂Φ(τ)∥L∞

x
dτ

)
, (1.5)

as well as the Sobolev embedding and a standard iteration argument. This result holds for any
s > n/2+1, since H s ⊂ L∞ gives the control of ∥∂Φ∥L∞

t L∞
x

.

Theorem 1 ([8, 9]). Let (Σ0, g ,k) be an initial data set for the Einstein vacuum equation (1.2) in
(3+1) spacetime. Assume Σ0 can be covered by a locally finite system of coordinate charts, related
to each other by C 1 diffeomorphisms, such that (g ,k) ∈ H s

loc(Σ0)× H s−1
loc (Σ0) with s > 5/2. Then

there exists a unique global hyperbolic development (M ,g) verifying (1.2), for whichΣ0 is a Cauchy
hypersurface.

One can refer to [10, pages 304–310] for the classical local existence result for Einstein vacuum
equations with maximal foliation, which means the mean curvature of the level set of t is trivial.
For Einstein vacuum equations with constant mean curvature foliation, which means the mean
curvature of the level set of t equals t , with t < 0, by setting on the level set of t the spatial
harmonic gauge, Andersson–Moncrief proved the local well-posedness of the solution in [11],
for data (g ,k) ∈ H s ×H s−1 with s > 5/2.

In pursuit of an existence theorem for the Einstein vacuum equations with minimal regularity
assumptions, Klainerman proposed the bounded L2 curvature conjecture in [12], which, in brief,
asserts that the local existence and uniqueness result for the Einstein vacuum equations can
be extended to Cauchy data with locally finite L2 curvature and locally finite L2 norm of first
order covariant derivatives of k (see Theorem 3 for a more precise statement). Additionally, in
connection with the global stability of Minkowski spacetime established by Christodoulou and
Klainerman in their seminal work [10], Klainerman posed the following problem in [13]:

Problem 1.1 (Strong stability of Minkowski space). Does there exists a scale invariant smallness
condition such that all developments, whose initial data sets (Σ, g ,k) verify it, have complete
maximal future developments?

The bounded L2 curvature conjecture was regarded as a highly challenging problem, a key
step toward resolving the above question. Significant progress was made in the early 2000s to
lower the regularity assumptions for local well-posedness results of quasilinear wave equations
of type (1.4).

To improve the classical results, one key objective is obtaining a better estimate on ∥∂Φ∥L1
t L∞

x
.

This boils down to deriving the Strichartz estimates for the wave operator gαβ(Φ)∂α∂β which has
rough coefficients, only as smooth as Φ. In this context, for s < n/2 + 1, Strichartz estimates
provide a pathway to improving regularity, which is crucial for enhancing classical results. One
can refer to [14–28] the works of Smith, Buhari, Chemin, Tataru, Klainerman, Rodnianki, Wang for
results of s < 5/2 for the quasilinear wave equation of the type of (1.4). In particular Klainerman
and Rodnianski gave the s > 2 result for Einstein vacuum equation under the wave coordinate
gauge in [22–24], which is sharp due to the counter example given by Lindblad–Ettinger [29].
And the result of Smith–Tataru [28]2 and Wang [27] achieve the sharp s > 2 result for the general
equation, (which takes the form as (1.4), but the metric does not have trivial Ricci curvature,
see (2.2)). The counter example for the case of s = 2 is given by Lindblad [30].

2The result is for the dimension 2 ≤ n ≤ 5, at least sharp in n = 2,3.



154 Qian Wang

Nevertheless, Strichartz estimates are established for the wave operator. When the nonlin-
earity N (Φ,∂Φ) exhibits a more delicate structure, better results are expected, which cannot be
achieved solely through Strichartz estimates. For instance, for semilinear wave equations in R3+1

□φ=N (φ,∂φ), φ(0) =φ0, ∂tφ(0) =φ1,

using Strichartz estimate, the local-wellposedness was proved for (φ0,φ1) ∈ H s ×H s−1 with s > 2
by Ponce–Sideris [31] and the result is sharp due to the counter example by Lindblad [32].
However if the quadratic forms are null forms (see (3.23)), the result is improved by Klainerman
and Machedon in [33] to s = 2 by establishing bilinear estimates.

For geometric wave equations, those are semilinear and exhibiting null conditions, including
wave map, Maxwell–Klein–Gordon and Yang–Mills equations in Minkowski space, the study
of low-regularity solutions is driven by investigating global-in-time behavior. An important
example is the global finite energy solution for Maxwell–Klein–Gordon equations in Minkowski
space, established in [34], as well as for Yang–Mills equations in [35]. For both cases, the energy of
the curvature (together with the scalar field for Maxwell–Klein–Gordon equations) is conserved
over time. In R3+1, Klainerman and Machedon [34, 35] proved in the 1990s that local solutions
can be constructed for initial data with finite energy. The conservation of energy allows these
local solutions to be extended globally in time. Their results were based on innovative bilinear
estimates for null forms, improving classical results by more than half a derivative.

Further progress on well-posedness for lower regularity solutions was made by employing bi-
linear estimates in the wave-Sobolev space, developed independently by Klainerman–Machedon
and Bourgain (see [33, 36, 37]). For instance, the scale-invariant, optimal regularity result on
Maxwell–Klein–Gordon equations in R4+1 was achieved by Lührmann–Krieger [38] and Oh–
Tataru [39], where global well-posedness for finite energy data was proven; one can refer to
Krieger–Tataru [40] and Oh–Tataru [41] for the optimal regularity result in R4+1 for Yang–Mills
equations.

While bilinear estimates rely heavily on Fourier analysis and the null form condition, extend-
ing these estimates to quasilinear wave equations poses a fundamental challenge. In the case of
Einstein equations with maximal foliation, by using the Yang–Mills formalism and adopting the
spatial Coulomb gauge, the equations exhibit the structure of null forms. The s = 2 result for Ein-
stein vacuum equations is established by Klainerman, Rodnianski and Szeftel in [42] and [43–46]
by taking advantage of this structure, which is so far the best regularity result for Einstein vac-
uum equations. The counter example in [29] implies that, under wave coordinate gauge, the so-
called weak null form observed by Lindblad–Rodnianski [47] is insufficient to yield the result of
the bounded L2 curvature conjecture. In [42], it is suggested that, although the result is not op-
timal with respect to the standard scaling of the Einstein equation, this result may be sharp due
to “null scaling”, which is related to establishing a lower bound on the null radius of injectivity.
This bound is crucial for their parametrix construction and establishing bilinear and trilinear es-
timates. To control the lower bound, it relies on a series of sharp trace estimates along null hy-
persurfaces. We will review this set of estimates in Sections 4 and 5.

In Section 2, we review the s > 2 result for the Einstein vacuum equations and similar types
of equations. Section 3 provides a brief overview of work on resolving the bounded L2 curvature
conjecture. In Section 4, we discuss methods for controlling causal geometry in rough Einstein
spacetimes. Finally, as applications of controlling null hypersurfaces with limited regularity, we
review works on breakdown criteria for the Einstein equations in Section 5.

2. Rough solutions for Einstein equations

In the section, we review the result of Klainerman and Rodnianski in [22–24].



Qian Wang 155

Theorem 2. Consider the classical solution of (1.4), the reduced Einstein equation under the wave
coordinates. Suppose g(0) is a continuous Lorentz metric, and sup|x|=r |gαβ(0)−mαβ|→ 0 as r→∞.
The time T of the existence depends only on the size of the form ∥∂gµν(0)∥H s−1 for any fixed s > 2.

One can refer to the counter example given in [29], which shows that Theorem 2 is sharp. The
above result is extended to Einstein vacuum equation with CMC spatial harmonic gauge by Wang
in [25, 26].

Since one can approximate a given H s initial data set for the Einstein vacuum equations by
classical initial data sets, i.e. H s′ data sets with s′ > 5/2 for which the classical solutions exist and
unique. The above theorem allows one to pass to the limit and derive existence of solutions for
the given, rough, initial data set. In particular, one can refer to the result of Maxwell (which is for
s > 3/2) in [48] for justifying such approximation for the solutions of the constraint equations at
the initial slice.

Recall the energy estimates for the solution of (1.4) in n+1 spacetime. To achieve the result for
s > 2, one need to control exp(

∫ t
0 ∥∂Φ(τ)∥L∞

x
). In terms of Sobolev embedding

∥∂Φ∥L∞
x
≲ ∥∂Φ∥H s

x
, s > n

2
which is consistent with the classical result. For the solution of the linear wave equation □φ= 0
in Minkowski spacetime Rn+1, there holds the Strichartz estimate

∥∂φ∥L2
[0,T ]L∞

x
≤ cTσ(∥φ0∥

H
n
2 + 1

2 +σ +∥φ1∥
H

n
2 − 1

2 +σ ) (2.1)

with σ> 0 arbitrarily small.
Consider the following quasilinear wave equation, similar in form to (1.4),{−∂2

tφ+ g i j (φ)∂i∂ jφ=N (φ,∂φ),
φ|t=0 =φ0, ∂tφ|t=0 =φ1

(2.2)

with g i j bounded, uniformly elliptic and smooth about its variable. To achieve a better result
than the classical one, it is important to recover the Strichartz estimate in (2.1) in the rough,
curved spacetime with the metric g = −dt 2 + gi j dxi dx j depending on the solution. Strichartz
estimate for wave equations with rough coefficients was first studied by Smith [14]. The break-
through was then made by Bahouri–Chemin [18, 19] and by Tataru [15] using parametrix con-
structions. By establishing a Strichartz estimate for solutions to the linearized equation −∂2

tφ+
g i j (φ)∂i∂ jφ= 0 of the form

∥∂φ∥L2
t L∞

x
≤ c

(∥φ0∥H 2+α +∥φ1∥H 1+α
)

with a loss of α> 1/4, they obtained the well-posedness of (2.2) in H s with s > 2+1/4. This result
was later improved to s > 2+1/6 in [17].

An important next step was taken in [20] and [21], where in [20] Klainerman introduced
the commuting vectorfields approach for Strichartz estimates, with which he reproduced the
s > 2+1/6 result. In particular he pointed out the regularity of null hypersurface can be improved
by adopting the following decomposition for RLL , the component of Ricci curvature of the metric
g contracted by the null vector-field L,

RLL = LP − 1
2 LµLνgαβ∂α∂βgµν+E (2.3)

with P roughly g ·∂g and E = g(∂g)2. This important geometric treatment introduced in [20] is
crucially used in [21]. In [21], blended with the paradifferential calculus ideas initiated in [19], [16]
and [17], Klainerman and Rodnianski improved the local well-posedness of (2.2) in R1+3 to data
in the Sobolev space H s with s > 2 + (2−p

3)/2. According to the counter-examples in [30],
one can only expect to obtain the local well-posedness in H s with s > 2. Note that the metric
of (2.2) is more general in the sense that it does not verify Einstein vacuum equation (1.2).
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For (2.2), the optimal s > 2 result is achieved in [28] and [27], both of which take advantage of
the decomposition (2.3) to control the causal geometry.

Next we briefly summarize the main reduction steps for the proof of Theorem 2.
To prove Theorem 2, under the bootstrap assumption

∥∂Φ∥L2
[0,T ]L∞

x
≤ 1, (2.4)

one needs to prove the energy estimate and Strichartz estimate below

∥∂Φ∥L∞
[0,T ] H 1+γ ≲ ∥∂Φ(0)∥H 1+γ , ∥∂Φ∥L2

[0,T ]L∞
x
≤C T δ, (2.5)

with some δ> 0, C > 0 a universal constant depending on the bound of ∥∂Φ(0)∥H 1+γ . The energy
estimate follows from (1.5) by using (2.4). Assuming the Strichartz estimate in (2.5), with T
sufficiently small, (2.4) is improved.

Step 1. Reduction to dyadic Strichartz estimate. To prove the Strichartz estimate in (2.5), it
suffices to prove

∥Pλ∂Φ∥L2
[0,T ]L∞

x
≲ cλT δ∥∂Φ(0)∥H 1+γ (2.6)

where Pλ is the Littlewood–Paley projection with the frequency λ ∈ 2Z, and
∑
λ cλ ≤ 1. In fact, it

suffices to focus on a fixed dyadic frequency with λ>Λ0 with Λ0 sufficiently large.
With ϵ0 fixed and 0 < ϵ0 < γ/5, divide [0,T ] into subintervals I with size ≈ Tλ−8ϵ0 . On an

interval I consider the linearized equation

gαβ<λ∂α∂βψ= 0 (2.7)

where gαβ<λ =
∑

0<µ≤2−M0λPµgαβ, with M0 > 0 a fixed large constant.
For the frequency localized data, satisfying

(2−10λ)m∥∂ψ(0)∥L2
x
≤ ∥∇m∂ψ(0)∥L2

x
≤ (210λ)m∥∂ψ(0)∥L2

x

prove that with δ> 0 such that 5ϵ0 +δ< γ there holds

∥Pλ∂ψ∥L2
I L∞

x
≲ |I |δ∥∂ψ(0)∥Ḣ 1+δ . (2.8)

Step 2. Rescaling. With the metric

H(λ)(t , x) = g<λ(λ−1t ,λ−1x)

consider the rescaled equation of (2.7)

Hαβ

(λ) (t , x)∂α∂βψ= 0

in the region [0, t∗]×R3, where t∗ ≤λ1−8ϵ0 . Then (2.8) can be obtained by showing

∥P∂ψ∥L2
[0,t∗]L∞

x
≲ tδ∗∥∂ψ(0)∥L2

x
,

where P = P1.

Step 3. Reduction to an L1 −L∞ decay estimate. By running a T T ∗ type argument, the proof of
the dyadic strichartz estimate in Step 2 can be further reduced to an L1 −L∞ decay estimate. Let
ψ be the solution of

□H(λ)ψ= 0 (2.9)

with data at t = t0 ∈ [0, t∗]. Prove

∥P∂ψ∥L∞
x
≲

(
1

(1+|t − t0|)1−δ +d(t )

) m∑
k=0

∥∇k∂ψ(t0)∥L1
x

(2.10)

for some integer m > 0, where δ > 0 is sufficiently small, and t 1/q
∗ ∥d∥Lq ([0,t∗]) ≲ 1 for some q > 2

sufficiently close to 2.



Qian Wang 157

Step 4. Reduction to a localized L2 −L∞ estimate. The next step is to further localize in space
and reduce (2.10) to the following result

∥P∂ψ(t )∥L∞
x
≲

(
1

(1+|t − t0|)2/q
+d(t )

)m−2∑
k=0

∥∇k∂ψ(t0)∥L2
x

, (2.11)

where ψ is the solution of (2.9) and with data supported within a geodesic ball of radius 1/2,
centered at the origin at Σt0 .

In the spacetime slab [0, t∗]×R3, let u be the optical function satisfying Hαβ

(λ)∂αu∂bu = 0, with
initial condition properly chosen, and u = 2t −u. Let

L′ =−Hαβ

(λ)∂βu∂α, b−1 =−〈L′,T〉 = T(u).

Define the canonical null pair L and L by

L = bL′, L = 2T−L,

where T is the future-directed time-like unit normal of Σt in the spacetime. Let

Qαβ[ f ] = ∂α f ∂β f − 1
2 H(λ)αβHµν

(λ)∂µ f ∂ν f .

It is then reduced to bound the conformal energy, defined with the energy density constructed
by contracting the standard current P α[ψ] = Qαβ[ψ]Tβ with the Morawetz vector field K =
(1/2)n(u2L+u2L), followed with a proper normalization.

To control the propagation of such energy, it is important to control the deformation tensor
of K , defined by (k)παβ = (DαK )β+ (DβK )α. As a result of rescaling, the original spacetime slab
stretches by the high frequency λ>Λ0, so the analysis is carried out in a spacetime with a metric
close to Minkowski. The derivatives of the mollified metric H(λ) are bounded by powers of the
frequency λ. Since K is conformal killing in Minkowskian space, it is expected to be nearly
conformal killing in the spacetime slab with the metric H(λ), with the error displaying smallness
in the form of negative powers of λ.

The level surfaces of u, denoted by Hu , are the outgoing lightcones. Using an arbitrary
orthonormal frame (e A)2

A=1 on St ,u =Σt ∩Hu , define the connection coefficients

χAB = 〈DAL,eB 〉, χ
AB

= 〈DAL,eB 〉
ζA = 1

2 〈DLL,e A〉, η
A
= 1

2 〈DLL,e A〉. (2.12)

It is necessary to obtain sufficient decay in terms of λ for trχ−2/n(t −u), χ̂,ζ,η and for the first
order derivatives of trχ. This can be accomplished by using a set of null structure equations, such
as the Raychaudhuri equation:

Ltrχ+ 1
2 (trχ)2 =−|χ̂|2 −RLL(H(λ))+·· ·

However, applying (2.3) with metric H(λ) is insufficient to give the desired bound on the first order
derivatives of trχ. To improve the result of Klainerman–Rodnianski in [21] to the s > 2 result in
Theorem 2, it is crucial to use the Einstein vacuum equation (1.2) to achieve sufficient decay for
the connection coefficients. To this end, it is shown in [24] that the Ricci tensor of H(λ) and its
derivatives are close to zero in a certain sense, given that the original metric is Einstein vacuum.

To avoid establishing the delicate comparison estimates in [24], [25] adapts the reduction
procedure to bound the conformal energy of the lowest order within the domain of influence
of a unit ball in the original metric. The difficulty is reduced to obtain the necessary control
of the connection coefficients in the rough Einstein spacetime. This set of estimates is derived
by directly taking advantage of the geometric structure of Einstein vacuum spacetime in [26].
Additional challenges arise in the CMCSH gauge, where certain estimates, such as the time
derivative of the shift of the metric cannot be obtained. It is crucial in particular for providing
sufficient control of the null cones in the rough spacetime. This issue is circumvented by
normalizing the basic energy current.
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The adapted reduction procedure is used in [27] to prove the sharp s > 2 result for the gen-
eral equation (2.2). In [27] the construction of conformal energy is further adapted by using the
method of Dafermos–Rodnianski in [49], which additionally achieves the crucial conformal flux.
The added control relaxes slightly the requirements on the causal geometry in the rough space-
time. By using the conformal invariance of the null hypersurface, introduce a conformal change
of the spacetime metric with a well chosen conformal factor. Then with respect to the normal-
ized metric, the required control on the causal geometry to bound the newly constructed confor-
mal energy can be obtained in the rough spacetime. In [50], Wang further adapts the methods
in [25,27] to give the low-regularity well-posedness result for compressible Euler equation in 3-D.

3. The bounded L2 curvature conjecture for Einstein vacuum equations

The bounded L2 curvature conjecture for Einstein vacuum equations in (3 + 1) spacetime is
resolved in [42] and [43–46]. The conjecture states that

Theorem 3 ([42]). Let (M ,g) be an asymptotically flat solution to the Einstein vacuum equa-
tions (1.2) together with a maximal foliation by space-like hypersurfaces Σt defined as level hyper-
surfaces of a time function t . Assume that the initial slice (Σ0,g,k) is such that the Ricci curva-
ture Ric,∇k ∈ L2(Σ0) and Σ0 has a strictly positive volume radius on scales ≤ 1, i.e. rvol(Σ0,1) >
0. Then, there exists a time T = T (∥Ric∥L2(Σ0),∥∇k∥L2(Σ0),rvol(Σ0,1)) > 0 and a constant C =
C (∥Ric∥L2(Σ0),∥∇k∥L2(Σ0),rvol(Σ0,1)) > 0 such that the following control holds on 0 ≤ t ≤ T :

∥R,∇k∥L∞
[0,T ]L2

Σt
≤C , and inf

0≤t≤T
rvol(Σt ,1) ≥ 1/C .

The above result can be regarded as a continuation principle for Einstein vacuum equation
under the maximal foliation gauge. Moreover, the above result is used by Czimek and Graf in [51]
to give the low regularity existence result for the spacelike-characteristic initial data problem in
Einstein spacetime.

Next we summarize the main idea and the main steps of the proof.

3.1. The Yang–Mills formalism

Let {eα}3
α=0 be an orthonormal frame on M , i.e.

g(eα,eβ) = mαβ = diag(−1,1, . . . ,1),

with e0 = T. Consistent with Cartan formalism, define the connection 1-form

Aαβ(X ) = g(DX eβ,eα)

where X is an arbitrary vectorfield in T M . Then

R(eα,eβ,∂µ,∂ν) = ∂µ(Aν)αβ−∂ν(Aµ)αβ+ [Aµ,Aν]αβ (3.1)

where
([Aµ,Aν])αβ = (Aµ)α

γ(Aν)γβ− (Aν)γα(Aµ)γβ.

Denote
(Fµν)αβ = Rαβµν.

Using (1.2), it follows from the Bianchi identity that

DµFµν+ [Aµ,Fµν] = 0.

It then follows by using the above identity, (1.2), (3.1) and the fact that ∂µ(Aν)−∂ν(Aµ) = DµAν−
DνAµ that

□gAν−Dν(DµAµ) = Jν (3.2)
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where
Jν = Dµ([Aµ,Aν])− [Aµ,Fµν],

and it is direct to check that DµJµ = 0.
Let A0 = Aµeµ0 and Ai = Aµeµi . It is straightforward to see that

(Ai )0 j = (A j )0i =−ki j , i , j = 1,2,3

(A0)0i = −n−1∇i n, i = 1,2,3.

Note that there is freedom to choose a frame e1,e2,e3 such that the corresponding connection
A satisfies the Coulomb gauge condition (see [42, Lemma 4.3])

∇i (Ai ) j k = 0.

With ∂= (∂0,∂)3 and A = (A0, Ai ), (3.2) is then reduced to

∆A0 = A∂A+A∂A0 +A3 (3.3)

□g Ai +∂i (∂0 A0) = A j∂ j Ai + A j∂i A j + A0∂A+ A∂A0 +A3. (3.4)

The spatial derivative estimates of A0 can be obtained by using elliptic estimates and (3.3). It is
more important to control A = Ai , for which one may need to employ the wave equation (3.4). For
this purpose, one needs eliminate the term ∂i (∂0 A0) in (3.4), which would be done by projecting
the equation onto divergence free vector-fields with the help of a non-local operator if following
the treatment in [35]. However, adapting this approach to the Einstein vacuum equations is too
complicated. In [42], by introducing

Bi = (−∆)−1(curl(A)i ), (3.5)

instead of directly using (3.4) to control A, the problem reduces to controlling ∂B , based on the
comparison estimate [42, Lemma 6.5]

A = curlB +E (3.6)

where E is a controllable error. In [42], the authors rely on □gB to obtain derivative estimates of
B .

3.2. Bilinear and Trilinear estimates

The proof of Theorem 3 relies on bilinear and trilinear estimates, which will be outlined in this
subsection.

The first step is to reduce the proof of Theorem 3 to a small data problem (see [42, Section
2.3]). Under the assumption in Theorem 3, one can use [52, 53] to obtain the lower bound of
harmonic radius depending on ∥R∥L2(Σ0) and the lower bound of initial volume radius. Within
the geodesic ball of radius no more than the lower bound, there are coordinates with respect to
which the metric is comparable to Euclidean metric and is bounded in H 2. Using this result, by
localizing, rescaling and adapting the gluing process in [54, 55], Theorem 3 is reduced to

Theorem 4 ([42, Theorem 2.10]). Let (M ,g) be an asymptotically flat solution to the Einstein
vacuum equations (1.2) together with a maximal foliation by space-like hypersurfaces Σt defined
as level hypersurfaces of a time function t . Assume that the initial slice (Σ0, g ,k) is such that:

∥R∥L2(Σ0) ≤ ε, ∥k,∇k∥L2(Σ0) ≤ ε, rvol(Σ0,1) ≥ 1
2 ,

then there exists a small universal constant ε0> 0 such that if 0 < ε< ε0, the following control holds
on 0 ≤ t ≤ 1

∥R,k,∇k∥L∞
[0,1]L2(Σt ) ≲ ε, rvol(Σt ,1) ≥ 1

4 .

3∂0 = ∂e0 ,∂i = ∂ei , and denote for simplicity ∂= ∂i .
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Theorem 4 is proved by using a bootstrap argument.

Assumption 3.1. Let M ≥ 1 be a large enough constant, to be chosen later in terms only of
universal constants. By choosing ε> 0 small, Mε can be small enough.

Assume in the spacetime slab ∪t∈[0,1]Σt ,

∥R∥L∞
t L2(Σt ) ≤ Mε, ∥R ·L∥L2(H ) ≤ Mε (3.7)

∥A∥L∞
t L2(Σt ) +∥∂A∥L∞

t L2(Σt ) ≤ Mε (3.8)

where H denotes the null hypersurface in the spacetime slab, with future directed normal L,
normalized by 〈L,T〉 =−1; assume the following bilinear and trilinear estimates,

∥ki j∂
iφ∥L2(M ) ≤ M 2εsup

H
∥/∇φ∥L2(H ) +Mε∥∂φ∥L∞

t L2(Σt ) (3.9)∣∣∣∣∫
M

Qi jγδk i j eγ0 eδ0 dM

∣∣∣∣≤M 4ε3 (3.10)

with Qi jγδ components of the Bel–Robinson tensor; and assume a set of estimates on A0 and its
derivatives in the spacetime slab. (See the full set of bootstrap assumptions in [42, Section 5.3].)

Next we follow the steps given in [42] to improve the bootstrap assumptions.

3.2.1. Improvement of (3.7)

Under the bootstrap assumptions, one can obtain by elliptic estimates that

∥n −1,∇n∥L∞(M ) ≲ Mε. (3.11)

To improve (3.7), one may use the Bel–Robinson tensor

Qαβγδ = Rα
λ
γ
δRβλδσ+ ∗Rα

λ
γ
σ∗Rβλδσ.

Let Pα =Qαβγδeβ0 eγ0 eδ0 . Then

DαPα = 3Qαβγδπ
αβeγ0 eδ0 , (3.12)

where παβ = DαTβ +DβTα. With hαβ = gαβ + 2(e0)α(e0)β, define the norm | · | for a spacetime
tensor U by

|U |2 =Uα1···αk Uα′
1···α′

k
hα1α

′
1 · · ·hαkα

′
k .

Note the following standard property of Bel–Robinson tensor

Pαeα0 = |R|2, PαLα = |R ·L|2.

Integrating (3.12) over a spacetime region, bounded by Σ0, Σt and H , it is direct to obtain∫
Σt

|R|2 +
∫
H

|R ·L|2 ≲ ∥R∥2
L2(Σ0) +

∣∣∣∣∫
M

Qαβγδπ
αβeγ0 eδ0

∣∣∣∣≲ ε2 +
∣∣∣∣∫

M
Qαβγδπ

αβeγ0 eδ0

∣∣∣∣ . (3.13)

Noting that the nontrivial components of παβ are

πi j =−2ki j , π0i = n−1∇i n, trk = 0, (3.14)

the last term on the right-hand side of (3.13) can be treated by using (3.10) and (3.11)∣∣∣∣∫
M

Qαβγδπ
αβeγ0 eδ0

∣∣∣∣ ≲ ∣∣∣∣∫
M

Qi jγδk i j eγ0 eδ0

∣∣∣∣+ ∣∣∣∣∫
M

Q0iγδn−1∇i neγ0 eδ0

∣∣∣∣
≲ M 4ε3 +∥∇n∥L∞∥R∥2

L∞
t L2(Σt )

≲ M 4ε3 + (Mε)3. (3.15)

Substituting the above estimate into (3.13) yields∫
Σt

|R|2 +
∫
H

|R ·L|2 ≲ ε2 +M 4ε3 + (Mε)3. (3.16)
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Here we remark that schematically∣∣∣∣∫
M

Qi jγδk i j eγ0 eδ0

∣∣∣∣≈ ∣∣∣∣∫
M

kR2
∣∣∣∣ .

With ∥k∥L1
t L∞

x
bounded, we can control the right-hand side by∣∣∣∣∫

M
Qi jγδk i j eγ0 eδ0

∣∣∣∣≲ ∥k∥L1
t L∞

x
∥R∥2

L∞
t L2(Σt ).

Nevertheless one would not expect to control ∥k∥L1
t L∞

x
, since this requires the initial data to satisfy

(g ,k) ∈ H 2+ϵ(Σ0)×H 1+ϵ(Σ0). Therefore it is crucial to rely on the assumption (3.10) instead.

3.2.2. Improvement of (3.8)

Next we discuss the improvement over (3.8), which is reduced to control derivatives of B , based
on the following result

Proposition 5 ([42, Proposition 4.4, Lemma 6.5 and Section 11.1.1]). The error E in (3.6) satisfies

∥∂E∥L∞
t L2(Σt ) +∥E∥L2

t L∞(Σt ) ≲ M 2ε2. (3.17)

There hold
□gB = F (3.18)

with
F = (−∆)−1[□g,∆]B + (−∆)−1□g(curl A),

and

∥A,∂B∥L2(Σ0) +∥∂(∂B)∥L2(Σ0) ≲ ε, ∥∂F∥L2(M ) ≲ M 2ε2. (3.19)

We will treat (3.18) by using the following set of estimates

Lemma 6. Let F be a scalar function on M , and let φ0 and φ1 be two scalar functions on Σ0. Let
φ be the solution of the following wave equation on M :{

□gφ= F,
φ|Σ0 =φ0, ∂tφ|Σ0 =φ1.

(3.20)

Then φ satisfies the following energy estimate

∥∂φ∥L∞
t L2(Σt ) + sup

H
(∥/∇φ∥L2(H ) +∥Lφ∥L2(H ))

≲ ∥∇φ0∥L2(Σ0) +∥φ1∥L2(Σ0) +∥F∥L2(M ), (3.21)

where H denotes null hypersurface with future directed normal L such that 〈L,T〉 =−1, /∇ denotes
the Levi-Civita connection on St =H ∩Σt with respect to the induced metric γ. There also hold the
higher order estimates,

∥∂∂φ∥L∞
t L2(Σt ) +∥∂2

0φ∥L2(M ) + sup
H

(∥/∇(∂φ)∥L2(H ) +∥L(∂φ)∥L2(H )

)
≲ ∥∇2φ0∥L2(Σ0) +∥∇φ1∥L2(Σ0) +∥∇F∥L2(M );

and
∥□g∂φ∥L2(M ) ≲ Mε(∥∇2φ0∥L2(Σ0) +∥∇φ1∥L2(Σ0) +∥∇F∥L2(M )).

Proof of Lemma 6. Recall that the standard energy momentum tensor Qαβ on M is given by

Qαβ[ f ] = ∂α f ∂β f − 1
2 gαβgµν∂µ f ∂ν f .

Let Pα =Qα0[φ]. In view of (3.20), it is straightforward to derive

DαPα = DαQα0[φ]+Qαβ[φ]DαTβ = F∂0φ+ 1
2Qαβ[φ]παβ.
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Integrating in the region bounded by Σ0,Σt and H gives

∥∂φ∥2
L∞

t L2(Σt ) + sup
H

(
∥/∇φ∥2

L2(H ) +∥Lφ∥2
L2(H )

)
≲ ∥∇φ0∥2

L2(Σ0) +∥φ1∥2
L2(Σ0) +

∣∣∣∣∫
M

F∂0φdM

∣∣∣∣+ ∣∣∣∣∫
M

Qαβ[φ]παβdM

∣∣∣∣ (3.22)

where dM = n dt dµg denotes the volume element in the spacetime M , with dµg the area
element in Σt . Using (3.14) the last term can be computed further∫

M
Qαβ[φ]παβdM = −2

∫
M

Qi j [φ]k i j dM +
∫
M

n−1∇i nQ0i [φ]dM

= −2
∫
M
∂iφ∂ jφk i j dM +

∫
M

n−1∇i n∂iφ∂0φdM .

One would not expect to control ∥k∥L1
t L∞

x
. Similar to the analysis for improving (3.7), to control

the standard energy of φ, one has to rely on (3.9) and also use (3.11) to derive∣∣∣∣∫
M

Qαβ[φ]παβdM

∣∣∣∣ ≲ ∥ki ·∂iφ∥L2(M )∥∂φ∥L2(M ) +∥∇n∥L∞(M )∥∂φ∥2
L2(M )

≲ M 2εsup
H

∥/∇φ∥L2(H )∥∂φ∥L2(M ) +Mε∥∂φ∥L2(M )∥∂φ∥L∞
t L2

Σt
.

Substituting the above estimate into (3.22) gives (3.21). To prove the higher order estimates, it
requires more bilinear estimates than listed in Assumption 3.1. For simplicity, we skip the proof
of the higher order estimates in Lemma 6. □

It follows by applying Lemma 6 to φ= B with the help of (3.19) that

∥∂∂B∥L∞
t L2(Σt ) ≲ ε+M 2ε2.

Using the above estimate, (3.6) and (3.17) gives

∥∂A∥L∞
t L2(Σt ) ≲ ∥∂curlB∥L∞

t L2(Σt ) +∥∂E∥L∞
t L2(Σt ) ≲ ε+M 2ε2.

In view of the schematic formula ∂0 A j = ∂ j A0 +R+A ·A and using (3.16) and (3.8)

∥∂0 A j ∥L∞
t L2(Σt ) ≲ ∥∂ j A0∥L∞

t L2(Σt ) +M 2ε2 +M 4ε3.

Assuming the estimates for A0

∥A0∥L∞L4(Σt ) ≲ Mε, ∥∂ j A0∥L∞
t L2(Σt ) ≲ (Mε)

3
2

then we arrive at

∥∂A0∥L∞
t L2(Σt ) ≲ ε+M 2ε

3
2 .

By integrating the above bound in t ∈ [0,1] with the help of (3.8), we obtain

∥A∥L2(Σt ) ≲ ε+M 2ε
3
2 ,

as desired. We refer the reader to [42, Section 9.3] for more details.

3.3. Construction of parametrix

To prove the bilinear estimate (3.9) and the trilinear estimate (3.10), it relies on constructing
parametrix in the curved spacetime. In [6], Klainerman and Rodnianski gave the construction
of parametrix for the linear wave equation (3.20) in Lorentzian spacetime. By applying the
construction in Minkowski space, they proved the standard bilinear estimates for free waves,
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Proposition 7 ([6]). Consider φ,ψ solutions of the flat wave equation □φ =□ψ = 0 and Q(φ,ψ)
one of the null forms in

Q0(φ,ψ) = ∂αφ ·∂αψ, Qαβ(φ,ψ) = ∂αφ ·∂βψ−∂βφ ·∂αψ,∀α ̸=β, (3.23)

then
∥Q(φ,ψ)∥L2(R3+1) ≲ ∥φ[0]∥H 2(R3)∥ψ[0]∥H 1(R3),

where for f [0] = ( f (0),∂t f (0)),

∥ f [0]∥Hα(R3) := ∥ f (0)∥Hα(R3) +∥∂t f (0)∥Hα−1(R3).

Moreover, they also provided the bilinear estimate for parametrix and the solution of the wave
equations in the Lorentzian spacetime.

In the sequel we sketch the approach to improve the bilinear and trilinear bootstrap assump-
tions (3.9) and (3.10) by constructing parametrix for solution of (3.20) (see [42, Section 10]).

Let u± be two families of scalar functions defined on the spacetime M and indexed by ω ∈S2,
satisfying the eikonal equation gαβ∂αu±∂βu± = 0 for each ω ∈ S2. The initial data for u± are
set in [43] such that u± at Σ0 asymptotically approach x ·ω. Let Hωu± denote the null level
hypersurfaces of ωu±. Let ωL± be their null normals, fixed by the condition that g(ωL±,T) = ∓1.
For any pair of functions f± on R3, define

ψ[ f+, f−](t , x) =
∫
S2

∫ ∞

0
eiλωu+(t ,x) f+(λω)λ2dλdω+

∫
S2

∫ ∞

0
eiλωu−(t ,x) f−(λω)λ2dλdω.

We refer to the following theorem for constructing parametrix

Theorem 8 ([43, Theorem 2.11] and [45, Theorem 2.17]). Let φ0 and φ1 be two scalar functions
on Σ0. Then there is a unique pair of functions ( f+, f−) such that

ψ[ f+, f−]|Σ0 =φ0, ∂t (ψ[ f+, f−])|Σ0
=φ1.

And f± satisfy the following estimates4,

∥λi f±∥L2(R3) ≲ ∥∇iφ0∥L2(Σ0) +∥∇i−1φ1∥L2(Σ0), i = 1,2.

□gψ[ f+, f−] satisfies the following estimates

∥∂i□gψ[ f+, f−]∥L2(M ) ≲ Mε(∥∇i+1φ0∥L2(Σ0) +∥∇iφ1∥L2(Σ0)), i = 0,1.

Due to the above theorem, associated to any pair of functions φ0,φ1 on Σ0 the function
Ψom[φ0,φ1] defined for (t , x) ∈M

Ψom[φ0,φ1] =ψ[ f+, f−].

Moreover, for any pair of functions f± onR3, and for any s ∈R, define the following scalar function
on M :

ψs [ f+, f−](t , x, s) =
∫
S2

∫ t

0
eiλω,s u+(t ,x) f+(λω)λ2dλdω+

∫
S2

∫ t

0
eiλω,s u−(t ,x) f−(λω)λ2dλdω,

(3.24)

where ω,s u± are the optical functions similarly defined as for ωu±, except that they are initialized
at Σs as in [43]. There are analogous estimates for ψs [ f+, f−] as those for ψ[ f+, f−] in Theorem 8.

Next for any s ∈R, associated to (φ0,φ1) = (0,−nF ) a pair of functions ( f+, f−) on Σs such that

ψs [ f+, f−]|Σs = 0, ∂t (ψs [ f+, f−]|Σs ) =−nF.

Define
Ψ(t , s)F =ψs [ f+, f−](t ).

4The superscript on ∇ or ∂ denotes the order of the derivative.
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Clearly

□g

(∫ t

0
Ψ(t , s)F (s)ds

)
= F (t )+

∫ t

0
□gΨ(t , s)F (s)ds. (3.25)

Similar to Theorem 8 and using (3.11), there holds

∥∂i□gΨ(t , s)F∥L2(M ) ≲ Mε∥∇i F∥L2(Σs ), i = 0,1. (3.26)

Based on the above notations and estimates, we are ready to give the representation formula for
the solution of (3.20) (see [42, Theorem 10.8]).

Proposition 9. There holds the following representation formula for the solution of (3.20). Let

φ(0) =Ψom[φ0,φ1]+
∫ t

0
Ψ(t , s)F (0)(s, ·)ds, F (0) = F

and for j ≥ 1

φ( j ) =
∫ t

0
Ψ(t , s)F ( j )(s, ·)ds, F ( j ) =−□gφ

( j−1) +F ( j−1)

then

φ=
∞∑

j=0
φ( j ).

Proof. We first derive from (3.25) that

F ( j ) =−
∫ t

0
□gΨ(t , s)F ( j−1)(s), j ≥ 2.

Due to (3.26), we have

∥∂i F ( j )∥L2(M ) ≲ Mε∥∇i F ( j−1)∥L2(M ), j ≥ 2, (3.27)

and Theorem 8 implies

∥∂i F (1)∥L2(M ) ≲ Mε(∥∇i+1φ0∥L2(Σ0) +∥∇iφ1∥L2(Σ0) +∥∂i F∥L2(M)). (3.28)

It follows by using Lemmas 6, (3.27), (3.28) and the construction of φ( j ) that

∥∂i∂φ( j )∥L∞
t L2(Σt ) +∥∂i F ( j )∥L2(M )

≲ (Mε) j (∥∇i+1φ0∥L2(Σ0) +∥∇iφ1∥L2(Σ0) +∥∂i F∥L2(M )), i = 0,1. (3.29)

Since

□g

(
N∑

j=0
φ( j )

)
= F −F (N+1),

(3.29) implies as N →∞,

□g

( ∞∑
j=0

φ( j )

)
= F.

Noting that
φ(0)|Σ0 =φ0, ∂tφ

(0) =φ1, φ( j )|Σ0 = 0, ∂tφ
( j ) = 0, j ≥ 1

we thus conclude the representation in Proposition 9. □

Using Proposition 9, we will prove

Proposition 10. Denote by C (U ,∇φ) the contraction with respect to one index between a tensor
U and ∇φ, for φ a solution of the scalar wave equation (3.20) with F,φ0,φ1 satisfying the estimate

∥∇2φ0∥L2(Σ0) +∥∇φ1∥L2(Σ0) +∥∂F∥L2(M ) ≲ Mε,

there holds
∥C (U ,∇φ)∥L2(M ) ≲ Mε sup

ω∈S2
∥C (U ,ωN)∥L∞

ωu
L2(Hωu ).
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To see the above result, we let

C±[U , f ] =
∫
S2

∫ ∞

0
eiλωu±(t ,x)ωb−1

± C (U ,ωN±) f (λω)λ3dλdω, (3.30)

where ωN± =∇ωu±/|∇ωu±| and ωb−1
± = |∇(ωu±)| is the null lapse. For convenience, we may drop

+ or − signs in (3.30) simultaneously.
Similar to [6, Theorem 3.3], one can derive the following result (see [42, Section 11.1])

Lemma 11. Assuming |ωb−1|≲ 1 5, there holds

∥C[U , f ]∥L2(M ) ≲ ∥λ2 f ∥L2(R3) sup
ω∈S2

∥C (U ,ωN)∥L∞
ωu

L2(Hωu ).

Proof of Proposition 10. In view of Proposition 9, we write

C (U ,∇φ) =C (U ,∇(Ψom[φ0,φ1]))+
∞∑

j=0

∫ t

0
C (U ,∇Ψ(t , s)F ( j )(s, ·))ds.

Note
C (U ,∇(Ψom[φ0,φ1])) =C+[U , f+]+C−[U , f−].

Applying Lemma 11 to the first term in the above and also using Theorem 8 gives

∥C (U ,∇(Ψom[φ0,φ1]))∥L2(M ) ≲ sup
ω∈S2

∥C (U ,ωN)∥L∞
ωu

L2(Hωu ) (∥∇2φ0∥L2(Σ0) +∥∇φ1∥L2(Σ0).

Similarly, it follows by using Theorem 8 and (3.29) that∥∥∥∥∫ t

0
C (U ,∇Ψ(t , s)F ( j )(s, ·))ds

∥∥∥∥
L2(M )

≲ ∥∂F ( j )∥L2(M ) sup
ω∈S2

∥C (U ,ωN)∥L∞
ωu

L2(Hωu )

≲ (Mε) j (∥∇2φ0∥L2(Σ0) +∥∇φ1∥L2(Σ0) +∥∂F∥L2(M )) sup
ω∈S2

∥C (U ,ωN)∥L∞
ωu

L2(Hωu ).

Summing over j = 0, . . . , we conclude Proposition 10. □

Next, we use Propositions 10 to improve (3.9) and (3.10).

3.4. Improvement of (3.9) and (3.10)

We will first consider (3.9). Noting that k j · = A j , we need control A. In view of (3.6), to
improve (3.9), we first bound the leading term ∥(curlB) j∂ jφ∥L2(M ).

Since B satisfies (3.18), we can apply the representation formula in Proposition 9 to B ,

B =Ψom[φ0,φ1]+
∞∑

l=0

∫ t

0
Ψ(t , s)F (l )(s, ·)ds. (3.31)

Note
(curlB) j∂ jφ= ∂mBnϵ

j mn∂ jφ,

where ϵ j mn is the volume form on Σt . In this case, applying Proposition 10 with U = ϵ j mn∂ jφ, we
calculate

C (U ,ωN) = ∂ jφϵ
j mnωNm = ϵAB /∇Aφ,

and then derive by using (3.19) that

∥(curlB) j∂ jφ∥L2(M ) ≲ (∥∇2φ0∥L2(Σt ) +∥∇φ1∥L2(Σt ) +∥∂F∥L2(M )) sup
ω∈S2

∥C (U ,ωN)∥L∞
ωu

L2(Hωu )

≲ (∥∇2φ0∥L2(Σt ) +∥∇φ1∥L2(Σt ) +∥∂F∥L2(M )) sup
ω∈S2

∥/∇φ∥L∞
ωu

L2(Hωu )

≲ Mε sup
ω∈S2

∥/∇φ∥L∞
ωu

L2(Hωu ).

5We assume this estimate in the sequel for simplicity. This estimate can be proved via the bootstrap argument.
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Using (3.6) and (3.17), we conclude

∥k j
· ∂ jφ∥L2(M ) ≲ Mε sup

ω∈S2
∥/∇φ∥L∞

ωu
L2(Hωu ) +M 2ε2∥∂φ∥L∞

t L2(Σt )

which improves (3.9).
To improve (3.10), it relies on the observation that

ϵ j mn ·ωNmQ j ··· = R · (R ·L) (3.32)

where Q j ··· denotes the Bel–Robinson tensor with one component being j . Using (3.6), we derive∣∣∣∣∫
M

Qi jγδk i j eγ0 eδ0

∣∣∣∣= ∣∣∣∣∫
M

Qi jγδ(curlB +E) j eγ0 eδ0

∣∣∣∣ . (3.33)

Note symbolically Q j ··· = R ·R∣∣∣∣∫
M

Qi jγδ ·Eeγ0 eδ0

∣∣∣∣≲ ∥E∥L2
t L∞

x
∥R∥2

L∞
t L2(Σt ) ≲ M 4ε4 (3.34)

where we used (3.7) and (3.17) to derive the last inequality.
For the part of curlB contributed from the first term on the right-hand side of (3.31), it is

reduced bound the term

I =
∣∣∣∣∫

M

∫
S2

∫ ∞

0
eiλωu(t ,x)ωb−1ϵ j mn ·ωNmQ j ··· f (λω)λ3dλdωdM

∣∣∣∣
where, in view of (3.19), ∥λ2 f ∥L2(R3) ≲ Mε.

Similar to improving (3.9), it is direct to bound

I ≲
∫
S2

∥ωb−1(ϵ j mn ·ωNmQ j ···)
∫ ∞

0
eiλωu(t ,x) f (λω)λ3dλ∥L1(M )dω

≲ sup
ω∈S2

∥ωb−1∥L∞(M ) sup
ω∈S2

∥ϵ j mn ·ωNmQ j ···∥L2
ωu

L1(Hωu )

∫
S2

∥λ3 f (λω)∥L2
λ

dω

≲ sup
ω∈S2

∥ϵ j mn ·ωNmQ j ···∥L2
ωu

L1(Hωu )∥λ2 f ∥L2(R3)

≲ Mε sup
ω∈S2

∥ϵ j mn ·ωNmQ j ···∥L2
ωu

L1(Hωu ).

Substituting into (3.33) the remaining part of curlB contributed by the remaining term of (3.31),
we can similarly obtain ∣∣∣∣∫

M

∫ t

0
Qi jγδ(curlΨ(t , s)F (l )(s, ·)) j eγ0 eδ0 ds dM

∣∣∣∣
≲ ∥∂F (l )∥L2(M ) sup

ω∈S2
∥ϵ j mn NmQ j ···∥L2

ωu
L1(Hωu ).

Thus, with the help of (3.29) and (3.19), we arrive at∣∣∣∣∫
M

Qi jγδ(curlB) j eγ0 eδ0

∣∣∣∣≲ Mε sup
ω∈S2

∥ϵ j mn NmQ j ···∥L2
ωu

L1(Hωu ).

By using (3.7), (3.32) and (3.34), we deduce from the above that∣∣∣∣∫
M

Qi jγδk i j eγ0 eδ0

∣∣∣∣≲ Mε sup
ω∈S2

∥R · (R ·L)∥L2
ωu

L1(Hωu ) + (Mε)3 ≲ (Mε)3

which improves (3.10).
It is highly nontrivial and challenging to prove Theorem 8. The control of parametrix is

established by Szeftel in [43–45]. Note that with

φ f (0, x) =
∫
S2

∫ ∞

0
eiλωu(0,x) f (λω)λ2dλdω,

the error is
E f (t , x) =□gφ f (t , x) = i

∫
S2

∫ ∞

0
□g

ωueiλωu(0,x) f (λω)λ3dλdω.
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Note that the quantity ωb□g
ωu = trχ is the null expansion of H ωu . In Minkowski space□g

ωu = 0,
nevertheless trχ is nontrivial in the curved spacetime M . Thus, controlling the null expansion is
crucial for proving Theorem 8. In particular, it is necessary to derive at least the bound

∥trχ∥L∞(M ) ≲ ε

under the bootstrap assumptions. The control of causal geometry under regularity assumptions
consistent with the bounded L2 curvature conjecture was first given in [56–58], while an extensive
set of such control is established in [44]. In the sequel, we briefly review the result of causal
geometry in the rough Einstein vacuum spacetime.

4. Causal geometry of Einstein spacetime with finite curvature flux

One of the central challenges in proving the bounded L2 curvature conjecture is controlling
the causal geometry in the rough spacetime. Consistent with Theorem 3, only a bound on
the curvature ∥R ·L∥L2(H ) is expected. Given this bound, Klainerman and Rodnianski provided
the control of L∞(H ) bound of trχ in [56–58]. Unlike the set-up in [42], their result applies
to truncated null cones rather than null hyperplanes, as used in [42] and [43–46]. The result
from [56] was extended to null cones including the vertex in [59, 60], and to null cones with time
foliation in [61] (a companion paper to [62]). It was also extended to the Einstein equations with
certain matter fields (see [63]) and to null hyperplanes in the Einstein vacuum spacetime with
canonical foliation in [64], a companion paper to [51].

Consider a null hypersurface H in Einstein vacuum space. Let L be the null geodesic
generator of H

〈L,L〉 = 0, DLL = 0.

The null geodesics are parametrized by s such that L(s) = 1 and s = 0 at the initial 2-D surface S0,
which is diffeomorphic to 2-sphere.

Theorem 12 ([56]). Consider an outgoing null hypersurface H intiating on a closed 2-surface S0

diffeomorphic to S2, foliated by level set of s with 0 ≤ s ≤ 1. Assume that both the set of initial data
I0 and the curvature flux R0 = ∥R ·L∥L2(H ) are sufficiently small. Then∥∥∥∥trχ− 2

r

∥∥∥∥
L∞(H )

≲I0 +R0,

with r =
√

(4π)−1|Ss |, |Ss | the area of Ss with respect to the induced metric on Ss , and additional
estimates hold for χ̂,ζ,χ.

Unlike the choice of L in Section 2, let L, the conjugate null vector field, satisfy

〈L,L〉 =−2,〈L, X 〉 = 0, ∀X ∈ T Ss ,

where Ss is the level set of s in the null hypersurface H . Recall (2.12) for the definition of the set
of connection coefficients (see also [10, Section 13.1]). Under the geodesic foliation, ζ+η= 0.

For (ea)2
a=1 the orthonormal basis on T Ss , the null components of curvature tensor R are given

by

αab = R(L,ea ,L,eb), βa = 1
2 R(ea ,L,L,L),

ρ = 1
4 R(L,L,L,L), σ= 1

4
⋆R(L,L,L,L).

Below we recall a set of null structure equations for the connection coefficients and a sets of null
Bianchi identities (see the detailed derivations in [10, Chapter 7]).

Ltrχ = − 1
2 (trχ)2 −|χ̂|2 (4.1)

/∇Lχ̂ = −trχχ̂−α (4.2)
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/divχ̂ = −β+ 1
2 /∇trχ+ 1

2 trχζ−ζ · χ̂ (4.3)

L(trχ) = 2 /divη+2ρ− 1
2 trχ · trχ− χ̂ · χ̂+2|η|2 (4.4)

/∇Lβ+2trχβ = /divα+ (2ζ+η)α (4.5)

Lρ+ 3
2 trχρ = /divβ− 1

2 χ̂ ·α+ζ ·β+2η ·β (4.6)

Lσ+ 3
2 trχσ = − /curlβ+ 1

2 χ̂∧α−ζ∧β−2η∧β. (4.7)

Using (4.1), the L∞(H ) bound on trχ−2/r can be obtained if
∫ s

0 |χ̂|2ds′ can be bounded. Here the
integral is taken along an outgoing null geodesic initiated from S0. Since α is merely in L2(H ),
this quantity can not be controlled by using (4.2).

Using β ∈ L2(H ), in view of the Codazzi equation (4.3), it is only expected that /∇χ̂ ∈ L2(H ).
Suppose the following trace inequality holds for U being trχ and χ̂ 6,

∥U∥L∞
ω L2

S
≲ ∥/∇U∥L2(H ). (4.8)

Together with using (4.1), one could obtain the estimate in Theorem 12. However the trace
inequality (4.8) does not hold. To have the valid bound on ∥U∥L∞

ω L2
S

, one needs a stronger bound
than the right-hand side of (4.8).

In [56], Klainerman and Rodnianski relied on the Besov norm and the structures of (4.3)
and (4.6) to provide a sharp trace inequality to achieve the control of ∥χ̂∥L∞

ω L2
s (H ).

Define the following norms7

∥F∥P 0 : = ∑
λ≥1

∥PλF∥L2(H ) +∥F∥L2(H )

N1(F ) : = ∥/∇LF∥L2(H ) +∥/∇F∥L2(H ) +∥F∥L2(H )

∥F∥B0 : = sup
λ≥1

∥PλF∥L∞
s L2(S0) +∥F∥L∞

s L2(S0).

Remark 13. For tensor field F , the standard Littlewood–Paley decomposition for F is applied
to the components of F with respect to a set of suitably chosen parallel-transported frames.
Klainerman and Rodnianski in [58] developed an intrinsic Littlewood–Paley decomposition that
is directly applicable to tensor fields. For the definitions of B0 and P 0, the two types of
Littlewood–Paley decompositions are equivalent on a rough null hypersurface (see [59,60] for the
comparison estimates between them). As we shall see when discussing the sharp trace inequality,
introducing the intrinsic Littlewood–Paley decomposition is essential to completing the proof.

With f = ∫ s
0 |χ̂|2ds′, schematically, there holds

/∇L /∇ f = 2 /∇χ̂ · χ̂+·· · .

Hence

∥/∇ f ∥B0 ≲
∥∥∥∥∫ s

0
/∇χ̂ · χ̂

∥∥∥∥
B0

+·· · .

Similarly, differentiating (4.1), we can derive

/∇L /∇trχ=−trχ/∇trχ−2 /∇χ̂ · χ̂+·· · .

Hence

∥/∇trχ∥B0 ≲I0 +
∥∥∥∥∫ s

0
/∇χ̂ · χ̂

∥∥∥∥
B0

+·· ·

6The norm ∥ · ∥L∞
ω L2

s
means first taking the L2 norm along a null geodesic initiated from S0 along H , followed with

taking the supremum over the initial point in S0.
7Along the truncated null cone H , the area element on Ss is comparable to the one in S0 for 0 < s ≤ 1. Therefore, we

regard L2(Ss ) as L2(S0) for simplicity.
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Instead of relying on ∥/∇χ̂∥P 0 to control the right-hand side, which is unobtainable with merely
the bounded curvature flux, they first use (4.3) to write that

/∇χ̂= /∇D−1
2 β+ /∇D−1

2 /∇trχ · · ·
where D2 is the operator that takes a 2-covariant, symmetric, traceless tensor ξ into the 1-
form /divξ. Denote by D1 the operator that takes any 1-form ξ on Ss into the pair of functions
( /divξ, /curlξ). They observe that, in view of (4.6) and (4.7), using the normalized pair of functions
(ρ̌, σ̌) which are constructed to eliminate the quadratic term containing the bad term χ̂ on the
right-hand side,

β=D−1
1 {L(ρ̌, σ̌)+ζ ·β )+·· · }

which, symbolically, gives

/∇χ̂ = /∇D−1
2 D−1

1 L(ρ̌, σ̌)+ /∇D−1
2 /∇trχ+·· ·

= /∇L /∇D−1
2 D−1

1 (ρ̌, σ̌)+ /∇D−1
2 /∇trχ+ [ /∇D−1

2 D−1
1 ,L](ρ̌, σ̌)+·· · .

Hence for /∇χ̂, they obtain the decomposition

/∇χ̂= /∇LP +E (4.9)

where
P = /∇D−1

2 D−1
1 (ρ̌, σ̌)+·· · , E = /∇D−1

2 /∇trχ+·· ·
are tensors of the same type as /∇χ̂.

To take advantage of such a decomposition, in [57], they establish the following sharp trace
inequality with the help of integration by parts along the null geodesic.

Theorem 14 ([57, Theorem 4.1, Theorem 4.3]). Consider the transport equation

/∇LW = /∇LP ·F

with W,P,F all tensor fields tangent to Ss . There holds the sharp trace inequality

∥W ∥B0 ≲ ∥W |S0∥B 0
2,1(S0) +N1(P )(N1(F )+∥F∥L∞

ω L2
s
). (4.10)

For Ss tangent tensor fields W,E ,F satisfying

/∇LW = E ·F

there holds

∥W ∥B0 ≲ ∥W |S0∥B 0
2,1(S0) +∥E∥P 0 (N1(F )+∥F∥L∞

ω L2
s
). (4.11)

Applying Theorem 14 to F = χ̂ and P,E in (4.9) gives

∥/∇trχ∥B0 ≲I0 + (N1(χ̂)+∥χ̂∥L∞
ω L2

s
)(N1(P )+∥E∥P 0 ).

Due to Calderon–Zygmund theorem, ∥E∥P 0 ≈ ∥/∇trχ∥P 0 +·· · , it follows by using Sobolev embed-
ding ∥χ̂∥2

L∞
ω L2

s
≲ ∥ f ∥B0 and Theorem 14 that

∥χ̂∥2
L∞
ω L2

s
≲ (N1(χ̂)+∥χ̂∥L∞

ω L2
s
)(N1(P )+∥/∇trχ∥P 0 +·· · ).

We then derive
∥χ̂∥L∞

ω L2
s
≲N1(χ̂)+N1(P )+∥/∇trχ∥P 0 +·· ·

Substituting the above estimate to the estimate of ∥/∇trχ∥B0 yields

∥/∇trχ∥B0 ≲I0 + (N1(χ̂)+N1(P )+∥/∇trχ∥P 0 )(N1(P )+∥/∇trχ∥P 0 )

where we dropped the additional error terms for simplicity.
N1(χ̂) can be bounded by using (4.2) and (4.3). N1(P ) can be controlled by using (4.6), (4.7),

Calderon–Zygmund theorem with the help of proper commutation. Since these bounds are
expected to be small, ∥/∇trχ∥B0 can be controlled, which gives the estimate of |trχ−2/r |.
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In the above sketched proof, we neglected all the terms involved with ζ. In fact, ζ and the
mass aspect function µ=− /divζ− ρ̌+|ζ|2 are related in a similar pattern as the pair of quantities
(χ̂, /∇trχ). To control them, Klainerman and Rodnianski provided a trace decomposition for /∇ζ as
the one for /∇χ̂. Having such a particular structure allows them to apply Theorem 14 to obtain the
control of ∥ζ∥L∞

ω L2
s

and ∥µ∥B0 , which are necessary to complete the proof for Theorem 12.
Now consider (4.10) in Theorem 14. If P is a tensor, we assume without loss of generality that P

is a one form. Relative to a set of parallel-transported frames {X l }
m
l=1 (see [57, Proposition 3.28]),

note that
∥/∇(P (X l ))∥L2(H ) ≤ ∥/∇P ·X l∥L2(H ) +∥P · /∇X l∥L2(H ),

and one can obtain by transport equations that X l ∈ L∞ and /∇X l ∈ L2
S0

L∞
s with bounded

curvature flux. To establish the equivalence between ∥/∇P∥L2(H ) and
∑m

l=1 ∥/∇(P (X l ))∥L2(H ), it
requires that P ∈ L∞

Ss
L2

s . With D either D1, or D2, from (4.9), schematically, P ≈ D−1(R ·L). With
bounded curvature flux, P would not be bounded in L∞

Ss
L2

s . Therefore, proving (4.10) without
scalarizing the tensor field P becomes crucial. However, in the proof, one must perform a
Littlewood–Paley projection, which is typically defined for scalar functions. To solve this issue,
in [58], Klainerman and Rodnianski introduced a geometric Littlewood–Paley decomposition
using heat flow on weakly regular 2-D closed surfaces, which can be directly applied to tensor
fields. They recovered the essential analytic properties of the standard Littlewood–Paley theory
for their geometric version in weakly regular 2-surfaces, such as Ss . Further simplifications for
proving Theorem 14 were developed in [59,60] and [65]. In particular, a nice alternative treatment
to the geometric Littlewood–Paley theory was given in [65], based on deriving improved regularity
for the parallel frames.

5. The breakdown criterion of Einstein spacetime

Theorem 12 was initially motivated by the goal of proving the bounded L2 curvature conjecture.
In [7] it also provides control over the null radius of conjugacy, which played a key role in [5]
in establishing the breakdown criterion for Einstein spacetimes. It is not immediately clear
how controlling causal geometry under low regularity assumptions on the null cone relates to
establishing a breakdown criterion for classical solutions of the Einstein vacuum equations. We
will explain this connection while introducing the results of [5, 7].

Recall the standard energy argument for bounding the Bel–Robinson energy in (3.15), assum-
ing ∫ t∗

t0

{∥k∥L∞
x
+∥/∇ logn∥L∞

x
}dt <∞ (5.1)

the Bel–Robinson energy at Σt with t ∈ (t0, t∗) can be directly bounded in terms of its value at the
initial slice Σ0 and the bound of the quantity in (5.1).

In [5], Klainerman–Rodnianski proved that

Theorem 15 ([5]). The Einstein vacuum spacetime with CMC foliation Σt with t < 0 can be
extended beyond at t∗ < 0 provided that

sup
t∈[t0,t∗)

(∥k∥L∞
x
+∥/∇ logn∥L∞

x
) =K0 <∞. (5.2)

Clearly (5.2) implies (5.1) which gives the control of Bel–Robinson energy on Σt for t ∈ (t0, t∗).
However only the lowest order energy is directly bounded by using (5.2) and the initial data. To
extend the solution beyond t∗, they managed to bound ∥D≤2R∥L2(Σt ) for t0 < t < t∗ under the
assumption (5.2). To control the higher order energy, they bounded ∥R∥L∞ in the spacetime slab
with the help of the equation

□gR = R⋆R

which is obtained by using Bianchi equation and (1.2).
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In the same spirit to Sobolev [66] and Choquet-Bruhat [2], Klainerman and Rodnianski estab-
lished a Kirchoff formula in the curved spacetime in [67] (see [68] for a simplification), by which
they represented at a point p in the spacetime by

R(p) =−
∫
N −(p,τ)

A ·R⋆R+E (5.3)

where E denotes all other terms, A is a 4-covariant tensor defined as a solution of a transport
equation along the backward light-cone N −(p,τ) initiated from p in the time interval [t (p)−
τ, t (p)].

The representation holds within the null radius of injectivity i∗(p). To define i∗(p), we denote
the backward null geodesic initiated from p by Υ(ω, s), with ω ∈S2, s(0) = p and L(s) = 1 for the
null geodesic generator L, normalized by 〈L,T〉(p) = −1. With ω ∈ S2 fixed, we parameterize s
using the temporal parameter τ= tp − t so that s = s(ω,τ). i∗(p) is the supremum of τ such that
the exponential map sending (ω,τ) → Υ(ω, s(τ,ω)) by the past null geodesics remains a global
diffeomorphism betweenS2×(0,τ) and its image along the backward null cone N −(p). The null
radius of injectivity i∗(p) = min(s∗(p), l∗(p)), where s∗(p) denotes the null radius of conjugacy
and l∗(p) is the radius of past null cut locus at p 8. To control the higher order energies of R, it is
crucial to obtain a uniform lower bound of null radius of injectivity for all p ∈Σ× (t0, t∗), which is
given in [7].

Next we briefly sketch the proof of [7]. We first note that only Bel-Robison energy on Σt , t ∈
(t0, t∗) and the curvature flux on N −(p,τ) with τ ≤ i∗(p) is bounded by universal constants.
These constants depend only on the initial Bel–Robinson energy, the initial volume |Σt0 |, the
initial metric bound I0 such that I−1

0 ≤ (gi j ) ≤ I0, K0 and t∗. Consequently, only limited regularity
control is obtained directly on the null cone. Prior to [7], existing results in the literature relied on
pointwise bounds of the Riemann curvature tensor for controlling the injectivity radius. However,
such results do not provide a uniform lower bound on the null injectivity radius in terms of
universal constants.

The crucial next step is to show that

s∗(p) > min(l∗(p),δ∗)

where δ∗ > 0 is a universal constant. This is achieved by showing that

sup
N −(p,τ)

∣∣∣∣trχ− 2

s

∣∣∣∣≤C (5.4)

with τ = min(l∗(p),δ∗) and C a universal constant. The proof is done by rescaling the result of
causal geometry analysis in [56] and [59, 60] and also by a continuity argument.

The next step is to find a good system of local space-time coordinates under which g is
comparable with the Minkowski metric. More precisely, for a sufficiently small constant ϵ >
0, one needs to show that there exists a constant9 δ∗ > 0, depending only on ϵ and some
universal constants, for which each geodesic ball Bδ∗ (p) with p ∈ Σt admits local coordinates
x = (x1, x2, x3) such that under the corresponding transport coordinates x0 = t , x1, x2, x3 the
metric g =−n2dt 2 + gi j dxi dx j with

|n −n(p)| ≤ ϵ and |gi j −δi j | ≤ ϵ (5.5)

on Bδ∗ (p)× [t (p)−δ∗, t (p)]. Note that the first estimate can be achieved by controlling ∂t n via
elliptic estimates; the second one is obtained by using (5.2) and

∂t gi j =−2nki j . (5.6)

8s∗(p), l∗(p) are both measured in terms of the temporal parameter.
9The constant is no greater than δ∗ appeared in the above. We still use δ∗ to denote it.
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The existence of such local coordinates together with (5.4) will enable one to show that N −(p,δ∗)
is close to the flat cone and consequently l∗(p) > δ∗ 10. Therefore the null radius of injectivity
verifies

i∗(p) > min(δ∗, t (p)− t0).

Then going back to (5.3), there is a uniform lower bound δ∗ > 0 of τ for the formula to hold.
Due to the structure of R⋆R, one of the curvature component can be controlled by the curvature
flux along the backward null cone. Moreover one can achieve ∥A∥L2(N −(p,τ)) ≲ τ1/2. This leads to

∥R(t )∥L∞
Σ
≲ τ1/2 sup

t ′∈(t−τ,t )
∥R(t ′)∥L∞

Σ
+∥E ∥L∞

Σ
.

For E , suppose11

|E |≲ sup
t ′∈[t−τ,t− 1

2 τ]

τ−1∥D≤2R∥L2(Σt ′ ).

Combining the above estimates implies

∥R(t )∥L∞ ≲ τ−1 sup
t−2τ≤t ′≤t− τ

2

(∥R∥L2(Σt ′ ) +∥DR∥L2(Σt ′ ) +∥D2R∥L2(Σt ′ ))

with τ> 0 sufficiently small and fixed.
Then with the step length (1/2)τ, after finitely many steps, it follows from the above estimate

that

∥R∥H 2(Σt ) ≲ ∥R∥H 2(Σ0), t0 < t < t∗,

which enables the continuation of the solution beyond t∗.
The results on the breakdown criterion and the lower bound for the radius of injectivity

of null hypersurfaces were improved in [61, 62] to depend on the weaker assumption (5.1)
rather than (5.2). To control both the null radius of conjugacy and the radius of the null
cut locus, the proof of Klainerman–Rodnianski relied on L∞ bounds for k and /∇ logn. With
careful analysis, and assuming (5.1), it still requires universal bounds on

∫ t (p)
t (p)−τ |k(x, t ′)|2dt ′ and

∥πLL∥L∞
ω L2

s (N −(p,τ)) for all p in the spacetime slab to control the null radius of injectivity. In view
of (5.6), bounding the first quantity yields the second estimate in (5.5). Based on a delicate
bootstrap argument, [62] achieves the first bound by representing k using the wave equation for
k. To obtain the second bound, it relies on decomposing /∇(πLL) into the form of /∇LP+E , followed
with applying the sharp trace estimates given in Theorem 14. The latter is achieved together
with controlling trχ− 2/s and other connection coefficients in [61], using the wave equation
for k.

The result of Klainerman–Rodnianski in [5] was also extended by Shao in [63] to Einstein-scalar
field and Einstein–Maxwell equations.
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